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Abstract. Architecture Description Languages (ADLs) allow embedded
systems to be described as assemblies of hardware and software compo-
nents. It is attractive to use such a global modelling as a basis for early
system analysis. However, in such descriptions, the applicative software
is often abstracted away, and is supposed to be developed in some host
programming language. This forbids to take the applicative software into
account in such early validation. To overcome this limitation, a solution
consists in translating the ADL description into an executable model,
which can be simulated and validated together with the software. In
a previous paper [1], we proposed such a translation of AADL (Archi-
tecture Analysis & Design Language) specifications into an executable
synchronous model.

The present paper is a continuation of this work, and deals with ex-
pressing the behavior of complex scheduling policies managing shared
resources. We provide a synchronous specification for two shared resource
scheduling protocols: the well-known basic priority inheritance protocol
(BIP), and the priority ceiling protocol (PCP). This results in an au-
tomated translation of AADL models into a purely Boolean synchronous
(Lustre) scheduler, that can be directly model-checked, possibly with the
actual software.

keywords: Embedded systems, Simulation, Scheduling, Formal Verification,
Architecture Description Languages, Synchronous Languages.

1 Introduction

The European project ASSERT is devoted to safe model-driven design of em-
bedded systems, with aerospace systems as a main application domain. Such
systems are deployed on specific architectures that need to be described and
simulated in order to allow early validation of the integrated system.

The approach taken in the ASSERT project is to describe the execution ar-
chitecture separately from the software components. The target architecture is

* This work was partially supported by the European Commission under the Inte-
grated Project ASSERT, IST 004033, which ended in 2008



described in the AADL architecture description language [2, 3]. AADL provides a
collection of classical systems components, which can be instantiated and assem-
bled to describe the actual execution platform. In a typical AADL description, a
system is made of several computers, communicating through buses; a computer
is made of memory and processors, and a processor runs a scheduler and several
tasks; at last, tasks are running applicative software. Those software components
can be developed using several programming languages, including ADA, C, or
even Scade and Lustre via a C wrapping,.

AADL components are decorated with information like rates and Worst Case
Execution Time (WCET) for periodic tasks, scheduling policy, etc. Those infor-
mations are intended to be used in the validation of the platform, mainly by
checking properties like the absence of deadlocks, or the respect of deadlines.
The functional part is expressed by the software components, and thus generally
completely ignored, although it may influence some non-functional aspects. For
instance, a software component may produce some event that wakes up a task;
the scheduling environment and the execution times are then modified.

Our main objective is to perform simulation and validation that take into ac-
count both the system architecture and the functional aspects. We consider the
case where software components are implemented in the synchronous program-
ming language Lustre/Scade!. Our proposal in [1] is to build automatically a
simulator of the architecture, expressed in a synchronous language like the soft-
ware components. This approach presents several advantages: first, synchronous
languages are well-known to be able to express non-synchronous behaviors, while
the converse is more difficult; now, getting all aspects in the same model allows
both functional and system aspects to be considered jointly. For instance, in
AADL, sporadic tasks can be activated by the output of some other components.
Therefore, in such cases, more realistic simulation and finer-grained formal ver-
ification can be performed.

The translation proposed in [1] takes into account various asynchronous as-
pects of AADL such as task execution time, periodic or sporadic activations,
multitasking (using Rate Monotonic Scheduling [5]), and clock drifts. The result
is an executable integrated synchronous model, combining architecture behavior
with actual software components, which can be validated with tools available for
synchronous programs.

In this paper, we propose to extend this work by taking into account shared
resources using different protocols (no lock, blocking, basic inheritance, priority
ceiling). We also show how various properties related to determinism, schedula-
bility, or the absence of deadlock can be automatically checked on given archi-
tecture models.

