
HAL Id: hal-00368532
https://hal.science/hal-00368532v2

Submitted on 9 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient data access management for FPGA-Based
image processing SoCs

Zahir Larabi, Yves Mathieu, Stéphane Mancini

To cite this version:
Zahir Larabi, Yves Mathieu, Stéphane Mancini. Efficient data access management for FPGA-Based
image processing SoCs. 20th IEEE/IFIP International Symposium on Rapid System Prototyping
(RSP2́009), Jun 2009, Paris, France. pp.159-165. �hal-00368532v2�

https://hal.science/hal-00368532v2
https://hal.archives-ouvertes.fr


Efficient data access management for FPGA-Based image processing SoCs

Zahir Larabi and Yves Mathieu

Institut TELECOM; TELECOM ParisTech; CNRS LTCI

46, rue Barrault

75634 Paris , France

{zahir.larabi,yves.mathieu}@telecom-paristech.fr
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Abstract

In this paper, we propose a low-cost n-dimensional

cache (nD-Cache) architecture for FPGA-Based image

and signal processing Systems On Chip (SoCs). The

architecture allows efficient access to structured data

such as in 2D or 3D images. We developed a theoretical

model for our architecture. It gives a methodology to

define the cache’s practical implementation based on

the application and system parameters. Complexity and

performance for selected image processing algorithms like

jumping snake and 2D Back-Projection are measured and

compared to classical solutions like associative caches.

The architecture is shown to be efficient for tracking

algorithm applications by exploiting spacial and temporal

locality. Numerical results indicate that 50% improvement

in run-time performance can be achieved.

Keywords: FPGA SoC, cache memory, structured data

caching, Adaptative Predictive Cache, image processing.

1. Introduction

Modern FPGA allows the design of Programmable SoC

(PSoC) using specific blocks such as DSP, CPU, Embedded

RAM ... However, this embedded memory is insufficient for

complex image and signal processing systems. Thus, the use

of external memory is mandatory. Modern technology brings

large amounts of cheap memories (SDRAM) at the cost of

increasing access latency. Typically, cache-memories built

from on-chip memories are used to speed-up the system.

There are some cache Intellectual Properties (IPs) for

FPGA-embedded microprocessors. These IPs are more or

less complex depending on the strategy used for data re-

placement. The cache IPs proposed by the FPGA vendors

are, to our knowledge, direct mapped caches which are

too simple to provide the desired performance in image

processing applications [15], [7], [20]. This is due to the

relatively slow operating frequency of the old generation

FPGA systems. With new FPGA-SoCs, it is essential to

have efficient cache strategies to share memory access be-

tween several processing IPs. Nevertheless, some IP vendors

provide more complex cache implementation for FPGA,

for example, Gaisler company proposes an open source

tunable IP set-associative cache in the SoC environment of

LEON3 [1].

Traditional caches exploit spatial and temporal locality,

but image and signal processing applications processing

massive amounts of data and temporal locality are not very

abundant. For traditional caches, spatial locality occurs in

one dimension, a line is fetched on a cache miss. Image

processing applications operate on small blocks of 2D data.

This paper focus on the data cache memory for image and

signal processing. The architecture we propose (nD-Cache)

allows efficient access to structured data as in 2D or 3D

images. A theoretical model of this architecture is developed.

The cache is suitable for a large class of applications that

fetches data from an n-dimensional data structure. It is

targeted to be used in the context of application specific

hardware on FPGAs where the nature of the algorithms is

clearly identified. The prefetching strategy of the cache is

independent from the applications and can be tuned with

few parameters.

The outline of the paper is organized as follows. Related

work is provided in Section 2. Section 3 presents a model

of the targeted application. Section 4 describes our cache

architecture. Section 5 presents the theoretical model of the

cache. Application and results are discussed in Section 6.

Finally, conclusions are given in Section 7.

2. Related Work

Cache architectures for general purpose processors have

been optimized to deal with structured data and especially

for multimedia applications [22], [8]. However, to exploit

the parallel computation capacities of FPGA, the rule is to

design specific memory access architectures [17].

2.1. Cache architectures for structured data man-

agement

Performance gains may come from a suitable static

parameterization of the cache (number of lines, size of



line, replacement policy), prefetching strategies and dynamic

reconfiguration of the cache’s parameters [19], [16].

The challenge of a prefetching strategy is to estimate the

cache lines to prefetch from an analysis of the past fetches,

without the knowledge of the initial data structure. The One

Block Lookahead (OBL) [21] technique fetches consecutive

cache lines based on the reference causing a cache miss.

