Regularizing effect and local existence for non-cutoff Boltzmann equation Radjesvarane Alexandre, Y. Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang # ▶ To cite this version: Radjesvarane Alexandre, Y. Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularizing effect and local existence for non-cutoff Boltzmann equation. 2008. hal-00349854v3 # HAL Id: hal-00349854 https://hal.science/hal-00349854v3 Preprint submitted on 10 Dec 2009 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # REGULARIZING EFFECT AND LOCAL EXISTENCE FOR NON-CUTOFF BOLTZMANN EQUATION R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG ABSTRACT. The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo-differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution acquires the C^{∞} regularity for positive time. # 1. Introduction Consider the Boltzmann equation, $$(1.1) f_t + v \cdot \nabla_x f = Q(f, f),$$ where f = f(t, x, v) is the density distribution function of particles with position $x \in \mathbb{R}^3$ and velocity $v \in \mathbb{R}^3$ at time t. The right hand side of (1.1) is given by the Boltzmann bilinear collision operator $$Q(g,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v - v_*, \sigma) \left\{ g(v_*') f(v') - g(v_*) f(v) \right\} d\sigma dv_*,$$ which is well-defined for suitable functions f and g specified later. Notice that the collision operator $Q(\cdot,\cdot)$ acts only on the velocity variable $v \in \mathbb{R}^3$. In the following discussion, we will use the σ -representation, that is, for $\sigma \in \mathbb{S}^2$, $$v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma, \ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma,$$ which give the relations between the post and pre collisional velocities. It is well known that the Boltzmann equation is a fundamental equation in statistical physics. For the mathematical theories on this equation, we refer the readers to [22, 23, 33, 37, 57], and the references therein also for the physics background. In addition to the special bilinear structure of the collision operator, the cross-section $B(v-v_*,\sigma)$ varies with different physical assumptions on the particle interactions and it plays an important role in the well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere model, for most of the other molecular interaction potentials such as the inverse power laws, the cross section $B(v-v_*,\sigma)$ has a non-integrable angular singularity. For example, if the interaction potential obeys the inverse power law $r^{-(p-1)}$ for 2 , where <math>r denotes the distance between two interacting molecules, the cross-section behaves like $$B(|v-v_*|,\cos\theta) \sim |v-v_*|^{\gamma}\theta^{-2-2s}, \quad \cos\theta = \langle \frac{v-v_*}{|v-v_*|}, \sigma \rangle, \quad 0 \le \theta \le \frac{\pi}{2},$$ $^{2000\} Mathematics\ Subject\ Classification.\ 35A05,\ 35B65,\ 35D10,\ 35H20,\ 76P05,\ 84C40.$ Key words and phrases. Non-cutoff cross-sections, Boltzmann equation, regularizing effect, local existence, uncertainty principle, pseudo-differential calculus. with $$-3 < \gamma = \frac{p-5}{p-1} < 1, \quad 0 < s = \frac{1}{p-1} < 1.$$ As usual, the hard and soft potentials correspond to 2 and <math>p > 5 respectively, and the Maxwellian potential corresponds to p = 5. The fact that the singularity θ^{-2-2s} is not integrable on the unit sphere leads to the conjecture that the nonlinear collision operator should behave like a fractional Laplacian in the variable v. That is, $$Q(f, f) \sim -(-\Delta_v)^s f + \text{lower order terms.}$$ Indeed, consider the Kolmogorov type equation $$f_t + v \cdot \nabla_x f = -(-\Delta_v)^s f.$$ Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class when $0 < s \le \frac{1}{2}$ and is ultra-analytic if $\frac{1}{2} < s < 1$ for initial data only in $L^2(\mathbb{R}^3_x \times \mathbb{R}^3_v)$ if it admits a unique solution (see [50] for a more general study). However, for the Boltzmann equation, the gain of Gevrey regularity of solution is a long lasting open problem which has only been proved so far in the linear and spatially homogeneous setting, see [48]. The mathematical study on the inverse power law potentials can be traced back to the work by Pao [52] in the 1970s. And in the early 1980s, Arkeryd in [15] proved the existence of weak solutions to the spatially homogeneous Boltzmann equation when $0 < s < \frac{1}{2}$, while Ukai in [53] applied an abstract Cauchy-Kovalevskaya theorem to obtain local solutions in the functional space of functions, which are analytic in x and Gevrey in v. However, the smoothing effect of the collision operator was not studied at that time. Since then, this problem has attracted increasing interests in the area of kinetic theory and a lot of progress has been made on the existence and regularity theories. More precisely, that the long-range interactions have smoothing effects on the solutions to the Boltzmann equation was first proved by Desvillettes for some simplified models, cf. [27, 28]. This is in contrast with the hard sphere model and the potentials with Grad's angular cutoff assumption. In fact, for the hard sphere model, the cross-section has the form (in the σ representation) $$B(|v - v_*|, \cos \theta) = q_0|v - v_*|,$$ where q_0 is the surface area of a hard sphere. For singular cross-sections, Grad [37] introduced the idea to cut off the singularity at $\theta = 0$ so that $B(|v-v_*|, \cos \theta) \in L^1(\mathbb{S}^2)$. This assumption has been widely accepted and is now called Grad's angular cutoff assumption which influences a few decades of mathematical studies on the Boltzmann equation. Under this angular cutoff assumption, the solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was shown in [34], that the solution has the form $$f(t, x, v) = a(t, x, v)f(0, x - vt, v) + b(t, x, v),$$ when the initial data f(0, x, v) is in some weighted $L_{x,v}^p$ space. Here, a(t, x, v) and b(t, x, v) are in the Sobolev space $H_{t,x,v}^{\delta}$ for some $\delta > 0$. And the term f(0, x - vt, v) just represents the free transport so that it is clear that f(t, x, v) and f(0, x, v) have the same regularity. One of the main features of the Boltzmann equation is the celebrated Boltzmann's H-theorem saying that the H-functional $$H(t) = \int_{\mathbb{R}^3 \times \mathbb{R}^3} f \log f dx dv,$$ satisfies $$\frac{dH(t)}{dt} + D(t) = 0,$$ where $$D(t) = -\int_{\mathbb{R}^3 \times \mathbb{R}^3} Q(f,f) \log f dx dv \geq 0,$$ which is called the entropy dissipation rate. Notice that D(t) is non-negative and vanishes only when f is a Maxwellian. The non-negativity of D indicates that the Boltzmann equation is a dissipative equation. This fact is a basic ingredient in the L^1 theory of the Boltzmann equation, see for example [33]. By using the entropy dissipation rate D and the " Q^+ smoothing property", the formal smoothing estimate was derived by P.-L. Lions (see the complete references in [6]) $$\|\sqrt{f}(\sqrt{f}*\langle v\rangle^{-m})\|_{B_{\infty}^{\delta,2}}^2 \le C\|f\|_{L^1}^{1-\theta}(\|f\|_{L^1} + D(f)^{\frac{1}{2}})^{\theta}, \quad \delta = \frac{s}{1+s}, \ \theta = \frac{1}{1+s},$$ for any constant m > 3. Notice that the above regularity estimate is on \sqrt{f} but not f itself. Later, some almost optimal estimates together with some extremely useful results, such as the cancellation lemma, were obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [6]. By using these analytic tools, the mathematical theory regarding the regularizing effect for the spatially homogeneous problems may now be considered as quite satisfactory, see [10, 11, 29, 30, 32, 39, 48, 55], and the references therein. However, for the spatially inhomogeneous equations, there are much less results. The main difficulty comes from the coupling of the transport operator with the collision operator, and the commutators of the differential (pseudo-differential) operators with the collision operator. There are two progresses which have been achieved so far. One is about the local existence of solutions between two moving Maxwellians in [4], obtained by constructing upper and lower solutions. The other one is about the global existence of renormalized solutions with defect measures constructed in [12], which becomes weak solutions if the defect measures vanish. Some results on similar but linear kinetic equations were also given in [9] and
[18]. In particular, a generalized uncertainty principle à la Fefferman [35] (see also [45, 46, 47]) was introduced in [9] in order to prove smoothing effects of the linearized and spatially inhomogeneous Boltzmann equation with non-cutoff cross sections, and get partial smoothing effects for the nonlinear Boltzmann equation. In the following analysis, this partial regularity result, together with its proof, will also be used. This paper can be viewed as a continuation of our recent work [9]. Under some mild regularity assumption on the initial data, we will prove the existence of solutions and their C^{∞} regularity with respect to all (time, space and velocity) variables. Even though it is still not known whether only some natural bounds, such as total mass, energy and entropy on the initial data, can lead to the C^{∞} regularizing effect, as far as we know, the results shown in this paper are the first ones justifying the C^{∞} regularizing effect for the nonlinear and spatially inhomogeneous Boltzmann equation without Grad's angular cutoff assumption. In order to state our theorems, let us first introduce the notations and assumptions used in this paper. The non-negative cross-section $B(z,\sigma)$ (for a monatomic gas, which is the case considered herein) depends only on |z| and the scalar product $<\frac{z}{|z|},\sigma>$. In most cases, the collision kernel cannot be expressed explicitly, but to capture the essential properties, it can be assumed to have the form $$B(|v-v_*|,\cos\theta) = \Phi(|v-v_*|)b(\cos\theta), \quad \cos\theta = \left\langle \frac{v-v_*}{|v-v_*|}, \sigma \right\rangle, \quad 0 \le \theta \le \frac{\pi}{2}.$$ Furthermore, to keep the presentation as simple as possible, and in particular to avoid the difficulty coming from the vanishing of the cross-section at zero relative velocity, we assume that the kinetic factor Φ in the cross-section is modified as (1.2) $$\Phi(|v - v_*|) = \left(1 + |v - v_*|^2\right)^{\frac{\gamma}{2}}, \qquad \gamma \in \mathbb{R}.$$ This point can certainly be removed using our whole calculus, at the expense of technical and more complicated details. Moreover, the angular factor is assumed to have the following singular behavior (1.3) $$\sin \theta \ b(\cos \theta) \approx K \theta^{-1-2s}$$, when $\theta \to 0+$, where 0 < s < 1 and K is a positive constant. In fact $\gamma = 0$ corresponds to the Maxwellian molecule, $\gamma < 0$ corresponds to the modified soft potential, and $\gamma > 0$ corresponds to the modified hard potential. The singularity will be called mild for $0 < s < \frac{1}{2}$ and strong for $\frac{1}{2} \le s < 1$. The case $s = \frac{1}{2}$ is critical in the sense that different computations are required in many parts of our proofs for mild and strong singularities, as will be seen below. This is similar to the known fractional Laplacian studies. It is now well known from the work [6] that the singular behavior of the collision kernel (1.3) implies a sub-elliptic estimate in the velocity variable v. In the following analysis, we shall need a slightly precised weighted sub-elliptic estimate in the velocity variable. We shall show that for $\gamma \in \mathbb{R}$ and 0 < s < 1, if $f \ge 0, \ne 0$, $f \in L^1_2 \cap L \log L(\mathbb{R}^3_v)$, there exists a constant C > 0 such that for any function $g \in H^1(\mathbb{R}^3_v)$ we have $$(1.4) C^{-1} \|\Lambda_v^s W_{\gamma/2} g\|_{L^2(\mathbb{R}^3_v)}^2 \le (-Q(f,g), g)_{L^2(\mathbb{R}^3_v)} + C \|f\|_{L^1_{\tilde{\gamma}}(\mathbb{R}^3)} \|g\|_{L^2_{\tilde{\gamma}+\tilde{\gamma}_2}(\mathbb{R}^3_v)}^2,$$ where $\tilde{\gamma} = \max(\gamma^+, 2 - \gamma^+), \gamma^+ = \max\{\gamma, 0\}$. Here $W_l = W_l(v) = (1 + |v|^2)^{l/2} = \langle v \rangle^l, l \in \mathbb{R}$, is the weight function in the variable $v \in \mathbb{R}^3$. Similar sub-elliptic estimates, first proved in [6] and then developed in many other works such as [51] in a linearized context, have been used crucially at least for the following two aspects: - i) the proof of the regularizing effect on the solutions to the spatially homogeneous Boltzmann equations, see [10, 11, 32, 39, 48]; - ii) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Boltzmann equation [4, 12, 57]. In this paper, we will apply this tool in order to study the complete smoothing effect for the spatially inhomogeneous and nonlinear Boltzmann equation. It is now well understood, see [13] and references therein, that Landau equation corresponds to the grazing limit of Boltzmann equation. However, while Landau operator involves usual partial differential operators, it should be kept in mind that fractional differential operators appear in the Boltzmann case, see [5, 2]. Therefore, the analysis on the Boltzmann equation appears much more involved because it requires the unavoidable use of Harmonic Analysis. In particular, we shall use a generalized uncertainty principle which was introduced in [9], and the estimation of commutators used in the work [49] for the study of hypo-elliptic properties. Throughout this paper, we shall use the following standard weighted (with respect to the velocity variable $v \in \mathbb{R}^3$) Sobolev spaces. For $m, l \in \mathbb{R}$, set $\mathbb{R}^7 = \mathbb{R}_t \times \mathbb{R}^3_x \times \mathbb{R}^3_v$ and $$H_l^m(\mathbb{R}^7) = \left\{ f \in \mathcal{S}'(\mathbb{R}^7); \ W_l(v) f \in H^m(\mathbb{R}^7) \right\},$$ which is a Hilbert space. Here H^m is the usual Sobolev space. We shall also use the functional spaces $H_l^k(\mathbb{R}^6_{x,v})$ and $H_l^k(\mathbb{R}^3_v)$, specifying the variables, the weight being always taken with respect to $v \in \mathbb{R}^3$. Since the regularity property to be proved here is local in space and time, for convenience, we define the following local version of weighted Sobolev space. For $-\infty \le T_1 < T_2 \le +\infty$, and any given open domain $\Omega \subset \mathbb{R}^3_x$, define $$\mathcal{H}_{l}^{m}(]T_{1}, T_{2}[\times\Omega\times\mathbb{R}_{v}^{3}) = \Big\{f\in\mathcal{D}'(]T_{1}, T_{2}[\times\Omega\times\mathbb{R}_{v}^{3}); \\ \varphi(t)\psi(x)f\in H_{l}^{m}(\mathbb{R}^{7}), \ \forall \varphi\in C_{0}^{\infty}(]T_{1}, T_{2}[), \ \psi\in C_{0}^{\infty}(\Omega)\Big\}.$$ Our first main result is about the smoothing effect on the solution and can be stated as follows # Theorem 1.1. (Regularizing effect on solutions) Assume that 0 < s < 1, $\gamma \in \mathbb{R}$, $-\infty \le T_1 < T_2 \le +\infty$ and let $\Omega \subset \mathbb{R}^3_x$ be an open domain. Let f be a non-negative function belonging to $\mathcal{H}^5_l(]T_1, T_2[\times \Omega \times \mathbb{R}^3_v)$ for all $l \in \mathbb{N}$ and solving the Boltzmann equation (1.1) in the domain $]T_1, T_2[\times \Omega \times \mathbb{R}^3_v]$ in the classical sense. Furthermore, if f satisfies the non-vacuum condition $$||f(t,x,\cdot)||_{L^1(\mathbb{R}^3_+)} > 0,$$ for all $(t,x) \in]T_1, T_2[\times \Omega, then we have$ $$f \in \mathcal{H}_l^{+\infty}(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3),$$ for any $l \in \mathbb{N}$, and hence $$f \in C^{\infty}(]T_1, T_2[\times \Omega; \mathcal{S}(\mathbb{R}^3_v)).$$ With this result in mind, a natural question is whether the Boltzmann equation has solutions satisfying the assumptions imposed above. Let us recall that solutions constructed in [4, 12] do not work for our purpose because of the lack of the weighted regularity \mathcal{H}_l^5 . For Gevrey class solutions from [53], there is of course nothing to prove. Thus, our second main result is about the local existence and uniqueness of solution for the Cauchy problem of the non-cutoff Boltzmann equation. We consider the solution in the functional space with Maxwellian type exponential decay in the velocity variable. More precisely, for $m \in \mathbb{R}$, set $$\mathcal{E}_0^m(\mathbb{R}^6) = \Big\{ g \in \mathcal{D}'(\mathbb{R}^6_{x,v}); \, \exists \, \rho_0 > 0 \, \text{ s.t. } e^{\rho_0 < v >^2} g \in H^m(\mathbb{R}^6_{x,v}) \Big\},\,$$ and for T > 0 $$\mathcal{E}^{m}([0,T] \times \mathbb{R}^{6}_{x,v}) = \left\{ f \in C^{0}([0,T]; \mathcal{D}'(\mathbb{R}^{6}_{x,v})); \exists \rho > 0 \right.$$ $$s.t. \ e^{\rho \langle v \rangle^{2}} f \in C^{0}([0,T]; \ H^{m}(\mathbb{R}^{6}_{x,v})) \right\}.$$ **Theorem 1.2.** Assume that 0 < s < 1/2 and $\gamma + 2s < 1$. Let $f_0 \ge 0$ and $f_0 \in \mathcal{E}_0^{k_0}(\mathbb{R}^6)$ for some $4 \le k_0 \in \mathbb{N}$. Then, there exists $T_* > 0$ such that the Cauchy problem (1.6) $$\begin{cases} f_t + v \cdot \nabla_x f = Q(f, f), \\ f|_{t=0} = f_0, \end{cases}$$ admits a non-negative and unique solution in the functional space $\mathcal{E}^{k_0}([0,T_*]\times\mathbb{R}^6)$. Furthermore, if we assume that the initial data f_0 is in $\mathcal{E}_0^5(\mathbb{R}^6)$ and does not vanish on a compact set $K \subset \mathbb{R}^3_x$, that is, $$||f_0(x, \cdot)||_{L^1(\mathbb{R}^3)} > 0, \quad \forall \ x \in K,$$ then we have the regularizing effect on the above solution, that is, there exist $0 < \tilde{T}_0 \le T_*$ and a neighborhood V_0 of K in \mathbb{R}^3_x such that $$f \in C^{\infty}(]0, \tilde{T}_0[\times V_0; \mathcal{S}(\mathbb{R}^3_n)).$$ Moreover, if $\gamma \leq 0$, the non-negative solution of the Cauchy problem (1.6) is unique in the functional space $C^0([0,T_*]; H_p^m(\mathbb{R}^6))$ for m > 3/2 + 2s, p > 3/2 + 4s. **Remark 1.3.** For the inverse power law potential $r^{-(p-1)}$, the condition 0 < s < 1/2, $\gamma + 2s < 1$ corresponds to 3 which includes both soft and hard potentials. At the moment, it is not clear whether we can relax the regularity assumption initially made on the solutions. Note that for example, the condition that $f \in L^1 \cap L^\infty(\mathbb{R}^7)$ is enough to give a meaningful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation. However, the analysis used here can not be applied to this case, and so further study is needed.
On the other hand, the above two theorems give an answer to a long lasting conjecture on the regularizing effect of the non-cutoff cross-sections for the spatially inhomogeneous Boltzmann equation. Finally in the introduction, let us review some related works on the regularizing effect and the existence of solutions for the Landau equation. The regularizing effect from the Landau collision operator has been rather well studied. See [31, 24, 13] for the spatially homogeneous case. For the spatially inhomogeneous problem, a regularizing result was obtained in [26], where the H^8 regularity is assumed on the solutions to start with. And similar result was also recently proved for the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [25] and the references therein. As for the existence of solutions, see [31] where unique weak solutions for spatially homogeneous case have been constructed with rather general initial data, and see [36] where the classical solutions for the spatially inhomogeneous case have been constructed in a periodic box with small initial data. The rest of the paper will be organized as follows. First of all, in the next section, we will use the pseudo-differential calculus to study the upper bounds on the collision operator. We shall give a precise coercivity estimate linked to the singularity in the cross-section, and estimate the commutators between some pseudo-differential operators and the nonlinear collision operators. In Section 3, the regularizing effect will be proved under the initial regularity assumption on the solution. The strategy of the proof is as follows. We first choose some suitable mollifiers such that the mollified solutions can work as test functions for the weak formulation of the problem. We then establish a small gain of the regularity in the velocity variable, by using the coercivity estimate coming from the singularity of the cross section. On account of the generalized uncertainty principle, a small gain of the regularity in the space and time variables can be derived. The $H^{+\infty}$ regularity will follow from an induction argument. Finally, in Section 4, local solutions to the noncutoff Boltzmann equation which meet the initialization condition of Theorem 1.1 are constructed, using a family of cutoff Boltzmann equations with time local uniform bounds independent of cutoff parameter in some weighted Sobolev space. In particular, the uniform bounds are established with the help of time dependent Maxwellian type weight functions which were introduced in [53, 54]. The convergence of the approximate solutions follows from compactness argument, while the uniqueness of the solutions can also be proved by using our sharp upper bounds on the collision operator. ### 2. Pseudo-differential calculus Under the non-cutoff cross section assumption, the Boltzmann collision operator is a (nonlinear) singular integral operator with respect to $v \in \mathbb{R}^3$. In the linearized case, it behaves like a pseudo-differential operator. In this section, we study the pseudo-differential calculus on the Boltzmann operator. It is one of the key analytic tools for proving the regularizing effect of the non-cutoff Boltzmann equation. Even though the regularity proved in this paper is local in space and time variables, note that the collision operator is non-local in the space of v variable. Moreover, since the kinetic factor in the cross-section is of the form $\langle v \rangle^{\gamma}$ which might be unbounded, we need to consider the multiplication by the weight function $W_l(v)$ of the pseudo-differential operators. Hence, they are not the standard pseudo-differential operators of order 0 on the usual Sobolev space. In other words, we shall consider pseudo-differential operators with unbounded coefficients on the weighted Sobolev space $H_I^m(\mathbb{R}^n_v)$. The variables (t, x) are considered as parameters for the collision operators in this section. 2.1. **Upper bound estimates.** We shall need some functional estimates on the Boltzmann collision operator in the existence and regularization proofs below. The first one is about the boundedness of the collision operator in some weighted Sobolev spaces, see also [5, 7, 39]. $$\begin{array}{ll} \textbf{Theorem 2.1. } Let \ 0 < s < 1 \ \ and \ \gamma \in \mathbb{R}. \ \ Then \ for \ any \ m, \ \alpha \in \mathbb{R}, \ there \ \ exists \ C > 0 \ \ such \ \ that \\ (2.1.1) & \|Q(f, \, g)\|_{H^m_{\alpha}(\mathbb{R}^3_v)} \le C\|f\|_{L^1_{\alpha^+ + (\gamma + 2s)^+}(\mathbb{R}^3_v)} \|g\|_{H^{m+2s}_{(\alpha + \gamma + 2s)^+}(\mathbb{R}^3_v)} \\ for \ \ all \ \ f \in L^1_{\alpha^+ + (\gamma + 2s)^+}(\mathbb{R}^3_v) \ \ \ and \ \ g \in H^{m+2s}_{(\alpha + \gamma + 2s)^+}(\mathbb{R}^3_v) \ \ . \end{array}$$ # Remark 2.2. (1) The collision operator Q(f,g) behaves differently with respect to f and g: (2.1.1) shows that, in some sense, it is linear with respect to the second factor in the velocity variable v because the action of differentiation of Q(f,g) with respect to v goes only on g when considered in the Sobloev space. This is clear for the Landau operator which is the grazing limit of the Boltzmann operator. (2) The estimate (2.1.1) is in some sense optimal with respect to the order of differentiation (exact order of 2s) and also with respect to the order of the weight in v coming from the cross-section. In [39], the cases of both the modified hard potential and Maxwellian molecule type cross-sections corresponding to $0 \le \gamma < 1$ are discussed. Let us also mention that a similar estimate was given in [8], but it is not optimal in terms of weight and differentiation. However, its proof is more straightforward as it only uses the Fourier transformation of collision operator (Bobylev's type formula [16] and see also the Appendix of [6]). For our purpose, the full precise estimate (2.1.1) will be needed. # Proof of Theorem 2.1: Firstly, we consider the case when $\alpha = 0$. To prove (2.1.1) in this case, it suffices to show that for any $m \in \mathbb{R}$ $$(2.1.2) \qquad \left| \left(Q(f, g), h \right)_{L^{2}(\mathbb{R}^{3}_{v})} \right| \leq C ||f||_{L^{1}_{(\gamma+2s)^{+}}(\mathbb{R}^{3}_{v})} ||g||_{H^{m+2s}_{(\gamma+2s)^{+}}(\mathbb{R}^{3}_{v})} ||h||_{H^{-m}(\mathbb{R}^{3}_{v})}.$$ The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to the proof in [39], where the hard potential case $\gamma \geq 0$ was studied. Interested readers may refer to the papers [5, 6, 39] for more details, though we will keep the paper self-contained. Recall that $$\left(Q(f, g), h\right)_{L^{2}(\mathbb{R}^{3}_{v})} = \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) f(v_{*}) \Phi(|v - v_{*}|) g(v) \{h(v') - h(v)\} d\sigma dv_{*} dv,$$ where $\Phi(|v - v_*|) = \Phi(|v' - v'_*|) = \langle v' - v'_* \rangle^{\gamma}$. Set $$F(v, v_*) = \Phi(|v - v_*|)g(v),$$ and write (2.1.3) $$\left(Q(f, g), h \right)_{L^{2}(\mathbb{R}^{3}_{v})} = \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) f(v_{*}) F(v, v_{*}) \{ h(v') - h(v) \} d\sigma dv_{*} dv$$ $$= \int_{\mathbb{R}^{3}} f(v_{*}) (U_{1} - U_{2}) dv_{*}.$$ Then we have (formally) by inverse Fourier formula, $$U_1 \equiv \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(\cos \theta) F(v, v_*) h(v') d\sigma dv = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} H(\xi, \eta, v_*) \hat{F}(\xi, v_*) \overline{\hat{h}(\eta)} d\xi d\eta,$$ where (also formally) $$\begin{split} H(\xi,\eta,v_*) &= \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(k\cdot\sigma) e^{iv\cdot\xi - iv'\cdot\eta} d\sigma dv \\ &= \int_{\mathbb{R}^3} e^{iv\cdot\xi - i\frac{v+v_*}{2}\cdot\eta} \Big[\int_{\mathbb{S}^2} b(k\cdot\sigma) e^{-i\frac{|v-v_*|}{2}\sigma\cdot\eta} d\sigma \Big] dv \\ &= \int_{\mathbb{R}^3} e^{iv\cdot\xi - i\frac{v+v_*}{2}\cdot\eta} \Big[\int_{\mathbb{S}^2} b(\tilde{\eta}\cdot\sigma) e^{-i\frac{|v-v_*|}{2}|\eta|\sigma\cdot k} d\sigma \Big] dv \,, \quad (\tilde{\eta} = \eta/|\eta|) \\ &= \int_{\mathbb{R}^3} e^{iv\cdot\xi - i\frac{v+v_*}{2}\cdot\eta} \Big[\int_{\mathbb{S}^2} b(\tilde{\eta}\cdot\sigma) e^{-i|\eta|\frac{v-v_*}{2}\cdot\sigma} d\sigma \Big] dv \\ &= \int_{\mathbb{S}^2} b(\tilde{\eta}\cdot\sigma) e^{-iv_*\cdot\eta^-} \Big[\int_{\mathbb{R}^3} e^{iv\cdot(\xi-\eta^+)} dv \Big] d\sigma \\ &= \int_{\mathbb{S}^2} b(\tilde{\eta}\cdot\sigma) e^{-iv_*\cdot\eta^-} d\sigma \,\,\delta(\xi-\eta^+), \end{split}$$ with $$\eta^{-} = \frac{1}{2}(\eta - |\eta|\sigma), \quad \eta^{+} = \frac{1}{2}(\eta + |\eta|\sigma),$$ so that $$U_1 = \int_{\mathbb{R}^3} \left[\int_{\mathbb{S}^2} b(\tilde{\eta} \cdot \sigma) e^{-iv_* \cdot \eta^-} d\sigma \right] \hat{F}(\eta^+, v_*) \overline{\hat{h}(\eta)} d\eta.$$ On the other hand, $$\begin{split} U_2 &\equiv \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(\cos\theta) F(v, v_*) h(v) d\sigma dv \\ &= \Big[\int_{\mathbb{S}^2} b(\cos\theta) d\sigma \Big] \int_{\mathbb{R}^3} \hat{F}(\eta, v_*) \overline{\hat{h}(\eta)} d\eta \\ &= \int_{\mathbb{R}^3} \Big[\int_{\mathbb{S}^2} b(\tilde{\eta} \cdot \sigma) d\sigma \Big] \hat{F}(\eta, v_*) \overline{\hat{h}(\eta)} d\eta, \end{split}$$ because (formally) we have $$\int_{\mathbb{S}^2} b(\cos \theta) d\sigma = \int_{\mathbb{S}^2} b(\tilde{\eta} \cdot \sigma) d\sigma = \text{const.}$$ Therefore, we have obtained the following generalized Bobylev formula $$(2.1.4) \qquad \begin{aligned} &\left(Q(f,\,g),\,\,h\right)_{L^{2}(\mathbb{R}^{3}_{v})} \\ &= \int_{\mathbb{R}^{3}} f(v_{*}) \Big[\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} b(\tilde{\eta} \cdot \sigma) \Big\{ e^{-iv_{*} \cdot \eta^{-}} \hat{F}(\eta^{+}, v_{*}) - \hat{F}(\eta, v_{*}) \Big\} \overline{\hat{h}(\eta)} d\eta d\sigma \Big] dv_{*} \\ &= \int_{\mathbb{R}^{3}} f(v_{*}) \Big[\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} b(\tilde{\eta} \cdot \sigma) \Big\{ e^{iv_{*} \cdot \eta^{+}} \hat{F}(\eta^{+}, v_{*}) - e^{iv_{*} \cdot \eta} \hat{F}(\eta, v_{*}) \Big\} \\ &\times \overline{e^{iv_{*} \cdot \eta} \hat{h}(\eta)} d\eta d\sigma