The article is organized as follows. We first recall in Section 2 the principles
of simulation of AADL in the synchronous paradigm. Then we describe in Sec-
tion 3 how to deal with shared resources and various shared access protocols
in a synchronous program. Finally, we show in Section 4 how one can use the

! Scade is the industrial version of Lustre[4], and is maintained and distributed by the
Esterel-Technology company.



resulting executable model to check various kinds of properties (determinism,
schedulability, absence of deadlock), and to perform monitored simulations.

2 From AADL to synchronous programs

This section recalls the main features of the Architecture Analysis & Design
Language (AADL), as well as the synchronous paradigm. Then it briefly recalls
how the behavior of an (asynchronous) AADL model can be modeled by a non-
deterministic synchronous program. This subject is presented in detail in [1].

2.1 The AADL description language

An AADL model is made of an arborescent assembly of software and hardware
components [2,3]. A component is defined by an interface (input and output
ports), a set of sub-components, a set of connections linking up the subcompo-
nents ports, and a set of typed attributes (called properties). The main kinds of
AADL components are the following.

Systems are top-level components; they describe the mapping between soft-
ware and hardware components. Device components model hardware responsible
for interfacing the system with its environment. They are typically used to rep-
resent sensors or actuators. From a functional point of view, they correspond to
the inputs and the outputs of the system. Processor components are abstractions
of hardware and software responsible for scheduling and executing threads.

Memory components (hardware) are used to specify the amount and the kind
of memory that is available to other components.

Data components (software) are used to represent data types in the source
text. Other components might have a shared access to data components. The ac-
cess policy is controlled by the Concurrency_Control Protocol property (lock,
priority ceiling protocol, cf. Section 3). Bus components (hardware) are used to
exchange data between components on different processors.

Process components are abstractions of software responsible for defining a
memory space that can be accessed by the thread sub-components it contains.
Thread components are abstractions of software responsible for executing ap-
plicative programs. When several threads run under the same processor, the shar-
ing of the processor is managed by a runtime scheduler. The dispatch_protocol
property is used to specify that scheduling policy. For instance, the value
periodic means that the thread must be activated according to the specified
period; the value aperiodic means that the thread is activated via one of the
other components’ output ports (called event ports). Sub-program components
are the leaves of this arborescent description. Their implementations need to be
provided in some host language. In our approach, if one wants to be able to
formally analyze aperiodic threads whose activation depends on the functional
output of some program component, one needs to provide for it a synchronous
program (or at least a wrapper), e.g., written in Scade or Lustre. The property
compute_exec_time specifies a range for the worst case execution time (WCET)



of the program. In the sequel, we use the term task to denote a thread running
a program.

2.2 The synchronous paradigm

We present now the essentials of the synchronous paradigm, focusing on the
aspects that will be used later on.

A synchronous program (also called a node) is a dynamic system evolving on
a discrete time scale. It has an internal memory made of state variables, inputs
and outputs, and its behavior is a (virtually infinite) sequence of atomic reac-
tions. Each reaction consists in reading current inputs, computing outputs, and
updating the internal memory (state). In other terms, synchronous programs
are a straightforward generalization of synchronous circuits (i.e., sequential cir-
cuits or Mealy machines), where data can be of arbitrary types rather than just
Boolean values.

A synchronous program is characterized by a vector of inputs Z, a vector of
outputs o, a vector of state variables s. Its semantics is defined by its initial state
so (the initial value of s), and the functions f, and fs, respectively returning
the output and the next state from the current inputs and the current state. For
each instant ¢:

0t = fo(ityst) ;o St+1 = fs(if,, St)

A program without state is called a combinational node; usual functions like
arithmetic or logical operators are then naturally lifted to synchronous programs.

For any data-type 7 with a well-defined default value d, a “delay” (or register)
program can be defined as follows:

so=d ; fo(ivs):‘s ; fs(ivs):i

In the sequel we mainly use Boolean (resp. integer) registers, with false as default
value (resp. 0), and represented by the symbol e.

The main characteristic of synchronous programs is the way they are com-
posed: when connecting several sub-programs, a reaction of the whole program
consists of a simultaneous reaction of all the components. In other words, the
synchronous paradigm provides an idealized representation of parallelism.