Stride Prediction Table (SPT) [13], used in the Intel-Core

processor [11], computes the stride subtracting the previ-

ous fetched address from the new reference address. SPT

prefetches the line a stride ahead of the current reference.

Although SPT is efficient for high-end micro-processors,

it is too complex for specific hardware, FPGA targets and

embedded systems because it needs an additional associative

memory to store the loaded instructions and the their tags.

The dynamic tuning of the cache memory tries to optimize

the efficiency of applications for which memory access

patterns may vary in time. [3] proposes to reconfigure a

tunable cache when a phase transition is detected at fixed

intervals. The reconfiguration process needs an exhaustive

search of the available cache parameters to reduce the miss

rate.

Some knowledge about the pattern access may lead to

efficient prefetching mechanisms. As an example, texture

caching for 3D rendering benefits from some assumptions

about the access pattern [18], [6]. Some information about

the size of an image can also be used to exploit 2D

locality and perform neighbor prefetching [9]. [14] reports

satisfactory results of a Markov predictor based prefetching

but the large memory need to store the matrix of transition

probability makes it impracticable.

Specific caching hardware can be implemented, more

or less tied to the application. The most obvious strategy

is to pipeline computations and memory accesses. But it

makes little use of the fetch coherency and parallelization

is difficult. Similar to pipelining, deterministic caching [10]

analyzes a part of the fetch sequence to compute the needed

data. It may be of low overhead but some memory is

necessary to store the fetch sequence and the corresponding

intermediate internal variables. On-line cache accesses with

a prefetch mechanism is the most efficient way to reach a

high throughput with a low pipeline latency.

2.2. Optimization of applications for cache effi-

ciency

Applications have to be transformed in such a way that

they produce fetches in a cache friendly way: the next

iteration of a loop has to produce a fetch at an address

close to the previous one. The main results we can find

in the literature are about the transformation of nested loop

when data indexes are affine functions of loop indexes [5].

Tiling is another popular optimization which decomposes a

loop into a higher level loop to produce tiles and an inner

loop in each tile [12]. Furthermore, the combination of the

transformations of an application together with a re-mapping

of the data structure in the memory can lead to a high

cache efficiency of a direct mapped cache, which is of low

hardware cost [5]. These solutions are shown to be efficient

at the expense of a lack of genericity.

3. A model of targeted data access applications

Our cache is intended for applications with multidi-

mensional data. For example in 2D image processing, by

analyzing the accessed pixel addresses, the cache predicts

the 2D block of memory elements to prefetch. Successive

access fetches represent displacements in the data structure.

A typical example is shown in Figure 1; we assume that the

displacement in one dimension is the sum of a low speed

global displacement and a high speed local displacement.

The sequence is characterized by three parameters:

- N : the number of dimensions in the data structure.

- vn: the maximum speed of the global displacement for

the nth dimension.

- An: the magnitude of the local displacement for the

nth dimension.

We assume that displacements in different dimensions are

independent. The tracking mechanism is performed in each

dimension independently.

An ideal cache should be able to contain the data cor-

responding to local displacements and predict the global

displacement in order to update the cached data. Targeted

applications should fit this model or should be transformed

to comply with it.
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Figure 1. A model of targeted application in one dimen-

sion

4. The Cache architecture

The principle of the cache is to copy n-Dimension (nD)

block elements of the main memory in the cache memory



to speed up memory access by prefetching the element the

processing unit would use. Doing so, we reduce cache miss

while moving in the n-Dimensions. To predict the cached

zone position we measure the mean of the addresses issued

by the processing unit. Low-pass IIR filters are used to

compute these means. The cache is updated each time the

mean value drifts two much from the cache center (the center

of the cached block). Therefore, a virtual zone is defined

around the current cache center called “guard zone”. The

cache does not move if the computed mean is inside this

guard zone. The cache center is updated with a fixed step

when the estimated mean crosses a border of that zone.

At each movement, only the data needed are updated. The

prefetching mechanism is called a tracker hereinafter. Fig-

ure 2 shows the cache zones for a one dimension example.

• 2T is the size of the cached zone,

• 2Γ is the size of the guard zone,

• ∆ is the tracker step displacement.
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Figure 2. The Cache zones
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Figure 3. The cache architecture for 2D signal

The cache architecture as illustrated in Figure 3, is com-

posed of :

- Trackers : They estimate the zone of data to cache and

prefetch.

- Control unit : It performs the memory mapping of

indexes into addresses and loads zones of data upon

requests of trackers.