\Big] dv_{*}. \end{aligned}$$ Notice that the above derivation is only formal for non-cutoff cross-section because we can not split the gain and loss term in this case. However, the derivation can be easily justified as a limit process of cutoff cross-sections when combining the gain term and loss term together. We now introduce a dyadic decomposition in \mathbb{R}^3_v as follows: $$\sum_{k=0}^{\infty} \phi_k(v) = 1, \quad \phi_k(v) = \phi(2^{-k}v) \text{ for } k \ge 1 \text{ with } 0 \le \phi_0, \phi \in C_0^{\infty}(\mathbb{R}^3),$$ and $$\text{supp } \phi_0 \subset \{|v| < 2\}, \qquad \text{supp } \phi \subset \{1 < |v| < 3\}.$$ Take also $\tilde{\phi}_0$ and $\tilde{\phi} \in C_0^{\infty}$ such that $$\tilde{\phi}_0 = 1 \text{ on } \{|v| \le 2\},$$ $\sup \tilde{\phi}_0 \subset \{|v| < 3\},$ $\tilde{\phi} = 1 \text{ on } \{1/2 \le |v| \le 3\},$ $\sup \tilde{\phi} \subset \{1/3 < |v| < 4\}.$ Furthermore, we assume that all these functions are radial. From $|v'-v_*| \leq |v-v_*| \leq \sqrt{2}|v'-v_*|$, it follows that $$\tilde{\phi}_k(v'-v_*)\phi_k(v-v_*) = \phi_k(v-v_*) = \tilde{\phi}_k(v-v_*)\phi_k(v-v_*), \ k \ge 0,$$ and thus we get $$\left(Q(f,\,g),\,\,h\right)_{L^2(\mathbb{R}^3_v)} = \sum_{k=0}^{\infty} \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta) f(v_*) F_k(v,v_*) \{h_k(v',v_*) - h_k(v,v_*)\} d\sigma dv_* dv,$$ where (2.1.5) $$F_k(v, v_*) = \phi_k(v - v_*)\Phi(|v - v_*|)g(v), \qquad h_k(v, v_*) = \tilde{\phi}_k(v - v_*)h(v).$$ Similarly to (2.1.4), we also obtain $$\begin{split} \left(Q(f,\,g),\,\,h\right)_{L^2(\mathbb{R}^3_v)} &= \sum_{k=0}^\infty \int_{\mathbb{R}^3} f(v_*) \Big[\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(\tilde{\eta} \cdot \sigma) \Big\{ e^{iv_* \cdot \eta^+} \hat{F}_k(\eta^+,v_*) - e^{iv_* \cdot \eta} \hat{F}_k(\eta,v_*) \Big\} \\ &\qquad \times \overline{e^{iv_* \cdot \eta} \hat{h}_k(\eta,v_*)} d\eta d\sigma \Big] dv_* \\ &= \int_{\mathbb{R}^3} f(v_*) \sum_{k=0}^\infty K^k(v_*) dv_*. \end{split}$$ In the following, we will estimate $\sum_{k=0}^{\infty} |K^k(v_*)|$, regarding v_* as a parameter. By setting $$\Omega_k = \left\{ \sigma \in \mathbb{S}^2 : \tilde{\eta} \cdot \sigma \ge 1 - 2^{1 - 2k} \langle \eta \rangle^{-2} \right\},$$ and $$\widetilde{\hat{F}_k}(\eta, v_*) = e^{iv_* \cdot \eta} \hat{F}_k(\eta, v_*), \quad \widetilde{\hat{h}_k}(\eta, v_*) = e^{iv_* \cdot \eta} \hat{h}_k(\eta, v_*),$$ we split $K^k(v_*)$ into $$\begin{split} K^k(v_*) &= \int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k} b(\tilde{\eta} \cdot \sigma) \Big\{ \widetilde{\hat{F}_k}(\eta^+, v_*) - \widetilde{\hat{F}_k}(\eta, v_*) \Big\} \overline{\widetilde{\hat{h}_k}(\eta, v_*)} d\eta d\sigma \\ &+ \int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\tilde{\eta} \cdot \sigma) \Big\{ \widetilde{\hat{F}_k}(\eta^+, v_*) - \widetilde{\hat{F}_k}(\eta, v_*) \Big\} \overline{\widetilde{\hat{h}_k}(\eta, v_*)} d\eta d\sigma \\ &= K_1^k(v_*) + K_2^k(v_*). \end{split}$$ Note that (2.1.6) $$\int_{\mathbb{S}^2 \cap \Omega_k} \theta^2 \ b(\cos \theta) d\sigma = 2\pi \int_{\{\theta \in [0, \pi/2]; \sin(\theta/2) \le 2^{-k} \langle \eta \rangle^{-1}\}} \sin \theta \ b(\cos \theta) \theta^2 d\theta$$ $$\le C \langle \eta \rangle^{2s-2} 2^{k(2s-2)}, \quad \text{if } 0 < s < 1,$$ (2.1.7) $$\int_{\mathbb{S}^2 \cap \Omega_k^c} b(\cos \theta) d\sigma = 2\pi \int_{\{\theta \in [0, \pi/2]; \sin(\theta/2) \ge 2^{-k} \langle \eta \rangle^{-1}\}} \sin \theta \ b(\cos \theta) d\theta$$ $$< C \langle \eta \rangle^{2s} 2^{2ks}, \quad \text{for any } s > 0.$$ It follows from (2.1.7) that $$\begin{aligned} |K_{2}^{k}(v_{*})| &\leq \int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}^{c}} b(\tilde{\eta} \cdot \sigma) \Big| \widetilde{\hat{F}_{k}}(\eta^{+}, v_{*}) - \widetilde{\hat{F}_{k}}(\eta, v_{*}) \Big| \Big| \widetilde{h_{k}}(\eta, v_{*}) \Big| d\eta d\sigma \\ &\leq \left(\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}^{c}} b(\tilde{\eta} \cdot \sigma) \langle \eta \rangle^{2m+2s} \Big(\Big| \widetilde{\hat{F}_{k}}(\eta^{+}, v_{*}) \Big|^{2} + \Big| \widetilde{\hat{F}_{k}}(\eta, v_{*}) \Big|^{2} \Big) d\eta d\sigma \right)^{1/2} \\ &\times \left(\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}^{c}} b(\tilde{\eta} \cdot \sigma) \langle \eta \rangle^{-2m-2s} \Big| \widetilde{h_{k}}(\eta, v_{*}) \Big|^{2} d\eta d\sigma \right)^{1/2} \\ &\leq C2^{2ks} \left\| \langle D_{v} \rangle^{m+2s} F_{k}(v, v_{*}) \} \right\|_{L^{2}} \left\| \langle D_{v} \rangle^{-m} h_{k}(v, v_{*}) \right\|_{L^{2}}. \end{aligned}$$ Here, we have used the change of variables $\eta \to \eta^+$, which is regular because the Jacobian can be computed, with $\tilde{\eta} = \eta/|\eta|$, as $$\left|\frac{\partial(\eta^+)}{\partial(\eta)}\right| = \left|\frac{1}{2}I + \frac{1}{2}\sigma \otimes \tilde{\eta}\right| = \frac{1}{8}(1 + \sigma \cdot \tilde{\eta}) = \frac{1}{4}\cos^2\frac{\theta}{2}.$$ It should be noted that after this change of variable, θ plays no longer the role of the polar angle because the "pole" $\tilde{\eta}$ now moves with σ and hence the measure $d\sigma$ is no longer given by $\sin\theta d\theta d\phi$. However, the situation is rather good because if we take $\tilde{\eta}^+ = \eta^+/|\eta^+|$ as a new pole which is independent of σ , then the new polar angle ψ defined by $\cos\psi = \tilde{\eta}^+ \cdot \sigma$ satisfies $$\psi = \frac{\theta}{2}, \qquad d\sigma = \sin \psi d\psi d\phi, \quad \psi \in [0, \frac{\pi}{4}],$$ and thus θ works almost as the polar angle. Therefore, since $\langle \eta \rangle \leq 2 \langle \eta^+ \rangle \leq 2 \langle \eta \rangle$ we have $$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\widetilde{\eta} \cdot \sigma) \langle \eta \rangle^{2m+2s} \left| \widetilde{\hat{F}_k}(\eta^+, v_*) \right|^2 d\eta d\sigma \leq C \int_{\mathbb{R}_{\eta^+}^3} D_0(\eta^+) \left| \widetilde{\hat{F}_k}(\eta^+, v_*) \right|^2 d\eta^{4m+2s} d\eta^{$$ with $$\begin{split} D_0(\eta^+) &= \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\tilde{\eta} \cdot \sigma) \langle \, \eta(\eta^+, \sigma) \, \rangle^{2m+2s} d\sigma \\ &\leq C \int_{\mathbb{S}^2 \cap \Omega_k^c} \langle \, \eta(\eta^+, \sigma) \, \rangle^{2m+2s} \theta^{-2-2s} d\sigma \\ &\leq C \langle \eta^+ \rangle^{2m+2s} \int_{2^{-k} \langle \eta^+ \rangle^{-1}}^{\pi/4} \psi^{-2-2s} \sin \psi d\psi \leq 2^{2ks} \langle \eta^+ \rangle^{2m+4s} \,, \end{split}$$ which implies (2.1.8). Notice that for p = 0, 1, 2 $$(2.1.9) \qquad \left| \frac{2^{k(2s-p)}|v-v_*|^p \phi_k(v-v_*)\Phi(|v-v_*|)}{\langle v_* \rangle^{(\gamma+2s)^+}} \right| \leq C \frac{\langle v-v_* \rangle^{\gamma+2s}}{\langle v_* \rangle^{(\gamma+2s)^+}} \phi_k(v-v_*)$$ $$\leq C \langle v \rangle^{(\gamma+2s)^+} \phi_k(v-v_*).$$ Then, recalling (2.1.5) and using (2.1.9) with p = 0 we have $$\begin{split} |K_{2}^{k}(v_{*})| \leq & C\langle v_{*}\rangle^{(\gamma+2s)^{+}} \left\| \frac{\langle D_{v}\rangle^{m+2s}}{\langle v_{*}\rangle^{(\gamma+2s)^{+}}} \{2^{2ks}F_{k}(v,v_{*})\} \right\|_{L^{2}} ||\langle D_{v}\rangle^{-m}h_{k}(v,v_{*})||_{L^{2}} \\ \leq & C\langle v_{*}\rangle^{(\gamma+2s)^{+}} \left(\|\tilde{\phi}_{k}(v-v_{*})\langle D_{v}\rangle^{m+2s}g\|_{L_{(\gamma+2s)^{+}}}^{2} + 2^{-k} \|\langle D_{v}\rangle^{m+2s}g\|_{L_{(\gamma+2s)^{+}}}^{2} \right)^{1/2} \\ & \times \left(\|\tilde{\phi}_{k}(v-v_{*})\langle D_{v}\rangle^{-m}h\|_{L^{2}}^{2} + 2^{-k} \|\langle D_{v}\rangle^{-m}h\|_{L^{2}}^{2} \right)^{1/2} \\ := & C\Gamma_{k}(v_{*}), \end{split}$$ where $\Gamma_k(v_*)$ stands for the quantity defined by this right hand side up to a constant multiple. On the other hand, in order to estimate $K_1^k(v_*)$, write $$\left\{ \widetilde{\widehat{F}_{k}}(\eta^{+}, v_{*}) - \widetilde{\widehat{F}_{k}}(\eta, v_{*}) \right\} \overline{\widehat{\widehat{h}_{k}}(\eta, v_{*})} = \left\{ \widetilde{\widehat{F}_{k}}(\eta^{+}, v_{*}) - \widetilde{\widehat{F}_{k}}(\eta, v_{*}) \right\} \left\{ \overline{\widehat{\widehat{h}_{k}}(\eta, v_{*})} - \overline{\widehat{\widehat{h}_{k}}(\eta^{+}, v_{*})} \right\} \\ - \eta^{-} \cdot \left(\nabla \widetilde{\widehat{F}_{k}} \right) (\eta^{+}, v_{*}) \overline{\widehat{\widehat{h}_{k}}(\eta^{+}, v_{*})} \\ - \int_{0}^{1} \left\{ \left(\nabla \widetilde{\widehat{F}_{k}} \right) (\eta^{+} + \tau(\eta - \eta^{+}), v_{*}) - \left(\nabla \widetilde{\widehat{F}_{k}} \right) (\eta^{+}, v_{*}) \right) d\tau \right\} \cdot (\eta - \eta^{+}) \overline{\widehat{\widehat{h}_{k}}(\eta^{+}, v_{*})}.$$ Correspondingly, we decompose $K_1^k(v_*)$ into $$K_1^k(v_*) = K_1^{k,1}(v_*) + K_1^{k,2}(v_*) + K_1^{k,3}(v_*).$$ For the variable transformation $\eta \longrightarrow \eta^+ = \frac{1}{2}(\eta + |\eta|\sigma)$, we denote its inverse transformation $\eta^+ \longrightarrow \eta$ by $\psi_{\sigma}(\eta^+)$. Then $$\begin{split} K_1^{k,2}(v_*) &= -\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k} b\Big(\frac{\psi_\sigma(\eta^+)}{|\psi_\sigma(\eta^+)|} \cdot \sigma\Big) \left| \frac{\partial (\psi_\sigma(\eta^+))}{\partial (\eta^+)} \right| \\ &\qquad \qquad \times \eta^-(\sigma) \cdot \Big(\nabla \widetilde{\hat{F}_k}\Big) (\eta^+, v_*) \overline{\widetilde{\hat{h_k}}(\eta^+, v_*)} d\eta^+ d\sigma \\ &= 0 \,, \text{ with } \eta^-(\sigma) = \psi_\sigma(\eta^+) - \eta^+, \end{split}$$ because $\sigma_1, \sigma_2 \in \mathbb{S}^2 \cap \Omega_k$ are symmetric with respect to each other in the sense that, cf Figure ??, $$\eta^{-}(\sigma_1) = \psi_{\sigma_1}(\eta^+) - \eta^+ = -(\psi_{\sigma_2}(\eta^+) - \eta^+) = -\eta^{-}(\sigma_2).$$ Write $K_1^{k,1}(v_*)$ into $$K_1^{k,1}(v_*) = -\int_0^1 \int_0^1 \left(\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k} b(\widetilde{\eta} \cdot \sigma) \left\{ \left(\nabla \widetilde{\hat{F}_k} \right) (\eta^+ + \tau(\eta - \eta^+), v_*) \cdot (\eta - \eta^+) \right\} \times \left\{ \overline{\left(\nabla \widetilde{\hat{h}_k} \right) (\eta^+ + s(\eta - \eta^+), v_*) \cdot (\eta - \eta^+)} \right\} d\eta d\sigma ds.$$ Since $|\eta - \eta^+|^2 = |\eta^-|^2 = |\eta|^2
\sin^2(\theta/2)$ and the change of variable $\eta^+ + \tau(\eta - \eta^+) \to \eta$ is also regular (see Page 2044 of [9]), (2.1.6) implies $$|K_{1}^{k,1}(v_{*})| \leq C \int_{0}^{1} \int_{0}^{1} \left(\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}} \theta^{2} \ b(\widetilde{\eta} \cdot \sigma) \langle \eta \rangle^{2} \Big| \Big(\nabla \widetilde{F_{k}} \Big) (\eta^{+} + \tau(\eta - \eta^{+}), v_{*}) \Big|$$ $$\times \Big| \Big(\nabla \widetilde{h_{k}} \Big) (\eta^{+} + s(\eta - \eta^{+}), v_{*}) \Big| d\eta d\sigma \Big) d\tau ds$$ $$\leq C \int_{0}^{1} \int_{0}^{1} \Big(\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}} \theta^{2} \ b(\widetilde{\eta} \cdot \sigma) \langle \eta \rangle^{2+2s+2m} \Big| \Big(\nabla \widetilde{F_{k}} \Big) (\eta^{+} + \tau(\eta - \eta^{+}), v_{*}) \Big| d\eta d\sigma \Big)^{1/2}$$ $$\times \Big(\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2} \cap \Omega_{k}} \theta^{2} \ b(\widetilde{\eta} \cdot \sigma) \langle \eta \rangle^{2-2s-2m} \Big| \Big(\nabla \widetilde{h_{k}} \Big) (\eta^{+} + s(\eta - \eta^{+}), v_{*}) \Big| d\eta d\sigma \Big)^{1/2} d\tau ds$$ $$\leq C 2^{k(2s-2)} \| \langle \eta \rangle^{2s+m} \Big(\nabla \widetilde{F_{k}} \Big) \|_{L^{2}(\mathbb{R}^{3})} \| \langle \eta \rangle^{-m} \Big(\nabla \widetilde{h_{k}} \Big) \|_{L^{2}(\mathbb{R}^{3})}.$$ Hence, we have obtained, by using (2.1.9) with p=1 $$\begin{split} |K_{1}^{k,1}(v_{*})| \leq & C\langle v_{*}\rangle^{(\gamma+2s)^{+}} \left\| \frac{\langle D_{v}\rangle^{m+2s}}{\langle v_{*}\rangle^{(\gamma+2s)^{+}}} \{2^{k(2s-1)}(v-v_{*})F_{k}(v,v_{*})\} \right\|_{L^{2}} \\ & \times \|2^{-k}(v-v_{*})h_{k}(v,v_{*})\|_{H^{-m}} \\ \leq & C\langle v_{*}\rangle^{(\gamma+2s)^{+}} \left(\|\tilde{\phi}_{k}(v-v_{*})\langle D_{v}\rangle^{m+2s}g\|_{L_{(\gamma+2s)^{+}}^{2}}^{2} + 2^{-k} \|\langle D_{v}\rangle^{m+2s}g\|_{L_{(\gamma+2s)^{+}}^{2}}^{2} \right)^{1/2} \\ & \times \left(\|\tilde{\phi}_{k}(v-v_{*})\langle D_{v}\rangle^{-m}h\|_{L^{2}}^{2} + 2^{-k} \|\langle D_{v}\rangle^{-m}h\|_{L^{2}}^{2} \right)^{1/2}, \end{split}$$ which has the same bound $\Gamma_k(v_*)$ as in the previous case, up to a constant factor. Finally, we consider $$K_1^{k,3}(v_*) = -\int_0^1 \int_0^1 \left(\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k} b(\widetilde{\eta} \cdot \sigma) \left\{ \left(\nabla^2 \widetilde{F_k} \right) (\eta^+ + \tau s(\eta - \eta^+), v_*) \tau(\eta - \eta^+)^2 \right\} \times \left\{ \underbrace{\widetilde{\widehat{h_k}}(\eta^+, v_*)}_{} \right\} d\eta d\sigma d\tau ds.$$ Then, by using (2.1.9) with p=2, we have $$|K_1^{k,3}(v_*)| \le C\langle v_*\rangle^{(\gamma+2s)^+} \left\| \frac{\langle D_v\rangle^{m+2s}}{\langle v_*\rangle^{(\gamma+2s)^+}} \{2^{k(2s-2)}(v-v_*)^2 F_k(v,v_*)\} \right\|_{L^2} \|h_k(v,v_*)\|_{H^{-m}} \le C\Gamma_k(v_*).$$ Therefore, it follows from Schwarz's inequality that $$\begin{split} & \left| \left(Q(f, g), h \right)_{L^{2}(\mathbb{R}^{3}_{v})} \right| \leq C ||f||_{L^{1}_{(\gamma+2s)^{+}}} \times \\ & \times \left(\sum_{k=0}^{\infty} \{ \| \tilde{\phi}_{k}(v - v_{*}) \langle D_{v} \rangle^{m+2s} g \|_{L^{2}_{(\gamma+2s)^{+}}}^{2} + 2^{-k} \| \langle D_{v} \rangle^{m+2s} g \|_{L^{2}_{(\gamma+2s)^{+}}}^{2} \} \right)^{1/2} \\ & \times \left(\sum_{k=0}^{\infty} \{ \| \tilde{\phi}_{k}(v - v_{*}) \langle D_{v} \rangle^{-m} h \|_{L^{2}}^{2} + 2^{-k} \| \langle D_{v} \rangle^{-m} h \|_{L^{2}}^{2} \} \right)^{1/2} \\ & \leq C ||f||_{L^{1}_{(\gamma+2s)^{+}}} ||g||_{H^{m+2s}_{(\gamma+2s)^{+}}} ||h||_{H^{-m}}, \end{split}$$ which yields (2.1.2). Now the proof of Theorem 2.1 is complete for the case $\alpha = 0$. To prove (2.1.1) for the case $\alpha \neq 0$, it suffices to show that $$(2.1.10) \qquad \left| \left(Q(f, g), \langle v \rangle^{\alpha} h \right)_{L^{2}(\mathbb{R}^{3}_{v})} \right| \leq C ||f||_{L^{1}_{\alpha^{+} + (\gamma + 2s)^{+}}(\mathbb{R}^{3}_{v})} ||g||_{H^{m+2s}_{(\alpha + \gamma + 2s)^{+}}(\mathbb{R}^{3}_{v})} ||h||_{H^{-m}(\mathbb{R}^{3}_{v})}.$$ The argument is similar to the one for $\alpha = 0$, up to the estimation on $h_k(v, v_*)$ in (2.1.5) which must be replaced by $$\tilde{\phi}_k(v - v_*) \langle v \rangle^{\alpha} h(v) = \langle v \rangle^{\alpha} h_k(v, v_*).$$ We can write $$(2.1.11) \qquad \langle v \rangle^{\alpha} h_k(v, v_*) = (\langle v_* \rangle^{\alpha} + 2^{k\alpha}) \psi_k(v, v_*) h_k(v, v_*), \qquad \text{if } \alpha > 0$$ (2.1.12) $$\langle v \rangle^{\alpha} h_k(v, v_*) = \left(\frac{\langle v_* \rangle}{2^k}\right)^{\min\{(\gamma + 2s)^+, -\alpha\}} \psi_k(v, v_*) h_k(v, v_*), \quad \text{if } \alpha < 0.$$ with a suitable $\psi_k(v, v_*)$ belonging to $C_b^{\infty}(\mathbb{R}^3_v)$, uniformly with respect to k, v_* . For p = 0, 1, 2, we have $$\left| \frac{2^{k(\alpha+2s-p)}|v-v_{*}|^{p}\phi_{k}(v-v_{*})\Phi(|v-v_{*}|)}{\langle v_{*}\rangle^{(\alpha+\gamma+2s)^{+}}} \right| \\ \leq C \frac{\langle v-v_{*}\rangle^{\alpha+\gamma+2s}}{\langle v_{*}\rangle^{(\alpha+\gamma+2s)^{+}}} \phi_{k}(v-v_{*}) \leq C \langle v\rangle^{(\alpha+\gamma+2s)^{+}} \phi_{k}(v-v_{*}),$$ which is similar to (2.1.9). We first consider the case $\alpha > 0$. It follows from (2.1.7) that $$\begin{split} |K_2^k(v_*)| \leq & (\langle v_* \rangle^\alpha + 2^{k\alpha}) \int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\tilde{\eta} \cdot \sigma) \Big| \widetilde{\hat{F}_k}(\eta^+, v_*) - \widetilde{\hat{F}_k}(\eta, v_*) \Big| \Big| \widetilde{\widehat{\psi_k h_k}}(\eta, v_*) \Big| d\eta d\sigma \\ \leq & (\langle v_* \rangle^\alpha + 2^{k\alpha}) \left(\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\tilde{\eta} \cdot \sigma) \langle \eta \rangle^{2m + 2s} \Big(\Big| \widetilde{\hat{F}_k}(\eta^+, v_*) \Big|^2 + \Big| \widetilde{\hat{F}_k}(\eta, v_*) \Big|^2 \Big) d\eta d\sigma \right)^{1/2} \\ \times \left(\int_{\mathbb{R}^3} \int_{\mathbb{S}^2 \cap \Omega_k^c} b(\tilde{\eta} \cdot \sigma) \langle \eta \rangle^{-2m - 2s} \Big| \widetilde{\widehat{\psi_k h_k}}(\eta, v_*) \Big|^2 d\eta d\sigma \right)^{1/2} \\ \leq & (2^{2ks} (\langle v_* \rangle^\alpha + 2^{k\alpha}) \| \langle D_v \rangle^{m + 2s} F_k(v, v_*) \} \|_{L^2} \| \langle D_v \rangle^{-m} h_k(v, v_*) \|_{L^2}. \end{split}$$ Then, recalling (2.1.5), and using (2.1.9) and (2.1.13) with p = 0, we have $$\begin{split} |K_{2}^{k}(v_{*})| \leq & C \left\{ \langle v_{*} \rangle^{\alpha + (\gamma + 2s)^{+}} \left\| \frac{\langle D_{v} \rangle^{m + 2s}}{\langle v_{*} \rangle^{(\gamma + 2s)^{+}}} \{ 2^{2ks} F_{k}(v, v_{*}) \} \right\|_{L^{2}} \right. \\ & + \left. \langle v_{*} \rangle^{(\alpha + \gamma + 2s)^{+}} \left\| \frac{\langle D_{v} \rangle^{m + 2s}}{\langle v_{*} \rangle^{(\alpha + \gamma + 2s)^{+}}} \{ 2^{k(\alpha + 2s)} F_{k}(v, v_{*}) \} \right\|_{L^{2}} \right\} ||\langle D_{v} \rangle^{-m} h_{k}(v, v_{*})||_{L^{2}} \\ \leq & C \langle v_{*} \rangle^{\alpha + (\gamma + 2s)^{+}} \left(\|\tilde{\phi}_{k}(v - v_{*}) \langle D_{v} \rangle^{m + 2s} g \|_{L_{(\alpha + \gamma + 2s)^{+}}}^{2} + 2^{-k} \|\langle D_{v} \rangle^{m + 2s} g \|_{L_{(\alpha + \gamma + 2s)^{+}}}^{2} \right)^{1/2} \\ \times \left(\|\tilde{\phi}_{k}(v - v_{*}) \langle D_{v} \rangle^{-m} h \|_{L^{2}}^{2} + 2^{-k} \|\langle D_{v} \rangle^{-m} h \|_{L^{2}}^{2} \right)^{1/2} \\ := & C \Gamma_{k}^{\alpha}(v_{*}), \end{split}$$ where $\Gamma_k^{\alpha}(v_*)$ stands for the quantity defined by this right hand side up to a constant multiple. Performing the same computation as above for $K_2^k(v_*)$, it follows from (2.1.6) that $$|K_1^{k,1}(v_*)| + |K_1^{k,3}(v_*)| \le C \Gamma_k^{\alpha}(v_*),$$ so that (2.1.10) holds in this case. The estimation on the case $\alpha < 0$ is also similar by using (2.1.12) if one considers the cases $\gamma + 2s \leq 0$, $0 < \gamma + 2s \leq -\alpha$ and $\gamma + 2s \geq -\alpha$ separately. Details are omitted. And this completes the proof of Theorem 2.1. In the following, we need also estimates on the commutator between the collision operator Q and the weight W_l . For this purpose, estimations on $|W_l - W'_l|$ are needed. **Lemma 2.3.** Let $l \in \mathbb{N}$. There exists C > 0 depending only on l such that $$(2.1.14) \left| W_l - W_l' \right| \le C \sin\left(\frac{\theta}{2}\right) \left(W_l' + W_{l,*}'\right) \le C \sin\left(\frac{\theta}{2}\right) W_l' W_{l,*}',$$ and $$(2.1.15) |W_l - W_l'| \le C \sin\left(\frac{\theta}{2}\right) \left(W_l' + W_{l-1}'W_{1,*}' + \sin^{l-1}\left(\frac{\theta}{2}\right)W_{l,*}'\right).$$ **Proof**: It follows from $|v - v_*| = |v' - v_*'|$ and $|v|^2 + |v_*|^2 = |v'|^2 + |v_*'|^2$ that, for any $\lambda > 0$ $$|v|^2 \le |v'|^2 + |v_*'|^2$$, $W_\lambda \le 2^\lambda (W_\lambda' + W_{\lambda_**}')$. On the other hand $$|v - v'|^2 = \sin^2\left(\frac{\theta}{2}\right)|v - v_*|^2,$$ where $0 \le \theta \le \pi/2$. Taylor formula yields $$\begin{aligned} |W_{l} - W'_{l}| & \leq C|v - v'| \Big(W_{l-1} + W'_{l-1} \Big) \\ & \leq C \sin \left(\frac{\theta}{2} \right) |v - v_{*}| \Big(W'_{l-1} + W'_{l-1,*} + W'_{l-1} \Big) \\ & \leq C \sin \left(\frac{\theta}{2} \right) |v' - v'_{*}| \Big(W'_{l-1} + W'_{l-1,*} \Big) \\ & \leq C \sin \left(\frac{\theta}{2} \right) \Big(W'_{1} + W'_{1,*} \Big) \Big(W'_{l-1} + W'_{l-1,*} \Big) \\ & \leq C \sin \left(\frac{\theta}{2} \right) \Big(W'_{l} + W'_{l,*} \Big) \leq C \sin \left(\frac{\theta}{2} \right) W'_{l} W'_{l,*} , \end{aligned}$$ which gives (2.1.14). For (2.1.15), we have $$\begin{aligned} |W_{l} - W'_{l}| &\leq C|v - v'| \Big(W_{l-1} + W'_{l-1} \Big) \\ &\leq C \sin \left(\frac{\theta}{2} \right) |v - v_{*}| \left(W'_{l-1} + \left(1 + |v - v' + v'|^{2} \right)^{\frac{(l-1)}{2}} \right) \\ &\leq C \sin \left(\frac{\theta}{2} \right) |v' - v'_{*}| \Big(W'_{l-1} + |v - v'|^{l-1} \Big) \\ &\leq C \sin \left(\frac{\theta}{2} \right) \Big(\Big(W'_{1} + W'_{1,*} \Big) W'_{l-1} + \sin^{l-1} \left(\frac{\theta}{2} \right) |v' - v'_{*}|^{l} \Big) \\ &\leq C \sin \left(\frac{\theta}{2} \right) \Big(W'_{l} + W'_{l-1} W'_{1,*} + \sin^{l-1} \left(\frac{\theta}{2} \right)
W'_{l,*} \Big) . \end{aligned}$$ And this completes the proof of the lemma. # Lemma 2.4. Let $l \in \mathbb{N}$, $m \in \mathbb{R}$. (1) If 0 < s < 1/2, there exists C > 0 such that $$(2.1.16) \qquad \left| \left(\left(W_l \ Q(f, \ g) - Q(f, \ W_l \ g) \right), \ h \right)_{L^2(\mathbb{R}^3_v)} \right| \le C \|f\|_{L^1_{l+\gamma^+}(\mathbb{R}^3_v)} \|g\|_{L^2_{l+\gamma^+}(\mathbb{R}^3_v)} \|h\|_{L^2(\mathbb{R}^3_v)}.$$ Moreover, if $l \geq 3$ (actually, we need only $l > \frac{3}{2} + 2s$), then $$(2.1.17) \qquad \left| \left(\left(W_l \ Q(f, \ g) - Q(f, \ W_l \ g) \right), \ h \right)_{L^2(\mathbb{R}^3)} \right| \le C \|f\|_{L^2_{l+\gamma^+}(\mathbb{R}^3_v))} \|g\|_{L^2_{l+\gamma^+}(\mathbb{R}^3)} \|h\|_{L^2(\mathbb{R}^3)}.$$ (2) If 1/2 < s < 1, then for any $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that (2.1.18) $$\left| \left(\left(W_l \ Q(f, \ g) - Q(f, \ W_l \ g) \right), \ h \right)_{L^2(\mathbb{R}^3_v)} \right| \\ \leq C_{\varepsilon} \|f\|_{L^1_{l+2s-1+\gamma^+}(\mathbb{R}^3_v)} \|g\|_{H^{2s-1+\varepsilon}_{l+2s-1+\gamma^+}(\mathbb{R}^3_v)} \|h\|_{L^2(\mathbb{R}^3_v)},$$ and (2.1.19) $$\left| \left(\left(W_l \ Q(f, \ g) - Q(f, \ W_l \ g) \right), \ h \right)_{L^2(\mathbb{R}^3_v)} \right| \\ \leq C_{\varepsilon} \|f\|_{L^1_{l+2s-1+\gamma} + (\mathbb{R}^3_v)} \|g\|_{L^2_{l+2s-1+\gamma} + (\mathbb{R}^3_v)} \|h\|_{H^{2s-1+\varepsilon}_{l}(\mathbb{R}^3_v)}.$$ (3) When s = 1/2, we have the same estimates as (2) with 2s - 1 replaced by any small $\kappa > 0$. With Lemma 2.2, we immediately have the following improved upper bound estimate with respect to the weight. ### Corollary 2.5. (1) When 0 < s < 1/2, we have $$\|Q(f,g)\|_{H^m_l(\mathbb{R}^3_v)} \leq C\|f\|_{L^1_{\max\{l+\gamma^+,\,(\gamma+2s)^+\}}(\mathbb{R}^3_v)}\|g\|_{H^{m+2s}_{l+(2s+\gamma)^+}(\mathbb{R}^3_v)},$$ provided that $m \leq 0$ and $0 \leq m + 2s$. (2) When 1/2 < s < 1, we have (3) When s = 1/2, we have the same form of estimate as (2.1.20) with 2s - 1 replaced by any small $\kappa > 0$. In fact, this corollary is a direct consequence of Theorem 2.1 and Lemma 2.4. #### Proof of Lemma 2.4: **Proof of** (1): the case 0 < s < 1/2. By using $\Phi(|v' - v'_*|) \le \langle v' \rangle^{\gamma^+} \langle v'_* \rangle^{\gamma^+}$, we have $$\begin{split} & \left| \left(\left(W_{l} \ Q(f, \ g) - Q(f, \ W_{l} \ g) \right), \ h \right)_{L^{2}(\mathbb{R}^{3}_{v})} \right| \\ = & \left| \iiint b \Phi f'_{*}g'(W'_{l} - W) h \, dv dv_{*} d\sigma \right| \\ \leq & C \iiint b \left| \theta \right| \left| (W_{l+\gamma} + f)'_{*} \right| \left| (W_{l+\gamma} + g)' \right| \left| h \right| \, dv dv_{*} d\sigma \\ = & C \iiint b \left| \theta \right| \left| (W_{l+\gamma} + f)_{*} \right| \left| (W_{l+\gamma} + g) \right| \left| h' \right| \, dv dv_{*} d\sigma \\ \leq & C \left(\iiint b \left| \theta \right| \left| (W_{l+\gamma} + f)_{*} \right| \left| (W_{l+\gamma} + g) \right|^{2} dv dv_{*} d\sigma \right)^{1/2} \\ & \times \left(\iiint b \left| \theta \right| \left| (W_{l+\gamma} + f)_{*} \right| \left| h' \right|^{2} \, dv dv_{*} d\sigma \right)^{1/2} \\ = & C J_{1} \times J_{2}. \end{split}$$ Clearly, one has $$J_1^2 \leq C \|f\|_{L^1_{l+\gamma^+}} \|g\|_{L^2_{l+\gamma^+}}^2 \int_{\mathbb{S}^2} b(\cos\theta) \, |\theta| \, d\sigma \leq C \|f\|_{L^1_{l+\gamma^+}} \|g\|_{L^2_{l+\gamma^+}}^2.$$ Next, by the regular change of variables $v \to v'$, cf. [6, 12], we have $$J_2^2 = \iint D_0(v_*, v') |(W_{l+\gamma} + f)_*| |h'|^2 dv_* dv',$$ where $$D_0(v, v') = 2 \int_{\mathbb{S}^2} \frac{\theta(v_*, v', \sigma)}{\cos^2(\theta(v_*, v', \sigma)/2)} b(\cos \theta(v_*, v', \sigma)) d\sigma \le C \int_0^{\pi/4} \psi^{-1 - 2s} \sin \psi \ d\psi,$$ and $$\cos \psi = \frac{v' - v_*}{|v' - v_*|} \cdot \sigma, \quad \psi = \theta/2, \qquad d\sigma = \sin \psi d\psi d\phi.$$ Thus, $$J_2^2 \le C \|f\|_{L^1_{L^{1-\frac{1}{2}}}} \|h\|_{L^2}^2$$ and this, together with the estimate on J_1 , gives (2.1.16). We now prove (2.1.17) by using (2.1.15) instead of (2.1.14). We have $$\left| \left(\left(W_{l} \ Q(f, g) - Q(f, W_{l} \ g) \right), \ h \right)_{L^{2}(\mathbb{R}^{3}_{v})} \right| \\ \leq C \left\{ \iiint b |\theta|^{l} \left| \left(W_{l+\gamma_{+}} f)'_{*} \right| \left| \left(W_{\gamma_{+}} g)' \right| \ |h| \ dv dv_{*} d\sigma \right. \right. \\ \left. + \iiint b |\theta| \left| \left(W_{1+\gamma^{+}} f)'_{*} \right| \left| \left(W_{l-1+\gamma_{+}} g)' \right| \ |h| \ dv dv_{*} d\sigma \right. \\ \left. + \iiint b |\theta| \left| \left(W_{\gamma_{+}} f)'_{*} \right| \left| \left(W_{l+\gamma_{+}} g)' \right| \ |h| \ dv dv_{*} d\sigma \right. \right\} \\ = \mathcal{M}_{1} + \mathcal{M}_{2} + \mathcal{M}_{3}.$$ $\mathcal{M}_2, \mathcal{M}_3$ can be estimated similarly to (2.1.16), and we have $$\begin{split} \mathcal{M}_2 & \leq C ||f||_{L^1_{1+\gamma^+}} \|g\|_{L^2_{l-1+\gamma^+}} \|h\|_{L^2}, \\ \mathcal{M}_3 & \leq C ||f||_{L^1_{\gamma^+}} \|g\|_{L^2_{l+\gamma^+}} \|h\|_{L^2}. \end{split}$$ \mathcal{M}_1 can be estimated as follows. Firstly, we have $$\begin{split} \mathcal{M}_{1}^{2} = & C^{2} \left(\iiint b \, |\theta|^{l} |(W_{l+\gamma_{+}}f)_{*}| |(W_{\gamma_{+}}g)| \, |h'| \, dv dv_{*} d\sigma \right)^{2} \\ \leq & C^{2} \iiint b \, |\theta|^{l-\frac{3}{2}} |(W_{\gamma_{+}}g)| |(W_{l+\gamma_{+}}f)_{*}|^{2} dv dv_{*} d\sigma \\ & \times \iiint b \, |\theta|^{l+\frac{3}{2}} |(W_{\gamma_{+}}g)| |h'|^{2} dv dv_{*} d\sigma \\ = & \mathcal{M}_{1.1} \times \mathcal{M}_{1.2}. \end{split}$$ Then, if $l - \frac{3}{2} - 2s - 1 > -1$, that is, $l > 2s + \frac{3}{2}$, we have $$\mathcal{M}_{1,1} \le C \|g\|_{L^1_{\gamma^+}} \|f\|_{L^2_{l+\gamma^+}}^2.$$ On the other hand, for $\mathcal{M}_{1,2}$ we need to apply the singular change of variables $v_* \to v'$. The Jacobian of this transform is, with $\mathbf{k} = (v - v_*)/|v - v_*|$, $$\left|\frac{\partial v_*}{\partial v'}\right| = \frac{8}{\left|I - \mathbf{k} \otimes \sigma\right|} = \frac{8}{\left|1 - \mathbf{k} \cdot \sigma\right|} = \frac{4}{\sin^2(\theta/2)} \le 16\theta^{-2}, \quad \theta \in [0, \pi/2].$$ Notice that this gives rise to an additional singularity in the angle θ around 0. Actually, the situation is even worse in the following sense. Recall that θ is no longer legitimate polar angle. In this case, the best choice of the pole is $\mathbf{k}'' = (v' - v)/|v' - v|$ for which polar angle ψ defined by $\cos \psi = \mathbf{k}'' \cdot \sigma$ satisfies (cf. [6, Fig. 1]) $$\psi = \frac{\pi - \theta}{2}, \qquad d\sigma = \sin \psi d\psi d\phi, \qquad \psi \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right].$$ This measure does not cancel any of the singularity of $b(\cos \theta)$, unlike the case in the usual polar coordinates. Nevertheless, this singular change of variables yields $$\mathcal{M}_{1,2} = C \iiint b \, |\theta|^{l+\frac{3}{2}} |(W_{\gamma_{+}}g)| \, |h'|^{2} \, dv dv_{*} d\sigma$$ $$\leq C \iint D_{1}(v,v') |(W_{\gamma_{+}}g)| \, |h'|^{2} dv dv',$$ when $l > \frac{3}{2} + 2s$ because $$D_1(v,v') = \int_{\mathbb{S}^2} \theta^{l+\frac{3}{2}-2} b(\cos\theta) d\sigma \le C \int_{\pi/4}^{\pi/2} (\frac{\pi}{2} - \psi)^{-2-2s+l+\frac{3}{2}-2} d\psi \le C.$$ Therefore, $$\mathcal{M}_{1,2} \le C \|g\|_{L^1_{1,+}} \|h\|_{L^2}^2.$$ Now the proof of (2.1.17) is completed by the embedding estimate for $l > \frac{3}{2}$, $$||g||_{L^1_{\gamma^+}} \le C||g||_{L^2_{l+\gamma^+}}.$$ **Proof of** (2): the case $1/2 \le s < 1$. Since we look for an upper bound estimate and $\varepsilon > 0$, it is sufficient to assume s > 1/2 for our purpose. Write $$\left(\left(W_{l} \ Q(f, \ g) - Q(f, \ W_{l} \ g) \right), \ h \right)_{L^{2}(\mathbb{R}^{3}_{v})} = \iiint B \ f'_{*}g'(W'_{l} - W_{l}) \ h \ dv dv_{*} d\sigma = \iiint B \ f_{*}g(W_{l} - W'_{l}) \ h' \ dv dv_{*} d\sigma = \iiint B \ f_{*}g'(W_{l} - W'_{l}) \ h' \ dv dv_{*} d\sigma + \iiint B \ f_{*}(g - g')(W_{l} - W'_{l}) \ h' \ dv dv_{*} d\sigma = I_{1} + I_{2}.$$ Taylor expansion gives $$W_l - W_l' = \nabla W_l(v')(v - v') - \int_0^1 (1 - \tau) \nabla^2 W_l(v' + \tau(v - v')) d\tau(v - v')^2,$$ so that $$I_{1} = -\int_{0}^{1} (1 - \tau) \iiint B f_{*} \{ \nabla^{2} W_{l}(v' + \tau(v - v')) \} (v - v')^{2} g' h' dv dv_{*} d\sigma d\tau .$$ By using the symmetry property shown in Figure ?? (see also Figure ?? below, and §3 in [39]), the first order term in the Taylor expansion vanishes, that is, $$\iiint B f_* g' \nabla W_l(v')(v - v') h' dv dv_* d\sigma$$ $$= \iiint f_* \left\{ \int_{\mathbb{S}^2} b \left(\frac{\psi_{\sigma}(v') - v_*}{|\psi_{\sigma}(v') - v_*|} \cdot \sigma \right) \Phi(|\psi_{\sigma}(v') - v_*|) \left| \frac{\partial (\psi_{\sigma}(v'))}{\partial (v')} \right| (\psi_{\sigma}(v') - v') d\sigma \right\}$$ $$\cdot \nabla W_l(v') g' h' dv' dv_* = 0.$$ Here, we have used the notation that for a transformation $v \to v'$, its inverse transformation is denoted by $v' \to \psi_{\sigma}(v') = v$. And σ_1, σ_2 are symmetric with respect to each other, in the sense that $\psi_{\sigma_1}(v') - v' = -(\psi_{\sigma_2}(v') - v')$. Furthermore, since $$\begin{aligned} \left| \{ \nabla^2 W_l(v' + \tau(v - v')) \}(v - v')^2 \right| &\leq C\theta^2 |v_* - v'|^2 \{ W_{l-2}(v_*) + W_{l-2}(v' + \tau(v - v') - v_*) \} \\ &< C\theta^2 \{ W_l(v_*) + W_l(v') \} < C\theta^2 W_l(v_*) W_l(v') \end{aligned}$$ and $\Phi(|v-v_*|) \leq (\sqrt{2}\langle v'-v_*\rangle)^{\gamma^+} \leq \sqrt{2}^{\gamma^+}\langle v_*\rangle^{\gamma^+}\langle v'\rangle^{\gamma^+}$, we get by the regular change of variables $v \to v'$ and the Schwartz inequality $$(2.1.22) |I_1| \le C||f||_{L^1_{l+\alpha} + (\mathbb{R}^3_v)}||g||_{L^2_{l+\alpha} + (\mathbb{R}^3_v)}||h||_{L^2(\mathbb{R}^3_v)}.$$ In order to estimate I_2 , we shall apply the Littlewood-Paley decomposition $\{\Delta_j\}_{j=0}^{\infty}$, which is a dyadic decomposition in the Fourier variable (see also [17, 59, 5]), $$\triangle_j g(v) = \mathcal{F}^{-1} \Big(\phi_j(\eta) \hat{g}(\eta) \Big), \quad g = \sum_{j=0}^{\infty} \triangle_j g_j,$$ and