An important consequence is that a big synchronous program can be de-
scribed as a parallel composition of smaller sub-programs. In this approach, a
program is described as a data-flow network of synchronous programs connected
by wires. Fig. 1 shows the data-flow network of a synchronous counter, made of
a delay node and three combinational nodes (two “if-then-else” and an adder).
For the sake of conciseness, we use sets of equations rather than drawings for
representing such networks. For instance, the set of equations equivalent to the
counter is the following:

c=1ifrthenOelses ; s=ec+ifxthenlelse0

Note that such a set of equations has a straightforward solution as long as
it does not contain combinational loops. In other words, any feed-back loop in
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Fig. 1. The data-flow network of a synchronous counter.

the network should pass through a delay operator. In the following, we will take
care to define only such well-founded data-flow networks.

At last, all synchronous formalisms are providing a notion of under-sampling,
also called activation condition, or clock-enable in the domain of synchronous
circuits. The activation condition is an higher-order operator that takes a syn-
chronous node P, a Boolean input b, and produces a new node. The behavior
of that node is defined as follows: whenever b is true, it behaves exactly like P,
and whenever b is false, both the internal state and the outputs are “frozen” (i.e.
they keep their previous value).

2.3 Modeling asynchrony in the synchronous framework

The ability of the synchronous framework to model asynchrony is well-known [6],
and has been often used [7-11]. In [1], we used a similar technique for translating
a subset of AADL into synchronous data flow equations.

This goal is mainly achieved by using “oracles” (i.e., additional inputs) for
modeling non-determinism, and activation conditions for modeling the asyn-
chronous aspects: time-consuming tasks, multi-tasking, clock jitter.

However, in this previous work, multi-tasking was only considered in the case
of simple fixed priorities rate monotonic scheduling. In this article, we consider
more sophisticated policies that take into account shared resources with pro-
tected access, and all the problems they raise: priority inversion, and deadlock.

3 Handling shared resources

In AADL, Data component accesses can be shared between several components. In
contrast to other kinds of components (thread, process, sub-program) which are
translated into nodes, data components are translated into local variables of the
surrounding component node. Depending on the kind of access that is associated
with them (read_only, write_only, or read_write), the necessary wires are added to
the interface of the node: a data component that has a write (resp., read) access
to a resource has an additional output (resp., an additional input), and the data
update is performed at its dispatch time using an activation condition.

In order to guarantee the data integrity, it is necessary to prevent the re-
source from being accessed by several components at the same time. For that



purpose, several concurrency control protocols were defined [12], that modify
the classical Rate Monotonic scheduling. In AADL, this is specified through the
“Concurrency_Control_Protocol” property, attached to a data component. In this
section, we explain how to implement four kinds of concurrency control protocol:

— NoneSpecified: components access the shared resource with no constraint at
all (no lock mechanism).

— Lock: Before accessing a shared resource, a component should ask for it,

and gets it only if no other component has locked it before; otherwise, it
is suspended until the resource is unlocked. When a component obtains a
resource, we say that the component enters a critical section.
Hence, a low priority thread tl can block a high priority one th if th wants
to access a resource that is locked by tl. The problem with this protocol is
that tl can block th, even when tl is not in critical section. This is referred
to as the priority inversion problem [12].

— BIP: The Basic Inheritance Protocol, also known as Priority Inheritance
Protocol, refines the previous one to prevent priority inversions.

— PCP: The Priority Ceiling Protocol is a refinement of BIP defined in order
to prevent deadlock.

In the following, we describe those protocols more precisely, and explain
how to implement them in terms of synchronous data-flow equations. Defining
a scheduling protocol consists of defining a node, called hereafter a scheduler,
that decides at each instant which thread the CPU is attributed to.