- An embedded double port memory : this memory

updates the cache concurrently with the cache accesses;
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Figure 4. The cache algorithm flow

we use modulo addressing to avoid averwriting. This

kind of memory is available in numerous FPGAs [2].

- External bus interface: The cache provides a virtual

interface to the processing unit that issues multidimen-

sional indexes in the data structure. The cache performs

the memory mapping between indexes and the external

memory addresses by an interface to a standard bus like

Avalon, CoreConnect or AMBA.

Figure 4 illustrates the cache algorithm flow. It starts by

Initial loading which corresponds to either “cold start” or “

shift in the sequence bigger than the cache size”. Thereafter,

we read (request next data) and analyze the addresses

(address analyzes) simultaneously. If the computed mean of

addresses crosses the limit of the guard zone, we shift the

cached zone (loading). The cache can be read concurrently

with the loading process. If there is a cache miss outside the

loading phase, we get he missed data back from the external

memory (load miss data), but, if the miss occurs during the

loading phase, the cache will wait until the end of loading.

5. The theoretical model of the Cache

To compute the runtime parameters of the cache (T , Γ
and ∆), we developed a theoretical model of the cache.

This model is a starting point to understand how the cache

can be dynamically set. The model requires a part of a

fetch sequence and more precisely v the speed of the global

displacement and A the magnitude of the local displacement.

To set the cache parameters, we need also the system



characteristics ie. memory latency in cycles (Lat) and bus

throughput in data by cycle (m).

Table 1 details the accesses and updates the chronology

of the cache. In phase 1 the mean ei is out of the guard zone

[ci −Γ, ci +Γ]; we make the assumption that the next fetch

will be in the direction of the crossed border. Phase 2, the

actual center ci+1 is then updated to ci + ∆ and the zone

[ci − T, ci − T + ∆] is invalidated. In phase 3, the cache

loads the needed data [ci + T, ci + T + ∆] concurrently

with the cache accesses. After Lat +
∆

m
cycles, the cache

is updated (phase 4) and the new available cached zone is

[ci − T + ∆, ci + T + ∆] (phase 5). In phase 6, the mean is

once again out the guard zone so we return to phase 1.

5.1. The cache constraints

From Table 1, to avoid cache misses, we must verify some

constraints:

1) We must not ask for a new cached zone before the

end of the current loading to avoid conflicts:

∆ + Γ > Γ + v.(Lat +
∆

m
) (1)

2) While loading, we must not have cache miss to avoid

waiting time. The loading time is Lat+
∆

m
cycles, the

mean moves from the position ci + Γ to the position

ci + Γ + v(Lat +
∆

m
). The second constraint is:

{

Γ + v(Lat +
∆

m
) + A < T

Γ − A > −T + ∆
(2)

3) To avoid cache center oscillations, after updating the

cache, we must have the computed mean in the guard

zone:

Γ >
∆

2
(3)

From the equations (1), (2) and (3), the constraints to

verify are:































∆ >
v.Lat

1 −
v

m

Γ >
∆

2

T > Γ + v(Lat +
∆

m
) + A

(4)

5.2. The efficiency model

There are several ways to measure a cache efficiency

depending on the target specifications. One can measure the

ratio between the number of total memory references Nr and

the number of clock cycles to get all the data sequence, the

hit rate, the bus occupancy, the power consumption, etc. . . In

this paper, we focus on the timing performance given by:

Efficiency =
Nr

#cycles
. This efficiency takes into account the

initialization time of the cache Ninit.

Ninit = Lat +
2T

m
cycles. (5)

If the equations in 4 are respected, the cache achieves

maximum efficiency which is given by :

Efficiency =
Nr

Ninit + Nr

(6)

For a given configuration of the cache (T , Γ and ∆), we

can compute the maximum latency Latmax (8) that offers

the optimum efficiency. Above that latency Latmax, misses

appear during the loading time. In that case, the efficiency

can be written as:

Efficiency =
Nr

Ninit + (Lat +
∆

m
)
vNr

∆

(7)

Latmax = min{
T − Γ − A

v
−

∆

m
,
∆

v
−

∆

m
} (8)

Figure 5 represents the efficiency model for a cache with

minimal size for Latmax = 36.
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Figure 5. The efficiency model

5.3. Tuning the model

For a given image processing algorithm from which we

can extract the parameters (v and A), and for a given FPGA-

SoC system from which we can extract the mean access

latency, we can find the minimal dimensions of the cache

using the equations in 4 to give optimum efficiency. We

should take into account a safety margin, given the rapid

collapse of the performance after Latmax



phase Access number (cycle) Mean position (ei) Cached zone available Cache state

1 i− ci + Γ [ci − T, ci + T ] out of the guard zone

2 i+ ci + Γ [ci − T + ∆, ci + T ] zone invalidation

3
.
.
.