for $m \in \mathbb{R}$, $$\|\triangle_j g\|_{H^m} \approx 2^{jm} \|\triangle_j g\|_{L^2}, \quad \|g\|_{H^m}^2 \approx \sum 2^{2jm} \|\triangle_j g\|_{L^2}^2.$$ Then we have the following decomposition $$I_{2} = \sum_{j=0}^{\infty} \int_{0}^{1} \left(\int_{\mathbb{R}^{6}} \left\{ \int_{\Omega_{j}} B f_{*} \nabla_{v}(\triangle_{j}g)(v' + \tau(v - v'))(v - v')(W_{l} - W'_{l}) h' d\sigma \right\} dv dv_{*} \right) d\tau$$ $$+ \sum_{j=0}^{\infty} \int_{\mathbb{R}^{6}} \left\{ \int_{\Omega_{j}^{c}} B f_{*} \left\{ (\triangle_{j}g)(v) - (\triangle_{j}g)(v') \right\} (W_{l} - W'_{l}) h' d\sigma \right\} dv dv_{*}$$ $$= \sum_{j=0}^{\infty} \left(I_{2,j}^{1} + I_{2,j}^{2} \right) ,$$ where $$\Omega_j = \Omega_j(v, v_*) = \left\{ \sigma \in \mathbb{S}^2 \; ; \; \frac{v - v_*}{|v - v_*|} \cdot \sigma \ge 1 - 2^{1 - 2j} \langle v - v_* \rangle^{-2} \right\}.$$ Note that if 1/2 < s < 1, then $$(2.1.23) \qquad \int_{\Omega_{j}} b(\cos \theta) \, \theta^{2} d\sigma = 2\pi \int_{\{\theta \in [0, \pi/2]; \sin(\theta/2) \le 2^{-j} \langle v - v_{*} \rangle^{-1}\}} \sin \theta \, b(\cos \theta) \theta^{2} d\theta$$ $$\le C2^{j(2s-2)} \langle v - v_{*} \rangle^{2s-2},$$ and $$(2.1.24) \qquad \int_{\Omega_{j}^{c}} b(\cos \theta) \, \theta \, d\sigma = 2\pi \int_{\{\theta \in [0, \pi/2]; \sin(\theta/2) \ge 2^{-j} \langle v - v_{*} \rangle^{-1}\}} \sin \theta \, b(\cos \theta) \, \theta \, d\theta$$ $$\leq C2^{j(2s-1)} \langle v - v_{*} \rangle^{2s-1}.$$ To estimate $I_{2,i}^1$, we need the change of variables $$(2.1.25) v \to z = v' + \tau(v - v') = \frac{1 + \tau}{2}v + \frac{1 - \tau}{2}(|v - v_*|\sigma + v_*).$$ The Jacobian of this transform is bounded from below uniformly in v_* , σ , τ , because $$\begin{split} \left| \frac{\partial(z)}{\partial(v)} \right| &= \left| \det \left(\frac{1+\tau}{2} I + \frac{1-\tau}{2} \sigma \otimes \mathbf{k} \right) \right| \qquad (\mathbf{k} = \frac{v-v_*}{|v-v_*|}) \\ &= \frac{(1+\tau)^3}{2^3} \left| 1 + \frac{1-\tau}{1+\tau} \mathbf{k} \cdot \sigma \right| = \frac{(1+\tau)^3}{2^3} \left| \frac{2\tau}{1+\tau} + 2\frac{1-\tau}{1+\tau} \cos^2 \frac{\theta}{2} \right| \\ &\geq \frac{(1+\tau)^3}{2^3} \left| \frac{2\tau}{1+\tau} + \frac{1-\tau}{1+\tau} \right| = \frac{(1+\tau)^3}{2^3} \geq \frac{1}{2^3}. \end{split}$$ Recall, cf. [6], that the cross-section $B(v-v_*,\theta)$ is assumed to be supported in $0 \le \theta \le \pi/4$. Furthermore, we have $$|z - v_*| = \left| \frac{1+\tau}{2} (v - v_*) + \frac{1-\tau}{2} |v - v_*| \sigma \right|$$ $$= |v - v_*| \left| \left(\frac{1+\tau}{2} \right)^2 + \left(\frac{1-\tau}{2} \right)^2 + \frac{1-\tau^2}{2} \mathbf{k} \cdot \sigma \right|^{1/2}$$ $$= |v - v_*| \left| \tau^2 + (1-\tau^2) \cos^2 \frac{\theta}{2} \right|^{1/2} \ge \frac{1}{\sqrt{2}} |v - v_*|,$$ which implies $\langle v - v_* \rangle^{2s} \Phi(|v - v_*|) \leq C \langle z \rangle^{2s + \gamma_+} \langle v_* \rangle^{2s + \gamma_+}$. Since $$|(v-v')(W_l-W_l')| \le C\theta^2|v-v_*|^2(W_{l-1}(z)+W_{*l-1}) \le C\theta^2|v-v_*|^2W_{l-1}(z)W_{*l-1},$$ we have from (2.1.23) that for any $\varepsilon > 0$ $$\begin{split} |I_{2,j}^{1}| & \leq C \int_{0}^{1} \iiint_{\Omega_{j}} b\theta^{2} |(W_{l-1+2s+\gamma_{+}}f)_{*}| \ |(W_{l-1+2s+\gamma_{+}}(\nabla_{v}\triangle_{j}g))(z)| \langle v-v_{*}\rangle^{2-2s} |h'| d\sigma dv dv_{*} d\tau \\ & \leq C \left[\int_{0}^{1} \Big(\iint_{\Omega_{j}} \left(\int_{\Omega_{j}} b\theta^{2} |(W_{l-1+2s+\gamma_{+}}f)_{*}| \ |(W_{l-1+2s+\gamma_{+}}(\nabla_{v}\triangle_{j}g))(z)|^{2} \right. \\ & \qquad \qquad \times \langle v-v_{*}\rangle^{2-2s} |d\sigma \Big) dv dv_{*} \Big)^{1/2} d\tau \right] \\ & \times \left[\iint_{\Omega_{j}} \Big(\int_{\Omega_{j}} b\theta^{2} |(W_{l-1+2s+\gamma_{+}}f)_{*}| \ \langle v-v_{*}\rangle^{2-2s} |h'|^{2} d\sigma \Big) dv dv_{*} \right]^{1/2} \\ & \leq C2^{-\varepsilon j} \|f\|_{L_{l+2s-1+\gamma_{+}}^{1}(\mathbb{R}_{v}^{3})} \|g\|_{H_{l+2s-1+\gamma_{+}}^{2s-1+\varepsilon}(\mathbb{R}_{v}^{3})} \|h\|_{L^{2}(\mathbb{R}_{v}^{3})}, \end{split}$$ where we used the regular change of variables $v \to z$ defined by (2.1.25) and the regular change of variables $v \to v'$. The estimate (2.1.24) yields the same bound for $I_{2,j}^2$. Therefore, we obtain $$(2.1.27) |I_2| \le C||f||_{L^1_{l+2s-1}(\mathbb{R}^3_n)}||g||_{H^{2s-1+\varepsilon}_{l+2s}(\mathbb{R}^3_n)}||h||_{L^2(\mathbb{R}^3_n)}.$$ Estimates (2.1.22) and (2.1.27) together give the desired estimate (2.1.18). For the convenience of the readers, we postpone the proof of (2.1.19) to the end of section 2.3. And this completes the proof of Lemma 2.2 because (3) comes from (2) for the case $s = 1/2 + \kappa$. 2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision operator. We will show that the angular singularity in the cross-section yields the sub-elliptic estimates which are lower bounds of the collision operator, see [6]. Notice that we need precise weighted sub-elliptic estimates as given in the following theorem. For more detailed explanations and notations, interested readers can refer to [5, 39]. **Theorem 2.6.** Assume that $\gamma \in \mathbb{R}$, 0 < s < 1. Let $g \ge 0, \ne 0$, $g \in L^1_{\max\{\gamma^+, 2-\gamma^+\}} \cap L \log L(\mathbb{R}^3_v)$. Then there exists a constant $C_g > 0$ depending only on $B(v-v_*, \theta)$, $\|g\|_{L^1_{\max\{\gamma^+, 2-\gamma^+\}}}$ and $\|g\|_{L \log L}$, and C > 0 depending on $B(v-v_*, \theta)$ such that for any smooth function $f \in H^1_{\gamma/2}(\mathbb{R}^3_v) \cap L^2_{\gamma^+/2}(\mathbb{R}^3_v)$, we have $$(2.2.1) \qquad -\left(Q(g,f), f\right)_{L^{2}(\mathbb{R}^{3})} \geq C_{g} \|W_{\gamma/2}f\|_{H^{s}(\mathbb{R}^{3}_{v})}^{2} - C||g||_{L^{1}_{\max\{\gamma^{+}, 2-\gamma^{+}\}}(\mathbb{R}^{3}_{v})} \|f\|_{L^{2}_{\gamma^{+}/2}(\mathbb{R}^{3}_{v})}^{2}.$$ **Remark 2.7.** ¿From the proof of the theorem, the constant C_g is seen to be an increasing function of $\|\tilde{g}\|_{L^1}$, $\|\tilde{g}\|_{L^1}^{-1}$ and $\|\tilde{g}\|_{L\log L}^{-1}$ where $\tilde{g} = \langle v \rangle^{-|\gamma|} g$. If the function g depends continuously on a parameter $\tau \in \Xi$, then the constant C_g depends on $\inf_{\tau \in \Xi} \|\langle v \rangle^{-|\gamma|} g_{\tau}\|_{L^1}$, $\sup_{\tau \in \Xi} \|g_{\tau}\|_{L\log L}$ and $\sup_{\tau \in \Xi} \|g\|_{L^1_{\max\{\gamma^+, 2-\gamma^+\}}}$. In the later application, we take $\tau = (t, x)$. **Proof.** Firstly, we have $$\begin{split} (Q(g,f),f) &= \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} \Phi(|v-v_*|) b(\cos\theta) g(v_*) f(v) \{f(v')-f(v)\} d\sigma dv_* dv \\ &= \frac{1}{2} \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} \Phi(|v-v_*|) b(\cos\theta) g(v_*) \{f(v')^2 - f(v)^2\} d\sigma dv_* dv \\ &- \frac{1}{2} \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} \Phi(|v-v_*|) b(\cos\theta) g(v_*) \{f(v')-f(v)\}^2 d\sigma dv_* dv \\ &= \mathcal{R}_1 - \mathcal{R}_2. \end{split}$$ For \mathcal{R}_1 , according to the cancellation lemma, Corollary 2 of [6], we have $$\begin{split} \mathcal{R}_{1} &= \frac{1}{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} \Phi(|v - v_{*}|) b(\cos \theta) g(v_{*}) \{ f(v')^{2} - f(v)^{2} \} d\sigma dv_{*} dv \\ &= \frac{1}{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} \left\{ \Phi\left(\frac{|v - v_{*}|}{\cos \frac{\theta}{2}}\right) \frac{1}{\cos^{3} \frac{\theta}{2}} - \Phi(|v - v_{*}|) \right\} b(\cos \theta) g(v_{*}) f(v)^{2} dv d\sigma dv_{*} \\ &= \frac{1}{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} \Phi\left(\frac{|v - v_{*}|}{\cos \frac{\theta}{2}}\right) \left\{ \frac{1}{\cos^{3} \frac{\theta}{2}} - 1 \right\} b(\cos \theta) g(v_{*}) f(v)^{2} dv d\sigma dv_{*} \\ &+ \frac{1}{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} \left\{ \Phi\left(\frac{|v - v_{*}|}{\cos \frac{\theta}{2}}\right) - \Phi(|v - v_{*}|) \right\} b(\cos \theta) g(v_{*}) f(v)^{2} dv d\sigma dv_{*} \\ &= \mathcal{R}_{11} + \mathcal{R}_{12}. \end{split}$$ For the first term \mathcal{R}_{11} , from $1-\cos^3\frac{\theta}{2} \leq 3(1-\cos\frac{\theta}{2}) = 6\sin^2\frac{\theta}{4}$, it follows that $$\mathcal{R}_{11} \le C \|g\|_{L^1_{\gamma^+}} \|f\|_{L^2_{\gamma^+/2}}^2,$$ because $\Phi \leq 1$ when $\gamma < 0$. For the second term \mathcal{R}_{12} , we first note that the mean value theorem gives $$\Phi\left(\frac{|v-v_*|}{\cos\frac{\theta}{2}}\right) - \Phi(|v-v_*|)$$ $$= -\left(\frac{1}{\cos\frac{\theta}{2}} - 1\right)|v-v_*|^2\left(1 + \left(\frac{|v-v_*|}{a}\right)^2\right)^{\frac{\gamma}{2} - 1}\frac{2}{a^3}$$ $$\leq C\left(\frac{1}{\cos\frac{\theta}{2}} - 1\right)\Phi(|v-v_*|),$$ where $\frac{\sqrt{2}}{2} \leq \cos \frac{\theta}{2} < a < 1$. Similar to \mathcal{R}_{11} , we can obtain $$\mathcal{R}_{12} \le C \|g\|_{L^1_{\gamma^+}} \|f\|_{L^2_{\gamma^+/2}}^2.$$ For the term \mathcal{R}_2 , we first note that $$\Phi(|v - v_*|) = (1 + |v - v_*|^2)^{\frac{\gamma}{2}} \ge \frac{\langle v \rangle^{\gamma}}{\langle v_* \rangle^{|\gamma|}}.$$ Then, by using the fact that $(a-b)^2 \ge a^2/2 - b^2$, we have $$\mathcal{R}_{2} = \frac{1}{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} \Phi(|v - v_{*}|) b(\cos \theta) g(v_{*}) \{f(v') - f(v)\}^{2} d\sigma dv_{*} dv$$ $$\geq C \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) \frac{g(v_{*})}{\langle v_{*} \rangle^{|\gamma|}} \langle v \rangle^{\gamma} \{f(v') - f(v)\}^{2} d\sigma dv_{*} dv$$ $$= C \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) \frac{g(v_{*})}{\langle v_{*} \rangle^{|\gamma|}} \{\langle v \rangle^{\frac{\gamma}{2}} f(v') - \langle v \rangle^{\frac{\gamma}{2}} f(v)\}^{2} d\sigma dv_{*} dv$$ $$= C \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) \frac{g(v_{*})}{\langle v_{*} \rangle^{|\gamma|}} \{\langle v' \rangle^{\frac{\gamma}{2}} f(v') - \langle v \rangle^{\frac{\gamma}{2}} f(v)$$ $$+ \langle v \rangle^{\frac{\gamma}{2}} f(v') - \langle v' \rangle^{\frac{\gamma}{2}} f(v')\}^{2} d\sigma dv_{*} dv$$ $$\geq C_{1} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) \frac{g(v_{*})}{\langle v_{*} \rangle^{|\gamma|}} \{\langle v'
\rangle^{\frac{\gamma}{2}} f(v') - \langle v \rangle^{\frac{\gamma}{2}} f(v)\}^{2} d\sigma dv_{*} dv$$ $$- C_{2} \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\cos \theta) \frac{g(v_{*})}{\langle v_{*} \rangle^{|\gamma|}} \{\langle v \rangle^{\frac{\gamma}{2}} f(v') - \langle v' \rangle^{\frac{\gamma}{2}} f(v')\}^{2} d\sigma dv_{*} dv$$ $$= \mathcal{R}_{21} - \mathcal{R}_{22}.$$ For the first term \mathcal{R}_{21} , by using Corollary 3 and Proposition 2 of [6], we have $$(2.2.2) \qquad \mathcal{R}_{21} = C_1 \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta) \frac{g(v_*)}{\langle v_* \rangle^{|\gamma|}} \{ \langle v' \rangle^{\frac{\gamma}{2}} f(v') - \langle v \rangle^{\frac{\gamma}{2}} f(v) \}^2 d\sigma dv_* dv$$ $$\geq C \int_{\mathbb{R}^3} |\mathcal{F}(W_{\gamma/2} f)(\xi)|^2 \Big\{ \int_{\mathbb{S}^2} b(\tilde{\xi} \cdot \sigma) \Big(\mathcal{F}(\tilde{g})(0) - \Big| \mathcal{F}(\tilde{g})(\xi^-) \Big| \Big) \Big\} d\xi$$ $$\geq \tilde{C}_g \|W_{\gamma/2} f\|_{H^s}^2 - C \|\tilde{g}\|_{L^1} \|f\|_{L_{\gamma+/2}}^2,$$ where $\tilde{g} = \langle v \rangle^{-|\gamma|} g$. Here \tilde{C}_g is an increasing function of $\|\tilde{g}\|_{L^1}$, $\|\tilde{g}\|_{L^1_1}^{-1}$ and $\|\tilde{g}\|_{L\log L}^{-1}$, according to the proof in the last part of [6] (see also Lemma 2.1 of [48]). For the second term \mathcal{R}_{22} , note that for some $\tau \in (0,1)$, we have $$\begin{split} \frac{\langle v \rangle^{\frac{\gamma}{2}} - \langle v' \rangle^{\frac{\gamma}{2}}}{\langle v_* \rangle^{\frac{1\gamma_{\perp}}{2}}} & \leq & C \frac{\langle v' + \tau(v - v') \rangle^{\frac{\gamma - 2}{2}}}{\langle v_* \rangle^{\frac{1\gamma_{\perp}}{2}}} | v - v' | \\ & \leq & C \frac{\langle v_* \rangle^{\frac{|\gamma - \gamma|}{2}} - \frac{|\gamma|}{2}}{\langle v' + \tau(v - v') - v_* \rangle^{\frac{2 - \gamma}{2}}} | v' - v_* | \tan(\theta/2) \\ & \leq & C \langle v_* \rangle^{\frac{|2 - \gamma|}{2}} \langle v' - v_* \rangle^{\frac{\gamma}{2}} \tan(\theta/2) \\ & \leq & C \left\{ & \langle v_* \rangle^{\frac{|2 - \gamma|}{2}} \langle v' \rangle^{\frac{\gamma}{2}} \tan(\theta/2), & \text{if } \gamma \geq 0, \\ & \langle v_* \rangle \tan(\theta/2), & \text{otherwise.} \\ \end{split}$$ Hence, we get $$\mathcal{R}_{22} = C_2 \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos \theta) g(v_*) \left\{ \frac{\langle v \rangle^{\frac{\gamma}{2}} - \langle v' \rangle^{\frac{\gamma}{2}}}{\langle v_* \rangle^{\frac{|\gamma|}{2}}} \right\}^2 f(v')^2 d\sigma dv_* dv$$ $$\leq C_2 \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos \theta) \tan^2(\theta/2) \langle v_* \rangle^{|2-\gamma^+|} g(v_*) \{\langle v' \rangle^{\frac{\gamma^+}{2}} f(v')\}^2 d\sigma dv_* dv$$ $$\leq C_2 ||g||_{L^1_{|2-\gamma^+|}} ||f||_{L^2_{\gamma^+/2}}^2.$$ This completes the proof of Theorem 2.6 In the following analysis, we shall also need the following interpolation inequality between weighted Sobolev spaces in v, see for instance [32, 39]. **Lemma 2.8.** For any $k \in \mathbb{R}, p \in \mathbb{R}_+, \delta > 0$, $$(2.2.3) ||f||_{H_p^k(\mathbb{R}_v^3)}^2 \le C_\delta ||f||_{H_{2p}^{k-\delta}(\mathbb{R}_v^3)} ||f||_{H_0^{k+\delta}(\mathbb{R}_v^3)}.$$ 2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-differential operators with the Boltzmann collision operator. This is a key step in the regularity analysis of weak solutions because it requires the mollifiers defined by pseudo-differential operators. Below, we denote $(\cdot, \cdot)_{L^2(\mathbb{R}^3_+)}$ by (\cdot, \cdot) for simplicity of notations, without any confusion. **Proposition 2.9.** Let $\lambda \in \mathbb{R}$ and $M(\xi)$ be a positive symbol of pseudo-differential operator in $S_{1,0}^{\lambda}$ of the form of $M(\xi) = \tilde{M}(|\xi|^2)$. Assume that for any c > 0 there exists a constant C > 0 such that for any $s, \tau > 0$ (2.3.1) $$c^{-1} \le \frac{s}{\tau} \le c \quad implies \quad C^{-1} \le \frac{\tilde{M}(s)}{\tilde{M}(\tau)} \le C.$$ Furthermore assume that $M(\xi)$ satisfies $$(2.3.2) |M^{(\alpha)}(\xi)| = |\partial_{\xi}^{\alpha} M(\xi)| \le C_{\alpha} M(\xi) \langle \xi \rangle^{-|\alpha|},$$ for any $\alpha \in \mathbb{N}^3$. Then the followings hold. (1) If 0 < s < 1/2, for any N > 0 there exists a $C_N > 0$ such that $$(2.3.3) |(M(D_v)Q(f, g) - Q(f, M(D_v)g), h)_{L^2(\mathbb{R}^3_v)}|$$ $$\leq C_N ||f||_{L^1_{\gamma^+}(\mathbb{R}^3_v)} \Big(||Mg||_{L^2_{\gamma^+}(\mathbb{R}^3_v)} + ||g||_{H^{\lambda-N}_{\gamma^+}(\mathbb{R}^3_v))} \Big) ||h||_{L^2(\mathbb{R}^3_v)}.$$ (2) If 1/2 < s < 1, for any N > 0 and any $\varepsilon > 0$ there exists a $C_{N,\varepsilon} > 0$ such that $$(2.3.4) \qquad |(M(D_v)Q(f,g) - Q(f,M(D_v)g),h)_{L^2(\mathbb{R}^3_v)}|$$ $$\leq C_{N,\varepsilon} ||f||_{L^1_{(2s+\gamma-1)^+}(\mathbb{R}^3_v)} \Big(||Mg||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)^+}(\mathbb{R}^3_v))} + ||g||_{H^{\lambda-N}_{\gamma^+}(\mathbb{R}^3_v))} \Big) ||h||_{L^2(\mathbb{R}^3_v)}.$$ (3) If s = 1/2, we have the same estimate as (2.3.4) with $(2s + \gamma - 1)$ replaced by $(\gamma + \kappa)$ for any small $\kappa > 0$. **Proof**: Firstly, set $\Phi_*(v) = \Phi(|v - v_*|)$ and write $$\begin{split} &\left(M(D_v)Q(f,\,g),\,\,h\right) - \left(Q(f,\,M(D_v)g),\,\,h\right) \\ = & \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} B(|v-v_*|,\sigma)f(v_*)g(v)\Big(\overline{(M\,h)(v')} - \overline{(M\,h)(v)}\Big)d\sigma dv_*dv \\ & - \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} B(|v-v_*|,\sigma)f(v_*)\Big(M\,g\Big)(v)\Big(\overline{h(v')} - \overline{h(v)}\Big)d\sigma dv_*dv \\ = & \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta)f(v_*)\Big[(\Phi_*g)(v)\overline{(Mh)(v')} - \left\{M(\Phi_*g)\right\}(v)\overline{h(v')}\Big]d\sigma dv_*dv \\ & + \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta)f(v_*)\Big\{M(\Phi_*g)\big\}(v)\Big(\overline{h(v')} - \overline{h(v)}\Big)d\sigma dv_*dv \\ & - \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta)f(v_*)\Big\{\Phi_*\big(M\,g\big)\Big\}(v)\Big(\overline{h(v')} - \overline{h(v)}\Big)d\sigma dv_*dv \\ = & \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta)f(v_*)\Big[(\Phi_*g)(v)\overline{(Mh)(v')} - \left\{M(\Phi_*g)\right\}(v)\overline{h(v')}\Big]d\sigma dv_*dv \\ & + \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta)f(v_*)\Big[(M\,,\,\Phi_*]g\Big)(v)\Big(\overline{h(v')} - \overline{h(v)}\Big)d\sigma dv_*dv \\ = & \mathcal{I} + \mathcal{I}\mathcal{I}. \end{split}$$ The above computation is justified with cutoff approximation, see the remark given after (2.1.4) and also [39]. The first term \mathcal{I} can be rewritten by using Bobylev formula (see e.g. [6]) as $$\mathcal{I} = \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\frac{\xi}{|\xi|} \cdot \sigma) f(v_*) \Big(M(\xi) - M(\xi^+) \Big) \mathcal{F}(\Phi_* g)(\xi^+) e^{-iv_* \xi^-} d\sigma dv_* \widehat{\hat{h}}(\xi) d\xi,$$ where $$\xi^{\pm} = \frac{\xi \pm |\xi|\sigma}{2}.$$ Notice that in the case of Maxwellian molecule type cross section with $\gamma = 0$ i.e. $\Phi(|v - v_*|) = 1$, $\mathcal{II} \equiv 0$. Since $\tilde{M}'(|\xi|^2) = 2\xi \cdot \nabla M(\xi)/|\xi|^2$ and $|\xi^+| \le |\xi| \le 2|\xi^+|$, it follows from (2.3.1) and (2.3.2) that $$(2.3.5) |M(\xi) - M(\xi^+)| \le C \left| \sin \frac{\theta}{2} \right|^2 M(\xi^+),$$ and $$\int_{\mathbb{S}^2} b \left(\frac{\xi}{|\xi|} \cdot \sigma \right) \left| \sin \frac{\theta}{2} \right|^2 d\sigma \le C < +\infty.$$ Thus, $$\begin{split} |\mathcal{I}| &\leq C \int_{\mathbb{R}^{3}} \langle v_{*} \rangle^{\gamma_{+}} |f(v_{*})| \int_{\mathbb{S}^{2}} \int_{\mathbb{R}^{3}} b(\frac{\xi}{|\xi|} \cdot \sigma) \sin^{2} \frac{\theta}{2} M(\xi^{+}) |\mathcal{F}(\Phi_{*} \langle v_{*} \rangle^{-\gamma_{+}} g)(\xi^{+})| |\overline{\hat{h}(\xi)}| d\xi d\sigma dv_{*} \\ &\leq C \Big(\int_{\mathbb{R}^{3}} |\langle v_{*} \rangle^{\gamma_{+}} f(v_{*})| \int_{\mathbb{S}^{2}} \int_{\mathbb{R}^{3}} b(\frac{\xi}{|\xi|} \cdot \sigma) \sin^{2} \frac{\theta}{2} |M(\xi^{+}) \mathcal{F}(\Phi_{*} \langle v_{*} \rangle^{-\gamma_{+}} g)(\xi^{+})|^{2} d\xi d\sigma dv_{*} \Big)^{1/2} \\ &\qquad \times \Big(\int_{\mathbb{R}^{3}} |\langle v_{*} \rangle^{\gamma_{+}} f(v_{*})| \int_{\mathbb{S}^{2}} \int_{\mathbb{R}^{3}} b(\frac{\xi}{|\xi|} \cdot \sigma) \sin^{2} \frac{\theta}{2} |\overline{\hat{h}(\xi)}|^{2} d\xi d\sigma dv_{*} \Big)^{1/2} \\ &\leq C \|f\|_{L^{1}_{\gamma_{+}}} \Big(\sup_{v_{*}} \|M(D_{v})\Phi_{*} \langle v_{*} \rangle^{-\gamma_{+}} g(v)\|_{L^{2}_{\gamma_{+}}} \Big) \|h\|_{L^{2}}, \end{split}$$ where we have used Plancherel's equality, the change of variables $\xi \to \xi^+$ for which $d\xi \sim d\xi^+$ uniformly with respect to σ , the estimate $\Phi_*\langle v_*\rangle^{-\gamma_+} \leq \langle v\rangle^{\gamma_+}$. Then by using the expansion formula of the pseudo-differential calculus $$[M(D_v), \Phi_*(v)] g = \sum_{1 \le |\alpha| < N_1} \frac{1}{\alpha!} \Phi_{*(\alpha)} M^{(\alpha)}(D_v) g + r_{N_1}(v, D_v; v_*) g,$$ with $N_1 > \lambda$, and the condition (2.3.2), we obtain (2.3.7) $$\sup_{v_*} \|M(D_v)\Phi_*\langle v_*\rangle^{-\gamma_+} g(v)\|_{L^2_{\gamma_+}} \le C\Big(\|Mg\|_{L^2_{\gamma_+}} + ||g||_{H^{\lambda-N_1}_{\gamma_+}}\Big).$$ Hence, $$(2.3.8) |\mathcal{I}| \le C ||f||_{L^{1}_{\gamma_{+}}} \Big(||Mg||_{L^{2}_{\gamma_{+}}} + ||g||_{H^{\lambda-N_{1}}_{\gamma_{+}}} \Big) ||h||_{L^{2}}.$$ We now turn to the term \mathcal{II} . Firstly, set $$F(v, v_*) = [M, \Phi_*]g(v),$$ and decompose $$\mathcal{II} = \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta) f(v_*) \Big\{ F(v', v_*) h(v') - F(v, v_*) h(v) \Big\} d\sigma dv_* dv$$ $$+ \int_{\mathbb{R}^6} \int_{\mathbb{S}^2} b(\cos\theta) f(v_*) \Big(F(v, v_*) - F(v', v_*) \Big) h(v') dv_* dv d\sigma$$ $$= J_1 + J_2.$$ According to the cancellation lemma [6], we obtain $$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(\cos \theta) \Big\{ F(v', v_*) h(v') - F(v, v_*) h(v) \Big\} d\sigma dv = \Big(S * \Big\{ F(\cdot, v_*) h \Big\} \Big) (v_*),$$ where the convolution product is in $v \in \mathbb{R}^3$, and in this case. $$S = 2\pi \int_0^{\pi/2} \sin\theta
b(\cos\theta) \left[\frac{1}{\cos^3(\theta/2)} - 1 \right] d\theta$$ is a constant function. Consequently $$J_1 = \int_{\mathbb{R}^3} f(v_*) \Big(S * \{ F(\cdot, v_*) h \} \Big) (v_*) dv_* = S \int_{\mathbb{R}^6} f(v_*) F(v, v_*) h(v) dv dv_*.$$ By (2.3.6) and (2.3.7), we get $$(2.3.9) |J_{1}| \leq C \int_{\mathbb{R}^{3}} |f(v_{*})| ||F(\cdot, v_{*})||_{L^{2}} ||h||_{L^{2}} dv_{*}$$ $$\leq C ||f||_{L^{1}_{\gamma_{+}}} \left(||Mg||_{L^{2}_{\gamma_{+}}} + ||g||_{H^{\lambda-N_{1}}_{\gamma_{+}}} \right) ||h||_{L^{2}}.$$ To estimate the term J_2 , we need to consider the following two cases. Case 1: 0 < s < 1/2. Since the mean value theorem yields $$F(v, v_*) - F(v', v_*) = (v - v') \cdot \int_0^1 \nabla_v (F(v' + \tau(v - v'), v_*) d\tau,$$ by noticing that $$|v' - v| = |v - v_*|\sin(\theta/2) = |v' - v_*|\tan(\theta/2),$$ we have $$\begin{split} |J_{2}| &\leq \int_{0}^{1} \Big(\int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos\theta) |v'-v| |f(v_{*})| |h(v')| |(\nabla_{v}F)(v'+\tau(v-v'),v_{*})| dv dv_{*} d\sigma \Big) d\tau. \\ &\leq C \Big(\int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos\theta) |\theta| \langle v_{*} \rangle^{\gamma_{+}} |f(v_{*})| |h(v')|^{2} dv dv_{*} d\sigma \Big)^{1/2} \\ &\times \int_{0}^{1} \Big(\int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos\theta) |\theta| \langle v_{*} \rangle^{\gamma_{+}} |f(v_{*})| \left| \frac{|v-v_{*}|}{\langle v_{*} \rangle^{\gamma_{+}}} (\nabla_{v}F)(v'+\tau(v-v'),v_{*}) \right|^{2} dv dv_{*} d\sigma \Big)^{1/2} d\tau \\ &= C J_{21} \times J_{22}. \end{split}$$ By the change of variables $v \to v'$ for which $dv \sim dv'$ uniformly in $v_* \in \mathbb{R}^3$, $\sigma \in \mathbb{S}^2$ (see [6]), we get $J_{21}^2 \leq C \|f\|_{L_{\infty}^1} \|h\|_{L^2}^2$. To estimate J_{22} , we apply the change of variables (2.1.25) and use (2.1.26). Setting $$\psi^*(v) = \frac{\langle v - v_* \rangle}{\langle v_* \rangle^{\gamma_+}},$$ we get $$J_{22}^{2} \leq C \int_{0}^{1} \left[\int_{\mathbb{R}^{2n} \times \mathbb{S}^{2}} b(\cos \theta) |\theta| \langle v_{*} \rangle^{\gamma_{+}} |f(v_{*})| \left| \psi^{*}(z) (\nabla_{v} F)(z, v_{*}) \right|^{2} dz dv_{*} d\sigma \right] d\tau$$ $$\leq C \|f\|_{L_{\gamma_{+}}^{1}} \sup_{v_{*}} \|\psi^{*}(\cdot) (\nabla_{v} F)(\cdot, v_{*})\|_{L^{2}}^{2}.$$ On the other hand, it follows from the expansion formula of pseudo-differential operators that, with $\Phi_*(v) = (1 + |v - v_*|^2)^{\gamma/2}$ we have for any $N_1 \in \mathbb{N}$ $$(\nabla_v F)(v, v_*) = \nabla_v [M, \, \Phi_*] g(v)$$ $$(2.3.11) = \sum_{1 \le |\alpha| < N_1} \frac{1}{\alpha!} \left\{ (\nabla \Phi_{*(\alpha)}) M^{(\alpha)}(D_v) g + \Phi_{*(\alpha)} M^{(\alpha)}(D_v) \nabla_v g \right\} + \tilde{r}_{N_1}(v, D_v; v_*) g$$ = $F_{N_1}(v, D_v; v_*) g(v) + \tilde{r}_{N_1}(v, D_v; v_*) g(v),$ where \tilde{r}_{N_1} is a pseudo-differential operator with symbol belonging to $S_{1,0}^{\lambda-N_1}$ uniformly with respect to $v_* \in \mathbb{R}^3$ (cf. [41]). Since $$\left| \psi^* \Phi_{*(\alpha)} \right| \le C_\alpha \frac{\langle v - v_* \rangle}{\langle v_* \rangle^{\gamma_+}} \langle v - v_* \rangle^{\gamma - |\alpha|} \le C_\alpha \langle v \rangle^{\gamma_+},$$ by (2.3.2), we have for $\alpha \neq 0$ that, $$|M^{(\alpha)}(\xi)| \xi| \le C_{\alpha} M(\xi) \langle \xi \rangle^{-|\alpha|+1} \le C_{\alpha} M(\xi).$$ Hence $$(2.3.12) J_{22}^2 \le C \|f\|_{L^1_{\gamma_+}} \Big(\|Mg\|_{L^2_{\gamma_+}}^2 + \|g\|_{H^{\lambda_-N_1}}^2 \Big).$$ Now, it follows from (2.3.9), (2.3.10), and (2.3.12) that $$|\mathcal{I}\mathcal{I}| \le C||f||_{L^{1}_{\gamma_{+}}} \Big(||Mg||_{L^{2}_{\gamma_{+}}} + ||g||_{H^{\lambda-N_{1}}_{,+}}\Big)||h||_{L^{2}},$$ holds when 0 < s < 1/2. Case 2: 1/2 < s < 1. We now decompose J_2 as follows: $$J_{2} = \int_{0}^{1} \left(\int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos \theta) f(v_{*}) h(v')(v - v') \cdot (\nabla_{v} F)(v' + \tau(v - v'), v_{*}) dv dv_{*} d\sigma \right) d\tau$$ $$= \int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos \theta) f(v_{*}) h(v')(v - v') \cdot (\nabla_{v} F)(v', v_{*}) dv dv_{*} d\sigma$$ $$+ \int_{0}^{1} \left(\int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} b(\cos \theta) f(v_{*}) h(v') \right)$$ $$(v - v') \cdot \{ (\nabla_{v} F)(v' + \tau(v - v'), v_{*}) - (\nabla_{v} F)(v', v_{*}) \} dv dv_{*} d\sigma \right) d\tau$$ $$= J_{2}^{0} + J_{2}^{1}.