3.1 The No Lock protocol

The simplest way of handling shared resources is to ignore them, and to al-
ways give the CPU to the highest priority thread. This (absence of) protocol
is straightforward and generally useless for systems involving shared resources.
But this simplest scheduler is refined in later sections for the other protocols. It
is basically the scheduler used in [1].

Concretely, we need to generate a synchronous program that takes as inputs
Boolean variables indicating which threads ask for the CPU (Dispatchedy, ...,
Dispatched,,), and that returns Boolean variables indicating which thread is
elected (cpuy, ..., cpuy). Of course, at most one among the cpu; should be true
at each instant. The program that computes the Dispatched; variables is derived
from the period and the WCET of threads, which is specified in the AADL code.

The convention here is that ¢; has priority over ¢; if ¢ < j. A possible way of
implementing that node is as follows:

Vk € [1,n]: cpuy = Dispatchedy, N /\ cpu; (1)
0<i<k

Henceforth, the convention is that the program input variables begin with an
uppercase letter (e.g., Dispatchedy); and ¢pu; stands for the negation of cpu;.



3.2 The Blocking protocol

In order to take into account shared resources, we need additional inputs: the
Boolean variable named Asks_csli indicates that the thread ¢; wants to access
the resource 7, (their values come from the output of the predefined AADL sub-
programs Get_resource and Set_resource [3]).
In order to ease the definition of cpuy, we introduce the following auxiliary
variables:
— the Boolean variable has_cslt indicates that the thread t; is in Critical Sec-
tion on resource ry;
— the Boolean variable ¢;_blocks!} indicates that the thread ¢; asks for a re-
source ry, which is locked by another thread ¢;.

Computing which thread is in critical section. A thread ¢ is in critical
section for a resource ry if it asks for the resource, and if either
— it was in critical section before (o has_cstt);?
— or it enters in critical section at the current instant. It enters a critical section
when and only when it obtains the CPU.
Hence, the following definition of has_cst::

Te"

Vk € [1,n],¥€ € [1,m] : has_cslk = Asks_cslt A (cpup V e has_cst:)  (2)

Note that when we define such a relation, the quantification “Vk € [1,n], V¢ €
[1,m]” suggests that we generate n X m equations for defining the scheduler. But
in fact, it is generally much less, since in the AADL model, all threads may not
have access connections to all resources. This remark actually holds for all the
variables relating threads and resources in the following.

Computing the blocks relation. We say that a thread ¢; blocks a thread ¢
via a resource 7y if both threads ask for the resource, and if the thread t; was
owning 7y at the previous instant.

Vk,i € [1,n],i# k¥ e [l,m]:
t;-blocksts = Asks_cslt N Asks_csl, A ehas.cski — (3)
Computing the elected thread. Once we have defined those two auxiliary

relations, cpuy can easily be defined similarly as in Section 3.1: the highest
priority thread obtains the CPU, except if it is blocked by some other thread:

Vk € [1,n] : cpup = Dispatchedy, N /\ cpu; A /\ t; blocksys  (4)
o<i<k i#k,L€[1,m]

Note that those three sets of equations defines a valid synchronous program,
since they do not contain any combinational cycle (cf Section 2.2).

2 All Boolean delays (o) are implicitly initialized to false.



3.3 The Basic Inheritance Protocol

The Basic Inheritance Protocol was introduced [12] to avoid the priority inver-
sion problem. Indeed, with the previous protocol, when a high-priority thread ¢;
wants to access a resource shared by a lower priority thread ¢3, which have put a
lock on it, then t3 keeps the CPU. Moreover, t3 can be interrupted by ¢5 of lower
priority than ¢;, even though t5 does not try to access any shared resource.

The idea of the Basic Inheritance Protocol (BIP) is to modify the priority
of t3 in such a way that it inherits the priority of ¢, when t3 has the lock on a
resource 1y requested by ¢;. Indeed, this prevents s to interrupt t3, and hence
prevents the priority inversion.