.

.

. [ci − T + ∆, ci + T ] Loading [ci + T, ci + T + ∆]

4 i + Lat +
∆

m
ci + Γ + v(Lat +

∆

m
) [ci − T + ∆, ci + T + ∆] End of loading

5
.
.
.

.

.

. [ci − T + ∆, ci + T + ∆] cache updated

6 n = i +
∆

v
ci + ∆ + Γ [ci − T + 2∆, ci + T + ∆] new out of guard zone

Table 1. Cache accesses chronology

6. Application and results

In this section, we present measurement of the cache

efficiency and complexity. The cache is designed both in

VHDL RTL for synthesis and SystemC for high speed

simulation. It has been successfully implemented on a SoPC

(System On Programmable Chip) prototype and validated

with a Avnet Virtex II Pro Development board.

6.1. Complexity

Table 2 gives the complexity results of the 2D Cache for

a typical application and an unconstrained logical synthesis.

The synthesis tool reports a 170 MHz frequency for the

Virtex 4 FX target.

The hardware complexity and timing of the cache control

are almost independent of the size of the embedded memory,

contrary to a standard cache (set-associative caches).

Unit Virtex 4

Control Unit 853 FG, 280 DFF

Tracker 216 FG, 49 DFF

Table 2. The 2D cache complexity

6.2. Experimental results

The performance is measured for several applications such

as: “Jumping Snake”, “2D & 3D Backprojection” used in

medical imaging [4], “Ray Casting” algorithm used for 3D

visualization (lines that propagate in a 3D grid) and “2D

tile based video rendering” used in image transformation

and composition.

Figure 6 gives the curves of the cache efficiency depend-

ing on the system bus (32 bit bus) latency, for the aforesaid

applications. These results are given by the cache parameters

computed with the method from section 5.The embedded

memory cache size is also given for each measure. The 2D

Cache efficiency is compared with an ideal model of the

following caches:

- Full Associative, 16K, 256 lines of 16 words.

- TM32 cache, 16K, 2 way set-associative, 256 lines of

16 words.

- PowerPC 405 cache , 16K, 8 way set-associative, 512

lines of 8 words.

The results demonstrate that the 2D Cache is better in

terms of cache efficiency than a standard cache. The model

presented in section 5 gives satisfying results.

2D Backprojection and Ray Casting provide almost an

ideal performance. For a wide range of memory latencies,

the prefetch realized by the cache corresponds exactly to the

need of the application (Latmax > 30). Excellent results are

achieved, in part,thanks to the high rates of data reused by

these algorithms.

The case of the Snake shows the limitations of the

proposed tracking and inefficient configuration of the param-

eters of the cache in one dimension for latencies over 15.

The residual oscillations of the filter imposes a large guard

zone. This limits the prediction’s performance and makes it

more sensitive to memory latency. This seems to be related

to the phase shift of the low pass filter that prevents the

tracker from predicting the next references on time.

Finally, an interesting result is the video rendering, an

IP that was designed previously prior to the 2D Cache by

another team. The 2D Cache acts as a 2nd level cache and

appears to be efficient. The reuse of data is relatively low

(high speed movement of the cache center) which makes the

cache much more sensitive to memory latency. However,

the performance remains more efficient than a standard

cache(50% improvement).

If we consider only the tracking algorithm, Figure 7

shows that the hit rate of the nD-Cache is near perfect. The

efficiency as defined before is therefore a more objective

way of comparing the nD-Cache to other architectures.

7. Conclusion & perspectives

This paper presents the nD-Cache architecture and a

methodology to compute its runtime parameters. The nD-

Cache is a new trade-off between the hardware complexity of

the control unit, the size of embedded memory and the cache
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Figure 6. Cache efficiency of a single 2D Cache with automatic setting of the parameters
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efficiency. Several prefetching mechanisms and models of

fetch sequence are available and the system designer can

choose the one that fits their application best. The tracker

presented in this paper can be automatically tuned and is

shown to be efficient for several applications.

As already seen in the snake sequence, the two major

drawbacks of the simple filters already used for the center

tracking are residual oscillations and prediction delay. The

research aim is for auto tunable trackers to be able to

dynamically compute the nD-Cache parameters. This pre-

liminary work is still on-going and the evaluation in realistic

environment has now to be undertaken.
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