$$ The essential feature of this decomposition is that J_2^0 vanishes by symmetry as in the proof of Lemma 2.4. Indeed, we have $$J_{2}^{0} = \int_{\mathbb{R}^{6}} f(v_{*})h(v')$$ $$\left\{ \int_{\mathbb{S}^{2}} b\left(\frac{\psi_{\sigma}(v') - v_{*}}{|\psi_{\sigma}(v') - v_{*}|} \cdot \sigma\right) \left| \frac{\partial(\psi_{\sigma}(v'))}{\partial(v')} \right| (\psi_{\sigma}(v') - v') d\sigma \right\} \cdot (\nabla_{v}F)(v', v_{*}) dv' dv_{*}$$ $$= 0,$$ because of the symmetry in σ_1 and σ_2 in the sense that $\psi_{\sigma_1}(v') - v' = -(\psi_{\sigma_2}(v') - v')$, cf. Figure ??. Now, by the change of variable $v \to z = v' + \tau(v - v')$ defined by (2.1.25), we consider $$J_2^1(\tau) = \int_{\mathbb{R}^6 \times \mathbb{S}^2} bf(v_*)h(v')(v - v') \cdot \{(\nabla_v F)(z, v_*) - (\nabla_v F)(v', v_*)\} dv dv_* d\sigma.$$ By recalling the expansion formula (2.3.11) of $(\nabla_v F)(v, v_*)$, we first consider $$J_{2}^{1}(\tau,\alpha)$$ $$= \int_{\mathbb{R}^{6}\times\mathbb{S}^{2}} bf(v_{*})h(v')(v-v') \cdot \{\Phi_{*(\alpha)}M^{(\alpha)}\nabla_{v}g(z) - \Phi_{*(\alpha)}M^{(\alpha)}\nabla_{v}g(v')\}dvdv_{*}d\sigma$$ $$= \int_{\mathbb{R}^{6}\times\mathbb{S}^{2}} bf(v_{*})h(v') \{\Phi_{*(\alpha)}(z) - \Phi_{*(\alpha)}(v')\} (v-v') \cdot M^{(\alpha)}\nabla_{v}g(z)dvdv_{*}d\sigma$$ $$+ \int_{\mathbb{R}^{6}\times\mathbb{S}^{2}} bf(v_{*})h(v')\Phi_{*(\alpha)}(v')(v-v') \cdot \{M^{(\alpha)}\nabla_{v}g(z) - M^{(\alpha)}\nabla_{v}g(v')\}dvdv_{*}d\sigma$$ $$= J_{2}^{1,0}(\tau,\alpha) + \tilde{J}_{2}^{1}(\tau,\alpha).$$ Notice that the case when $|\alpha| = 1$ is the most difficult one, in the sense that $M^{(\alpha)}(D_v) \nabla_v$ is a pseudo-differential operator of order λ with symbol bounded by $CM(\xi)$ due to the assumption (2.3.2). By writing (1) instead of (α) when $|\alpha| = 1$, we have $$|\{\Phi_{*(1)}(z) - \Phi_{*(1)}(v')\}|v - v'|| \le C\langle z - v_*\rangle^{\gamma}\theta^2,$$ which gives $$(2.3.15) \qquad \left|J_{2}^{1,0}(\tau,(1))\right| \leq \left(\int_{\mathbb{R}^{6}\times\mathbb{S}^{2}} b\theta^{2} |\langle v_{*}\rangle^{\gamma_{+}} f(v_{*})||h(v')|^{2} d\sigma dv dv_{*}\right)^{1/2}$$ $$\times \left(\int_{\mathbb{R}^{6}\times\mathbb{S}^{2}} b\theta^{2} |\langle v_{*}\rangle^{\gamma_{+}} f(v_{*})| \left|\frac{\langle z-v_{*}\rangle^{\gamma}}{\langle v_{*}\rangle^{\gamma_{+}}} M^{(\alpha)} \nabla_{v} g(z)\right|^{2} d\sigma dv dv_{*}\right)^{1/2}$$ $$\leq C||f||_{L_{\gamma_{+}}^{1}} ||M g||_{L_{\gamma_{+}}^{2}} ||h||_{L^{2}}.$$ In order to evaluate the term $\tilde{J}_2^1(\tau,(1))$, we take the same Littlewood-Paley partition of unity $\{\psi_i(\xi)\}$ as in the proof of Lemma 2.4 and write $$\begin{split} &\tilde{J}_{2}^{1}(\tau,(1)) \\ &= \int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} bf(v_{*})h(v')\Phi_{*(1)}(v')(v-v') \cdot \{M^{(1)}\nabla_{v}g(z) - M^{(1)}\nabla_{v}g(v')\}dvdv_{*}d\sigma \\ &= \sum_{j=0}^{\infty} \int_{\mathbb{R}^{6} \times \mathbb{S}^{2}} bf(v_{*})h(v')\Phi_{*(1)}(v')(v-v') \cdot (g_{j}(z) - g_{j}(v')) dvdv_{*}d\sigma \\ &= \sum_{j=0}^{\infty} \tilde{J}_{2,j}^{1}(\tau), \end{split}$$ where $g_j(v) = \psi_j(D_v)M^{(1)}(D_v)\nabla_v g(v)$. For each j we apply the following decomposition by using Ω_j introduced in the proof of Lemma 2.4 to have $$\begin{split} \tilde{J}_{2,j}^1(\tau) &= \int_0^1 \Big(\int_{\mathbb{R}^6} \Big(\int_{\Omega_j} bf(v_*)h(v') \Phi_{*(1)}(v')(v-v') \\ & \cdot (z-v') \nabla g_j(v'+s(z-v')) d\sigma \Big) dv dv_* \Big) ds \\ &+ \int_{\mathbb{R}^6} \left(\int_{\Omega_j^c} bf(v_*)h(v') \Phi_{*(1)}(v')(v-v') \cdot (g_j(z)-g_j(v')) \, d\sigma \right) dv dv_* \\ &= \tilde{J}_{2,j}^{1,1}(\tau) + \tilde{J}_{2,j}^{1,2}(\tau). \end{split}$$ By setting $$v'_{\tau,s} = v' + s(z - v'),$$ we have $$\begin{split} |\tilde{J}_{2,j}^{1,1}(\tau)| &\leq \int_{0}^{1} \Big(\int_{\mathbb{R}^{6}} \left(\int_{\Omega_{j}} b|v'-v|^{2}|f(v_{*})||h(v')||\Phi_{*(1)}(v')||\nabla g_{j}(v'_{\tau,s})|d\sigma \right) dv dv_{*} \Big) ds \\ &\leq C \int_{0}^{1} \Big(\int_{\mathbb{R}^{6}} \left(\int_{\Omega_{j}} b(\cos\theta)\theta^{2}\langle v-v_{*}\rangle^{2-2s}\langle v_{*}\rangle^{(2s+\gamma-1)+}|f(v_{*})| \right. \\ & \qquad \qquad \times |h(v')| \left| \frac{\langle v'_{\tau,s}-v_{*}\rangle^{2s+\gamma-1}}{\langle v_{*}\rangle^{(2s+\gamma-1)+}} \nabla g_{j}(v'_{\tau,s}) \right| d\sigma \Big) dv dv_{*} \Big) ds \\ &\leq C 2^{-\varepsilon j} \Big(\int_{\mathbb{R}^{6}} \Big(\int_{\Omega_{j}} b(\cos\theta)\theta^{2} 2^{j(2-2s)}\langle v-v_{*}\rangle^{2-2s}\langle v_{*}\rangle^{(2s+\gamma-1)+}|f(v_{*})||h(v')|^{2} d\sigma \Big) dv dv_{*} \Big)^{1/2} \\ & \qquad \times \int_{0}^{1} \Big(\Big(\int_{\mathbb{R}^{6}} \Big(\int_{\Omega_{j}} b(\cos\theta)\theta^{2} 2^{j(2-2s)}\langle v-v_{*}\rangle^{2-2s}\langle v_{*}\rangle^{(2s+\gamma-1)+}|f(v_{*})| \\ & \qquad \qquad |\langle v'_{\tau,s}\rangle^{(2s+\gamma-1)+} 2^{j(2s-2+\varepsilon)} \nabla g_{j}(v'_{\tau,s}) \Big|^{2} d\sigma \Big) dv dv_{*} \Big)^{1/2} \Big) ds \\ &= C 2^{-\varepsilon j} \tilde{J}_{2,j,1}^{1,1}(\tau) \times \tilde{J}_{2,j,2}^{1,1}(\tau). \end{split}$$ By using the same change of variables as for $J_{2,1}$ in the previous case, it follows from (2.1.23) that Similarly, by taking the change of variables $v \to v'_{\tau,s}$ as in the previous case again, (2.1.23) leads to where we have used $$||2^{j(2s-2-\varepsilon)}\nabla g_j(v)||_{L^2_{(2s+\gamma-1)_+}}^2 \le C\Big(||M\,g||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_+}}^2 + ||g||_{H^{\lambda-N_1+2s-1+\varepsilon}_{(2s+\gamma-1)_+}}^2\Big).$$ Hence, it follows from (2.3.16) and (2.3.17) that, for $N_1 > \lambda + 2s - 1 + \varepsilon$, we have $$(2.3.18) |\tilde{J}_{2,j}^{1,1}(\tau)| \le
C2^{-\varepsilon j} ||f||_{L^{1}_{(2s+\gamma-1)_{+}}} \Big(||Mg||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_{+}}} + ||g||_{H^{\lambda-N}_{(2s+\gamma-1)_{+}}} \Big) |h||_{L^{2}}.$$ On the other hand, for $\tilde{J}_{2,j}^{1,2}(\tau)$, note that $$\tilde{J}_{2,j}^{1,2}(\tau) = \int_{\mathbb{R}^6} \left(\int_{\Omega_j^c} bf(v_*) h(v') \Phi_{*(1)}(v')(v - v') \cdot g_j(z) d\sigma \right) dv dv_*,$$ by the symmetry in Ω_i^c . We have $$\begin{split} |\tilde{J}_{2,j}^{1,2}(\tau)| &\leq C \int_{\mathbb{R}^6} \bigg(\int_{\Omega_j^c} b(\cos\theta) \theta \langle v - v_* \rangle^{1-2s} \langle v_* \rangle^{(2s+\gamma-1)_+} |f(v_*)| \\ & \qquad \qquad \times |h(v')| \left| \frac{\langle z - v_* \rangle^{2s+\gamma-1}}{\langle v_* \rangle^{(2s+\gamma-1)_+}} g_j(z) \right| d\sigma \bigg) dv dv_* \\ &\leq C 2^{-\varepsilon j} \bigg(\int_{\mathbb{R}^6} \bigg(\int_{\Omega_j^c} b(\cos\theta) \theta 2^{j(1-2s)} \langle v - v_* \rangle^{1-2s} \langle v_* \rangle^{(2s+\gamma-1)_+} |f(v_*)| |h(v')|^2 d\sigma \bigg) dv dv_* \bigg)^{1/2} \\ & \qquad \qquad \times \bigg(\int_{\mathbb{R}^6} \bigg(\int_{\Omega_j^c} b(\cos\theta) \theta 2^{j(1-2s)} \langle v - v_* \rangle^{1-2s} \langle v_* \rangle^{(2s+\gamma-1)_+} |f(v_*)| \\ & \qquad \qquad \qquad \bigg| \langle z \rangle^{(2s+\gamma-1)_+} 2^{j(2s-1+\varepsilon)} g_j(z) \bigg|^2 d\sigma \bigg) dv dv_* \bigg)^{1/2} \\ &\leq C 2^{-\varepsilon j} ||f||_{L^1_{(2s+\gamma-1)_+}} |h||_{L^2} \bigg(||M g||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_+}} + ||g||_{H^{\lambda-N}_{(2s+\gamma-1)_+}} \bigg), \end{split}$$ because of (2.1.24). This together with (2.3.15) and (2.3.18) yield $$(2.3.19) |J_2^1(\tau,(1))| \le C||f||_{L^1_{(2s+\gamma-1)_+}} \Big(||Mg||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_+}} + ||g||_{H^{\lambda-N}_{(2s+\gamma-1)_+}}\Big)|h||_{L^2}.$$ It is easy to see that all other terms coming from $F_{N_1}(v, D_v; v_*)g(v)$ in (2.3.11) have the same upper bound estimates. Moreover, all the terms coming from $\tilde{r}_{N_1}(v, D_v; v_*)g(v)$ can be estimated by $$C||f||_{L^1_{(2s+\gamma-1)_+}}||g||_{H^{\lambda-N}_{(2s+\gamma-1)_+}}|h||_{L^2}.$$ Therefore, we finally obtain $$|J_2| = |J_2^1| \leq C||f||_{L^1_{(2s+\gamma-1)_+}} \Big(||M\,g||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_+}} + ||g||_{H^{\lambda-N}_{(2s+\gamma-1)_+}} \Big)|h||_{L^2}.$$ In summary, when 1/2 < s < 1 we obtain instead of (2.3.13) that $$(2.3.20) |\mathcal{I}\mathcal{I}| \le C||f||_{L^{1}_{(2s+\gamma-1)_{+}}} \Big(||M g||_{H^{2s-1+\varepsilon}_{(2s+\gamma-1)_{+}}} + ||g||_{H^{\lambda-N}_{(2s+\gamma-1)_{+}}}\Big)|h||_{L^{2}}.$$ By combining (2.3.8), (2.3.13) and (2.3.20), the proof of Proposition 2.9 is completed. The rest of this section is devoted to the proof (2.1.19) of Lemma 2.4. **Proof of** (2.1.19) **of Lemma 2.4**. For $m = 2s - 1 + \varepsilon > 0$, we have with $\Lambda = (1 - \Delta_v)^{1/2}$ $$\begin{split} \left(W_{l}Q(f,\,g) - Q(f,\,W_{l}g),\,h\right) &= \left((\Lambda^{-m}Q(f,\,g) - Q(f,\,\Lambda^{-m}g)),\,W_{l}\Lambda^{m}h\right) \\ &+ \left((W_{l}Q(f,\,\Lambda^{-m}g) - Q(f,\,W_{l}\Lambda^{-m}g)),\,\Lambda^{m}h\right) \\ &+ \left((Q(f,\,\Lambda^{-m}\,W_{l}\,g) - \Lambda^{-m}Q(f,\,W_{l}g)),\,\Lambda^{m}h\right) \\ &+ \left((\left[\Lambda^{-m},\,W_{l}\right]Q(f,\,g) - Q(f,\,\left[\Lambda^{-m},\,W_{l}\right]g)),\,\Lambda^{m}h\right) \\ &= (1) + (2) + (3) + (4). \end{split}$$ It follows from (2.3.4) with $M(\xi) = \Lambda^{-m}$ that $$\begin{split} &|(1)| \leq C \|f\|_{L^1_{(2s+\gamma-1)^+}} \|g\|_{L^2_{(2s+\gamma-1)^+}} \|h\|_{H^m_l}, \\ &|(3)| \leq C \|f\|_{L^1_{(2s+\gamma-1)^+}} \|W_l g\|_{L^2_{(2s+\gamma-1)^+}} \|h\|_{H^m}. \end{split}$$ By means of (2.1.18), we have $$|(2)| \le C||f||_{L^1_{l+2s-1+\alpha^+}} ||g||_{L^2_{l+2s-1+\alpha^+}} ||h||_{H^m}.$$ To estimate (4), we first note that $$[\Lambda^{-m}, W_l] = \sum_{|\alpha|=1} (W_l)_{(\alpha)} (\Lambda^{-m})^{(\alpha)} + W_{l-1} R(v, D_v),$$ where R is a pseudo-differential operator which belongs to $S_{1,0}^{-m-2}$. Write $$(4) = \sum_{|\alpha|=1} \left(\left\{ \left(\Lambda^{-m} \right)^{(\alpha)} Q(f,g) - Q(f, \left(\Lambda^{-m} \right)^{(\alpha)} g) \right\}, (W_l)_{(\alpha)} \Lambda^m h \right)$$ $$+ \sum_{|\alpha|=1} \left(\left\{ \left(W_l \right)_{(\alpha)} Q(f, \left(\Lambda^{-m} \right)^{(\alpha)} g) - Q(f, \left(W_l \right)_{(\alpha)} \left(\Lambda^{-m} \right)^{(\alpha)} g) \right\}, \Lambda^m h \right)$$ $$+ \left(R(v, D_v) Q(f,g), W_{l-1} \Lambda^m h \right) + \left(Q(f, W_{l-1} R(v, D_v) g), \Lambda^m h \right)$$ $$= (a) + (b) + (c) + (d).$$ It follows from (2.1.1) that $$\begin{split} &|(c)| \leq C \|Q(f,g)\|_{H^{-2}} \|h\|_{H^m_{l-1}} \leq C \|f\|_{L^1_{(\gamma+2s)^+}} \|g\|_{L^2_{(\gamma+2s)^+}} \|h\|_{H^m_{l-1}}, \\ &|(d)| \leq C \|Q(f,W_{l-1}Rg)\|_{L^2} \|h\|_{H^m} \leq C \|f\|_{L^1_{(\gamma+2s)^+}} \|g\|_{L^2_{l-1+(\gamma+2s)^+}} \|h\|_{H^m}. \end{split}$$ By exactly the same method as the one for (2.1.18), namely, by replacing W_l by $(W_l)^{(\alpha)}$ which is bounded by $W_{l-|\alpha|}$, we have $$|(b)| \leq C \|f\|_{L^1_{l-2+2s+\gamma^+}} \|\left(\Lambda^{-m}\right)^{(\alpha)} g\|_{H^m_{l+2s-2+\gamma^+}} \|h\|_{H^m} \leq C \|f\|_{L^1_{l-2+2s+\gamma^+}} \|g\|_{L^2_{l+2s-2+\gamma^+}} \|h\|_{H^m} \, .$$ The estimation on (a) is the same as the argument in Proposition 2.9 by replacing M(D) by $(\Lambda^{-m})^{(\alpha)}$, except for the term corresponding to \mathcal{I} . Notice that $D_{\xi}^{\alpha}(\langle \xi \rangle^{-m}) := M^{(\alpha)}(\xi)$ is no longer a function of $|\xi|^2$. Instead of (2.3.5), we only have $$(2.3.21) |M^{(\alpha)}(\xi) - M^{(\alpha)}(\xi^+)| \le C \left| \sin \frac{\theta}{2} \right| \langle \xi^+ \rangle^{-m-1}.$$ Thus, we need to use the symmetry property as in the proof of Theorem 2.1. The term corresponding to \mathcal{I} is $$\mathcal{I}^{\alpha} = \int_{\mathbb{R}^{6}} \int_{\mathbb{S}^{2}} b(\frac{\xi}{|\xi|} \cdot \sigma) f(v_{*}) \times \left(M^{(\alpha)}(\xi) - M^{(\alpha)}(\xi^{+}) \right) \mathcal{F}(\Phi_{*}g)(\xi^{+}) e^{-iv_{*}\xi^{-}} d\sigma dv_{*} \overline{\hat{h_{0}}(\xi)} d\xi,$$ where $h_0 = (W_l)_{(\alpha)} \Lambda^m h$. By letting $$F(v, v_*) = \frac{\Phi(|v - v_*|)}{\langle v_* \rangle^{\gamma^+}} g(v), \qquad h(v, v_*) = \frac{h_0(v)}{\langle v_* \rangle},$$ we write $$\mathcal{I}^{\alpha} = \int_{\mathbb{R}^{3}} \langle v_{*} \rangle^{1+\gamma^{+}} f(v_{*})$$ $$\times \left\{ \int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} b(\frac{\xi}{|\xi|} \cdot \sigma) \left(M^{(\alpha)}(\xi) - M^{(\alpha)}(\xi^{+}) \right) e^{iv_{*}\xi^{+}} \hat{F}(\xi^{+}, v_{*}) \overline{e^{iv_{*}\xi} \hat{h}(\xi, v_{*})} d\sigma d\xi \right\} dv_{*}$$ $$= \int_{\mathbb{R}^{3}} \langle v_{*} \rangle^{1+\gamma^{+}} f(v_{*}) \mathcal{L}(v_{*}) dv_{*}.$$ Set $$\tilde{\hat{F}}(\xi, v_*) = e^{iv_*\xi} \hat{F}(\xi, v_*), \quad \tilde{\hat{h}}(\xi, v_*) = e^{iv_*\xi} \hat{h}(\xi, v_*),$$ and write $$\begin{split} \mathcal{L}(v_*) &= \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b(\frac{\xi}{|\xi|} \cdot \sigma) \Big(M^{(\alpha)}(\xi) - M^{(\alpha)}(\xi^+) \Big) \widetilde{\hat{F}}(\xi^+, v_*) \overline{\Big(\widetilde{\hat{h}}(\xi, v_*) - \widetilde{\hat{h}}(\xi^+, v_*) \Big)} d\sigma d\xi \\ &+ \frac{1}{2} \int_0^1 (1 - \tau) \Big\{ \int_{\mathbb{R}_n} \int_{\mathbb{S}^2} b(\frac{\xi}{|\xi|} \cdot \sigma) \\ &\qquad \times (\nabla_{\xi}^2 M^{(\alpha)}) (\xi^+ + \tau(\xi - \xi^+)) (\xi^-)^2 \widetilde{\hat{F}}(\xi^+, v_*) \overline{\widetilde{\hat{h}}(\xi^+, v_*)} d\sigma d\xi \Big\} d\tau \\ &= \mathcal{L}^1(v_*) + \mathcal{L}^2(v_*). \end{split}$$ By the same symmetry property as shown in Figure ?? in the proof of Theorem 2.1, we have $$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} b \big(\frac{\xi}{|\xi|} \cdot \sigma \big) (\nabla_\xi M^{(\alpha)})(\xi^+) \cdot \xi^-(\sigma) \widetilde{\hat{F}}(\xi^+, v_*) \overline{\widetilde{\hat{h}}(\xi^+, v_*)} d\sigma d\xi = 0.$$ Then it follows from (2.3.21) that $$\sup_{v} |\mathcal{L}^{1}(v_{*})| \leq C \|g\|_{L^{2}_{\gamma^{+}}} \|h_{0}\|_{L^{2}_{1}} \leq C \|g\|_{L^{2}_{\gamma^{+}}} \|h\|_{H^{m}_{l}},$$ and $$\sup_{v_*} |\mathcal{L}^2(v_*)| \le C \|g\|_{L^2_{\gamma^+}} \|h_0\|_{L^2} \le C \|g\|_{L^2_{\gamma^+}} \|h\|_{H^m_{l-1}},$$ whence we obtain $$|\mathcal{I}^{\alpha}| \leq C \|f\|_{L^1_{1+\gamma^+}} \|g\|_{L^2_{\gamma^+}} \|h\|_{H^m_l}.$$ In summary, we obtained the desired estimate (2.1.19). #### 3. Regularizing effect In this section, we will prove the regularizing effect on solutions to the non-cutoff Boltzmann equation starting from $f \in \mathcal{H}_l^5(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3))$. Actually this will be proved by using an induction argument in the following subsections. In the first step, we will show the gain of regularity in the variable v mainly by using the singularity in the cross-section, that is, the coercivity property in (3.1.3). In the second step, we will apply the hypo-elliptic estimate obtained by a generalized version of the uncertainty principle to show the gain of regularity in (x,t) variables. Then an induction argument will lead to at least one order higher regularity in (x,t) variables. By using the equation and an induction argument again, at least one order higher regularity can be obtained in v variable. Therefore, the solution is shown to be in $\mathcal{H}_l^6(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3)$ which by induction leads to $\mathcal{H}_l^\infty(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3)$. Let $f \in \mathcal{H}_l^{\tilde{5}}(]T_1, T_2[\times \Omega \times \mathbb{R}_v^{\tilde{3}}))$, for all $l \in \mathbb{N}$, be a (classical) solution of the Boltzmann equation (1.1). We now want to prove the full regularity of $\varphi(t)\psi(x)f$ for any smooth cutoff functions $\varphi \in C_0^{\infty}(]T_1, T_2[], \ \psi \in C_0^{\infty}(\Omega)$. 3.1. **Initialization.** Here and below, ϕ denotes a cutoff function satisfying $\phi \in C_0^{\infty}$ and $0 \le \phi \le 1$. Notation $\phi_1 \subset \subset \phi_2$ stands for two cutoff functions such that $\phi_2 = 1$ on the
support of ϕ_1 . Take the smooth cutoff functions φ , $\varphi_2, \varphi_3 \in C_0^{\infty}(]T_1, T_2[)$ and ψ , $\psi_2, \psi_3 \in C_0^{\infty}(\Omega)$ such that $\varphi \subset\subset \varphi_2 \subset\subset \varphi_3$ and $\psi \subset\subset \psi_2 \subset\subset \psi_3$. Set $f_1 = \varphi(t)\psi(x)f$, $f_2 = \varphi_2(t)\psi_2(x)f$ and $f_3 = \varphi_3(t)\psi_3(x)f$. For $\alpha \in \mathbb{N}^7, |\alpha| \leq 5$, define $$g = \partial^{\alpha}(\varphi(t)\psi(x)f) = \partial^{\alpha}_{t,x,v}(\varphi(t)\psi(x)f) \in L^{2}_{l}(\mathbb{R}^{7}).$$ Firstly, the translation invariance of the collision operator with respect to the variable v implies that (see [32, 37, 53]), for the translation operation τ_h in v by h, that we have $$\tau_h G(f, g) = Q(\tau_h f, \tau_h g).$$ Then the Leibniz formula with respect to the t, x variables yields the following equation in a weak sense (3.1.1) $$q_t + v \cdot \partial_x q = Q(f_2, q) + G, (t, x, v) \in \mathbb{R}^7,$$ where $$(3.1.2) G = \sum_{\alpha_1 + \alpha_2 = \alpha, \ 1 \le |\alpha_1|} C_{\alpha_2}^{\alpha_1} Q\Big(\partial^{\alpha_1} f_2, \ \partial^{\alpha_2} f_1\Big)$$ $$+ \partial^{\alpha} \Big(\varphi_t \psi(x) f + v \cdot \psi_x(x) \varphi(t) f\Big) + [\partial^{\alpha}, \ v \cdot \partial_x] (\varphi(t) \psi(x) f)$$ $$\equiv (A) + (B) + (C).$$ To prove the regularity of $g = \partial^{\alpha}(\varphi(t)\psi(x)f)$, the natural idea would be to use g as a test function for equation (3.1.1). But at this point, g only belongs to $L^2_l(\mathbb{R}^7)$ so that it is only a weak solution to equation (3.1.1). By using the upper bound estimate on Q, we have $Q(f_2, g) \in L^2(\mathbb{R}^4_{t,x}; H^{-2s}(\mathbb{R}^3_v))$. Thus, we need to choose the test functions at least in the space $L^2(\mathbb{R}^4_{t,x}; H^{2s}(\mathbb{R}^3_v))$. For this, we will use a mollification of g with respect to the variables (x, v) as a test function. For this purpose, let $S \in C_0^{\infty}(\mathbb{R})$ satisfy $0 \leq S \leq 1$ and $$S(\tau) = 1, |\tau| \le 1; S(\tau) = 0, |\tau| \ge 2.$$ Then $$S_N(D_x)S_N(D_v) = S(2^{-2N}|D_x|^2)S(2^{-2N}|D_v|^2) : H_l^{-\infty}(\mathbb{R}^6) \to H_l^{+\infty}(\mathbb{R}^6),$$ is a regularization operator such that $$\|\left(S_N(D_x)S_N(D_v)f\right) - f\|_{L^2(\mathbb{R}^6)} \to 0, \quad \text{as } N \to \infty.$$ Choose another cutoff function $\psi \subset\subset \psi_1\subset\subset \psi_2$ and set $$P_{N, l} = \psi_1(x) S_N(D_x) W_l S_N(D_v).$$ Then we can take $$\tilde{g} = P_{N,l}^{\star} (P_{N,l} g) \in C^1(\mathbb{R}; H^{+\infty}(\mathbb{R}^6))$$ as a test function for the equation (3.1.1). It follows by integration by parts on $\mathbb{R}^7 = \mathbb{R}^1_t \times \mathbb{R}^3_x \times \mathbb{R}^3_v$ that $$\begin{split} \left([S_N(D_v), \ v] \cdot \nabla_x S_N(D_x) g, \ \psi_1(x) W_l P_{N,l} \ g \right)_{L^2(\mathbb{R}^7)} = \\ \left(P_{N,l} \ Q(f_2, g), \ P_{N,l} \ g \right)_{L^2(\mathbb{R}^7)} + \left(G, \ \tilde{g} \right)_{L^2(\mathbb{R}^7)}, \end{split}$$ which implies that $$(3.1.3) - \left(Q(f_2, P_{N, l} g), P_{N, l} g\right)_{L^2(\mathbb{R}^7)} = -\left(\left[S_N(D_v), v\right] \cdot \nabla_x S_N(D_x) g, \psi_1(x) W_l P_{N, l} g\right)_{L^2(\mathbb{R}^7)} + \left(P_{N, l} Q(f_2, g) - Q(f_2, P_{N, l} g), P_{N, l} g\right)_{L^2(\mathbb{R}^7)} + \left(G, \tilde{g}\right)_{L^2(\mathbb{R}^7)}.$$ By using (3.1.3), we can deduce the regularity of g from the coercivity property of the collision operator on the left hand side and the upper bound estimate on the right hand side. The detailed argument will be given in the next subsection. 3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothing effect of the cross-section on the weak solution g in the velocity variable v. **Proposition 3.1.** Assume that 0 < s < 1, $\gamma \in \mathbb{R}$. Let $f \in \mathcal{H}_l^5(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3)$ be a solution of the equation (1.1) for all $l \in \mathbb{N}$. Assume furthermore that $$(3.2.1) f(t, x, v) \ge 0 and ||f(t, x, \cdot)||_{L^1(\mathbb{R}^3)} > 0,$$ for all $(t, x, v) \in]T_1, T_2[\times \Omega \times \mathbb{R}^3]$. Then one has, $$\Lambda_v^s f_1 \in H_l^5(\mathbb{R}^7),$$ for any $l \in \mathbb{N}$, where $f_1 = \varphi(t)\psi(x)f$ with $\varphi \in C_0^{\infty}(|T_1, T_2|), \psi \in C^{\infty}(\Omega)$. Proof: Firstly, the local positive lower bound assumption (3.2.1) implies that $$\inf_{(t,x)\in\text{supp }\varphi\times\text{supp }\psi_1} \|f_2(t,x,\cdot)\|_{L^1(\mathbb{R}^3_v)} = c_0 > 0.$$ Thus, the coercivity estimate (2.2.1) in Theorem 2.6 gives that for any $\gamma \in \mathbb{R}$, 0 < s < 1, $$-\left(Q(f_{2}, P_{N,l} g), P_{N,l} g\right)_{L^{2}(\mathbb{R}^{7})} = -\int_{t \in \operatorname{supp} \varphi} \int_{x \in \operatorname{supp} \psi_{1}} \left(Q(f_{2}, P_{N,l} g), P_{N,l} g\right)_{L^{2}(\mathbb{R}^{3})} dx dt$$ $$\geq \int_{\mathbb{R}_{t}} \int_{\mathbb{R}^{3}_{x}} \left(C_{0} \|W_{\gamma/2} P_{N,l} g(t, x, \cdot)\|_{H^{s}(\mathbb{R}^{3}_{v})}^{2} - C \|f_{2}(t, x, \cdot)\|_{L_{\max\{\gamma^{+}, 2-\gamma^{+}\}}^{1}(\mathbb{R}^{3}_{v})}^{2} \|P_{N,l} g(t, x, \cdot)\|_{L_{\gamma^{+}/2}^{2}(\mathbb{R}^{3}_{v})}^{2}\right) dx dt$$ $$\geq C_{0} \|\Lambda_{v}^{s} W_{\gamma/2} P_{N,l} g\|_{L^{2}(\mathbb{R}^{7})}^{2} - C \|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L_{\max\{\gamma^{+}, 2-\gamma^{+}\}}^{1}(\mathbb{R}^{3}_{v}))} \|W_{l} g\|_{L_{\gamma^{+}/2}^{2}(\mathbb{R}^{7})}^{2},$$ where C_0 depends on c_0 , $\sup_{t,x} \|f_2(t,x,\cdot)\|_{L^1_1(\mathbb{R}^3_v)}$ and $\sup_{t,x} \|f_2(t,x,\cdot)\|_{L\log L(\mathbb{R}^3_v)}$, see Remark 2.7. For the terms in (3.1.3), note first of all that $$(3.2.3) \ [S_N(D_v),\ v] \cdot \nabla_x \ S_N(D_x) = 2^{-2N} \big(S'\big)_N(D_v) \ D_v \cdot \nabla_x \ S_N(D_x) \ : \ L^2(\mathbb{R}^6_{x,v}) \ \to \ L^2(\mathbb{R}^6_{x,v}),$$ is a uniformly bounded operator so that $$\left| \left([S_N(D_v), \ v] \cdot \nabla_x \ S_N(D_x) g, \ \psi_1(x) W_l P_{N,l} \ g \right)_{L^2(\mathbb{R}^7)} \right| \le C \|f_1\|_{H_l^5(\mathbb{R}^7)}^2.$$ Hence, by using (3.1.3), we get, for l > 3/2 + 2, $$(3.2.4) \quad \|\Lambda_{v}^{s}W_{\gamma/2}P_{N,l}\,g\|_{L^{2}(\mathbb{R}^{7})}^{2} \leq C\Big\{\Big(1+\|f_{2}\|_{H^{2+\delta}_{l+\gamma+}(\mathbb{R}^{6})}\Big)\|f_{1}\|_{H^{5}_{l}(\mathbb{R}^{7})}^{2}+\Big|\Big(G,\,\tilde{g}\Big)_{L^{2}(\mathbb{R}^{7})}\Big| + \Big|\Big(P_{N,l}\,Q(f_{2},g)-Q(f_{2},\,P_{N,l}\,g),\,\,P_{N,l}\,g\Big)_{L^{2}(\mathbb{R}^{7})}\Big|\Big\}.$$ The above constants C > 0 are independent of N. We complete the proof of Proposition 3.1 by estimating the last two terms in (3.2.4) through the following three Lemmas. **Lemma 3.2.** Assume $0 < s < 1, \gamma \in \mathbb{R}$. Let $f \in \mathcal{H}_l^5(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3), l \geq 3/2 + 2$. Then, for any $\alpha \in \mathbb{N}^7, |\alpha| \leq 5$, we have, for any $\varepsilon > 0$, $$(3.2.5) \left| \left(G, \, \tilde{g} \right)_{L^2(\mathbb{R}^7)} \right| \le C_{\varepsilon} \|f_3\|_{H^5_{l+4+|\gamma|}(\mathbb{R}^7)}^4 + \varepsilon \|\Lambda_v^s W_{\gamma/2} P_{N,l} \, g\|_{L^2(\mathbb{R}^7_{t,x,v})}^2.$$ **Proof:** Firstly, we prove that (3.2.6) $$G \in L^{2}(\mathbb{R}^{4}_{t,x}; H_{l}^{-(2s-1+\delta)^{+}}(\mathbb{R}^{3}_{v})),$$ for any $l \in \mathbb{N}$, where $(2s - 1 + \delta)^+ = \max\{2s - 1 + \delta, 0\}$ and $\delta > 0$ satisfying $2s - 1 + \delta < s$. By using the decomposition in (3.1.2), it is obvious that $$(B) = \partial^{\alpha} \Big(\varphi_t \psi(x) f + v \cdot \psi_x(x) \varphi(t) f \Big) \in L^2_l(\mathbb{R}^7),$$ and $$||(B)||_{L^2_l(\mathbb{R}^7)} \le C||f_2||_{H^5_{l+1}(\mathbb{R}^7)}.$$ Since $[\partial^{\alpha}, v \cdot \partial_x]$ is a differential operator of order $|\alpha|$, we have $$||(C)||_{L^2_l(\mathbb{R}^7)} \le C||f_2||_{H^5_l(\mathbb{R}^7)}.$$ For the term (A), recall that $\alpha_1 + \alpha_2 = \alpha$, $|\alpha| \le 5$ and $|\alpha_2| < 5$. In the following, we will apply Theorem 2.1 with $m = 1 - \delta - 2s$. We separate the discussion into two cases. Case 1. If $|\alpha_1| = 1, 2$, we have $$\begin{split} &\int_{\mathbb{R}_t} \int_{\mathbb{R}^3_x} \|Q(\partial^{\alpha_1} f_2,\ \partial^{\alpha_2} f_1)(t,x,\cdot)\|_{H^{1-\delta-2s}_l(\mathbb{R}^3_v)}^2 dx dt \\ &\leq & C \int_{\mathbb{R}_t} \int_{\mathbb{R}^3_x} \|\partial^{\alpha_1} f_2(t,x,\cdot)\|_{L^1_{l+(2s+\gamma)^+}(\mathbb{R}^3_v)}^2 \|\partial^{\alpha_2} f_1(t,x,\cdot)\|_{H^{1-\delta}_{l+(2s+\gamma)^+}(\mathbb{R}^3_v)}^2 dx dt \\ &\leq & C \|\partial^{\alpha_1} f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x};\ L^1_{l+(2s+\gamma)^+}(\mathbb{R}^3_v))} \int_{\mathbb{R}_t} \int_{\mathbb{R}^3_x} \|\partial^{\alpha_2} f_1(t,x,\cdot)\|_{H^1_{l+(2s+\gamma)^+}(\mathbb{R}^3_v)}^2 dx dt \\ &\leq & C \|f_2\|_{H^{2+4/2+\delta}_{l+3/2+\delta+(2s+\gamma)^+}(\mathbb{R}^7)}^2 \|f_1\|_{H^5_{l+(2s+\gamma)^+}(\mathbb{R}^7)}^2. \end{split}$$ Case 2. If $|\alpha_1| \geq 3$, then $|\alpha_2| \leq 2$, it follows that $$\begin{split} & \int_{\mathbb{R}_{t}} \int_{\mathbb{R}_{x}^{3}} \|\partial^{\alpha_{1}} f_{2}(t,x,\cdot)\|_{L_{l+(2s+\gamma)+}^{2}(\mathbb{R}_{v}^{3})}^{2} \|\partial^{\alpha_{2}} f_{1}(t,x,\cdot)\|_{H_{l+(2s+\gamma)+}^{1-\delta}(\mathbb{R}_{v}^{3})}^{2} dx dt \\ & \leq & C \|\partial^{\alpha_{2}} f_{1}\|_{L^{\infty}(\mathbb{R}_{t,x}^{4};H_{l+(2s+\gamma)+}^{1-\delta}(\mathbb{R}_{v}^{3}))}^{2} \int_{\mathbb{R}_{t}} \int_{\mathbb{R}_{x}^{3}} \|\partial^{\alpha_{1}} f_{2}(t,x,\cdot)\|_{L_{l+3/2+\delta+(2s+\gamma)+}^{2}(\mathbb{R}_{v}^{3})}^{2} dx dt \\ & \leq & C \|f_{1}\|_{H_{l+(2s+\gamma)+}^{2+1-\delta+4/2+\delta/2}(\mathbb{R}^{6})}^{2} \|f_{2}\|_{H_{l+3/2+\delta+(2s+\gamma)+}^{5}(\mathbb{R}^{7})}^{2}. \end{split}$$ By combining these two cases, we have proved (3.2.6). Now if 2s - 1 < 0, then (3.2.6) implies that $$\left| \left(G, \, \tilde{g} \right)_{L^2(\mathbb{R}^7)} \right| \le C \| f_3 \|_{H^5_{l+4+\gamma^+}(\mathbb{R}^7)}^3.$$ On the other hand, if $0 \le 2s - 1$ and $\gamma < 0$ (the case $\gamma > 0$ is