The intuition of our BIP (synchronous data-flow) encoding is the following:
first consider the dispatched thread with the highest priority. If it is not blocked,
it must obtain the CPU. Otherwise, consider its blocking thread, and check if it
is itself blocked, and so on until we find a thread that is not blocked. When we
find the thread that is not blocked®, we give it the CPU. Hence, the first thing
to do is to compute the transitive closure of the t_blockst relation.

Computing the t; blocks;, relation. Let an inhibition path from a thread t;
to a thread ty, be a set of s + 1 threads {¢; = t;o, ..., t;s = tr} such that there
exist s resources ry, ..., rs, that may be respectively accessed by t;o and t;1, t;1
and t;o, ..., t;s—1 and txs. Such a path is said to be cycle-free if all the threads
in the path are distinct. Let Path(i, k) be the set of cycle-free paths from ¢; to
ty, (this set can be computed from the AADL source code). A thread t; blocks*
another thread t; if ¢; is not itself blocked, and if there exists an inhibition path
in Path(i, k) that is true.

Vi,ke[l,n],i#k: (5)

ti,blocksfk = t;_is_blocked N \/ tio,blocksfff A o A tis_l,blocksfi
p={i0,...,is € Path(i,k)
Vk € [L,n] : tyisblocked = \/ t;blocks.:
Le1,m],j€[1,n],j#k

where:

The protocol. The BIP states that a thread in critical section on a resource
inherits the priority of any other higher priority thread that asks for the
same resource. The difficulty is to translate this “dynamic” condition? into
a Boolean condition. To do that we use an accumulator, (named i, which
stands for inhibiting index), that carries the value of the inhibitor of the
thread that has the highest priority, if the dispatched thread with the high-
est priority is blocked (ii is set to 0 or —1 otherwise). For readability, we
use a switch-like notation, where ¢y — x1,c0 — xo,...,¢, — x, stands for
if c1 then z1 else if co then xo ... if ¢, then x,.

3 if such a thread does not exist, the model-checker will tell us (cf Section 4.1).
4 The priority of each thread depends on the history. But by chance, it only depends
on a very short history, that is, the previous instant.
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Vk € [1,n]: (cpuk,iix) = dispatched), — (False,iin_1) (6)
(ecpur V ... V cpup_1) — (False,—1) (7)

tik—1 = k — (True, —1) (8)

iig—1 > 0 — (False,iig_1) (9)

{ tjblocks;, — (False,j) }ie,n,jzk (10)

True — (tg_is_blocked,0) (11)

For each k£ > 0, cpuy, and 4t depend on cpuy_q and i1, which means that
cpuy and iy are computed first, and then cpus and iis, and so on, until cpu,,
and #i,. At the beginning, the inhibiting index is equal to 0 (ii9p = 0). Then, the
pairs (cpuq,ii1), ..., (Cpun,ii,) are computed in turn. As long as cpuy_1 is set to
False (i.e., when conditions of lines 8 and 11 do not hold):

— If ¢}, is blocked by a lower priority thread t; (line 10), the inhibiting index
takes the priority of the inhibitor j. Then, the inhibiting index keeps this
value (lines 6 and 9), until the index of the inhibitor is reached (line 8).
In that case, the corresponding cpu variable is set to T'rue, the remaining
values of cpu are set to False (line 7), and éi, is unused for bigger k& (—1).

— Otherwise (line 11), if ¢; is not blocked at all, it gets the CPU, and all the
remaining values of cpu are set to false (line 7). If it is blocked, the system
deadlocks.

3.4 The Priority Ceiling Protocol

The problem with the BIP is that it does not prevent deadlocks. Indeed, consider
the following scenario, where 2 threads t; and ¢y share 2 resources r; and ro:

to asks for the CPU (Dispatched,) and gets it.

to locks ri.

t1 asks for the CPU. It has a higher priority than to, hence ¢; gets the CPU.
t1 locks ra.

ty tries to lock r1. But t5 has locked it. Therefore t; gets the CPU.

to tries to lock ro. But ¢1 has locked it. Nobody can get the CPU. The system
is blocked (or deadlocks).