easier), then (3.2.6) implies that $$\begin{split} & \left| \left(G, \, \tilde{g} \right)_{L^2(\mathbb{R}^7)} \right| \leq \| G \|_{L^2(\mathbb{R}^4_{t,x}; H^{1-2s-\delta}_{l+|\gamma|/2}(\mathbb{R}^3_v))} \| W_{-|\gamma|/2} P_{N,\, l} \, g \|_{L^2(\mathbb{R}^4_{t,x}; H^{2s-1+\delta}(\mathbb{R}^3_v))} \\ & \leq C \| f_3 \|_{H^5_{l+4+|\gamma|}(\mathbb{R}^7)}^2 \, \| W_{-|\gamma|/2} P_{N,\, l} \, g \|_{L^2(\mathbb{R}^4_{t,x}; H^{2s-1+\delta}(\mathbb{R}^3_v))}, \end{split}$$ because $2s - 1 + \delta < s$. Therefore, the proof of Lemma 3.2 is completed. We now turn to the estimates of commutators between the mollification operators and the collision operator, which are given in the following two lemmas. **Lemma 3.3.** For any $\gamma \in \mathbb{R}$, we have (1) If 0 < s < 1/2, then for any suitable functions f and g with the following norms well defined, one has for some constant C independent of N. (2) If 1/2 < s < 1, then for any $\delta > 0$ there exists a constant $C_{\delta} > 0$ such that $$(3.2.8) ||S_N(D_v)Q(f,g) - Q(f,S_N(D_v)g)||_{L^2(\mathbb{R}^3_v)} \le C_\delta ||f||_{L^1_{(2s+\gamma-1)^+}(\mathbb{R}^3_v)} ||g||_{H^{2s-1+\delta}_{(2s+\gamma-1)^+}(\mathbb{R}^3_v)},$$ and $$(3.2.9) ||S_N(D_v)Q(f,g) - Q(f,S_N(D_v)g)||_{H^{1-2s-\delta}(\mathbb{R}^3)} \le C_\delta ||f||_{L^1_{(2s+\gamma-1)^+}(\mathbb{R}^3_v)} ||g||_{L^2_{(2s+\gamma-1)^+}(\mathbb{R}^3_v)}.$$ (3) When s=1/2, we have the same form of estimate as (3.2.8) with $(2s+\gamma-1)$ replaced by $(\gamma+\kappa)$ for any small $\kappa>0$. Before giving the proof of this lemma, notice that when $\gamma=0$ in the Maxwellian molecule case, the following proof of Lemma 3.3 is similar to Lemma 3.1 in [48] (see also Lemma 5.1 in [8]) by using the Fourier transformation of collision operator. However, here we consider the case for $\gamma \in \mathbb{R}$. **Proof of Lemma 3.3:** The proof is a slight modification of the proof for Proposition 2.9. Set $$M(|\xi|) = S_N(|\xi|) = S(2^{-2N}|\xi|^2).$$ Then $S_N \in S_{1,0}^0$ uniformly. Even though it does not satisfy (2.3.2), we have $$|\partial^{\alpha} S_N(|\xi|)| \le C_{\alpha} S_{N+1}(|\xi|) < \xi > -|\alpha|$$ with C_{α} independent of $N \in \mathbb{N}$. Thus, (2.3.3) implies (3.2.7) and (2.3.4) implies (3.2.8) respectively. For (3.2.9), note that with $m = 2s - 1 + \delta$ we have $$(S_{N}Q(f,g) - Q(f,S_{N}g),h) = ((\Lambda^{-m}Q(f,g) - Q(f,\Lambda^{-m}g)),\Lambda^{m}S_{N}h)$$ $$+ ((S_{N}Q(f,\Lambda^{-m}g) - Q(f,\Lambda^{-m}S_{N}g)),\Lambda^{m}h)$$ $$+ ((Q(f,S_{N}\Lambda^{-m}g) - \Lambda^{-m}Q(f,S_{N}g)),\Lambda^{m}h)$$ $$= (I_{1}) + (I_{2}) + (I_{3}).$$ By applying (2.3.4) with $M(\xi) = \langle \xi \rangle^{-m}$ to (I_1) and (I_3) , we obtain $$|(I_1)| + |(I_3)| \le C ||f||_{L^1_{(2s+\gamma-1)^+}} ||g||_{L^2_{(2s+\gamma-1)^+}} ||h||_{H^m},$$ because $S_N \in S_{1,0}^0$ uniformly. The same bound on (I_2) follows from (3.2.8). Notice that the case of s = 1/2 follows from the case of $s = 1/2 + \kappa$ for any positive κ because the main concern here is the upper bound. And this completes the proof of the lemma. The following lemma is on the commutator of the collision opertor with mollifier in the x variable. **Lemma 3.4.** Let 0 < s < 1 and $\gamma, m \in \mathbb{R}$. For any suitable functions f and h with the following norms well defined, one has for a constant C independent of N. **Proof**: Let us introduce $\tilde{K}_N(z) = 2^{3N} \hat{S}(2^N z) 2^N z$. Note that $\tilde{K}_N \in L^1(\mathbb{R}^3)$ uniformly with respect to N. Then for any smooth function \tilde{h} , one has $$\left(\left(S_N(D_x) \ Q(f, h) - Q(f, S_N(D_x)h) \right), \ \tilde{h} \right)_{L^2(\mathbb{R}^7)} = \int_0^1 \left\{ \int_{\mathbb{R}_t} \int_{\mathbb{R}_x^3 \times \mathbb{R}_y^3} \tilde{K}_N(x - y) \right. \\ \left. \times \left(Q\left(\nabla_x f(t, y + \tau(x - y), \cdot), \ 2^{-N} h(t, y, \cdot) \right), \ \tilde{h}(t, x, \cdot) \right)_{L^2(\mathbb{R}^3)} dt dx dy \right\} d\tau.$$ By applying Theorem 2.1 with m-2s, the right hand side of this equality can be estimated from above by $$\begin{split} &C\Big\{\sup_{t,x}||\nabla_x f(t,x,\,\cdot\,)||_{L^1_{(2s+\gamma)^+}(\mathbb{R}^3_v)}\Big\}\times\\ &\int_{\mathbb{R}_t}\int_{\mathbb{R}^3_x}\left(|\tilde{K}_N|*||2^{-N}h(t,\,\cdot\,)||_{H^m_{(2s+\gamma)_+}(\mathbb{R}^3_v)}\right)(x)||\tilde{h}(t,x,\cdot)||_{H^{2s-m}(\mathbb{R}^3_v)}dxdt\\ &\leq C2^{-N}\|\nabla_x f\|_{L^\infty(\mathbb{R}^4_{t,x};L^1_{(2s+\gamma)^+}(\mathbb{R}^3_v))}\|h\|_{L^2(\mathbb{R}^4_{t,x};H^m_{(2s+\gamma)^+}(\mathbb{R}^3_v))}||\tilde{h}||_{L^2(\mathbb{R}^4_{t,x};H^{2s-m}(\mathbb{R}^3_v))}, \end{split}$$ which completes the proof of the lemma. We now apply (3.2.10) with $h = S_N(D_v)g$ and m = 1, we get Here, we have used the fact that a mollification operator $S_N(D_v)$ in the v variable has the property that $$||2^{-N}S_N(D_v)g(t,x,\cdot)||_{H^1_{(2s+\gamma)^+}(\mathbb{R}^3_v)} \le C||g(t,x,\cdot)||_{L^2_{(2s+\gamma)^+}(\mathbb{R}^3_v)},$$ where C is a constant independent on N. Now we are ready to complete the proof of Proposition 3.1. # Completion of proof of Proposition 3.1. We study now the commutator terms in (3.2.4). For this purpose, note that $$(3.2.12) \qquad \left(P_{N,l}Q(f_{2},g) - Q(f_{2},P_{N,l}g), P_{N,l}g\right)_{L^{2}(\mathbb{R}^{7})}$$ $$= \left(S_{N}(D_{v})Q(f_{2},g) - Q(f_{2},S_{N}(D_{v})g), S_{N}^{\star}(D_{x})\psi_{1}(x)W_{l}P_{N,l}g\right)_{L^{2}(\mathbb{R}^{7})}$$ $$+ \left(S_{N}(D_{x})Q(f_{2},S_{N}(D_{v})g) - Q(f_{2},S_{N}(D_{x})S_{N}(D_{v})g), \psi_{1}(x)W_{l}P_{N,l}g\right)_{L^{2}(\mathbb{R}^{7})}$$ $$+ \left(\psi_{1}(x)W_{l}Q(f_{2},S_{N}(D_{x})S_{N}(D_{v})g) - Q(f_{2},P_{N,l}g), P_{N,l}g\right)_{L^{2}(\mathbb{R}^{7})}.$$ $$= (1) + (2) + (3).$$ Note that $\Lambda_v^s[\psi_1(x), S_N(D_x)]S_N(D_v)$ is an L^2 uniformly bounded operator with respect to the parameter N for $0 \le s \le 1$, and that $[W_l, S_N(D_v)]$ is also a uniformly bounded operator from L^2 to L_{l-1}^2 with respect to the parameter N. The discussion on (3.2.12) can be divided into the following two cases. Case 1. 0 < s < 1/2. In this case, Lemma 3.3 implies that, for $l > \max\{4, (\gamma + 2s)^+\}$, $$|(1)| \le C \|f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{\sigma^{+}+2s}(\mathbb{R}^3_v))} \|g\|_{L^2(\mathbb{R}^7)} \|g\|_{L^2_{2l}(\mathbb{R}^7)} \le C \|f_3\|_{H^5_{2l}(\mathbb{R}^7)}^3.$$ And Lemma 3.4 implies that $$|(2)| \le C \|\nabla_x f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{s,t+1,2s}(\mathbb{R}^3_v))} \|g\|_{L^2(\mathbb{R}^4_{t,x}, L^2_{s,t}(\mathbb{R}^3_v))} \|g\|_{L^2_{2l}(\mathbb{R}^7)} \le C \|f_3\|_{H^5_{2l}(\mathbb{R}^7)}^3.$$ As for the term (3), we use Lemma 2.4 to have $$|(3)| \le C \|f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{l+\gamma^++2s}(\mathbb{R}^3_v))} \|g\|_{L^2_{l+\gamma^++2s}(\mathbb{R}^7)} \|P_{N,l} g\|_{L^2(\mathbb{R}^7)} \le C \|f_3\|_{H^5_{2l}(\mathbb{R}^7)}^3.$$ Case 2. $1/2 \le s < 1$. By using (3.2.9), we have $$\begin{split} |(1)| &\leq C \|f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{l+\gamma^++2s-1}(\mathbb{R}^3_v))} \|g\|_{L^2_{l+\gamma^++2s-1}(\mathbb{R}^7)} \|W_{\gamma/2} P_{N,l} g\|_{L^2(\mathbb{R}^4_{t,x}, H^{2s-1+\delta}(\mathbb{R}^3_v))} \\ &\leq \varepsilon \|\Lambda^s_v W_{\gamma/2} P_{N,l} g\|^2_{L^2(\mathbb{R}^7)} + C_\varepsilon \|f_3\|^4_{H^5_{l+\beta+\gamma^+}(\mathbb{R}^7)}. \end{split}$$ We can use (3.2.11) to show that $$\begin{aligned} |(2)| & \leq C \|\nabla_x f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{\gamma^+ + 2s}(\mathbb{R}^3_v))} \|g\|_{L^2(\mathbb{R}^4_{t,x}, L^2_{\gamma^+ + 2s}(\mathbb{R}^3_v))} \|W_l \, P_{N,l} \, g\|_{L^2(\mathbb{R}^4_{t,x}, H^{2s-1}(\mathbb{R}^3_v))} \\ & \leq C_{\varepsilon} \|f_3\|_{H^{5}_{bl}(\mathbb{R}^7)}^{\frac{d}{\theta} + 2} + \varepsilon \|\Lambda^s_v W_{\gamma/2} P_{N,l} \, g\|_{L^2(\mathbb{R}^7_{t,x,v})}^2. \end{aligned}$$ Then, (2.1.18) implies that $$\begin{aligned} |(3)| & \leq & C \|f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^1_{2s+l-1+\gamma_+}(\mathbb{R}^3_v))} \|\psi_1(x)S_N(D_x)S_N(D_v) g\|_{L^2(\mathbb{R}^4_{t,x}, H^{2s-1+\delta}_{2s+l-1+\gamma_+}(\mathbb{R}^3_v))} \|P_{N,l} g\|_{L^2(\mathbb{R}^7)} \\ & \leq & C_{\varepsilon} \|f_3\|_{H^{\delta}_{t,l}(\mathbb{R}^7)}^{\frac{\delta}{\theta}+2} + \varepsilon \|\Lambda^s_v W_{\gamma/2} P_{N,l} g\|_{L^2(\mathbb{R}^7_{t,x,v})}^2. \end{aligned}$$ In summary, we have obtained the following estimate for the second term on the right hand side of (3.2.4) $$\left| \left(P_{N,l} Q(f_2, g) - Q(f_2, P_{N,l} g), P_{N,l} g \right)_{L^2(\mathbb{R}^7)} \right| \leq C_{\varepsilon} \|f_3\|_{H^{\frac{5}{5}l}_{L}(\mathbb{R}^7)}^{2k'} + \varepsilon \|\Lambda_v^s W_{\gamma/2} P_{N,l} g\|_{L^2(\mathbb{R}^7_{t,x,v})}^2.$$ Finally, it holds that $$\|\Lambda_v^s W_{\gamma/2} P_{N,l} g\|_{L^2(\mathbb{R}^7)}^2 \le C \|f_3\|_{H_{2,1}^{5,1}(\mathbb{R}^7)}^{2k'},$$ where the constants C, k, and k' are independent of N. Therefore, Proposition 3.1 is proved by taking the limit $N \to \infty$. 3.3. Gain of regularity in (t,x). First of all, let us consider a transport equation in the form of $$(3.3.1) f_t + v \cdot \nabla_x f = g \in D'(\mathbb{R}^{2n+1}),$$ where $(t, x, v) \in \mathbb{R}^{1+n+n} = \mathbb{R}^{2n+1}$. In [9], by using a generalized uncertainty principle, we proved the following hypo-elliptic estimate. **Lemma 3.5.** Assume that $g \in H^{-s'}(\mathbb{R}^{2n+1})$, for some $0 \le s' < 1$. Let $f \in L^2(\mathbb{R}^{2n+1})$ be a weak solution of the transport equation (3.3.1) such that $\Lambda_v^s f \in L^2(\mathbb{R}^{2n+1})$ for some $0 < s \le 1$. Then it follows that $$\Lambda_x^{s(1-s')/(s+1)}f \in L^2_{-\frac{ss'}{s+1}}(\mathbb{R}^{2n+1}), \quad \Lambda_t^{s(1-s')/(s+1)}f \in L^2_{-\frac{s}{s+1}}(\mathbb{R}^{2n+1}),$$ where $\Lambda_{\bullet} = (1 + |D_{\bullet}|^2)^{1/2}$. As mentioned earlier, this hypo-elliptic estimate together with Proposition 3.1 are used to obtain the partial regularity in the variable (t, x). With this partial regularity in (t, x), by applying a Leibniz type formula for fractional derivatives, we will
show some improved regularity in all variables, v and (t, x). Then the hypo-elliptic estimate can be used again to get higher regularity in the variable (t, x). This procedure can be continued to obtain at least one order higher regularity in (t, x) variable. For the details, we first recall a Leibniz type formula for fractional derivatives with respect to variable (t, x). **Lemma 3.6.** Let $0 < \lambda < 1$. Then there exists a positive constant $C_{\lambda} \neq 0$ such that for any $f \in \mathcal{S}(\mathbb{R}^n)$, one has $$(3.3.2) |D_y|^{\lambda} f(y) = \mathcal{F}^{-1} \left(|\xi|^{\lambda} \hat{f}(\xi) \right) = C_{\lambda} \int_{\mathbb{R}^n} \frac{f(y) - f(y+h)}{|h|^{n+\lambda}} dh.$$ Indeed, note that $$\int_{\mathbb{R}^n} \frac{f(y) - f(y+h)}{|h|^{n+\lambda}} dh = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{iy \cdot \xi} \int_{\mathbb{R}^n} \frac{1 - e^{ih \cdot \xi}}{|h|^{n+\lambda}} dh d\xi,$$ while $$\int_{\mathbb{R}^n} \frac{1-e^{-i\,h\cdot\xi}}{|h|^{n+\lambda}}\,dh = |\xi|^\lambda \int_{\mathbb{R}^n} \frac{1-e^{-i\,u\cdot\frac{\xi}{|\xi|}}}{|u|^{n+\lambda}}\,du,$$ so that (3.3.2) follows from $$\int_{\mathbb{R}^n} \frac{1-e^{-i\,u\cdot\frac{\xi}{|\xi|}}}{|u|^{n+\lambda}}\,du \neq 0,$$ which is a positive constant depending only on λ and the dimension n, but independent from ξ . Using this Lemma, we have the following Leibniz type formula, $$(3.3.3) |D_y|^{\lambda} (f(y)g(y)) = C_{\lambda} \int_{\mathbb{R}^n} \frac{f(y)g(y) - f(y+h)g(y+h)}{|h|^{n+\lambda}} dh$$ $$= g(y)|D_y|^{\lambda} f(y) + f(y)|D_y|^{\lambda} g(y) + C_{\lambda} \int_{\mathbb{R}^n} \frac{(f(y) - f(y+h))(g(y+h) - g(y))}{|h|^{n+\lambda}} dh.$$ We now turn to the analysis of the fractional derivative with respect to (t, x) of the nonlinear collision operator. Denote the difference with respect to (t, x) by $$f_h(t, x, v) = f(t, x, v) - f((t, x) + h, v), \quad h \in \mathbb{R}^4_{t,x}.$$ It follows that for the collision operator (where n = 1 + 3), $$(3.3.4)|D_{t,x}|^{\lambda}Q(f, g) = Q(|D_{t,x}|^{\lambda}f, g) + Q(f, |D_{t,x}|^{\lambda}g) + C_{\lambda} \int_{\mathbb{R}^4} |h|^{-4-\lambda}Q(f_h, g_h)dh.$$ This kind of decomposition will be used extensively below in order to get the partial regularity with respect to the (t, x) variable. First of all, we have the following proposition on the gain of regularity in the variable (t, x) through the uncertainty principle. Proposition 3.7. Under the hypothesis of Theorem 1.1, one has $$\Lambda_{t,x}^{s_0} f_1 \in H_l^5(\mathbb{R}^7),$$ for any $l \in \mathbb{N}$ and $0 < s_0 = \frac{s(1-s)}{(s+1)}$. **Proof:** In fact, for any $l \in \mathbb{N}$, it follows from Proposition 3.1 that $$\Lambda_v^s W_l g \in L^2(\mathbb{R}^7).$$ Then the upper bound estimation given by Corollary 2.5 with m=-s implies that $$W_lQ(f_2, g) \in L^2(\mathbb{R}^4_{t,x}; H^{-s}(\mathbb{R}^3_v)).$$ On the other hand, Proposition 3.2 and (3.2.6) gives $$W_l G \in L^2(\mathbb{R}^4_{t,x}; H^{-(2s-1+\delta)}(\mathbb{R}^3_v)).$$ By using (3.1.1), it follows that $$(3.3.6) \partial_t(W_l g) + v \cdot \partial_x(W_l g) = W_l Q(f_2, g) + W_l G \in H^{-s}(\mathbb{R}^7).$$ Finally, by using Lemma 3.5 with s' = s, we can conclude (3.3.5) and this completes the proof of the proposition. Therefore, under the hypothesis $f \in \mathcal{H}_l^5(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3)$ for all $l \in \mathbb{N}$, it follows that for any $l \in \mathbb{N}$ we have (3.3.7) $$\Lambda_v^s(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7), \quad \Lambda_{t,x}^{s_0}(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7).$$ We now improve this partial regularity in (t, x) variable. **Proposition 3.8.** Let $0 < \lambda < 1$. Suppose that $f \in \mathcal{H}_l^5(]T_1, T_2[\times \Omega \times \mathbb{R}_v^3)$ is a solution of the equation (1.1) for all $l \in \mathbb{N}$. Furthermore, assume that for any cutoff functions φ, ψ , (3.3.8) $$\Lambda_v^s(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7), \quad \Lambda_{t,x}^{\lambda}(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7).$$ Then, one has (3.3.9) $$\Lambda_v^s \Lambda_{t,x}^{\lambda}(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7),$$ for any $l \in \mathbb{N}$ and any cutoff functions φ, ψ . Proof: Set $$g_{N,l} = P_{N,l} g = \psi_1(x) S_N(D_x) W_l S_N(D_v) \partial^{\alpha}(\varphi(t)\psi(x)f),$$ where $\alpha \in \mathbb{N}^7$, $|\alpha| < 5$ and $l \in \mathbb{N}$. Then (3.3.8) yields $$\|\Lambda_v^s g_{N,l}\|_{L^2(\mathbb{R}^7)} \le C \|\Lambda_v^s \partial^{\alpha}(\varphi(t)\psi(x)f)\|_{L^2(\mathbb{R}^7)},$$ and $$\|\Lambda_{t,x}^{\lambda}g_{N,l}\|_{L^2(\mathbb{R}^7)} \leq C\|\Lambda_{t,x}^{\lambda}\partial^{\alpha}(\varphi(t)\psi(x)f)\|_{L^2(\mathbb{R}^7)},$$ where the constant C is independent of N. It follows that $g_{N,l}$ satisfies the equation $$\partial_t(g_{N,l}) + v \cdot \partial_x(g_{N,l}) = Q(f_2, g_{N,l}) + G_{N,l},$$ where $G_{N,l}$ is given by $$G_{N,l} = \psi_1(x)W_l \left[S_N(D_v), \ v \right] \cdot \nabla_x S_N(D_x)g + \left(P_{N,l} Q(f_2, \ g) - Q(f_2, \ P_{N,l} g) \right) + \left((v \cdot \nabla_x)\psi_1(x) \right) W_l S_N(D_x)S_N(D_v)g + P_{N,l} G,$$ with G defined in (3.1.2). We now choose $|D_{t,x}|^{\lambda}\psi_2^2(x)|D_{t,x}|^{\lambda}g_{N,l}$ as a test function for equation (3.3.10). It follows that (3.3.11) $$\left(v \cdot (\partial_x \psi_2) | D_{t,x} |^{\lambda} g_{N,l}, \ \psi_2(x) | D_{t,x} |^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)}$$ $$= \left(\psi_2(x) | D_{t,x} |^{\lambda} \left\{ Q(f_2, \ g_{N,l}) + G_{N,l} \right\}, \ \psi_2(x) | D_{t,x} |^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)}.$$ It is sufficient to prove that, for any $l \in \mathbb{N}$, (3.3.12) $$\Lambda_v^s \Lambda_{t,x}^{\lambda} P_{N,l} g \in L^2(\mathbb{R}^7),$$ and is uniformly bounded with respect to N. In the rest of the proof, we use C to denote a constant independent of N. We first consider the linear terms in (3.3.11). On the left hand side of (3.3.11), the hypothesis (3.3.8) implies that $$\left\| v \cdot (\partial_x \psi_2) |D_{t,x}|^{\lambda} g_{N,l} \right\|_{L^2(\mathbb{R}^7)} \le C \| |\Lambda_{t,x}|^{\lambda} \partial^{\alpha} (\varphi(t)\psi(x)f) \|_{L^2_{l+1}(\mathbb{R}^7)}.$$ For the linear terms in $G_{N,l}$, by using (3.2.3), one has $$\|\psi_{2}(x)|D_{t,x}|^{\lambda} \{\psi_{1}(x)W_{l} \left[S_{N}(D_{v}), v\right] \cdot \nabla_{x}S_{N}(D_{x})g\}\|_{L^{2}(\mathbb{R}^{7})}$$ $$< C\||\Lambda_{t,x}|^{\lambda} \partial^{\alpha}(\varphi(t)\psi(x)f)\|_{L^{2}(\mathbb{R}^{7})},$$ and $$\|\psi_2(x)|D_{t,x}|^{\lambda} \left(v \cdot (\nabla_x \psi_1)(x)\right) W_l S_N(D_x) S_N(D_v) g\|_{L^2(\mathbb{R}^7)}$$ $$\leq C \||\Lambda_{t,x}|^{\lambda} \partial^{\alpha} (\varphi(t)\psi(x)f)\|_{L^2_{t+1}(\mathbb{R}^7)}.$$ Similarly, concerning the linear terms (B) and (C) in G, we have $$\|\psi_2(x)|D_{t,x}|^{\lambda}P_{N,l}((B)+(C))\|_{L^2(\mathbb{R}^7)} \le C\||\Lambda_{t,x}|^{\lambda}\partial^{\alpha}(\varphi(t)\psi(x)f)\|_{L^2_{l+1}(\mathbb{R}^7)}.$$ For the nonlinear terms in (3.3.11), we shall use the formula (3.3.4). First of all, the coercivity estimate (2.2.1) gives, as in (3.2.3), that $$(3.3.13) \qquad -\left(Q(f_{2}, \psi_{1}(x)|D_{t,x}|^{\lambda}g_{N,l}), \psi_{1}(x)|D_{t,x}|^{\lambda}g_{N,l}\right)_{L^{2}(\mathbb{R}^{7})}$$ $$\geq C_{0}\|\Lambda_{v}^{s}W_{\gamma/2}\psi_{1}(x)|D_{t,x}|^{\lambda}g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2}$$ $$-C\|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L_{\max\{\gamma^{+}, 2-\gamma^{+}\}}^{1}(\mathbb{R}^{3}_{v}))}\|\psi_{1}(x)|D_{t,x}|^{\lambda}g_{N,l}\|_{L^{2}_{\gamma^{+}/2}(\mathbb{R}^{7})}^{2}.$$ On the other hand, the upper estimate of Theorem 2.1 with m=-s and $\alpha=-\gamma/2>0$ (the case $\gamma>0$ is easier) gives, $$\begin{split} & \left| \left(Q(|D_{t,x}|^{\lambda} f_{2}, \psi_{1}(x) g_{N,l}), \psi_{1}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \right| \\ & \leq C \||D_{t,x}|^{\lambda} f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\psi_{1}(x) \Lambda^{s}_{v} g_{N,l}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})} \|\psi_{1}(x) |D_{t,x}|^{\lambda} \Lambda^{s}_{v} W_{\gamma/2} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})} \\ & \leq \varepsilon \|\psi_{1}(x) |D_{t,x}|^{\lambda} \Lambda^{s}_{v} W_{\gamma/2} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2} + C_{\varepsilon} \||D_{t,x}|^{\lambda} f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{2}_{|\gamma|/2+\gamma^{+}+2s+4}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v} g\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s+l}(\mathbb{R}^{7})}^{2}. \end{split}$$ For the cross term coming from the decomposition (3.3.4), by using again estimate (2.1.1) with m = -s and $\alpha = |\gamma|/2$, we get $$\int_{\mathbb{R}^{4}} |h|^{-4-\lambda} \left| \left(Q((f_{2})_{h}, (g_{N,l})_{h}), \psi_{1}^{2}(x) |D_{x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} dh \right| \\ \leq |C_{\lambda}| \|\psi_{1}(x) |D_{x}|^{\lambda} \Lambda_{v}^{s} W_{\gamma/2} g_{N,,l} \|_{L^{2}(\mathbb{R}^{7})} \\ \times \int_{\mathbb{R}^{4}} |h|^{-4-\lambda} \|(f_{2})_{h}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda_{v}^{s}(g_{N,l})_{h} \|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})} dh.$$ Furthermore. $$\int_{\mathbb{R}^{4}} |h|^{-4-\lambda} \|(f_{2})_{h}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v}(g_{N,l})_{h}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})} dh$$ $$\leq \int_{|h|<1} |h|^{-4-\lambda} \|(f_{2})_{h}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v}(g_{N,l})_{h}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})} dh$$ $$+4\tilde{C}_{\lambda} \|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v}g_{N,l}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})}$$ $$\leq 2\int_{|h|<1} |h|^{-4-\lambda+1} \|\nabla_{t,x}f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma
/2+\gamma^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v}g_{N,l}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})} dh$$ $$+4\tilde{C}_{\lambda} \|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{|\gamma|/2+\beta^{+}+2s}(\mathbb{R}^{3}_{v}))} \|\Lambda^{s}_{v}g_{N,l}\|_{L^{2}_{|\gamma|/2+\gamma^{+}+2s}(\mathbb{R}^{7})}.$$ Thus $$\begin{split} & \int_{\mathbb{R}^4} |h|^{-4-\lambda} \Big| \Big(Q((f_2)_h, \, (g_{N,l})_h), \, \, \psi_1^2(x) |D_x|^{\lambda} W_{\gamma/2} g_{N,l} \Big)_{L^2(\mathbb{R}^7)} dh \Big| \\ & \leq & \varepsilon \|\psi_1(x) |D_x|^{\lambda} \Lambda_v^s g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 + C_{\varepsilon} \|\Lambda_{t,x}^1 f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x};L^2_{|\alpha|/2+\gamma^{\frac{1}{2}+2+4}}(\mathbb{R}^3_v))}^2 \|\Lambda_v^s g_{N,l}\|_{L^2_{|\alpha|/2+\gamma^{\frac{1}{2}+2s}}(\mathbb{R}^7)}^2. \end{split}$$ Hence, the formula (3.3.4) yields $$\begin{split} & \left| \left(|D_{t,x}|^{\lambda} Q(f_2, \psi_1(x) g_{N,l}) - Q(|D_{t,x}|^{\lambda} f_2, \psi_1(x) g_{N,l}), \psi_1(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)} \right| \\ & \leq \varepsilon \|\psi_1(x) |D_{t,x}|^{\lambda} \Lambda_v^s W_{\gamma/2} g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 + C_{\varepsilon} \|\Lambda_{t,x}^1 f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, L^2_{|\gamma|/2+\gamma^++2s+4}(\mathbb{R}^3_v))}^2 \|\Lambda_v^s g\|_{L^2_{|\gamma|/2+\gamma^++2s+l}(\mathbb{R}^7)}^2. \end{split}$$ In conclusion, we get from coercivity property (3.3.13) that $$(3.3.14) \qquad \|\Lambda_{v}^{s}W_{\gamma/2}\psi_{1}(x)|D_{t,x}|^{\lambda}g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2}$$ $$\leq C\|\Lambda_{t,x}^{1}f_{2}\|_{L^{\infty}(\mathbb{R}_{t,x}^{4},L_{|\gamma|/2+\gamma^{+}+2s+4}^{2}(\mathbb{R}_{v}^{3}))}$$ $$\times \left(\||D_{t,x}|^{\lambda}g\|_{L^{2}_{l_{t+|\gamma|/2+\gamma^{+}+2s}}(\mathbb{R}^{7})}^{2} + \|\Lambda_{v}^{s}g\|_{L^{2}_{l_{t+|\gamma|/2+\gamma^{+}+2s}}(\mathbb{R}^{7})}^{2}\right)$$ $$+ \left|\left(|D_{t,x}|^{\lambda}\left(P_{N,l}Q\left(f_{2},g\right) - Q\left(f_{2},P_{N,l}g\right)\right), \ \psi_{2}^{2}(x)|D_{t,x}|^{\lambda}g_{N,l}\right)_{L^{2}(\mathbb{R}^{7})}\right|$$ $$+ \left|\left(|D_{t,x}|^{\lambda}P_{N,l}\left(A\right), \ \psi_{2}^{2}(x)|D_{t,x}|^{\lambda}g_{N,l}\right)_{L^{2}(\mathbb{R}^{7})}\right|$$ $$= (I) + (III) + (IIII).$$ For the term (II), since $[|D_{t,x}|^{\lambda}, \psi_1(x)]$ is a bounded operator, we can replace $P_{N,l}$ by $\tilde{P}_{N,l} = W_l S_N(D_x) S_N(D_v)$. Again, the formula (3.3.4) yields $$\begin{split} & \left(|D_{t,x}|^{\lambda} \big(\tilde{P}_{N,l} Q \big(f_{2}, \ g \big) - Q \big(f_{2}, \ \tilde{P}_{N,l} g \big) \big), \ \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \\ & = \left(\big(\tilde{P}_{N,l} Q \big(|D_{t,x}|^{\lambda} f_{2}, \ g \big) - Q \big(|D_{t,x}|^{\lambda} f_{2}, \ \tilde{P}_{N,l} g \big) \big), \ \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \\ & + \left(\big(\tilde{P}_{N,l} Q \big(f_{2}, \ |D_{t,x}|^{\lambda} g \big) - Q \big(f_{2}, \ \tilde{P}_{N,l} |D_{x}|^{\lambda} g \big) \right), \ \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \\ & + C_{\lambda} \int_{\mathbb{R}^{4}} |h|^{-4-\lambda} \left(\big(\tilde{P}_{N,l} Q \big((f_{2})_{h}, \ g_{h} \big) - Q \big((f_{2})_{h}, \ \tilde{P}_{N,l} g_{h} \big) \big), \ \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} dh. \end{split}$$ As for (3.2.13), in the case when $1/2 \le s < 1$ (the other case when 0 < s < 1/2 is similar and easier to handle), by applying Lemmas 2.4, 3.3 and 3.4, we have $$(3.3.15) \qquad \left| \left(\left(\tilde{P}_{N,l} Q(|D_{t,x}|^{\lambda} f_{2}, g) - Q(|D_{t,x}|^{\lambda} f_{2}, \tilde{P}_{N,l} g) \right), \ \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \right| \\ \leq C \|\Lambda_{t,x}^{1+\lambda} f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}, L^{1}_{(\gamma+2s-1)^{+}}(\mathbb{R}^{3}_{v}))} \|g\|_{L^{2}(\mathbb{R}^{4}_{t,x}, H^{2s-1+\delta}_{(\gamma+2s-1)^{+}}(\mathbb{R}^{3}_{v}))} \||D_{t,x}|^{\lambda} g\|_{L^{2}_{2l}(\mathbb{R}^{7})}.$$ By using (3.2.9) of Lemma 3.3, we can get, for $2s - 1 + \delta < s$, $$\begin{split} & \left| \left(\left(\tilde{P}_{N,l} Q \big(f_2, \ |D_{t,x}|^{\lambda} g \big) - Q \big(f_2, \ \tilde{P}_{N,l} |D_{t,x}|^{\lambda} g \big) \right), \ \psi_2^2(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)} \right| \\ & \leq C \|\Lambda_{t,x} f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}, \ L^1_{(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \| \ |D_{t,x}|^{\lambda} g\|_{L^2(\mathbb{R}^4_{t,x}, \ L^2_{l+(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \\ & \qquad \qquad \times \| \ |D_{t,x}|^{\lambda} \psi_1 g_{N,l} \|_{L^2(\mathbb{R}^4_{t,x}, \ H^{2s-1+\delta}_{l+(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \\ & \leq \varepsilon \|\Lambda_v^s W_{\gamma/2} \psi_1(x) |D_{t,x}|^{\lambda} g_{N,l} \|_{L^2(\mathbb{R}^7)}^2 \\ & \qquad \qquad + C_\varepsilon \|\Lambda_{t,x}^1 f_2 \|_{L^{\infty}(\mathbb{R}^4_{t,x}, \ L^2_{l+3/2+\delta^+(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \| \ |D_{t,x}|^{\lambda} g\|_{L^2(\mathbb{R}^4_{t,x}, \ L^2_{kl}(\mathbb{R}^3_v))} \,, \end{split}$$ and $$\begin{split} & \Big| \int |h|^{-4-\lambda} \Big(\big(\tilde{P}_{N,l} Q \big(f_{2,h}, \ g_h \big) - Q \big(f_{2,h}, \ \tilde{P}_{N,l} g_h \big) \big), \ \psi_2^2(x) |D_x|^{\lambda} g_{N,l} \Big)_{L^2(\mathbb{R}^7)} dh \Big| \\ & \leq C \|\Lambda_{t,x} \Lambda_x f_2 \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^1_{l+(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \|g\|_{L^2(\mathbb{R}^4_{t,x}, \ H^{2s-1+\delta}_{l+(\gamma+2s-1)^+}(\mathbb{R}^3_v))} \| \, |D_{t,x}|^{\lambda} g \|_{L^2_{l}(\mathbb{R}^7)} \\ & \leq C \|f_2\|_{H^{2+4/2+\delta}_{l+3/2+\delta+(\gamma+2s-1)^+}(\mathbb{R}^7)} \|\Lambda_v^s g\|_{L^2_{l+(\gamma+2s-1)^+}(\mathbb{R}^7)} \| \, |D_{t,x}|^{\lambda} g \|_{L^2_{l}(\mathbb{R}^7)}. \end{split}$$ Thus, we have $$(II) \leq \varepsilon \|\Lambda_{v}^{s} W_{\gamma/2} \psi_{1}(x) |D_{t,x}|^{\lambda} g_{N,t}\|_{L^{2}(\mathbb{R}^{7})}^{2} + C_{\varepsilon} \|f_{2}\|_{H^{2}_{t+\gamma^{+}+2s+4}(\mathbb{R}^{3}))}^{2k'} \Big(\| |D_{t,x}|^{\lambda} g\|_{L^{2}_{k^{l+\gamma^{+}+2s}(\mathbb{R}^{7})}}^{2k'} + \|\Lambda_{v}^{s} g\|_{L^{2}_{t+\gamma^{+}+2s}(\mathbb{R}^{7})}^{2} \Big).$$ We now consider the last term (III) of (3.3.14). Recall that (A) stands for the nonlinear terms from G given in (3.1.2). Precisely $$(A) = \sum_{\alpha_1 + \alpha_2 = \alpha} C_{\alpha_1}^{\alpha_1} Q \Big(\partial^{\alpha_1} f_2, \ \partial^{\alpha_2} f_1 \Big).$$ By using (2.1.1) (we consider also only the case $1/2 \le s < 1$) and formula (3.3.4), we have $$\left| \left(|D_{t,x}|^{\lambda} \left(Q\left(\partial^{\alpha_{1}} f_{2}, \ \partial^{\alpha_{2}} f_{1} \right) \right), \ P_{N,l} \psi_{2}^{2}(x) |D_{t,x}|^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \right| \\ \leq C \|\Lambda_{v}^{-m} W_{\gamma/2} \psi_{1}(x) |D_{t,x}|^{\lambda} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})} \left\{ \left\| Q\left(|D_{t,x}|^{\lambda} \partial^{\alpha_{1}} f_{2}, \ \partial^{\alpha_{2}} f_{1} \right) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{m}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} \\ + \left\| Q\left(\partial^{\alpha_{1}} f_{2}, \ |D_{t,x}|^{\lambda} \partial^{\alpha_{2}} f_{1} \right) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{m}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} \\ + \left\| \int h^{-4-\lambda} Q\left(\partial^{\alpha_{1}} (f_{2})_{h}, \ \partial^{\alpha_{2}} (f_{1})_{h} \right) dh \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{m}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} \right\}.$$ We divide the discussion into two cases. Case 1. $|\alpha_1| = 1, 2$. Take m = -s. We have $$\begin{split} & \left\| Q \Big(|D_{t,x}|^{\lambda} \partial^{\alpha_{1}} f_{2}, \ \partial^{\alpha_{2}} f_{1} \Big) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} + \left\| Q \Big(\partial^{\alpha_{1}} f_{2}, \ |D_{t,x}|^{\lambda} \partial^{\alpha_{2}} f_{1} \Big) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} \\ & \leq C \| \Lambda^{\lambda}_{t,x} \partial^{\alpha_{1}} f_{2} \|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L^{1}_{l+\gamma++2s}(\mathbb{R}^{3}_{v}))} \| \Lambda^{s}_{v} \Lambda^{\lambda}_{x} \partial^{\alpha_{2}} f_{1} \|_{L^{2}_{l+\gamma++2s}(\mathbb{R}^{7})} \\ & \leq C \| f_{2} \|_{H^{\lambda+2+4/2+\delta}_{l+3/2+\delta+\gamma++2s}(\mathbb{R}^{7})} \| \Lambda^{s}_{v} f_{1} \|_{H^{4+\lambda}_{l+\gamma++2s}(\mathbb{R}^{7})}, \end{split}$$ and $$\begin{split} & \left\| \int_{\mathbb{R}^4} h^{-4-\lambda} Q \Big(\partial^{\alpha_1}(f_2)_h, \ \partial^{\alpha_2}(f_1)_h \Big) dh \right\|_{L^2(\mathbb{R}^4_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^3_v))} \\ & \leq C \int |h|^{-4-\lambda} \| \, \partial^{\alpha_1}(f_2)_h \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^1_{l+\gamma^++2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v \partial^{\alpha_2}(f_1)_h \|_{L^2_{l+\gamma^++2s}(\mathbb{R}^7)} dh \\ & \leq C \| \, \partial^{\alpha_1} f_2 \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^1_{l+\gamma^++2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v \partial^{\alpha_2} \nabla_{t,x} f_1) \|_{L^2_{l+\gamma^++2s}(\mathbb{R}^7)} \\ & \leq C \| f_2 \|_{H^{2+4/2+\delta}_{l+3/2+\delta+\gamma^++2s}(\mathbb{R}^7)} \| \Lambda^s_v f_1 \|_{H^5_{l+\gamma^++2s}(\mathbb{R}^7)}. \end{split}$$ Case 2. $|\alpha_1| \geq 3$. By the same argument as above, one has $$\begin{split} & \left\| Q \Big(|D_{t,x}|^{\lambda} \partial^{\alpha_{1}} f_{2}, \ \partial^{\alpha_{2}} f_{1} \Big) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} + \left\| Q \Big(\partial^{\alpha_{1}} f_{2}, \ |D_{t,x}|^{\lambda} \partial^{\alpha_{2}} f_{1} \Big) \right\|_{L^{2}(\mathbb{R}^{4}_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^{3}_{v}))} \\ & \leq C \| \Lambda^{\lambda}_{t,x} \partial^{\alpha_{1}} f_{2} \|_{L^{2}(\mathbb{R}^{4}_{t,x}; L^{1}_{l+\gamma++2s}(\mathbb{R}^{3}_{v}))} \| \Lambda^{s}_{v} \Lambda^{\lambda}_{t,x} \partial^{\alpha_{2}} f_{1} \|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L^{2}_{l+\gamma++2s}(\mathbb{R}^{3}_{v}))} \\ & \leq C \|
\Lambda^{\lambda}_{t,x} f_{2} \|_{H^{5}_{l+3/2+\delta+\gamma^{+}+2s}(\mathbb{R}^{7})} \| \Lambda^{s}_{v} f_{1} \|_{H^{2+4/2+\lambda+\delta}_{l+\gamma^{+}+2s}(\mathbb{R}^{7})}. \end{split}$$ When $|\alpha_1| = 3, 4$, we have $$\begin{split} & \left\| \int_{\mathbb{R}^4} h^{-4-\lambda} Q\Big(\partial^{\alpha_1}(f_2)_h, \ \partial^{\alpha_2}(f_1)_h \Big) dh \right\|_{L^2(\mathbb{R}^4_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^3_v))} \\ & \leq C \int |h|^{-4-\lambda} \| \, \partial^{\alpha_1}(f_2)_h \|_{L^2(\mathbb{R}^4_{t,x}; L^1_{l+\gamma+2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v \partial^{\alpha_2}(f_1)_h \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^2_{l+\gamma+2s}(\mathbb{R}^3_v))} dh \\ & \leq C \| \, \nabla_{t,x} \partial^{\alpha_1} f_2 \|_{L^2(\mathbb{R}^4_{t,x}; L^1_{l+\gamma+2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v \partial^{\alpha_2} f_1) \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^2_{l+\gamma+2s}(\mathbb{R}^3_v))} \\ & \leq C \| f_2 \|_{H^5_{l+3/2+\delta+\gamma+2s}(\mathbb{R}^7)} \| f_1 \|_{H^{2+4/2+s+\delta}_{l+\gamma+2s}(\mathbb{R}^7)}, \end{split}$$ while when $|\alpha_1| = |\alpha| = 5$, we have $$\begin{split} & \left\| \int_{\mathbb{R}^4} h^{-4-\lambda} Q\Big(\partial^{\alpha}(f_2)_h, \ (f_1)_h \Big) dh \right\|_{L^2(\mathbb{R}^4_{t,x}; H^{-s}_{l+|\gamma|/2}(\mathbb{R}^3_v))} \\ & \leq C \int |h|^{-4-\lambda} \| \, \partial^{\alpha}(f_2)_h \|_{L^2(\mathbb{R}^4_{t,x}; L^1_{l+\gamma++2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v(f_1)_h \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^2_{l+\gamma++2s}(\mathbb{R}^3_v))} dh \\ & \leq C \| \, \partial^{\alpha} f_2 \|_{L^2(\mathbb{R}^4_{t,x}; L^1_{l+\gamma++2s}(\mathbb{R}^3_v))} \| \, \Lambda^s_v \nabla_{t,x} f_1 \Big) \|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^2_{l+\gamma++2s}(\mathbb{R}^3_v))} \\ & \leq C \| f_2 \|_{H^5_{l+3/2+\delta+\gamma^++2s}(\mathbb{R}^7)} \| f_1 \|_{H^{1+4/2+s+\delta}_{l+\gamma+2s}(\mathbb{R}^7)}, \end{split}$$ Thus, by the Cauchy-Schwarz inequality, we obtain $$(\text{III}) \leq \varepsilon \|\Lambda_v^s W_{\gamma/2} \psi_1(x) |D_{t,x}|^{\lambda} g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 + C_{\varepsilon} \Big(\|\Lambda_{t,x}^{\lambda} f_3\|_{H^5_{2l+\gamma}+\tau}^4(\mathbb{R}^7) + \|\Lambda^s f_3\|_{H^5_{2l+\gamma}+\tau}^4(\mathbb{R}^7) \Big).$$ Finally, we get from (3.3.14) that $$\|\Lambda_v^s W_{\gamma/2} \psi_1(x) |D_{t,x}|^{\lambda} g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 \le C \Big(\|\Lambda_{t,x}^{\lambda} f_3\|_{H_{kl+\gamma^++7}^5(\mathbb{R}^7)}^{k'4} + \|\Lambda_v^s f_3\|_{H_{2l+\gamma^++7}^5(\mathbb{R}^7)}^4 \Big).$$ Therefore, we complete the proof for Proposition 3.8. We are now ready to prove the following regularity result on the solution with respect to the (t, x) variable. Proposition 3.9. Under the hypothesis of Theorem 1.1, one has (3.3.16) $$\Lambda_{t,x}^{1+\varepsilon}\left(\varphi(t)\psi(x)f\right) \in H_l^5(\mathbb{R}^7),$$ for any $l \in \mathbb{N}$ and some $\varepsilon > 0$. **Proof:** Fix $s_0 = \frac{s(1-s)}{(s+1)}$. Then (3.3.7) and Proposition 3.8 with $\lambda = s_0$ imply $$\Lambda_v^s \Lambda_{t,x}^{s_0} g \in H_l^5(\mathbb{R}^7).$$ It follows that, $$(\Lambda_{t,x}^{s_0}g)_t + v \cdot \partial_x(\Lambda_{t,x}^{s_0}g) = \Lambda_{t,x}^{s_0}Q(f_2, g) + \Lambda_{t,x}^{s_0}G \in H_l^{-s}(\mathbb{R}^7).$$ By applying Lemma 3.5 with s' = s, we can deduce that $$\Lambda_{t,x}^{s_0+s_0}(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7),$$ for any $l \in \mathbb{N}$. If $2s_0 < 1$, by using Proposition 3.8 with $\lambda = 2s_0$ and Lemma 3.5 with s' = s, we have $$\Lambda_v^s(\varphi(t)\psi(x)f),\ \Lambda_{t,x}^{2s_0}(\varphi(t)\psi(x)f)\in H^5_l(\mathbb{R}^7)\ \Rightarrow\ \Lambda_{t,x}^{3s_0}(\varphi(t)\psi(x)f)\in H^5_l(\mathbb{R}^7).$$ Choose $k_0 \in \mathbb{N}$ such that $$k_0 s_0 < 1$$, $(k_0 + 1) s_0 = 1 + \varepsilon > 1$. Finally, (3.3.16) follows from (3.3.5) and Proposition 3.8 with $\lambda = k_0 s_0$ by induction. And this completes the proof of the proposition. 3.4. **Proof of Theorem 1.1.** In this subsection, we give the proof of Theorem 1.1 with the above preparations. The proof is also based on an induction argument. From Propositions 3.1 and 3.9, it follows that for any $l \in \mathbb{N}$, (3.4.1) $$\Lambda_v^s(\varphi(t)\psi(x)f), \quad \nabla_{t,x}(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7).$$ These facts will be used to get the high order regularity with respect to the variable v. **Proposition 3.10.** Let $0 < \lambda < 1$. Suppose that, for any cutoff functions $\varphi \in C_0^{\infty}(]T_1, T_2[], \psi \in C_0^{\infty}(\Omega)$ and all $l \in \mathbb{N}$, (3.4.2) $$\Lambda_v^{\lambda}(\varphi(t)\psi(x)f), \quad \nabla_x(\varphi(t)\psi(x)f) \in H_l^5(\mathbb{R}^7).$$ Then, for any cutoff function and any $l \in \mathbb{N}$, (3.4.3) $$\Lambda_v^{\lambda+s} \left(\varphi(t)\psi(x)f \right) \in H_l^5(\mathbb{R}^7).$$ **Proof:** Recall that $g = \partial^{\alpha}(\varphi(t)\psi(x)f)$ with $|\alpha| \leq 5$ and $$g_{N,l} = P_{N,l} g = \psi_1(x) S_N(D_x) W_l S_N(D_v) g.$$ Choose $\Lambda_v^{2\lambda}g_{N,l}$ as a test function for equation (3.3.10). Then, one has $$(3.4.4) \qquad \left(\left[\Lambda_v^{\lambda}, \ v \right] \cdot \partial_x g_{N,l}, \ \Lambda_v^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)} = \left(\Lambda_v^{\lambda} \left\{ Q(f_2, \ g_{N,l}) + G_{N,l} \right\}, \ \Lambda_v^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)}.$$ Since $$\left[\Lambda_v^{\lambda}, \ v\right] \cdot \partial_x = \lambda \Lambda_v^{\lambda - 2} \, \partial_v \cdot \partial_x,$$ and $\Lambda_v^{\lambda-2} \partial_v$ are bounded operators in L^2 , for any $0 < \lambda < 1$, we have, by using the hypothesis (3.4.2) that $$\left| \left(\left[\Lambda_v^{\lambda}, \ v \right] \cdot \partial_x g_{N,l}, \ \Lambda_v^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)} \right| \le C \|\Lambda_v^{\lambda} g\|_{L^2_l(\mathbb{R}^7)} \|\nabla_x g\|_{L^2_l(\mathbb{R}^7)},$$ and when $1/2 \le s < 1$. $$(3.4.6) \qquad \left| \left(\Lambda_v^{\lambda} G_{N,l}, \ \Lambda_v^{\lambda} g_{N,l} \right)_{L^2(\mathbb{R}^7)} \right| \leq C \|f_2\|_{H_7^5(\mathbb{R}^7)} \|\Lambda_v^{\lambda} g\|_{L^2_{l+\gamma} + 2s}(\mathbb{R}^7)} \|\Lambda_v^{\lambda + 2s - 1 + \delta} g_{N,l}\|_{L^2(\mathbb{R}^7)}$$ $$\leq \varepsilon \|\Lambda_v^s W_{\gamma/2} \Lambda_v^{\lambda} g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 + C_{\varepsilon} \|f_2\|_{H_7^5(\mathbb{R}^7)}^2 \|\Lambda_v^{\lambda} g\|_{L^2_{L^2(\mathbb{R}^7)}}^{2k}.$$ By setting $M = \Lambda_v^{\lambda}$ in Proposition 2.9, we have $$(3.4.7) \qquad \left| \left(\Lambda_{v}^{\lambda} Q(\tilde{f}, g_{N,l}) - Q(\tilde{f}, \Lambda_{v}^{\lambda} g_{N,l}), \Lambda_{v}^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \right|$$ $$\leq C \|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L^{1}_{\gamma_{+}}(\mathbb{R}^{3}_{v}))} \left(\|\Lambda_{v}^{\lambda} g_{N,l}\|_{L^{2}(\mathbb{R}^{4}_{t,x}; L^{2}_{\gamma_{+}}(\mathbb{R}^{3}_{v}))} + \|g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2} \right) \|\Lambda_{v}^{\lambda} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2}$$ $$\leq C \|f_{3}\|_{H^{5}_{7}(\mathbb{R}^{7})} \|\Lambda_{v}^{\lambda} g\|_{L^{2}_{l+1}(\mathbb{R}^{7})}^{2},$$ when 0 < s < 1/2. Moreover when $1/2 \le s < 1$, we have $$(3.4.8) \qquad \left| \left(\Lambda_{v}^{\lambda} Q(f_{2}, g_{N,l}) - Q(f_{2}, \Lambda_{v}^{\lambda} g_{N,l}), \Lambda_{v}^{\lambda} g_{N,l} \right)_{L^{2}(\mathbb{R}^{7})} \right|$$ $$\leq C \|f_{2}\|_{L^{\infty}(\mathbb{R}^{4}_{t,x}; L^{1}_{(2s+\gamma-1)_{+}}(\mathbb{R}^{3}_{v}))}$$ $$\times \left(\|\Lambda_{v}^{\lambda} g_{N,l}\|_{L^{2}(\mathbb{R}^{4}_{t,x}; L^{2}_{(2s+\gamma-1)_{+}}(\mathbb{R}^{3}_{v}))} + \|g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2} \right) \|\Lambda_{v}^{\lambda+2s-1+\delta} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2}$$ $$\leq \varepsilon \|\Lambda_{v}^{s} W_{\gamma/2} \Lambda_{v}^{\lambda} g_{N,l}\|_{L^{2}(\mathbb{R}^{7})}^{2} + C_{\varepsilon} \|f_{3}\|_{H^{5}_{7}(\mathbb{R}^{7})}^{2} \|\Lambda_{v}^{\lambda} g\|_{L^{2}_{L^{1}(l)}(\mathbb{R}^{7})}^{2k}.$$ Now the coercivity estimate (2.2.1) gives, $$(3.4.9) \qquad -\left(Q(f_2, \, \Lambda_v^{\lambda} g_{N,l}), \, \Lambda_v^{\lambda} g_{N,l}\right)_{L^2(\mathbb{R}^7)} \ge C_0 \|\Lambda_v^s W_{\gamma/2} \Lambda_v^{\lambda} g_{N,l}\|_{L^2(\mathbb{R}^7)}^2 -C \|f_2\|_{L^{\infty}(\mathbb{R}^4_{t,x}; L^1_{\max\{\gamma^{\pm}, 2-\gamma^{\pm}\}}(\mathbb{R}^3_v))} \|\Lambda_v^{\lambda} g_{N,l}\|_{L^2_{\alpha^{\pm}, 2}(\mathbb{R}^7)}^2.$$ Thus, Proposition 3.10 is proved by the following estimate where C is independent on N. We can now conclude the following regularity result with respect to the variable v. Proposition 3.11. Under the hypothesis of Theorem 1.1, one has (3.4.11) $$\Lambda_{v}^{1+\varepsilon}(\varphi(t)\psi(x)f) \in H_{l}^{5}(\mathbb{R}^{7}),$$ for any $l \in \mathbb{N}$ and some $\varepsilon > 0$. Again, this result follows by induction. Indeed, notice that there exists $k_0 \in \mathbb{N}$ such that $$k_0 s < 1$$, $(k_0 + 1)s = 1 + \varepsilon > 1$. Then we get (3.4.11) from (3.2.2), Proposition 3.10 with $\lambda = k_0 s$ and (3.4.10), by induction. ## High order regularity by iterations From Proposition 3.9 (more precisely (3.3.16)) and Proposition 3.11, we can now deduce that, for any $l \in \mathbb{N}$, and any cutoff functions $\varphi(t)$ and $\psi(x)$, $$\varphi(t)\psi(x)f \in H_l^6(\mathbb{R}^7).$$ The proof of Theorem 1.1 is then completed by induction. Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem 1.1, then, when $m \geq 5$, we have $$f \in \mathcal{H}_l^m([T_1, T_2] \times \Omega \times \mathbb{R}_n^3), \ \forall l \in \mathbb{N} \implies f \in \mathcal{H}_l^{m+1}([T_1, T_2] \times \Omega \times \mathbb{R}_n^3), \ \forall l \in \mathbb{N}.$$ Thus, the full regularity of Theorem 1.1 is obtained by induction from m = 5. # 4. Existence and uniqueness of local solutions The local existence of solutions to the spatially inhomogeneous Boltzmann equation without angular cutoff is so far not well studied. The strategy of proving the existence in this section is to approximate the non-cutoff cross-section by
a family of cutoff cross-sections and approximate the Boltzmann equation by a sequence of iterative linear equations. Then by proving the existence of solutions to these approximate linear equations and by obtaining a uniform estimate on these solutions with respect to the cutoff parameter in some suitable weighted Sobolev space, the compactness will lead to the convergence of the approximate solutions to the desired solution for the original problem. One of the techniques used here is to introduce a transformation defined by the time dependent Maxwellian developed previously in [54]. The purpose of this transformation is to get an extra gain of one order higher weight in the velocity variable at the expense of the loss of the decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also proved in some function space. ### 4.1. Modified Cauchy Problem. By taking $\kappa, \rho > 0$, we set, for $0 \le t \le T_0 = \rho/(2\kappa)$, $$\mu_{\kappa}(t) = \mu(t, v) = e^{-(\rho - \kappa t)(1 + |v|^2)}$$ and $$f = \mu_{\kappa}(t)g, \quad \Gamma^{t}(g,g) = \mu_{\kappa}(t)^{-1}Q(\mu_{\kappa}(t)g, \,\mu_{\kappa}(t)g).$$ Then the Cauchy problem (1.6) is reduced to (4.1.1) $$\begin{cases} g_t + v \cdot \nabla_x g + \kappa (1 + |v|^2) g = \Gamma^t(g, g), \\ g|_{t=0} = g_0. \end{cases}$$ Our existence theorem can be stated as follows **Theorem 4.1.** Assume that 0 < s < 1/2, $\gamma + 2s < 1$ and $\kappa, \rho > 0$. Let $g_0 \in H_l^k(\mathbb{R}^6)$, $g_0 \ge 0$ for some $l \ge 3$ and $k \ge 4$. Then there exists $T_* \in]0, T_0]$ such that the Cauchy problem (4.1.1) admits a unique non-negative solution $$g \in C^0([0, T_*]; H_l^k(\mathbb{R}^6)) \cap L^2([0, T_*]; H_{l+1}^k(\mathbb{R}^6))$$ We shall prove Theorem 4.1 by cutoff approximations. For simplicity of notations, we will denote $\mu_{\kappa}(t)$ by $\mu(t)$ without any confusion. Recall that the cross-section is of the form of $B(|v-v_*|,\cos\theta) = \Phi(|v-v_*|)b(\cos\theta)$ which satisfies (1.2) and (1.3). For $0 < \varepsilon < 1$, we approximate (cutoff) the cross-section by $$b_{\varepsilon}(\cos \theta) = \begin{cases} b(\cos \theta), & \text{if } |\theta| \ge 2\varepsilon, \\ b(\cos \varepsilon), & \text{if } |\theta| \le 2\varepsilon. \end{cases}$$ Denote by $\Gamma_{\varepsilon}^{t}(g, g)$ the collision operator corresponding to the above cutoff cross-section $B_{\varepsilon} = \Phi(v - v_*)b_{\varepsilon}(\cos \theta)$. By using the collisional energy conservation, $$|v_*'|^2 + |v'|^2 = |v_*|^2 + |v|^2$$ we have $\mu_*(t) = \mu^{-1}(t) \, \mu_*'(t) \, \mu'(t)$. Then for some suitable functions U, V, it holds that $$\Gamma_{\varepsilon}^{t}(U,V)(v) = \mu^{-1}(t,v) \iint_{\mathbb{R}_{v_{*}}^{3} \times \mathbb{S}_{\sigma}^{2}} B_{\varepsilon}(v-v_{*},\sigma) \left(\mu_{*}'(t)U_{*}'\mu'(t)V'-\mu_{*}(t)U_{*}\mu(t)V\right) dv_{*} d\sigma (4.1.2) = \iint_{\mathbb{R}_{v_{*}}^{3} \times \mathbb{S}_{\sigma}^{2}} B_{\varepsilon}(v-v_{*},\sigma)\mu_{*}(t) \left(U_{*}'V'-U_{*}V\right) dv_{*} d\sigma = \mathcal{T}_{\varepsilon}(U,V,\mu(t)) = Q_{\varepsilon}(\mu(t)U,V) + \iint_{\mathbb{R}^{3} \times \mathbb{S}_{\sigma}^{2}} B_{\varepsilon}(v-v_{*},\sigma)(\mu_{*}(t)-\mu_{*}'(t))U_{*}'V' dv_{*} d\sigma.$$ Then we have the following formula coming from the Leibniz formula in the x variable and the translation invariance property in the v variable. For any $\alpha, \beta \in \mathbb{N}^3$, $$\partial_{x}^{\alpha}\partial_{v}^{\beta}\Gamma_{\varepsilon}^{t}(U, V) = \sum_{\alpha_{1}+\alpha_{2}=\alpha; \beta_{1}+\beta_{2}+\beta_{3}=\beta} C_{\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\beta_{3}} \mathcal{T}_{\varepsilon}(\partial_{x}^{\alpha_{1}}\partial_{v}^{\beta_{1}}U, \partial_{x}^{\alpha_{2}}\partial_{v}^{\beta_{2}}V, \partial_{v}^{\beta_{3}}\mu(t))$$ $$= Q_{\varepsilon}(\mu(t)U, \partial_{x}^{\alpha}\partial_{v}^{\beta}V) + \iint_{\mathbb{R}^{3}_{v_{*}}\times\mathbb{S}^{2}_{\sigma}} B_{\varepsilon}(v - v_{*}, \sigma)(\mu_{*}(t) - \mu'_{*}(t))U'_{*}(\partial_{x}^{\alpha}\partial_{v}^{\beta}V)'dv_{*}d\sigma$$ $$+ \sum_{|\alpha_{2}|+|\beta_{2}|\leq |\alpha+\beta|-1} C_{\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\beta_{3}} \mathcal{T}_{\varepsilon}(\partial_{x}^{\alpha_{1}}\partial_{v}^{\beta_{1}}U, \partial_{x}^{\alpha_{2}}\partial_{v}^{\beta_{2}}V, \partial_{v}^{\beta_{3}}\mu(t))$$ $(4.1.3) = A_1 + A_2 + A_3.$ Firstly, we give the following upper weighted estimate on the nonlinear collision operator with cutoff. **Lemma 4.2.** Let $\gamma \in \mathbb{R}$. Then for any $\varepsilon > 0$, $k \geq 4$, $l \geq 0$, there exists C > 0 depending on ε , k, l such that for any U, V belonging to $H_l^k(\mathbb{R}^6)$ **Proof.** To prove (4.1.4), put $$\begin{split} g_1 &= \partial_x^{\alpha_1} \partial_v^{\beta_1} U, \qquad h_2 &= \partial_x^{\alpha_2} \partial_v^{\beta_2} V, \qquad \mu_3(t) = \partial_v^{\beta_3} \mu(t), \\ \mathcal{T}_\varepsilon(g_1, h_2, \mu_3(t)) &= \mathcal{T}_\varepsilon^+ - \mathcal{T}_\varepsilon^-. \end{split}$$ Throughout this section, the estimates $$\mu(t,v), \quad |\mu_3(t)| = |\partial_v^{\beta_3} \mu(t,v)| \leq C_{\rho,\,k} \ e^{-\rho \langle v \rangle^2/4}, \qquad t \in [0,T_0], \quad v \in \mathbb{R}^3,$$ will often be used. Firstly, we compute $\mathcal{T}_{\varepsilon}^+$ as follows. $$\begin{aligned} |W_{l}\mathcal{T}_{\varepsilon}^{+}| &\leq C \iint \langle |v-v_{*}| \rangle^{\gamma} |\mu_{3}(t,v_{*})| \frac{W_{l}}{(W_{l})'_{*}(W_{l})'} |(W_{l}g_{1})'_{*}| |(W_{l}h_{2})'| dv_{*} d\sigma \\ &\leq C \Big[\iint \Big| \mu_{3}(t,v_{*}) \frac{W_{l}}{(W_{l})'_{*}(W_{l})'} \Big|^{2} dv_{*} d\sigma \Big]^{1/2} \Big[\iint \langle v'-v'_{*} \rangle^{2\gamma} |(W_{l}g_{1})'_{*}(W_{l}h_{2})'|^{2} dv_{*} d\sigma \Big]^{1/2} \\ &\leq C_{\varepsilon} \Big[\iint |(W_{l+\gamma}+g_{1})'_{*}(W_{l+\gamma}+h_{2})'|^{2} dv_{*} d\sigma \Big]^{1/2}, \end{aligned}$$ where we have used $|v-v_*|=|v'-v'_*|$ and $\frac{W_l}{(W_l)'_*(W_l)'}\leq 1$. Since the change of variables $$(4.1.5) (v, v_*, \sigma) \to (v', v_*', \sigma'), \sigma' = (v - v_*)/|v - v_*|,$$ has a unit Jacobian, we get $$||W_{l}\mathcal{T}_{\varepsilon}^{+}||_{L^{2}(\mathbb{R}^{6})}^{2} \leq C \iiint |(W_{l+\gamma+}g_{1})'_{*}(W_{l+\gamma+}h_{2})'|^{2}dv_{*}d\sigma dv dx$$ $$= C \iiint |(W_{l+\gamma+}g_{1})'_{*}(W_{l+\gamma+}h_{2})'|^{2}dv'_{*}d\sigma' dv' dx$$ $$\leq C \int ||(W_{l+\gamma+}g_{1})||_{L^{2}(\mathbb{R}^{3}_{v})}^{2}||(W_{l+\gamma+}h_{2})||_{L^{2}(\mathbb{R}^{3}_{v})}^{2}dx.$$ If $|\alpha_1 + \beta_1| \le k/2$, then we have $$||W_{l}\mathcal{T}_{\varepsilon}^{+}||_{L^{2}(\mathbb{R}^{6})} \leq C||(W_{l+\gamma}+g_{1})||_{L^{\infty}(\mathbb{R}_{x}^{3};L^{2}(\mathbb{R}_{v}^{3}))}||(W_{l+\gamma}+h_{2})||_{L^{2}(\mathbb{R}_{x,v}^{6})}$$ $$\leq C||U||_{H_{l+\gamma}^{k}+(\mathbb{R}^{6})}||V||_{H_{l+\gamma}^{k}+(\mathbb{R}^{6})},$$ because of the Sobolev embedding theorem and the fact k/2 + 3/2 < k when $k \ge 4$. When $|\alpha_2 + \beta_2| \le k/2$, the proof is similar. This completes the proof of the lemma. 4.2. **Cutoff approximations.** We now study the following Cauchy problem for the cutoff Boltzmann equation (4.2.1) $$\begin{cases} g_t + v \cdot \nabla_x g + \kappa \langle v \rangle^2 g = \Gamma_{\varepsilon}^t(g, g), \\ g|_{t=0} = g_0, \end{cases}$$ for which we shall obtain uniform estimates in weighted Sobolev spaces. We first prove the existence of weak solutions to this cutoff Boltzmann equation. **Theorem 4.3.** Assume that $\gamma \leq 1$. Let $k \geq 4$, $l \geq 0$, $\varepsilon > 0$ and $D_0 > 0$. Then, there exists $T_{\varepsilon} \in]0, T_0]$ such that for any non-negative initial data g_0 satisfying $$g_0 \in H_l^k(\mathbb{R}^6), \qquad ||g_0||_{H_l^k(\mathbb{R}^6)} \le D_0,$$ the Cauchy problem (4.2.1) admits a unique non-negative solution g^{ε} having the property $$g^{\varepsilon} \in C^0(]0, T_{\varepsilon}[; H_l^k(\mathbb{R}^6)), \qquad \|g^{\varepsilon}\|_{L^{\infty}(]0, T_{\varepsilon}[; H_l^k(\mathbb{R}^6))} \le 2D_0.$$ Moreover, this solution enjoys a moment gain in the sense that $$(4.2.2) g^{\varepsilon} \in L^{2}(]0, T_{\varepsilon}[; H_{l+1}^{k}(\mathbb{R}^{6})).$$ **Remark 4.4.** (1) Notice that we do not assume $g_0 \in H^k_{l+1}(\mathbb{R}^6)$ and the gain of the moment will be essentially used below in the proof of uniform estimates to compensate the singularity in the cross-section. - (2) The regularity of g^{ε} with respect to t variable follows directly from the equation (4.2.1). - (3) Fix γ , k, l as in the theorem. Then T_{ε} is a function of ε and D_0 . In the following, when we need to emphasize this dependency, we shall write $$T = T_{\varepsilon}(D_0).$$ (4) If $\gamma \leq 0$, we may take $\kappa = 0$. In this case, we do not have the moment gain (4.2.2), which is anyway not needed. **Proof of Theorem 4.3.** We prove the existence of non-negative solutions by successive approximation that preserves the non-negativity, which is defined by using the usual splitting of the collision operator (4.1.2) into the the gain (+) and loss (-) terms, $$\Gamma_{\varepsilon}^{t,+}(g,h) = \iint_{\mathbb{R}^3_{v_*} \times \mathbb{S}^2_{\sigma}} B_{\varepsilon}(v - v_*, \sigma) \mu_*(t) g'_* h' dv_* d\sigma,$$ $$\Gamma_{\varepsilon}^{t,-}(g,h) = h L_{\varepsilon}(g),$$ $$L_{\varepsilon}(g) = \iint_{\mathbb{R}^3_{v_*} \times \mathbb{S}^2_{\sigma}} B_{\varepsilon}(v - v_*, \sigma) \mu(t, v_*) g_* dv_* d\sigma.$$ Evidently, Lemma 4.2 applies to $\Gamma_{\varepsilon}^{t,\pm}$, and in view of (1.2), the linear operator L_{ε} satisfies $$(4.2.3) |\partial_x^{\alpha} \partial_v^{\beta} L_{\varepsilon}(g)(t, x, v)| \le C \langle v \rangle^{\gamma - |\beta|} ||\partial_x^{\alpha} g||_{L^2(\mathbb{R}^3_v)}, \quad t \in [0, T_0],$$ for a constant C > 0 depending on ε , because $|\mu(t, v_*)\partial_v^{\beta}\langle v - v_*\rangle^{\gamma}| \leq C\langle v\rangle^{\gamma - |\beta|}$. We now define a sequence of approximate solutions
$\{g^n\}_{n\in\mathbb{N}}$ by $$\begin{cases} g^{0} = g_{0}; \\ \partial_{t}g^{n+1} + v \cdot \nabla_{x}g^{n+1} + \kappa \langle |v| \rangle^{2}g^{n+1} = \Gamma_{\varepsilon}^{t,+}(g^{n}, g^{n}) - \Gamma_{\varepsilon}^{t,-}(g^{n}, g^{n+1}), \\ g^{n+1}|_{t=0} = g_{0}. \end{cases}$$ Actually, in view of (4.2.3) we consider the mild form (4.2.5) $$g^{n+1}(t, x, v) = e^{-\kappa \langle |v| \rangle^2 t - V^n(t, 0)} g_0(x - tv, v) + \int_0^t e^{-\kappa \langle |v| \rangle^2 (t-s) - V^n(t, s)} \Gamma_{\varepsilon}^{s, +}(g^n, g^n)(s, x - (t-s)v, v) ds,$$ where $$V^{n}(t, s) = \int_{0}^{t} L_{\varepsilon}(g^{n})(s, x - (t - s)v, v)ds.$$ First, we note from Lemma 4.2 that for any $T \in]0, T_0], T_0 = \rho/(2\kappa), g_0 \geq 0$, and $$g^n \in L^{\infty}(]0, T[; H_L^k(\mathbb{R}^6)), \qquad g^n \ge 0,$$ the mild form (4.2.5) determines q^{n+1} in the function class (4.2.6) $$g^{n+1} \in L^{\infty}(]0, T[; H_{l-\gamma^{+}}^{k}(\mathbb{R}^{6})), \quad g^{n+1} \ge 0,$$ and solves (4.2.4). Thus g^{n+1} exists and is non-negative, but appears to have a loss of weight in the velocity variable. We shall now show that the term $\kappa \langle v \rangle^2 g^{n+1}$ in (4.2.4) not only recovers this weight loss but also creates a higher moment. More precisely, we have the following lemma. Introduce the space and norm by $$\begin{split} X &= L^{\infty}(]0,T[;\;H^k_l(\mathbb{R}^6)) \cap L^2(]0,T[;\;H^k_{l+1}(\mathbb{R}^6)),\\ |||g|||^2 &= \|g\|^2_{L^{\infty}(]0,T[;\;H^k_l(\mathbb{R}^6))} + \kappa \|g\|^2_{L^2(]0,T[;\;H^k_{l+1}(\mathbb{R}^6))} \,. \end{split}$$ This norm depends on k, l, T, κ , but we omit this dependence in the notation for simplicity. **Lemma 4.5.** Assume that $\gamma \leq 1$ and let $k \geq 4, l \geq 0, \varepsilon > 0$. Then, there exist positive numbers C_1, C_2 such that if $\rho > 0$, $\kappa > 0$ and if $$(4.2.7) g_0 \in H_l^k(\mathbb{R}^6), \quad g^n \in L^{\infty}([0, T[; H_l^k(\mathbb{R}^6)),$$ with some $T \leq T_0$, the function g^{n+1} given by (4.2.5) enjoys the properties $$(4.2.8) g^{n+1} \in X, |||g^{n+1}|||^2 \le e^{C_1 K_n T} \left(||g_0||^2_{H^k_l(\mathbb{R}^6)} + \frac{C_2}{\kappa} ||g^n||^4_{L^4(]0,T[;H^k_l(\mathbb{R}^6))} \right),$$ where K_n is a positive constant depending on $||g^n||_{L^{\infty}(]0,T[;H^k_r(\mathbb{R}^6))}$ and κ . ### **Proof.** Put $$h^n = h^n_\alpha = \partial^\alpha g^n$$. Differentiation of equation (4.2.4) yields $$\begin{split} \partial_t h^{n+1} + v \cdot \nabla_x h^{n+1} + \kappa \langle v \rangle^2 h^{n+1} &= G_1^+ - G_1^- + G_2 + G_3, \\ G_1^+ &= \partial^\alpha \Gamma_\varepsilon^{t,+} (g^n, \ g^n), \qquad G_1^- &= \partial^\alpha \Gamma_\varepsilon^{t,-} (g^n, \ g^{n+1}), \\ G_2 &= -[\partial^\alpha, \ v \cdot \nabla_x] g^{n+1}, \\ G_3 &= -\kappa \sum_{|\tilde{\beta}| = 1,2} C_{\tilde{\beta}} \partial_v^{\tilde{\beta}} \langle v \rangle^2 \partial^{\alpha - (0,\tilde{\beta})} g^{n+1}. \end{split}$$ Let $\chi_j \in C_0^{\infty}(\mathbb{R}^3), \ j \in \mathbb{N}$, be the cutoff function $$\chi_j(v) = \begin{cases} 1, & |v| \le j, \\ 0, & |v| \ge j+1. \end{cases}$$ We remark that (4.2.6) does not necessarily imply $W_{l+1}h^{n+1}(t) \in L^2(\mathbb{R}^6)$, but $\chi_j W_{l+1}h^{n+1}(t) \in L^2(\mathbb{R}^6)$ for all $j \in \mathbb{N}$. Hence, we can use $\chi_j^2 W_l^2 S_N^2(D_x)h^{n+1}$ as a test function to get (4.2.9) $$\frac{1}{2} \frac{d}{dt} \|S_N(D_x)\chi_j W_l h^{n+1}\|^2 + \kappa \|S_N(D_x)\chi_j W_{l+1} h^{n+1}\|^2$$ $$= (G_1^+ - G_1^- + G_2 + G_3, S_N(D_x)^2 \chi_j^2 W_l^2 h^{n+1}).$$ Here and in what follows, the norm $\| \|$ and inner product (,) are those of $L^2(\mathbb{R}^6_{x,v})$ unless otherwise stated. We shall evaluate the inner products on the right hand side. Observe that Lemma 4.2 gives, for $t \in [0,T]$, $$\begin{split} \left| (G_1^+, S_N^2 \chi_j^2 W_l^2 h^{n+1}) \right| &= \left| (S_N \chi_j W_{l-1} G_1^+, S_N \chi_j W_{l+1} h^{n+1}) \right| \leq C \|W_{l-1} G_1^+ \| \|S_N \chi_j W_{l+1} h^{n+1} \| \\ &\leq C \|\Gamma_\varepsilon^{t,+} (g^n, g^n) \|_{H^k_{l-1}(\mathbb{R}^6)} \|S_N \chi_j W_{l+1} h^{n+1} \| \\ &\leq C \|g^n \|_{H^k_l(\mathbb{R}^6)}^2 \| \|S_N \chi_j W_{l+1} h^{n+1} \| \\ &\leq \frac{C}{\kappa} \|g^n \|_{H^k_l(\mathbb{R}^6)}^4 + \frac{\kappa}{4} \|S_N \chi_j W_{l+1} h^{n+1} \|^2. \end{split}$$ On the other hand, Lemma 4.2 is not enough to evaluate G_1^- because G_1^- contains g^{n+1} which is not known, at this moment, to have moments required by Lemma 4.2. However, this obstacle is only superficial. Observe that $$G_1^- = \sum_{(\alpha_1, \beta_1) + \alpha_2 = \alpha} C_{\alpha_1, \beta_1, \alpha_2} \Big(\partial^{\alpha_2} g^{n+1} \Big) \Big(\partial_v^{\beta_1} L(\partial_x^{\alpha_1} g^n) \Big).$$ Define, $$H_{j,l}(g) = \sum_{|\alpha| \le k} \|\chi_j W_l \partial^{\alpha} g\|^2,$$ and write $H_{j,l}^n = H_{j,l}^n(t) = H_{j,l}(g_n(t))$. By recalling (4.2.3), we get $$\begin{split} \left| (G_1^-, S_N^2 \chi_j^2 W_l^2 h^{n+1}) \right| &\leq \sum_{(\alpha_1, \beta_1) + \alpha_2 = \alpha} C_{\alpha_1, \beta_1, \alpha_2} \| \chi_j \langle v \rangle^{\gamma - |\beta_1|} W_{l-1} \partial^{\alpha_2} g^{n+1} \| \| \partial_x^{\alpha_1} g^n \| \| S_N \chi_j W_{l+1} h^{n+1} \| \\ &\leq C \| g^n \|_{H^k_l(\mathbb{R}^6)} \| (H_{j,l}^{n+1})^{1/2} \| S_N \chi_j W_{l+1} h^{n+1} \| \\ &\leq \frac{C'}{\kappa} \| g^n \|_{H^k_l(\mathbb{R}^6)}^2 H_{j,l}^{n+1} + \frac{\kappa}{4} \| S_N \chi_j W_{l+1} h^{n+1} \|^2. \end{split}$$ Here C, C' are positive constants independent of κ . The estimate on the remaining two inner products are more straightforward and can be given as follows $$\left| (G_2 + G_3, S_N^2 \chi_j^2 W_l^2 h^{n+1}) \right| \le C \|\chi_j W_{l-1} (G_2 + G_3)\| \|S_N \chi_j W_{l+1} h^{n+1}\|$$ $$\le C(\kappa + 1) \left(H_{j,l}^{n+1} \right)^{1/2} \|S_N \chi_j W_{l+1} h^{n+1}\| \le C'' \frac{(\kappa + 1)^2}{\kappa} H_{j,l}^{n+1} + \frac{\kappa}{4} \|S_N \chi_j W_{l+1} h^{n+1}\|^2.$$ The constants C, C'' are independent of ε and κ . Putting together all the estimates obtained above in (4.2.9) yields $$\frac{1}{2}\frac{d}{dt}\|S_N\chi_jW_lh^{n+1}\|^2 + \frac{\kappa}{4}\|S_N\chi_jW_{l+1}h^{n+1}\|^2 \le C'''\left\{\kappa + \frac{1}{\kappa}(1 + \|g^n\|_{H^k_l(\mathbb{R}^6)}^2)\right\}H^{n+1}_{j,l} + \frac{C}{\kappa}\|g^n\|_{H^k_l(\mathbb{R}^6)}^4.$$ Summing up estimates for $h^{n+1} = h_{\alpha}^{n+1}$ over $|\alpha| \le k$ then yields, $$\frac{d}{dt}H_{j,l}(S_Ng^{n+1}) + \kappa H_{j,l+1}(S_Ng^{n+1}) \le C_1K_nH_{j,l}(g^{n+1}) + \frac{C_2}{\kappa} \|g^n\|_{H_l^k(\mathbb{R}^6)}^4,$$ where $$K_n = \kappa + \frac{1}{\kappa} \Big(\|g^n\|_{L^{\infty}(]0,T[;H_l^k(\mathbb{R}^6))}^2 + 1 \Big),$$ and $C_1 > 0$ is a constant independent of ε, κ while C_2 is independent of κ but depends on ε . By integrating the above estimate over [0,t] and taking the limit $N \to \infty$, we get $$H_{j,l}^{n+1}(t) + \kappa \int_0^t H_{j,l+1}^{n+1}(\tau)d\tau$$ $$\leq H_{j,l}^{n+1}(0) + C_1 K_n \int_0^t H_{j,l}^{n+1}(\tau)d\tau + \frac{C_2}{\kappa} \int_0^t \|g^n(\tau)\|_{H_l^k(\mathbb{R}^6)}^4 d\tau, \qquad t \in [0,T],$$ which gives a Gronwall type inequality $$(4.2.10) H_{j,l}^{n+1}(t) + \kappa \int_0^t e^{C_1 K_n(t-\tau)} H_{j,l+1}^{n+1}(\tau) d\tau$$ $$\leq e^{C_1 K_n t} H_{j,l}^{n+1}(0) + \frac{C_2}{\kappa} \int_0^t e^{C_1 K_n(t-\tau)} \|g^n(\tau)\|_{H_l^k(\mathbb{R}^6)}^4 d\tau, t \in [0,T]$$ for all $j \in \mathbb{N}$. Since $$H_{j,l}^{n+1}(0) \le ||g_0||_{H_l^k}^2,$$ and $1 \le e^{C_1 K_n(t-\tau)} \le e^{C_1 K_n t}$, (4.2.10) gives $$H_{j,l}^{n+1}(t) + \kappa \int_0^t H_{j,l+1}^{n+1}(\tau) d\tau \le e^{C_1 K_n t} \Big\{ \|g_0\|_{H_l^k}^2 + \frac{C_2}{\kappa} \int_0^t \|g^n(\tau)\|_{H_l^k(\mathbb{R}^6)}^4 d\tau \Big\}, \qquad t \in [0,T].$$ Since the right hand side is independent of j, we see that $\{\chi_j\partial^{\alpha}g^{n+1}\}_{j\in\mathbb{N}}$, $|\alpha|\leq k$ is weakly* compact in $L^{\infty}(]0,T[;L^2_l(\mathbb{R}^6))$ and weakly compact in $L^2(]0,T[;L^2_{l+1}(\mathbb{R}^6))$. Take a convergent subsequence. Apparently, its limit is $h^{n+1}(t)$. This is true for all $|\alpha|\leq k$ so that we can now conclude that $$g^{n+1} \in X \ = L^{\infty}(]0,T[;H^k_l(\mathbb{R}^6)) \cap L^2(]0,T[;H^k_{l+1}(\mathbb{R}^6)),$$ and by Fatou's theorem, $$\begin{split} |||g^{n+1}|||^2 & \leq \liminf_{j \to \infty} \|H_{j,l}^{n+1}\|_{L^{\infty}(]0,T[)} + \kappa \liminf_{j \to \infty} \|H_{j,l+1}^{n+1}\|_{L^{1}(]0,T[)} \\ & \leq e^{C_{1}K_{n}T} \Big(\|g_{0}\|_{H_{l}^{k}}^{2} + \frac{C_{2}}{\kappa} \|g^{n}\|_{L^{4}(]0,T[;H_{l}^{k}(\mathbb{R}^{6})}^{4} \Big). \end{split}$$ Now the proof of Lemma 4.5 is completed. We are now ready to prove the convergence of $\{g^n\}_{n\in\mathbb{N}}$. Fix $\kappa > 0$, let D_0, g_0 be as in Theorem 4.3 and introduce an induction hypothesis $$(4.2.11) ||g^n||_{L^{\infty}(]0,T[;H_t^k(\mathbb{R}^6))} \le 2D_0.$$ for some $T \in [0, T_0]$. Notice that the factor 2 can be any number > 1. (4.2.11) is true for n = 0 due to (4.2.7). Suppose that this is true for some n > 0. We shall determine T independent of n. A possible choice is given by (4.2.12) $$e^{C_1 K_0 T} = 2$$, $\frac{2^4 C_2}{\kappa} T D_0^2 = 1$ where $K_0 = \kappa + \frac{2D_0 + 1}{\kappa}$, or $$T = \min \left\{ \frac{\log 2}{C_1 K_0}, \, \frac{\kappa}{2^4 C_2 D_0^2} \right\}.$$ In fact, (4.2.8) and (4.2.11) yield that $g^{n+1} \in X$ and $$|||g^{n+1}|||^{2} \leq e^{C_{1}K_{0}T} \left(||g_{0}||_{H_{l}^{k}(\mathbb{R}^{6})}^{2} + \frac{C_{2}}{\kappa} T ||g^{n}||_{L^{\infty}(]0,T[;H_{l}^{k}(\mathbb{R}^{6}))}^{4} \right)$$ $$\leq e^{C_{1}K_{0}T} \left(D_{0}^{2} + \frac{C_{2}}{\kappa} T 2^{4} D_{0}^{4} \right) \leq 4D_{0}^{2}.$$ That is, the induction hypothesis (4.2.11) is fulfilled for n+1, and hence holds for all n. For the convergence, set $w^n = g^n(t) - g^{n-1}(t)$, for which (4.2.4) leads to $$\begin{cases} \partial_t w^{n+1} + v \cdot \nabla_x w^{n+1} + \kappa \langle |v| \rangle^2 w^{n+1} &= & \Gamma_{\varepsilon}^{t,+}(w^n, g^n) +
\Gamma_{\varepsilon}^{t,+}(g^{n-1}, w^n), \\ & & -\Gamma_{\varepsilon}^{t,-}(w^n, g^{n+1}) - \Gamma_{\varepsilon}^{t,-}(g^{n-1}, w^{n+1}), \end{cases}$$ $$\begin{cases} w^{n+1}|_{t=0} = 0. \end{cases}$$ By the same computation as used for (4.2.9), but more directly since we can now use test functions as $S_N(D_x)^2 W_l^2 \partial^{\alpha} w^{n+1}$, we get $$|||w^{n+1}|||^{2} \leq \frac{1}{2} C_{2} e^{C_{1}K_{0}T} \frac{1}{\kappa} T \Big\{ ||g^{n+1}||_{L^{\infty}(]0,T[;H_{l}^{k}(\mathbb{R}^{6}))}^{2} + ||g^{n}||_{L^{\infty}(]0,T[;H_{l}^{k}(\mathbb{R}^{6}))}^{2} + ||g^{n-1}||_{L^{\infty}(]0,T[;H_{l}^{k}(\mathbb{R}^{6}))}^{2} \Big\} ||w^{n}||_{L^{\infty}(]0,T[;H_{l}^{k}(\mathbb{R}^{6}))}^{2},$$ with the same constants C_1, C_2 and K_0 as above. Then, (4.2.11) and (4.2.12) give $$|||g^{n+1} - g^n|||^2 \le 2^4 C_2 D_0^2 \kappa^{-1} T ||g^n - g^{n-1}||_{L^{\infty}(]0,T[;H_l^k(\mathbb{R}^6))}^2.$$ Finally, choose T smaller if necessary so that $$2^4 C_2 D_0^2 \kappa^{-1} T \le \frac{1}{4}.$$ Then, we have proved that for any $n \geq 1$, $$|||g^{n+1} - g^n||| \le \frac{1}{2} |||g^n - g^{n-1}|||.$$ Consequently, $\{g^n\}$ is a convergence sequence in X, and the limit $$g^{\varepsilon} \in X$$, is therefore a non-negative solution of the Cauchy problem (4.2.1). The estimate (4.2.13) also implie the uniqueness of solutions. By means of the mild form (4.2.5), it can be proved also that for each n, $$q^n \in C^0([0,T]; H_l^k(\mathbb{R}^6))$$ and hence so is the limit g^{ε} . The non-negativity of g^{ε} follows because $g^n \geq 0$. Now the proof of Theorem 4.3 is completed. 4.3. **Uniform estimate.** We now prove the existence of solutions for the Cauchy problem (4.1.1) by the convergence of approximation sequence $\{g^{\varepsilon}\}$ as $\varepsilon \to 0$. The first step is to prove the uniform boundedness of this approximation sequence. Below, the constant C are various constants independent of $\varepsilon > 0$. **Theorem 4.6.** Assume that 0 < s < 1/2, $\gamma + 2s < 1$. Let $g_0 \in H^k_l(\mathbb{R}^6)$, $g_0 \geq 0$ for some $k \geq 4$, $l \geq 3$. Then there exists $T_* \in]0, T_0]$ depending only on $\|g_0\|_{H^k_l}$ and independent of ε satisfying the following property: If for some $0 < T \leq T_0$, (4.3.1) $$g^{\varepsilon} \in C^{0}(]0,T]; \ H_{l}^{k}(\mathbb{R}^{6})) \cap L^{2}(]0,T[; \ H_{l+1}^{k}(\mathbb{R}^{6})),$$ is a non-negative solution of the Cauchy problem (4.2.1) and if $T_{**} = \min\{T, T_*\}$, then it holds that **Remark 4.7.** The case $T_* \leq T$ gives a uniform estimate of local solutions on the fixed time interval $[0, T_*]$ while the case $T < T_*$ gives an a priori estimate on the existence time interval [0, T] of local solutions. The latter is used for the continuation argument of local solutions, in Subsection 4.4 below. In the following, $\rho > 0$, $\kappa > 0$ are fixed. Furthermore, recall $T_0 = \rho/(2\kappa)$. We start with a solution g^{ε} subject to (4.3.1) for some $T \in]0, T_0]$. For $\alpha \in \mathbb{N}^6, |\alpha| \leq k$, the differentiation of the equation (4.2.1) implies $$(4.3.3) \ \partial_t(\partial^\alpha g^\varepsilon) + v \cdot \nabla_x(\partial^\alpha g^\varepsilon) + \kappa \langle v \rangle^2 (\partial^\alpha g^\varepsilon) = \partial^\alpha \Gamma_\varepsilon^t(g^\varepsilon, g^\varepsilon) - [\partial^\alpha, v \cdot \nabla_x] g^\varepsilon - \kappa [\partial^\alpha, \langle v \rangle^2] g^\varepsilon.$$ Since $\partial^{\alpha} g^{\varepsilon}$ only belongs to L_{l}^{2} , now as in Section 3, we take, $$P_{N,l}^{\star}P_{N,l}(\partial^{\alpha}g^{\varepsilon})$$ as a test function in (4.3.3), where $l \geq 3$ and $P_{N,l} = S_N(D_x)S_N(D_v)W_l$ (we do not need the cutoff functions φ, ψ here). Then we have $$(4.3.4) \qquad \frac{1}{2} \frac{d}{dt} \|P_{N,l}(\partial^{\alpha} g^{\varepsilon})(t)\|_{L^{2}(\mathbb{R}^{6})}^{2} + \kappa \|W_{1} P_{N,l}(\partial^{\alpha} g^{\varepsilon})(t)\|_{L^{2}(\mathbb{R}^{6})}^{2}$$ $$+ \kappa \Big([S_{N}(D_{v}), \langle v \rangle^{2}] W_{l}(\partial^{\alpha} g^{\varepsilon}), S_{N}(D_{x}) P_{N,l}(\partial^{\alpha} g^{\varepsilon}) \Big)_{L^{2}(\mathbb{R}^{6})}^{2}$$ $$= (A_{1} + A_{2} + A_{3} + A_{4} + A_{5}, P_{N,l}^{\star} P_{N,l}(\partial^{\alpha} g^{\varepsilon}))_{L^{2}(\mathbb{R}^{6})}^{2},$$ where A_1 , A_2 , A_3 are defined in (4.1.3) with U = V = g and $$A_4 = -[\partial^{\alpha}, \ v \cdot \nabla_x] g^{\varepsilon}, \qquad A_5 = -\kappa \sum_{|\tilde{\beta}|=1,2} C_{\tilde{\beta}} \partial_v^{\tilde{\beta}} \langle v \rangle^2 \partial^{\alpha - (0,\tilde{\beta})} g^{\varepsilon}.$$ We have firstly, $$(4.3.5) \left| \left(A_4, \ P_{N,l}^{\star} P_{N,l}(\partial^{\alpha} g^{\varepsilon}) \right)_{L^2(\mathbb{R}^6)} \right| \le C \|g^{\varepsilon}(t)\|_{H_l^k(\mathbb{R}^6)}^2,$$ and $$(4.3.6) \qquad \left| \left(A_5, \ P_{N,l}^{\star} P_{N,l}(\partial^{\alpha} g^{\varepsilon}) \right)_{L^2(\mathbb{R}^6)} \right| \le C \kappa \|g^{\varepsilon}(t)\|_{H_l^k(\mathbb{R}^6)}^2 + \frac{\kappa}{4} \|g^{\varepsilon}(t)\|_{H_{l+1}^k(\mathbb{R}^6)}^2.$$ We also have (4.3.7) $$\left| \kappa \left([S_N(D_v), \langle v \rangle^2] W_l(\partial^{\alpha} g^{\varepsilon}), S_N(D_x) P_{N, l}(\partial^{\alpha} g^{\varepsilon}) \right)_{L^2(\mathbb{R}^6)} \right|$$ $$\leq C \kappa \|g^{\varepsilon}(t)\|_{H^k_l(\mathbb{R}^6)}^2 + \frac{\kappa}{4} \|g^{\varepsilon}(t)\|_{H^k_{l+1}(\mathbb{R}^6)}^2.$$ We now study the term A_1 by using the non-negativity of g^{ε} and the coercivity of collision operators. **Proposition 4.8.** Assume that 0 < s < 1/2, $\gamma \in \mathbb{R}$. There exists C > 0 independent of ε such that for any $\alpha \in \mathbb{N}^6$, $|\alpha| \le k$, $k \ge 4$, $l \ge 3$, $$(4.3.8) (A_1, P_{N,l}^{\star} P_{N,l}(\partial^{\alpha} g^{\varepsilon}))_{L^2(\mathbb{R}^6)} \le C \|g^{\varepsilon}(t)\|_{H^k_l(\mathbb{R}^6)}^2 \|g^{\varepsilon}(t)\|_{H^k_{l+\gamma+}(\mathbb{R}^6)},$$ for any $0 \le t \le T \le T_0$. **Proof:** By setting $h = \partial^{\alpha} g^{\varepsilon}$, we have, $$\begin{split} \left(A_{1},\ P_{N,\,l}^{\star}P_{N,\,l}h\right)_{L^{2}(\mathbb{R}^{6})} &= \left(P_{N,\,l}Q_{\varepsilon}(\mu g^{\varepsilon},\,h),\ (P_{N,\,l}h)\right)_{L^{2}(\mathbb{R}^{6})} \\ &= \left(Q_{\varepsilon}\left(\mu(t)g^{\varepsilon},\ (P_{N,\,l}h)\right),\ (P_{N,\,l}h)\right)_{L^{2}(\mathbb{R}^{6})} \\ &+ \left(P_{N,\,l}Q_{\varepsilon}\left(\mu(t)g^{\varepsilon},\,h\right) - Q_{\varepsilon}\left(\mu(t)g^{\varepsilon},\ (P_{N,\,l}h)\right),\ (P_{N,\,l}h)\right)_{L^{2}(\mathbb{R}^{6})} \\ &= B_{1} + B_{2}. \end{split}$$ Since $\mu(t) g^{\varepsilon}(t, x, v) \geq 0$, we have, in the same way as Theorem 2.6 with the cancellation lemma, $$B_{1} = -\frac{1}{2} \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} B_{\varepsilon}(v - v_{*}, \sigma) \left(\mu(t) g^{\varepsilon}\right)_{*} \left(\left(P_{N, l}h\right)' - \left(P_{N, l}h\right)\right)^{2} dv_{*} d\sigma dv dx$$ $$+ \frac{1}{2} \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} B_{\varepsilon}(v - v_{*}, \sigma) \left(\mu(t) g^{\varepsilon}\right)_{*} \left\{\left(\left(P_{N, l}h\right)'\right)^{2} - \left(P_{N, l}h\right)^{2}\right\} dv_{*} d\sigma dv dx$$ $$\leq \frac{1}{2} \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} B_{\varepsilon}(v - v_{*}, \sigma) \left(\mu(t) g^{\varepsilon}\right)_{*} \left\{\left(\left(P_{N, l}h\right)'\right)^{2} - \left(P_{N, l}h\right)^{2}\right\} dv_{*} d\sigma dv dx$$ $$\leq C \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} \left(\mu(t) g^{\varepsilon}\right)_{*} \left\langle v - v_{*}\right\rangle^{\gamma^{+}} \left(P_{N, l}h\right)^{2} dv dv_{*} dx$$ $$\leq C \lVert \mu W_{\gamma} + g^{\varepsilon}(t) \rVert_{L^{\infty}(\mathbb{R}_{x}^{3}; L^{1}(\mathbb{R}_{v}^{3}))} \lVert W_{l}h(t) \rVert_{L^{2}(\mathbb{R}_{x}^{6}, v)} \lVert W_{l+\gamma} + h(t) \rVert_{L^{2}(\mathbb{R}_{x}^{6}, v)}$$ $$\leq C \lVert g^{\varepsilon}(t) \rVert_{H^{3/2+\delta}(\mathbb{R}_{x}^{6}, v)} \lVert g^{\varepsilon}(t) \rVert_{H^{k}_{l+\gamma}}^{k} \left(\mathbb{R}_{x, v}^{6}\right)}, \quad t \in [0, T],$$ where we used the fact that $b_{\varepsilon}(\cos \theta) \leq b(\cos \theta)$. By putting $S_N = S_N(D_x) \ \tilde{S}_N = S_N(D_v)$, we decompose $$\begin{split} B_2 &= \left(S_N \tilde{S}_N \Big\{ W_l Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, h \big) - Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, (W_l h) \big) \Big\}, \, \, (P_{N, l} h) \Big)_{L^2(\mathbb{R}^6)} \\ &+ \Big(S_N \Big\{ \tilde{S}_N Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, (W_l h) \big) - Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, \tilde{S}_N (W_l h) \big) \Big\}, \, \, (P_{N, l} h) \Big)_{L^2(\mathbb{R}^6)} \\ &+ \Big(S_N Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, (\tilde{S}_N W_l h) \big) - Q_{\varepsilon} \big(\mu(t) g^{\varepsilon}, \, S_N (\tilde{S}_N W_l h) \big), \, \, (P_{N, l} h) \Big)_{L^2(\mathbb{R}^6)} \\ &= B_{21} + B_{22} + B_{23}. \end{split}$$ By Lemma 2.4, we get $$|B_{21}| = \left| \left(\left\{ W_{l} Q_{\varepsilon} \left(\mu(t) g^{\varepsilon}, h \right) - Q_{\varepsilon} \left(\mu(t) g^{\varepsilon}, (W_{l} h) \right) \right\}, (\tilde{S}_{N} S_{N} P_{N, l} h) \right)_{L^{2}(\mathbb{R}^{6})} \right|$$ $$\leq C \|\mu(t) g^{\varepsilon}(t) \|_{L^{\infty}(\mathbb{R}^{3}_{x}; L^{1}_{l+\gamma^{+}}(\mathbb{R}^{3}_{v}))} \int_{\mathbb{R}^{3}_{x}} \|W_{l+\gamma^{+}} h\|_{L^{2}(\mathbb{R}^{3}_{v})} \|P_{N, l} h\|_{L^{2}(\mathbb{R}^{3}_{v})} dx$$ $$\leq C \|g^{\varepsilon}(t) \|_{L^{\infty}(\mathbb{R}^{3}_{x}; L^{2}(\mathbb{R}^{3}_{v}))} \|g^{\varepsilon}(t) \|_{H^{k}_{l}(\mathbb{R}^{6})} \|g^{\varepsilon}(t) \|_{H^{k}_{l+\gamma^{+}}(\mathbb{R}^{6})},$$
$$\leq C \|g^{\varepsilon}(t) \|_{H^{k}_{s}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}(t) \|_{H^{k}_{l+\gamma^{+}}(\mathbb{R}^{6})}, \quad t \in [0, T].$$ It follows from Lemma 3.3 that $$|B_{22}| \leq \left(\int_{\mathbb{R}^{3}_{x}} \|\tilde{S}_{N}Q_{\varepsilon}(\mu(t)g^{\varepsilon}, (W_{l}h)) - Q_{\varepsilon}(\mu(t)g^{\varepsilon}, \tilde{S}_{N}(W_{l}h))\|_{L^{2}(\mathbb{R}^{3}_{v})}^{2} dx \right)^{1/2} \|P_{N, l}h\|_{L^{2}(\mathbb{R}^{6})}$$ $$\leq C \|\mu(t)g^{\varepsilon}(t)\|_{L^{\infty}(\mathbb{R}^{3}_{x}; L^{1}_{\gamma^{+}}(\mathbb{R}^{3}_{v}))} \|W_{l+\gamma^{+}}h\|_{L^{2}(\mathbb{R}^{6}_{v})} \|g^{\varepsilon}(t)\|_{H^{k}_{l}(\mathbb{R}^{6})}$$ $$\leq C \|g^{\varepsilon}(t)\|_{H^{k}_{l}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}(t)\|_{H^{k}_{l+2}+(\mathbb{R}^{6})}, \quad t \in [0, T].$$ Lemma 3.4 with m = 2s yields $$|B_{23}| \leq C \|S_N Q(\mu(t)g^{\varepsilon}, (\tilde{S}_N W_l h)) - Q(\mu(t)g^{\varepsilon}, S_N (\tilde{S}_N W_l h)) \|_{L^2(\mathbb{R}^3_x, L^2(\mathbb{R}^3_v))} \|P_{N,l} h\|_{L^2(\mathbb{R}^6)}$$ $$\leq C \|\mu(t) \nabla_x g^{\varepsilon}\|_{L^{\infty}(\mathbb{R}^3_x, L^1_{(2s+\gamma)^+}(\mathbb{R}^3_v))} \|(2^{-N} \tilde{S}_N(W_l h)\|_{L^2(\mathbb{R}^3_x, H^{2s}_{(2s+\gamma)^+}(\mathbb{R}^3_v))} \|P_{N,l} h\|_{L^2(\mathbb{R}^6)}$$ $$\leq C \|g^{\varepsilon}(t)\|_{H^k(\mathbb{R}^6)}^2 \|g^{\varepsilon}(t)\|_{H^k_{L^{-1}}(\mathbb{R}^6)}, \quad t \in [0, T].$$ Combining the above estimates proves Proposition 4.8. For the term A_2 and A_3 , we prove the following proposition. **Proposition 4.9.** Assume that 0 < s < 1/2, $\gamma + 2s < 1$. Then, for any $\delta > 0$, there exists C > 0 independent of $\varepsilon > 0$ such that for any $\alpha \in \mathbb{N}^6$, $|\alpha| \le k$, $k \ge 4$, $l \ge 3$, $$(4.3.9) \qquad (A_2 + A_3, \ P_{N,l}^{\star} P_{N,l}(\partial^{\alpha} g^{\varepsilon}))_{L^2(\mathbb{R}^6)} \leq C \|g^{\varepsilon}(t)\|_{H_l^k(\mathbb{R}^6)}^2 \|g^{\varepsilon}(t)\|_{H_{l+(\gamma+2s+\delta)^+}^k(\mathbb{R}^6)},$$ $$for \ t \in [0, T].$$ **Proof.** By putting $h = \partial^{\alpha} g^{\varepsilon}$ and $\tilde{h} = W_l^{-2} P_{N,l}^{\star} P_{N,l} (\partial^{\alpha} g^{\varepsilon})$, we get $$\begin{split} &\left|\left(A_{2},\ W_{l}^{2}\tilde{h}\right)_{L^{2}(\mathbb{R}^{6})}\right| = \left|\iiint_{\mathbb{R}_{x}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}}^{B_{\varepsilon}(v-v_{*},\sigma)(\mu_{*}(t)-\mu'_{*}(t))(g^{\varepsilon})'_{*}h'(W_{l}^{2}\tilde{h})dv_{*}d\sigma dv dx\right| \\ &\leq \iiint_{\mathbb{R}_{x}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{S}_{\sigma}^{2}}^{B(v-v_{*},\sigma)|\mu_{*}(t)-\mu'_{*}(t)|\left|(g^{\varepsilon})'_{*}\right|\left|(W_{l}h)'(W_{l}\tilde{h})|dv_{*}d\sigma dv dx \\ &+\iiint_{\mathbb{R}_{x}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{R}_{v}^{3}\times\mathbb{S}_{\sigma}^{2}}^{B(v-v_{*},\sigma)|(\mu_{*}(t)-\mu'_{*}(t))|\left|(g^{\varepsilon})'_{*}\right|\left|W_{l}-W_{l}'\right|\left|h'(W_{l}\tilde{h})|dv_{*}d\sigma dv dx \\ &=I_{1}+I_{2}. \end{split}$$ To estimate I_1 , we notice that $$(4.3.10) |\mu(t, v_*) - \mu(t, v_*')| \le C|v_* - v_*'|^{\lambda} \le C\theta^{\lambda}|v - v_*|^{\lambda} \le C\theta^{\lambda}|v' - v_*'|^{\lambda}, \quad \lambda \in [0, 1], \ t \in [0, T_0],$$ which is elementary for $\lambda=0,1$ and is obtained for general $\lambda\in(0,1)$ by interpolation. Since $\gamma+2s<1$ is assumed in the proposition, there is $\lambda\in(0,1)$ such that $\lambda>2s, \gamma+\lambda\leq 1$. By the manipulation on the primed and non-primed variables (see (4.1.5)) we have $$I_{1} \leq C \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} \langle v' - v'_{*} \rangle^{(\gamma + \lambda)^{+}} \theta^{-2 - 2s + \lambda} |(g^{\varepsilon})'_{*}| |(W_{l}h)'| |(W_{l}\tilde{h})| dv_{*} d\sigma dv dx$$ $$\leq C \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3}}^{2} \theta^{-2 - 2s + \lambda} |(W_{(\gamma + \lambda)^{+}} g^{\varepsilon})_{*}| \Big\{ \int_{\mathbb{R}_{v}^{3}} |(W_{l + (\gamma + \lambda)^{+}} h)(W_{l}\tilde{h})'| dv \Big\} dv_{*} d\sigma dx$$ $$\leq C \|g^{\varepsilon}(t)\|_{L^{\infty}(\mathbb{R}_{x}^{3}; L_{(\gamma + \lambda)^{+}}^{1}(\mathbb{R}_{v}^{3}))} \|g^{\varepsilon}(t)\|_{H_{l}^{k}(\mathbb{R}^{6})} \|g^{\varepsilon}(t)\|_{H_{l+(\gamma + \lambda)^{+}}^{k}(\mathbb{R}^{6})}$$ $$\leq C \|g^{\varepsilon}(t)\|_{H_{l}^{k}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}(t)\|_{H_{l+(\gamma + \lambda)^{+}}^{k}(\mathbb{R}^{6})},$$ for $l > (\gamma + \lambda)^+ + 3/2$. In the third inequality we have used again the fact that the Jacobian of changing of variable $v \to v'$ is bounded. Using (2.1.14) gives $$I_2 \leq C \iiint_{\mathbb{R}^3_x \times \mathbb{R}^3_v \times \mathbb{R}^3_v \times \mathbb{R}^3_v \times \mathbb{S}^2_\sigma} \langle v' - v'_* \rangle^{\gamma} \theta^{-1-2s} (\mu_*(t) + \mu'_*(t)) | (g^{\varepsilon})'_* (W'_l W'_{l,*}) h'(W_l \tilde{h}) | dv_* d\sigma dv dx$$ $$= C(J_1 + J_2).$$ By the Schwarz inequality and the Sobolev inclusion, we have $$J_{1} \leq C \iiint_{\mathbb{R}^{3}_{x} \times \mathbb{R}^{3}_{v} \times \mathbb{R}^{3}_{v} \times \mathbb{S}^{2}_{\sigma}} \theta^{-1-2s} \mu_{*}(t) |(W_{l+\gamma} + g^{\varepsilon})'_{*}(W_{l+\gamma} + h)'(W_{l}\tilde{h})| dv_{*} d\sigma dv dx$$ $$\leq C \int_{\mathbb{R}^{3}_{x}} \left(\iiint_{\mathbb{R}^{3}_{v} \times \mathbb{R}^{3}_{v_{*}} \times \mathbb{S}^{2}_{\sigma}} \theta^{-1-2s} \mu_{*}(t)^{2} |(W_{l}\tilde{h})|^{2} dv dv_{*} d\sigma \right)^{1/2}$$ $$\times \left(\iiint_{\mathbb{R}^{3}_{v} \times \mathbb{R}^{3}_{v_{*}} \times \mathbb{S}^{2}_{\sigma}} \theta^{-1-2s} |(W_{l+\gamma} + g^{\varepsilon})'_{*}(W_{l+\gamma} + h)'|^{2} dv dv_{*} d\sigma \right)^{1/2} dx$$ $$\leq C \|\mu\|_{L^{2}(\mathbb{R}^{3}_{v})} \int_{\mathbb{R}^{3}_{x}} \|W_{l}\tilde{h}(x)\|_{L^{2}(\mathbb{R}^{3}_{v})} \|W_{l+\gamma} + g^{\varepsilon}(x)\|_{L^{2}(\mathbb{R}^{3}_{v})} \|W_{l+\gamma} + h(x)\|_{L^{2}(\mathbb{R}^{3}_{v})} dx$$ $$\leq C \|g^{\varepsilon}\|_{L^{\infty}(\mathbb{R}^{3}_{x}; L^{2}(\mathbb{R}^{3}_{v})} \|W_{l+\gamma} + h\|_{L^{2}(\mathbb{R}^{6})} \|W_{l}\tilde{h}\|_{L^{2}(\mathbb{R}^{6})}$$ $$\leq C \|g^{\varepsilon}\|_{L^{4}_{l+\gamma} + (\mathbb{R}^{6})} \|g^{\varepsilon}\|_{H^{k}_{l}(\mathbb{R}^{6})}.$$ On the other hand, again by the manipulation on the primed and non-primed variables, $$J_{2} \leq C \iiint_{\mathbb{R}^{3}_{x} \times \mathbb{R}^{3}_{v} \times \mathbb{R}^{3}_{v} \times \mathbb{R}^{3}_{v} \times \mathbb{S}^{2}_{\sigma}} \theta^{-1-2s} |(\mu(t)W_{l+\gamma} + g^{\varepsilon})'_{*}(W_{l+\gamma} + h)'(W_{l}\tilde{h})| dv_{*} d\sigma dv dx$$ $$\leq C \iiint_{\mathbb{R}^{3}_{x} \times \mathbb{R}^{3}_{v_{*}} \times \mathbb{S}^{2}_{\sigma}} \theta^{-1-2s} |(\mu(t)W_{l+\gamma} + g^{\varepsilon})_{*}| \Big\{ \int_{\mathbb{R}^{3}_{v}} |W_{l+\gamma} + h| |(W_{l}\tilde{h})'| dv \Big\} dv_{*} d\sigma dx$$ $$\leq C \|\mu(t)W_{l+\gamma} + g^{\varepsilon}\|_{L^{\infty}(\mathbb{R}^{3}_{x}; L^{1}(\mathbb{R}^{3}_{v}))} \|W_{l+\gamma} + h\|_{L^{2}(\mathbb{R}^{6})} \|W_{l}\tilde{h}\|_{L^{2}(\mathbb{R}^{6})}$$ $$\leq C \|g^{\varepsilon}\|_{H^{k}_{l}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}\|_{H^{k}_{l+\gamma}} (\mathbb{R}^{6}).$$ Here, we have used $W_{l+\gamma}^{+}\mu^{1/2}(t) \leq C$. We consider now the term A_3 . For any $\alpha \in \mathbb{N}^6$, $|\alpha| \leq k$, $k \geq 4$, $l \geq 3$, denote $$h_1 = \partial^{\alpha_1} q^{\varepsilon}, \ h_2 = \partial^{\alpha_2} q^{\varepsilon},$$ where $$\alpha_1 + \alpha_2 < \alpha, \quad \alpha_2 < \alpha.$$ We shall compute $$\left(\mathcal{T}_{\varepsilon}(h_{1}, h_{2}, \tilde{\mu}), W_{l}^{2}\tilde{h}\right)_{L^{2}(\mathbb{R}^{6})} = \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{S}_{\sigma}^{2}} B_{\varepsilon}(\tilde{\mu}_{*}(t) - \tilde{\mu}'_{*}(t))(h_{1})'_{*}h'_{2}(W_{l}^{2}\tilde{h})dv_{*}d\sigma dv dx + \iiint_{\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{R}_{v}^{3} \times \mathbb{S}_{\sigma}^{2}} B_{\varepsilon}(\tilde{\mu}h_{1})'_{*}(W_{l} - W'_{l}) h'_{2}(W_{l}\tilde{h})dv_{*}d\sigma dv dx + \left(Q_{\varepsilon}(\tilde{\mu}h_{1}, (W_{l}h_{2})), W_{l}\tilde{h}\right)_{L^{2}(\mathbb{R}^{6})}.$$ For the last term, by Theorem 2.1 with m=2s<1, there exists C>0 independent of ε such that for $|\alpha_2| \leq |\alpha| - 1$ and $\delta > 0$, $$\|Q_{\varepsilon}(\tilde{\mu}h_{1}, (W_{l}h_{2}))\|_{L^{2}(\mathbb{R}^{6})}^{2} \leq C \int_{\mathbb{R}^{3}} \|\tilde{\mu}h_{1}(t, x, \cdot)\|_{L_{(\gamma+2s)}^{1}+(\mathbb{R}^{3}_{v})}^{2} \|(W_{l}h_{2})(t, x, \cdot)\|_{H_{(\gamma+2s)}^{2s}+(\mathbb{R}^{3}_{v})}^{2} dx$$ $$\leq \begin{cases} C\|\tilde{\mu}h_{1}(t)\|_{L^{\infty}(\mathbb{R}^{3}_{x}, L_{3/2+(\gamma+2s)++\delta}^{2}(\mathbb{R}^{3}_{v}))}^{2} \|(W_{l}h_{2})(t)\|_{L^{2}(\mathbb{R}^{3}_{x}; H_{(\gamma+2s)}^{2s}+(\mathbb{R}^{3}_{v}))}^{2}, \quad |\alpha_{1}| \leq 2, \\ C\|\tilde{\mu}h_{1}(t)\|_{L^{2}(\mathbb{R}^{3}_{x}; L_{3/2+(\gamma+2s)++\delta}^{2}(\mathbb{R}^{3}_{v}))}^{2} \|(W_{l}h_{2})(t)\|_{L^{\infty}(\mathbb{R}^{3}_{x}; H_{(\gamma+2s)+}^{2s}(\mathbb{R}^{3}_{v}))}^{2s}, \quad |\alpha_{1}| > 2, \end{cases}$$ $$\leq \begin{cases} C\|h_{1}(t)\|_{H^{3/2+\delta}(\mathbb{R}^{3}_{x}; L^{2}(\mathbb{R}^{3}_{v}))}^{2} \|(W_{l}h_{2})(t)\|_{L^{2}(\mathbb{R}^{3}_{x}; H_{(\gamma+2s)+}^{2s}(\mathbb{R}^{3}_{v}))}^{2s}, \quad |\alpha_{1}| \leq 2, \\ C\|h_{1}(t)\|_{L^{2}(\mathbb{R}^{3}_{x}; L^{2}(\mathbb{R}^{3}_{v}))}^{2} \|(W_{l}h_{2})(t)\|_{H^{3/2+\delta}(\mathbb{R}^{3}_{x}; H_{(\gamma+2s)+}^{2s}(\mathbb{R}^{3}_{v}))}^{2s}, \quad |\alpha_{1}| > 2, \end{cases}$$ $$\leq C\|g^{\varepsilon}(t)\|_{H^{k}_{l}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}(t)\|_{H^{k}_{l+(\gamma+2s)+}(\mathbb{R}^{6})}^{2s}, \quad k \geq 4 > 3 + 2s, \ l > (\gamma + 2s)^{+} + 3/2. \end{cases}$$ The estimation on
the first term is similar to $(A_2, W_l^2 \tilde{h})_{L^2(\mathbb{R}^6)}$ by taking into account the same manipulation concerning α_2 . The estimation for the second term is also similar to the part J_2 of I_2 as above. Hence, we have obtained $$\left| \left(A_3, \ W_l^2 \tilde{h} \right)_{L^2(\mathbb{R}^6)} \right| \le C \|g^{\varepsilon}(t)\|_{H_l^k(\mathbb{R}^6)}^2 \|g^{\varepsilon}(t)\|_{H_{l+\gamma+2s}^k(\mathbb{R}^6)}^2.$$ This completes the proof of Proposition 4.9. If (4.3.5), (4.3.6), (4.3.7), (4.3.8) and (4.3.9) are combined, then it follows from (4.3.4) that $$\frac{1}{2} \frac{d}{dt} \|P_{N,l}(\partial^{\alpha} g^{\varepsilon})(t)\|_{L^{2}(\mathbb{R}^{6})}^{2} + \kappa \|W_{1} P_{N,l}(\partial^{\alpha} g^{\varepsilon})(t)\|_{L^{2}(\mathbb{R}^{6})}^{2} - \frac{\kappa}{2} \|g^{\varepsilon}(t)\|_{H^{k}_{l+1}(\mathbb{R}^{6})}^{2} \\ \leq C \left(\|g^{\varepsilon}(t)\|_{H^{k}_{l}(\mathbb{R}^{6})}^{2} + C_{2} \|g^{\varepsilon}(t)\|_{H^{k}_{l}(\mathbb{R}^{6})}^{2} \|g^{\varepsilon}(t)\|_{H^{k}_{l+(\gamma+2s+\delta)^{+}}(\mathbb{R}^{6})}^{2} \right).$$ Take the sum over $|\alpha| \leq k$, integrate from 0 to $t \in [0,T]$ and make $N \to \infty$. Then there exists $C_1, C_2 > 0$ independent of $\varepsilon > 0$ such that , for any $\delta > 0$ and $t \in [0,T]$, (4.3.12) $$||g^{\varepsilon}(t)||_{H_{l}^{k}(\mathbb{R}^{6})}^{2} + \kappa \int_{0}^{t} ||g^{\varepsilon}(\tau)||_{H_{l+1}^{k}(\mathbb{R}^{6})}^{2} d\tau$$ $$\leq ||g^{\varepsilon}(0)||_{H_{l}^{k}(\mathbb{R}^{6})}^{2} + C_{1} \int_{0}^{t} ||g^{\varepsilon}(\tau)||_{H_{l}^{k}(\mathbb{R}^{6})}^{2} d\tau + C_{2} \int_{0}^{t} ||g^{\varepsilon}(\tau)||_{H_{l}^{k}(\mathbb{R}^{6})}^{2} ||g^{\varepsilon}(\tau)||_{H_{l+(\gamma+2s+\delta)}^{k}+(\mathbb{R}^{6})}^{2} d\tau.$$ Remark 4.10. We give here some technical reasons about the choice of the time dependent distribution $\mu(t)$ as moment control in the equation (4.1.1). If we take $\kappa=0$ in the definition of Maxwellian distribution $\mu(t)$, the above computation gives also (4.3.12) without the second term on the left hand side because $\kappa=0$. But the upper bound estimate, by using Theorem 2.1, always gives the last term in (4.3.12) with the factor $\|g^{\varepsilon}(t)\|_{H^k_{l+(\gamma+2s)}+\delta}(\mathbb{R}^6)$. If $\gamma+2s<0$, there is no loss of moment, we can get (4.3.13) with $\kappa=0$. If $0\leq \gamma+2s<1$, we choose δ such that $\gamma+2s+\delta\leq 1$ so the second term on left hand side absorbs the last term in (4.3.12) because $$||g^{\varepsilon}(t)||_{H^{k}_{l+(\gamma+2s+\delta)^{+}}(\mathbb{R}^{6})} \le ||g^{\varepsilon}(t)||_{H^{k}_{l+1}(\mathbb{R}^{6})}.$$ In conclusion, the choice of $\mu(t)$ is mainly for the hard potential. Completion of proof of Theorem 4.6. Set $X(t) = ||g^{\varepsilon}(t)||_{H_t^k(\mathbb{R}^6)}^2$ and $F(t) = \int_0^t X(\tau)(1 + X(\tau))d\tau$. Since $\gamma + 2s < 1$, by (4.3.12) there exists a C > 0 independent of $\varepsilon > 0$ such that (4.3.13) $$X(t) + \frac{\kappa}{2} \int_0^t \|g^{\varepsilon}(\tau)\|_{H^k_{l+1}(\mathbb{R}^6)}^2 d\tau \le X(0) + CF(t).$$ Noticing that $F'(t) \leq (X(0) + CF(t))(1 + X(0) + CF(t))$, we have $$\|g^{\varepsilon}(t)\|_{H_{l}^{k}(\mathbb{R}^{6}))}^{2} \leq \frac{\|g_{0}\|_{H_{l}^{k}(\mathbb{R}^{6})}^{2} e^{Ct}}{1 - (e^{Ct} - 1)\|g_{0}\|_{H_{l}^{k}(\mathbb{R}^{6})}^{2}},$$ as long as the denominator remains positive. We choose $T_* > 0$ small enough such that $$\frac{e^{CT_*}}{1 - (e^{CT_*} - 1) \|g_0\|_{H^k(\mathbb{R}^6)}^2} = 4.$$ Then $$T_* = \frac{1}{C} \log \left(1 + \frac{3}{1 + 4 \|g_0\|_{H^k(\mathbb{R}^6)}^2} \right),$$ is independent of $\varepsilon > 0$, but depends on $||g_0||_{H_l^k(\mathbb{R}^6)}$ and the constant C which depends on ρ, κ, k and l. Now we have (4.3.2) for $T_{**} = \min(T, T_*)$. From (4.3.2) and (4.3.13), we get also, for $\kappa > 0$, We have proved Theorem 4.6. 4.4. Convergence and uniqueness. The second step is to prove that, for any $0 < \varepsilon < 1$, we can extend the approximation solution g^{ε} , obtained by Theorem 4.2.1, to a fixed interval $]0, T_*[$ with $T_* > 0$ determined in Theorem 4.6 which is independent on $\varepsilon > 0$. Then this sequence is convergent. **Theorem 4.11.** Assume that 0 < s < 1/2, $\gamma + 2s < 1$, $g_0 \ge 0$, $g_0 \in H_l^k(\mathbb{R}^6)$ for some $k \ge 4$, $l \ge 3$. Let $T_* > 0$ be given in Theorem 4.6. Then the Cauchy problem (4.2.1) admits a unique non-negative solution up to T_* satisfying $$g^{\varepsilon} \in L^{\infty}(]0, T_{*}[; \ H^{k}_{l}(\mathbb{R}^{6})) \cap L^{2}(]0, T_{*}[; \ H^{k}_{l+1}(\mathbb{R}^{6})).$$ **Proof:** We recall the notation $T = T_{\varepsilon}(D_0)$ from Remark 4.4. Then Theorem 4.3 asserts that the Cauchy problem (4.2.1) with initial data g_0 admits a unique non-negative solution $$g_1^{\varepsilon} \in C^0([0, 2T_{1,\varepsilon}]; H_l^k(\mathbb{R}^6)) \cap L^2(]0, 2T_{1,\varepsilon}[; H_{l+1}^k(\mathbb{R}^6)), \quad T_{1,\varepsilon} = \frac{1}{2}T_{\varepsilon}(\|g_0\|_{H_l^k(\mathbb{R}^6)}).$$ If $T_{1,\varepsilon} \geq T_*$, then the proof is completed. If $T_{1,\varepsilon} < T_*$, then Theorem 4.6 implies $$||g_1^{\varepsilon}(T_{1,\varepsilon})||_{H_l^k(\mathbb{R}^6)} \le 2 ||g_0||_{H_l^k(\mathbb{R}^6)}.$$ We now consider the Cauchy problem (4.2.1) with initial data $g^{\varepsilon}(T_{1,\varepsilon})$. Again Theorem 4.3 asserts that there exists $$T_{2,\varepsilon} = \frac{1}{2} T_{\varepsilon}(2 \|g_0\|_{H_l^k(\mathbb{R}^6)}),$$ such that the Cauchy problem (4.2.1) admits a unique non-negative solution $$g_2^{\varepsilon} \in C^0([T_{1,\varepsilon}, T_{1,\varepsilon} + 2T_{2,\varepsilon}]; H_l^k(\mathbb{R}^6)) \cap L^2(]T_{1,\varepsilon}, T_{1,\varepsilon} + 2T_{2,\varepsilon}[; H_{l+1}^k(\mathbb{R}^6)).$$ By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (4.2.1), $$g^{\varepsilon} \in C^{0}([0, T_{1,\varepsilon} + 2T_{2,\varepsilon}]; H_{l}^{k}(\mathbb{R}^{6})) \bigcap L^{2}(]0, T_{1,\varepsilon} + 2T_{2,\varepsilon}[; H_{l+1}^{k}(\mathbb{R}^{6})).$$ If $T_{1,\varepsilon} + 2T_{2,\varepsilon} \ge T_*$, we finish the proof. If $T_{1,\varepsilon} + 2T_{2,\varepsilon} < T_*$, we consider again the Cauchy problem (4.2.1) with initial date $g^{\varepsilon}(T_{1,\varepsilon} + T_{2,\varepsilon})$. Since Theorem 4.6 gives again $$||g^{\varepsilon}(T_{1,\varepsilon}+T_{2,\varepsilon})||_{H_l^k(\mathbb{R}^6)} \le 2 ||g_0||_{H_l^k(\mathbb{R}^6)},$$ the interval of the existence of solution is the same, that is, $2T_{2,\varepsilon}$, so that we can extend the solution to $$g^{\varepsilon} \in L^{\infty}(]0, \ T_{1,\varepsilon} + 3T_{2,\varepsilon}[; \ H_l^k(\mathbb{R}^6)) \bigcap L^2(]0, T_{1,\varepsilon} + 3T_{2,\varepsilon}[; \ H_{l+1}^k(\mathbb{R}^6)).$$ By iteration, there exists $m \in \mathbb{N}$ such that $$T_{1,\varepsilon} + mT_{2,\varepsilon} < T_*, \ T_{1,\varepsilon} + (m+1)T_{2,\varepsilon} \ge T_*,$$ and we extend the solution up to $$g^{\varepsilon} \in C^{0}([0, T_{1,\varepsilon} + (m+1)T_{2,\varepsilon}]; H_{l}^{k}(\mathbb{R}^{6})) \bigcap L^{2}(]0, T_{1,\varepsilon} + (m+1)T_{2,\varepsilon}[; H_{l+1}^{k}(\mathbb{R}^{6})).$$ We have proved Theorem 4.11. Theorem 4.11 asserts the existence of an approximation solution sequence $$\left\{g^{\varepsilon}\right\}_{\varepsilon>0} \subset C^{0}([0, T_{*}]; H_{l}^{k}(\mathbb{R}^{6})) \bigcap L^{2}(]0, T_{*}; H_{l+1}^{k}(\mathbb{R}^{6})),$$ and $$||g^{\varepsilon}||_{L^{\infty}(]0,T_{*}[;H_{l}^{k}(\mathbb{R}^{6}))} \leq 2||g_{0}||_{H_{l}^{k}(\mathbb{R}^{6})}.$$ This implies that it is a weakly* compact set of $L^{\infty}(]0, T_*[; H_I^k(\mathbb{R}^6))$. Let $$g \in L^{\infty}(]0, T_*[; H_l^k(\mathbb{R}^6)),$$ be a limit of a subsequence of $\{g^{\varepsilon}\}_{{\varepsilon}>0}$. On the other hand, by using the equation (4.2.1) and Theorem 2.1, we obtain $$\|\partial_{t}g^{\varepsilon}\|_{L^{\infty}(]0,T_{*}[;H^{k-1}_{l-1}(\mathbb{R}^{6}))} \leq C\Big(\|g^{\varepsilon}\|_{L^{\infty}(]0,T_{*}[;H^{k}_{l}(\mathbb{R}^{6}))} + \|g^{\varepsilon}\|_{L^{\infty}(]0,T_{*}[;H^{k}_{l}(\mathbb{R}^{6}))}^{2}\Big) \\ \leq 2C\left(1+2\|g_{0}\|_{H^{k}_{l}(\mathbb{R}^{6})}\right)\|g_{0}\|_{H^{k}_{l}(\mathbb{R}^{6})}.$$ Thus, $\{g^{\varepsilon}\}_{{\varepsilon}>0}$ is a compact subset in $$C^{1-\delta}(]0, T_*[; H_{l-1}^{k-1-\delta}(\Omega \times \mathbb{R}^3_v)),$$ for any compact bounded open set $\Omega \subset \mathbb{R}^3_x$ and for any $\delta > 0$. For the variable v, we have the weight W_{l-1} with l-1>3/2. Then, we can take the limit in the equation (4.2.1) and also in the mild form (4.2.5). Then g is a solution of the Cauchy problem (4.1.1). The limit g belongs to $L^2(]0, T_*[; H^k_{l+1}(\mathbb{R}^6))$ deduced from (4.3.14). Now if $g_0 \geq 0$, Theorem 4.3 implies that $g^{\varepsilon} \geq 0$, so that the limit g is also non-negative on $]0, T_*[$. We have completed the proof for the local existence of solutions stated in Theorem 4.1. It remains to prove the uniqueness of solutions in Theorem 4.1. We state it more precisely as follows. **Proposition 4.12.** Assume that 0 < s < 1/2, $\gamma + 2s < 1$, $0 < T \le T_0$, m > 3 and $g_0 \ge 0$, $g_0 \in H_3^m(\mathbb{R}^6)$. Suppose that the Cauchy problem (4.1.1) admits two (non-negative) solutions $$g_1, g_2 \in C^0([0,T]; H_4^m(\mathbb{R}^6)).$$ Then $g_1 \equiv g_2$. Set $f = g_1 - g_2$, by using (4.1.1), we have (4.4.1) $$\begin{cases} f_t + v \cdot \nabla_x f + \kappa (1 + |v|^2) f = \Gamma^t(g_1, f) + \Gamma^t(f, g_2), \\ f|_{t=0} = 0. \end{cases}$$ We can now take W_3f as a test function to get $$(4.4.2) \qquad \frac{1}{2} \frac{d}{dt} \|W_3 f(t)\|_{L^2(\mathbb{R}^6)}^2 + \kappa \|W_4 f(t)\|_{L^2(\mathbb{R}^6)}^2 = \left(W_3 \Gamma^t(g_1, f) + W_3 \Gamma^t(f, g_2), W_3 f\right)_{L^2(\mathbb{R}^6)}.$$ Recall that $$\Gamma^{t}(g, h) = Q(\mu(t)g, h) + \int_{\mathbb{R}^{3}_{v_{*}} \times \mathbb{S}^{2}} B(\mu(t)_{*} - \mu(t)'_{*}) g'_{*} h' dv_{*} d\sigma.$$ We estimate the last
two terms of (4.4.2) in the following lemma. **Lemma 4.13.** Assume that $g_1 \geq 0$. Then for any $\varepsilon > 0$, there exist constants $C_{\varepsilon} > 0$ and $K(\varepsilon, \|g_2\|_{L^{\infty}(]0, T[;H_{\delta}^m(\mathbb{R}^6))}) > 0$ such that $$(4.4.3) \quad \left(W_{3}\Gamma^{t}(g_{1}, f), W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} \leq \varepsilon \|W_{4}f(t)\|_{L^{2}(\mathbb{R}^{6})}^{2} + C_{\varepsilon}\|g_{1}\|_{L^{\infty}(]0, T[; H_{4}^{m}(\mathbb{R}^{6}))}^{2} \|W_{3}f(t)\|_{L^{2}(\mathbb{R}^{6})}^{2},$$ $$(4.4.4) \quad \left|\left(W_{3}\Gamma^{t}(f, g_{2}), W_{3}f\right)_{L^{2}(\mathbb{R}^{6})}\right| \leq \varepsilon \|W_{4}f(t)\|_{L^{2}(\mathbb{R}^{6})}^{2} + K(\varepsilon, \|g_{2}\|_{L^{\infty}(]0, T[; H_{3}^{m}(\mathbb{R}^{6}))}) \|W_{3}f(t)\|_{L^{2}(\mathbb{R}^{6})}^{2}.$$ Notice that by using the above lemma with $\varepsilon = \kappa/4$ and (4.4.2), we get $$\frac{d}{dt} \|W_3 f(t)\|_{L^2(\mathbb{R}^6)}^2 \le \left(C \|g_1\|_{L^{\infty}(]0, T[; H_4^m(\mathbb{R}^6))}^2 + K(\varepsilon, \|g_2\|_{L^{\infty}(]0, T[; H_4^m(\mathbb{R}^6))}) \right) \|W_3 f(t)\|_{L^2(\mathbb{R}^6)}^2.$$ Then $||W_3f(0)||_{L^2(\mathbb{R}^6)} = 0$ implies $||W_3f(t)||_{L^2(\mathbb{R}^6)} = 0$ for all $0 \le t \le T$ which gives Proposition 4.12. **Proof of Lemma 4.13.** As for (4.4.3), we have $$\begin{split} & \left(W_{3}\Gamma^{t}(g_{1},\,f)\,,W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} \\ & = \left(W_{3}Q(\mu(t)g_{1},\,f)\,,W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} + \iiint B\,\left(\mu(t)_{*} - \mu(t)_{*}'\right)g_{1*}'f'W_{3}^{2}fdv_{*}d\sigma dv dx \\ & = \left(Q(\mu(t)g_{1},\,W_{3}f)\,,W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} + \left(W_{3}Q(\mu(t)g_{1},\,f) - Q(\mu(t)g_{1},\,W_{3}f)\,,W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} \\ & + \iiint B\,\left(\mu(t)_{*} - \mu(t)_{*}'\right)g_{1*}'\left(W_{3}f\right)'W_{3}fdv_{*}d\sigma dv dx \\ & + \iiint B\,\left(\mu(t)_{*} - \mu(t)_{*}'\right)g_{1*}'\left(W_{3} - W_{3}'\right)f'W_{3}fdv_{*}d\sigma dv dx \\ & = D_{1} + D_{2} + D_{3} + D_{4}. \end{split}$$ The term D_1 is similar to B_1 in the proof of Proposition 4.8. By using $\mu(t)g_1 \geq 0$, we have $$D_1 \le C \|g_1(t)\|_{H^{3/2+\delta}(\mathbb{R}^6_{x,\,v})} \|f(t)\|_{L^2_3(\mathbb{R}^6_{x,\,v})} \|f(t)\|_{L^2_{2+x^+}(\mathbb{R}^6_{x,\,v})},$$ for some small $\delta > 0$. The term D_2 is similar to B_2 and we can obtain $$|D_2| \le C \|g_1(t)\|_{H^{3/2+\delta}(\mathbb{R}^6_{x,v})} \|f(t)\|_{L^2_3(\mathbb{R}^6_{x,v})} \|f(t)\|_{L^2_{3+\gamma^+}(\mathbb{R}^6_{x,v})}.$$ The terms D_3, D_4 are similar to I_1, I_2 in the proof of Proposition 4.9. Namely $$|D_3| + |D_4| \le C ||g_1(t)||_{H^{6/2+\delta}_{3+(\gamma+2s+\delta)^+}(\mathbb{R}^6_{x,v})} ||f(t)||_{L^2_3(\mathbb{R}^6_{x,v})} ||f(t)||_{L^2_{3+(\gamma+2s+\delta)^+}(\mathbb{R}^6_{x,v})}.$$ Thus, for any $0 < t \le T$ and m > 3, we have $$\left(W_{3}\Gamma^{t}(g_{1}, f), W_{3}f\right)_{L^{2}(\mathbb{R}^{6})} \leq C\|g_{1}\|_{L^{\infty}(]0, T[; H^{m}_{4}(\mathbb{R}^{6}_{x, v}))}\|W_{3}f(t)\|_{L^{2}(\mathbb{R}^{6}_{x, v})}\|W_{4}f(t)\|_{L^{2}(\mathbb{R}^{6}_{x, v})},$$ which implies (4.4.3). The left hand side of (4.4.4) can be written as $$\begin{split} & \left(W_{3} \Gamma^{t}(f, g_{2}), W_{3} f\right)_{L^{2}(\mathbb{R}^{6})} \\ & = \left(W_{3} Q(\mu(t) f, g_{2}), W_{3} f\right)_{L^{2}(\mathbb{R}^{6})} + \iiint B \left(\mu(t)_{*} - \mu(t)'_{*}\right) f'_{*} g'_{2} W_{3}^{2} f dv_{*} d\sigma dv dx \\ & = \left(W_{3} Q(\mu(t) f, g_{2}), W_{3} f\right)_{L^{2}(\mathbb{R}^{6})} + \iiint B \left(\mu(t)_{*} - \mu(t)'_{*}\right) f'_{*} \left(W_{3} g_{2}\right)' W_{3} f dv_{*} d\sigma dv dx \\ & + \iiint B \left(\mu(t)_{*} - \mu(t)'_{*}\right) f'_{*} \left(W_{3} - W'_{3}\right) g'_{2} W_{3} f dv_{*} d\sigma dv dx \\ & = E_{1} + E_{2} + E_{3}. \end{split}$$ Using Corollary 2.5 with m = 0, l = 3 gives $$|E_{1}| \leq \int_{\mathbb{R}^{3}_{x}} \|W_{3}Q(\mu(t)f, g_{2})\|_{L^{2}(\mathbb{R}^{3}_{v})} \|W_{3}f\|_{L^{2}(\mathbb{R}^{3}_{v})} dx$$ $$\leq C \int_{\mathbb{R}^{3}_{x}} \|\mu(t)f\|_{L^{1}_{3+(\gamma+2s)}+(\mathbb{R}^{3}_{v})} \|g_{2}\|_{H^{2s}_{3+(\gamma+2s)}+(\mathbb{R}^{3}_{v})} \|W_{3}f\|_{L^{2}(\mathbb{R}^{3}_{v})} dx$$ $$\leq C \|g_{2}\|_{L^{\infty}(]0,T[\times\mathbb{R}^{3}_{x};H^{2s}_{3+(\gamma+2s+\delta)}+(\mathbb{R}^{3}_{v}))} \|f(t)\|_{L^{2}(\mathbb{R}^{6})} \|W_{3}f(t)\|_{L^{2}(\mathbb{R}^{6})}$$ $$\leq C \|g_{2}\|_{L^{\infty}(]0,T[;H^{3/2+2s+\delta}_{3+(\gamma+2s+\delta)}+(\mathbb{R}^{3}_{v}))} \|W_{3}f(t)\|_{L^{2}(\mathbb{R}^{6})}^{2}.$$ The term E_2 is similar to D_3 , and we have $$\begin{split} |E_2| &\leq C \|f(t)\|_{L^2(\mathbb{R}^3_x; \, L^1_{(\gamma+2s+\delta)^+}(\mathbb{R}^3_v))} \|g_2\|_{L^\infty(]0, T[\times \mathbb{R}^3_x; \, L^2_{3+\gamma^+}(\mathbb{R}^3_v))} \|W_3 f(t)\|_{L^2(\mathbb{R}^6)} \\ &\leq C \|f(t)\|_{L^2_{3/2+\delta+(\gamma+2s+\delta)^+}(\mathbb{R}^6))} \|g_2\|_{L^\infty(]0, T[; \, H^{3/2+\delta}_{3+\gamma^+}(\mathbb{R}^6))} \|W_3 f(t)\|_{L^2(\mathbb{R}^6)} \\ &\leq C \|g_2\|_{L^\infty(]0, T[; \, H^{3/2+\delta}_4(\mathbb{R}^6))} \|W_3 f(t)\|_{L^2(\mathbb{R}^6))}^2. \end{split}$$ For the term E_3 , we can use (2.1.15) with l=3. Then $$|E_{3}| \leq \iiint b(\cos\theta) \langle v - v_{*} \rangle^{\gamma} |\mu(t)_{*} - \mu(t)'_{*}| |f'_{*}| |W_{3} - W'_{3}| |g'_{2}| |W_{3}f| dv_{*}d\sigma dv dx$$ $$\leq C \iiint \sin\left(\frac{\theta}{2}\right) b(\cos\theta) |(W_{1+\gamma+}f)'_{*}| |(W_{3+\gamma+}g_{2})'| |W_{3}f| dv_{*}d\sigma dv dx$$ $$+ C \iiint \sin^{3}\left(\frac{\theta}{2}\right) b(\cos\theta) |\mu'_{*}(t)| |(W_{3+\gamma+}f)'_{*}| |(W_{\gamma+}g_{2})'| |W_{3}f| dv_{*}d\sigma dv dx$$ $$+ C \iiint \sin^{3}\left(\frac{\theta}{2}\right) b(\cos\theta) |\mu_{*}(t)| |(W_{3+\gamma+}f)'_{*}| |(W_{\gamma+}g_{2})'| |W_{3}f| dv_{*}d\sigma dv dx$$ $$= E_{3,1} + E_{3,2} + E_{3,3}.$$ Since 0 < 2s < 1 is assumed, for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that $$\begin{split} |E_{3,1}| &\leq C \int_{\mathbb{R}^3_x} \|f(t,x,\cdot)\|_{L^1_{1+\gamma^+}(\mathbb{R}^3_v)} \|g_2(t,x,\cdot)\|_{L^2_4(\mathbb{R}^3_v)} \|f(t,x,\cdot)\|_{L^2_3(\mathbb{R}^3_v)} dx \\ &\leq C \|f(t)\|_{L^2(\mathbb{R}^3_x;L^1_{1+\gamma^+}(\mathbb{R}^3_v))} \|g_2\|_{L^{\infty}(]0,T[\times\mathbb{R}^3_x;L^2_4(\mathbb{R}^3_v))} \|f(t)\|_{L^2_3(\mathbb{R}^6_{x,v})} \\ &\leq C \|f(t)\|_{L^2_{3/2+\delta+1+\gamma^+}(\mathbb{R}^6_{x,v})} \|g_2\|_{L^{\infty}(]0,T[;H^{3/2+\delta}_4(\mathbb{R}^6_{x,v}))} \|f(t)\|_{L^2_3(\mathbb{R}^6_{x,v})} \\ &\leq \left(\varepsilon \|W_4f(t)\|_{L^2_2(\mathbb{R}^6_{x,v})} + C_\varepsilon \|W_3f(t)\|_{L^2(\mathbb{R}^6_{x,v})}^2\right) \|g_2\|_{L^{\infty}(]0,T[;H^{3/2+\delta}_4(\mathbb{R}^6_{x,v}))} . \end{split}$$ Similarly $$\begin{split} |E_{3,2}| &\leq C \int_{\mathbb{R}^3_x} \|\mu(t) f(t,\,x,\,\cdot)\|_{L^1_{1+\gamma^+}(\mathbb{R}^3_v)} \, \|g_2(t,\,x,\,\cdot)\|_{L^2_{\gamma^+}(\mathbb{R}^3_v)} \, \|f(t,\,x,\,\cdot)\|_{L^2_3(\mathbb{R}^3_v)} \, dx \\ &\leq C \|g_2\|_{L^\infty([0,T[:\,H^{3/2+\delta}_4(\mathbb{R}^6_{v,\,v})]} \|f(t)\|_{L^2(\mathbb{R}^6_{x,\,v})} \|W_3f(t)\|_{L^2(\mathbb{R}^6_{x,\,v})} \, . \end{split}$$ Since $3/2 + (3 + \gamma^{+}) > 4$, we can not estimate $E_{3,3}$ in the same way as for $E_{3,2}$. Instead, we have $$|E_{3,3}| \leq C \|W_{\gamma^{+}} g_{2}\|_{L^{\infty}(]0,T[\times\mathbb{R}_{x,v}^{6})} \iiint \theta^{3} b(\cos\theta) \ \mu_{*}(t) |(W_{3+\gamma^{+}} f)_{*}'| \ |W_{3} f| \ dv_{*} d\sigma dv dx$$ $$\leq C \|g_{2}\|_{L^{\infty}(]0,T[;H_{3}^{3+\delta}(\mathbb{R}_{x,v}^{6}))} \int_{\mathbb{R}_{x}^{3}} \left(\iiint \theta^{1} b(\cos\theta) \ \mu_{*}(t) |W_{3} f|^{2} \ |dv_{*} d\sigma dv\right)^{\frac{1}{2}}$$ $$\times \left(\iiint \theta^{5} b(\cos\theta) \ \mu_{*}(t) |(W_{3+\gamma^{+}} f)_{*}'|^{2} \ |dv_{*} d\sigma dv\right)^{\frac{1}{2}} dx \ .$$ We now take the singular change of variables $v'_* \to v$. The Jacobian is computed in (2.1.21) which is of the order of θ^{-2} . Then this singular change of variables yields $$\iiint \theta^5 b(\cos \theta) \ \mu_*(t) |(W_{3+\gamma^+} f)'_*|^2 | \ dv_* d\sigma dv$$ $$\leq C \iint D_1(v_*, v'_*) \ \mu_*(t) |(W_{3+\gamma^+} f)'_*|^2 | \ dv_* dv'_*,$$ with $D_1(v_*, v_*') = \int_{S^2} \theta^{5-2} b(\cos \theta) d\sigma \le C \int_{\pi/4}^{\pi/2} (\frac{\pi}{2} - \psi)^{-2-2s+5-2} d\psi \le C$. Hence $$\iiint \theta^5 b(\cos \theta) \ \mu_*(t) |(W_{3+\gamma^+} f)_*'|^2 | dv_* d\sigma dv$$ $$\leq C \|\mu(t)\|_{L^1(\mathbb{R}^3_n)} \|W_{3+\gamma^+} f(t, x, \cdot)\|_{L^2(\mathbb{R}^3_n)}^2.$$ Therefore, $$|E_{3,3}| \le C \|g_2\|_{L^{\infty}(]0,T[;H_4^{3+\delta}(\mathbb{R}^6_{x,v}))} \|W_3f\|_{L^2(\mathbb{R}^6_{x,v})} \|W_{3+\gamma^+}f\|_{L^2(\mathbb{R}^6_{x,v})}.$$ By combining the estimates on E_1, E_2, E_3 , we have proved (4.4.4). Now the proof of Lemma 4.13 is complete. 4.5. **Proof of Theorem 1.2.** Assume that $f_0 \in \mathcal{E}_0^{k_0}(\mathbb{R}^5)$. Then there exists $\rho_0 > 0$ such that $e^{\rho_0 \langle v \rangle^2} f_0 \in H^{k_0}(\mathbb{R}^6)$. Choose $0 < \rho < \rho_0$ and $\kappa > 0$ small enough. By setting $g_0 = e^{\rho \langle v \rangle^2} f_0$, then $g_0 \in H^{k_0}_l(\mathbb{R}^6)$ for all $l \in \mathbb{N}$. Theorem 4.1 asserts that the Cauchy problem (4.1.1) with the initial datum g_0 admits a non-negative local solution $$g \in C^0([0, T_*]; H_l^{k_0}(\mathbb{R}^6)) \cap L^2([0, T_*]; H_{l+1}^{k_0}(\mathbb{R}^6)), \quad \forall l \in \mathbb{N},$$ with $T_* \in]0, T_0]$ $(T_0 = \frac{\rho}{2\kappa})$. Then $$f(t, x, v) = e^{-(\rho - \kappa t)\langle v \rangle^2} g(t, x, v) \in C^0([0, T_*]; H_l^{k_0}(\mathbb{R}^6)) \cap L^2([0, T_*]; H_l^{k_0}(\mathbb{R}^6)), \quad \forall \ l \in \mathbb{N},$$ is a non-negative solution of the Cauchy problem (1.6). Since for $0 \le t \le T_* \le T_0$, (4.5.1) $$e^{\frac{\rho}{2}\langle v \rangle^2} f \in C^0([0, T_*]; H^{k_0}(\mathbb{R}^6)),$$ we can conclude $f \in \mathcal{E}^{k_0}([0,T_*] \times \mathbb{R}^6_{x,v})$, which leads to the local existence stated in Theorem 1.2. Suppose now for some $f_0 \in \mathcal{E}^4_0(\mathbb{R}^5)$, the Cauchy problem
(1.6) admits two solutions $f_1 \in \mathcal{E}^4([0,T_1] \times \mathbb{R}^6_{x,v})$ and $f_2 \in \mathcal{E}^4([0,T_2] \times \mathbb{R}^6_{x,v})$. This implies that there exist $\rho_0, \rho_1, \rho_2 > 0$ such that $$e^{\rho_0 \langle v \rangle^2} f_0 \in H^4(\mathbb{R}^6),$$ and $$e^{\rho_1 \langle v \rangle^2} f_1 \in C^0([0, T_1]; H^4(\mathbb{R}^6)), \quad e^{\rho_2 \langle v \rangle^2} f_2 \in C^0([0, T_2]; H^4(\mathbb{R}^6)).$$ Take $0 < \rho < \min\{\rho_0, \rho_1, \rho_2\}$ and $\kappa > 0$ sufficiently small such that $\frac{\rho}{2\kappa} > T_{**} = \min\{T_1, T_2\}$. Then we have $$g_0 = e^{\rho \langle v \rangle^2} f_0 \in H_l^4(\mathbb{R}^6),$$ for any $l \in \mathbb{N}$, and $$g_1 = e^{(\rho - \kappa t)\langle v \rangle^2} f_1 \in C^0([0, T_{**}]; H_l^4(\mathbb{R}^6)), \quad g_2 = e^{(\rho - \kappa t)\langle v \rangle^2} f_2 \in C^0([0, T_{**}]; H_l^4(\mathbb{R}^6)),$$ are two solutions of the Cauchy problem (4.1.1) with the common initial datum g_0 . Then Proposition 4.12 gives $g_1 = g_2$, so that $f_1 = f_2$ for $t \in [0, T_{**}]$. Now the uniqueness of solutions stated in Theorem 1.2 is obvious since $T_1 = T_2 = T_{**}$. On the other hand, in view of (4.5.1), $||f(t, x, \cdot)||_{L^1}$ is continuous for $(t, x) \in [0, T_*] \times \mathbb{R}^3_x$. Therefore, if for a compact $K \subset \mathbb{R}^3$, we have $$\inf_{x \in K} ||f_0(x, \,\cdot\,)||_{L^1} = c_0 > 0,$$ then there exist $0 < \tilde{T}_0 \le T_*$ and a closed neighborhood of K denoted by V_0 in \mathbb{R}^3_x such that $$\inf_{(t,x)\in[0,\tilde{T}_0]\times V_0} \|f(t,x,\cdot)\|_{L^1} \ge \frac{c_0}{2}.$$ Now Theorem 1.1 implies that $$f \in \bigcap_{l \in \mathbb{N}} \mathcal{H}_l^{+\infty}(]0, \tilde{T}_0[\times V_0 \times \mathbb{R}_v^3) \subset C^{\infty}(]0, \tilde{T}_0[\times V_0; \mathcal{S}(\mathbb{R}_v^3)).$$ It remains to prove the uniqueness of solutions of Theorem 1.2 in the soft potential case $\gamma \leq 0$. In this case, the uniqueness of solution can be proved in a larger functional space. We state it as follows. **Proposition 4.14.** Assume that 0 < s < 1/2, $\gamma \le 0$, $0 < T \le +\infty$ and m > 2s+3/2, l > 2s+3/2. Let $f_0 \ge 0$, $f_0 \in H^m_{l+2s}(\mathbb{R}^6)$. Suppose that the Cauchy problem (1.6) admits two non-negative solutions $$f_1, f_2 \in L^{\infty}(]0, T[; H_{l+2s}^m(\mathbb{R}^6)).$$ Then $f_1 \equiv f_2$. **Proof:** The proof is similar to the one for Proposition 4.12. Set $F = f_1 - f_2$, by using (1.6), we have (4.5.2) $$\begin{cases} F_t + v \cdot \nabla_x F = Q(f_1, F) + Q(F, f_2), \\ F|_{t=0} = 0. \end{cases}$$ We can now take W_lF as a test function to have $$(4.5.3) \frac{1}{2} \frac{d}{dt} \|F(t)\|_{L_{l}^{2}(\mathbb{R}^{6})}^{2} = \left(W_{l} Q(f_{1}, F) + W_{l} Q(F, f_{2}), W_{l} F\right)_{L^{2}(\mathbb{R}^{6})}.$$ Since $f_1 \geq 0$ and $\gamma \leq 0$, similar to the analysis on B_1 in the proof of Proposition 4.8, we have $$\left(Q(f_1, W_l F), W_l F\right)_{L^2(\mathbb{R}^6)} \le C \|f_1(t)\|_{L^{\infty}(\mathbb{R}^3_x; L^1(\mathbb{R}^3_v))} \|F(t)\|_{L^2(\mathbb{R}^6_{x,v})}^2.$$ Using (2.1.17) with $\gamma^+ = 0$ gives $$\left| \left(W_l Q(f_1, F) - Q(f_1, W_l F), W_l F \right)_{L^2(\mathbb{R}^6)} \right| \le C \|f_1(t)\|_{L^{\infty}(\mathbb{R}^3_x; L^2_l(\mathbb{R}^3_v))} \|F(t)\|_{L^2_l(\mathbb{R}^6_{x, v})}^2,$$ and $$\left| \left(W_l Q(F, f_2) - Q(F, W_l f_2), W_l F \right)_{L^2(\mathbb{R}^6)} \right| \leq C \|F(t)\|_{L^2_l(\mathbb{R}^6_{x, v})} \|f_2(t)\|_{L^{\infty}(\mathbb{R}^3_x; L^2_l(\mathbb{R}^3_v))} \|F(t)\|_{L^2_l(\mathbb{R}^6_{x, v})}.$$ Finally, for l > 3/2 + 2s, we have $$\left| \left(Q(F, W_{l}f_{2}), W_{l}F \right)_{L^{2}(\mathbb{R}^{6})} \right| \leq C \|Q(F, W_{l}f_{2})\|_{L^{2}(\mathbb{R}^{6})} \|F(t)\|_{L^{2}_{l}(\mathbb{R}^{6})} \leq \|F(t)\|_{L^{2}_{l}(\mathbb{R}^{6})} \left(\int_{\mathbb{R}^{3}_{x}} \|F(t, x, \cdot)\|_{L^{2}_{2s}(\mathbb{R}^{3}_{v})}^{2} \|f_{2}(t, x, \cdot)\|_{H^{2s}_{l+2s}(\mathbb{R}^{3}_{v})}^{2} \right)^{1/2} \leq C \|F(t)\|_{L^{2}_{l}(\mathbb{R}^{6})}^{2} \|f_{2}(t)\|_{L^{\infty}(\mathbb{R}^{3}_{x}; H^{2s}_{l+2s}(\mathbb{R}^{3}_{v}))}.$$ Thus, we have, for any 0 < t < T and $\delta > 0$ small enough, $$\begin{split} \frac{d}{dt} \|F(t)\|_{L^2_l(\mathbb{R}^6)}^2 &\leq C \left(\|f_1\|_{L^\infty(]0,T[;\; H^{3/2+\delta}_l(\mathbb{R}^6_{x,v}))} + \|f_2\|_{L^\infty(]0,T[;\; H^{3/2+\delta+2s}_{l+2s}(\mathbb{R}^6_{x,v}))} \right) \|F(t)\|_{L^2_l(\mathbb{R}^6)}^2. \end{split}$$ Therefore, $\|F(0)\|_{L^2_l(\mathbb{R}^6)} = 0$ implies $\|F(t)\|_{L^2_l(\mathbb{R}^6)} = 0$ for all $t \in [0,T[.]]$ Acknowledgements: The authors would like to express their sincere thanks to the referee for his valuable comments. The research of the second author was supported by Grant-in-Aid for Scientific Research No.18540213, Japan Society of the Promotion of Science. The last author's research was supported by the General Research Fund of Hong Kong, CityU#102606. #### References - [1] R. Alexandre, Sur de taux de dissipation d'entropie sans troncature angulaire, C.R. Acad. Sci. Paris, Serie I , 326 (1998), 311-315. - [2] R. Alexandre, Around 3D Boltzmann operator without cutoff. A New formulation. Math. Modelling and Num. Analysis, 343 (2000) 575–590. - [3] R. Alexandre, On some related non homogeneous 3D Boltzmann models in the non cutoff case, *J. Math. Kyoto Univ.*, **40** (2000) 93–524. - [4] R. Alexandre, Some solutions of the Boltzmann equation without angular cutof, J. Stat. Physics, 104 (2001) 327–358. - [5] R. Alexandre, Integral estimates for linear singular operator linked with Boltzmann operator. Part I: small singularities $0 < \nu < 1$, Indiana Univ. Math. J., **55** (2006) 1975-2021. - [6] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000) 327-355. - [7] R. Alexandre and L. He, Integral estimates for a linear singular operator linked with Boltzmann operator. Part II: high singularities $1 \le \nu < 2$, Kinetic and Related Models, 1 (2008) 491-514. - [8] R.Alexandre, Y.Morimoto, S.Ukai, C.-J.Xu and T.Yang, Uncertainty principle and regularity for Boltzmann type equations, C. R. Acad. Sci. Paris, Ser. I, 345 (2007) 673-677. - [9] R.Alexandre, Y.Morimoto, S.Ukai, C.-J.Xu and T.Yang, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008) 2013-2066. - [10] R. Alexandre and M. Safadi, Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non cutoff and Maxwell cases, Math. Models Methods Appl. Sci., 15 (2005) 907-920. - [11] R. Alexandre and M. Safadi, Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. II. Non cutoff and non Maxwell cases. *To appear in DCDS, special issue.* - [12] R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction, Communications on Pure and Applied Mathematics, 55 (2002) 30–70. - [13] R. Alexandre and C.Villani, The Landau approximation in plasma physics. Ann. IHP. Analyse non lin., 21 (2004) 61–95. - [14] A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991) 465–478. - [15] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat. Mech. Anal., 77 (1981), 11-21. - [16] A. Bobylev, The theory of nonlinear, spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Rev. C. Math. Phys., 7 (1988) 111–233. - [17] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, *Annales de l'École Normale Supérieure*, **14** (1981), 209–246. - [18] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pure Appl., 81 (2002) 1135-1159. - [19] F. Bouchut and L. Desvillettes, A proof of smoothing properties of the positive part of Boltzmann's kernel. Rev. Mat. Iberoamericana, 14 (1998) 47–61. - [20] F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory, Series in Appl. Math., Gauthiers-Villars, 2000. - [21] L. Boudin and L. Desvillettes, On the singularities of the global small solutions of the full Boltzmann equation, Monatschefte für Mathematik, 131 (2000), 91–108. - [22] C. Cercignani, The Boltzmann equation and its applications, Applied mathematical sciences, 67, Springer-Verlag, 1988. - [23] C. Cercignani, R. Illner and M. Pulvirenti, *The Mathematical theory of Dilute gases*, Applied mathematical sciences, **106**. Springer-Verlag, New York, 1994. viii+347 pp. - [24] H. Chen, W.-X. Li and C.-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations. Kinetic and Related Models, 1 (2008) 355–368. - [25] Y. Chen, Smoothness of classical solutions to the Vlasov-Poisson-Landau System, Kinetic and Related Models, 1(2008), no. 3, 369-386. - [26] Y. Chen, L. Desvillettes and L. He, Smoothing effects for classical solutions of the full Landau equation. To appear in Arch. Rat. Mech. and Analysis. - [27] L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys., 168 (1995) 417–440. - [28] L. Desvillettes, Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys., 26–3 (1997) 341–357. - [29] L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation. Summer School on "Methods and Models of Kinetic Theory" (M& MKT 2002). Riv. Mat. Univ. Parma (7) 2 (2003), 1–99. - [30] L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules, *To appear in Trans. Amer. Math. Soc.* - [31] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: existence, uniqueness and smoothness. Comm. Partial Differential
Equations, 25-1-2 (2000) 179–259 - [32] L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Partial Differential Equations, 29-1-2 (2004) 133–155. - [33] R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math., 130 (1989), 321-366. - [34] R.J. Duan, M.-R. Li and T. Yang, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18 (2008) 1093–1114. - [35] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. - [36] Y. Guo, The Landau equation in a periodic box. Comm. Math. Phys., 231 (2002) 391-434. - [37] H. Grad, Asymptotic Theory of the Boltzmann Equation II, Rarefied Gas Dynamics, J. A. Laurmann, Ed. Vol. 1, Academic Press, New York, 1963, 26–59. - [38] H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl. Math. vol. 17, 154-183, AMS, Providence, 1965, editor R. Finn. - [39] Z. H. Huo, Y.Morimoto, S.Ukai and T.Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kinetic and Related Models, 1 (2008) 453-489. - [40] S. Kaniel and M. Shinbrot, The Boltzmann equation. I. Uniqueness and local existence. Comm. Math. Phys., 59 (1978) 65-84. - [41] H. Kumano-go, Pseudo-Differential Operators, MIT Press, 1982. - [42] P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, and III. J. Math. Kyoto Univ., 34 (1994), 391–427, 429–461, 539–584. - [43] P. L. Lions, Regularity and compactness for Boltzmann collision operator without angular cut-off. C. R. Acad. Sci. Paris Series I, 326 (1998), 37–41. - [44] X. A. Lu, Direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl., 228 (1998), 409–435. - [45] Y. Morimoto, The uncertainty principle and hypoelliptic operators, Publ. RIMS Kyoto Univ., 23 (1987), 955-964 - [46] Y. Morimoto, Estimates for degenerate Schrödinger operators and hypoellipticity for infinitely degenerate elliptic operators, J. Math. Kyoto Univ., 32 (1992), 333-372. - [47] Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sc. Math. 121 (1997), 507-547. - [48] Y.Morimoto, S.Ukai, C.-J.Xu and T.Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without Angular cutoff, *Discrete and Continuous Dynamical Systems Series A*, **24**(2009) 187–212. - [49] Y. Morimoto and C.-J. Xu, Hypoelliticity for a class of kinetic equations, J. Math. Kyoto Univ., 47 (2007) 129–152. - [50] Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, preprint, 2008. - [51] C. Mouhot and R.M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535. - [52] Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II. Commun. Pure Appl. Math., 27 (1974), 407–428, 559–581. - [53] S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1-1 (1984) 141–156. - [54] S. Ukai, Solutions of the Boltzmann equation, Pattern and Waves Qualitave Analysis of Nonlinear Differential Equations (eds. M.Mimura and T.Nishida), Studies of Mathematics and Its Applications 18, pp37-96, Kinokuniya-North-Holland, Tokyo, 1986. - [55] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998) 273–307. - [56] C. Villani, Regularity estimates via entropy dissipation for the spatially homogeneous Boltzmann equation, Rev. Mat. Iberoamericana, 15-2 (1999) 335–352. - [57] C. Villani, A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics. Ed. S. Friedlander, D.Serre, 2002. - [58] B. Wennberg, The geometry of binary collisions and generalized Radon transform, Arch. Rational Mech. Anal., 139 (1997), 291-302. - [59] C.-J. Xu, Nonlinear microlocal analysis. General theory of partial differential equations and microlocal analysis (Trieste, 1995), 155–182, Pitman Res. Notes Math. Ser., 349, Longman, Harlow, 1996. IRENAV RESEARCH INSTITUTE, FRENCH NAVAL ACADEMY BREST-LANVÉOC 29290, FRANCE $E\text{-}mail\ address:}$ radjesvarane.alexandre@ecole-navale.fr GRADUATE SCHOOL OF HUMAN AND ENVIRONMENTAL STUDIES, KYOTO UNIVERSITY, KYOTO, 606-8501, JAPAN *E-mail address*: morimoto@math.h.kyoto-u.ac.jp 17-26 Iwasaki-cho, Hodogaya-ku, Yokohama 240-0015, Japan $E ext{-}mail\ address: ukai@kurims.kyoto-u.ac.jp}$ Université de Rouen, UMR 6085-CNRS, Mathématiques Avenue de l'Université, BP.12, 76801 Saint Etienne du Rouvray, France, AND SCHOOL OF MATHEMATICS, WUHAN UNIVERSITY 430072, WUHAN, CHINA $E\text{-}mail\ address: \texttt{Chao-Jiang.Xu@univ-rouen.fr}$ DEPARTMENT OF MATHEMATICS, CITY UNIVERSITY OF HONG KONG, HONG KONG, P.R. CHINA $E\text{-}mail\ address{:}\ \mathtt{matyang@cityu.edu.hk}$