SO =

One solution is to (statically) forbid such intertwined use of locks. Another
solution is to use the so-called Priority Ceiling Protocol (PCP). The PCP is
a refinement of the BIP.

The priority ceiling of a resource 1y is the maximal priority of all the threads
that may use ry; we note it PC(¢). The priority ceiling of a thread ti is the
maximum of the priority ceilings of the resources locked by other threads; we
note it PCy. Contrary to PC(¢), PC is a dynamic value. The PCP consists in
adding the following constraint to the BIP: ¢; can lock a resource r only if its
priority is higher than its priority ceiling (k < PCy).



The Priority Ceiling of resources locked by threads other than k. PC},
formal definition is just a direct translation of the definition given above.

Vk e [l,n]: PCy = (12)

Min {n+1} U {PC’(E) / Asks,csff;Z A ohas,csffe }fg [[11:72?]2 e

The tk_ask relation. We first define yet another auxiliary relation that states
whether a thread wants to enter a critical section at the current instant (i.e., a
thread asks for a resource that it hasn’t locked yet).

Vk € [Ln]: asks.cs™ =\ e (Askscsis A ehas_csit)

The protocol. The PCP encoding is the same as the BIP one, except that we
modify the definition of the blocks relation (previously defined in equation 3).
Indeed, there is now a second reason for a thread t; to be blocked by another
thread t;: if ¢, wants to enter a critical section (asks_cs®*) when its priority
ceiling PC}, is not higher than its own priority (PCj < k). Note that the priority
ceiling of ¢ (i.e., the value of PC}) is a consequence of the lock that ¢; has on
the resource ¢ (PC(¢) = PCy).

Vk,i € [1,n],i # k,V0 € [1,m] : t; blocksl: = (13)
Asks_csli N ehas_csy, N (Asks.csit V (askscs™ N PC({) = PCy < k))

Here again, those set of equations defines a valid synchronous program as
they do not contain any combinational loop.

4 Validation

We have encoded all the equations given in the previous Section into an OCAML
(meta-)program that, given a set of tasks, a set of resources, and a set of
task/resource pairs, generates a LUSTRE program®. The resulting LUSTRE pro-
gram is a task scheduler, computing one Boolean variable (cpu;) per thread (¢;),
from Boolean inputs indicating which threads ask for the CPU (Dispatchedy,),
and which threads ask for which resource (Asks_cs}:).

In the following, we illustrate the use of a state-explorer (i.e., a model-
checker) to prove various properties of this generated program. This was very
useful to debug the equations given in this paper, and also to debug the OCAML
encoding of those equations. We'll also argue why we believe it might also be
useful for AADL end-users.

5 We put a copy of this OCAML program as well as a copy of the resulting LUSTRE
programs at the url http://www-verimag.imag.fr/~jahier/aadl-schedul/



4.1 Absence of deadlock

In order to prove the absence of deadlock, we used LESAR [13], a LUSTRE
model-checker. This tool implements state-of-the-art state-reachability algo-
rithms, based on Binary Decision Diagrams. We used both a enumerative al-
gorithm which complexity is related to the number of states, and a symbolic
algorithm, which complexity is related to the diameter of the state space.

We proved with LESAR that, whenever at least one thread asks for the
CPU, at least one of the cpu; is true. Actually, we even prove that ex-
actly one cpu; is true in that case, which simply proves that our scheduler
is correct in the sense that it does not give the processor to more than one thread:

(Viep,n Dispatched;) = \/;epy ) cpui

We performed this on the examples of Fig. 2. For instance, the first example
(ex. 1) of Fig. 2 consists of a system with two threads ¢1 and ¢2, that can
access two resources 71 and r2. This example is precisely the one given in [12] to
illustrate the fact that the BIP does not prevent deadlock, and which motivates
the definition of PCP.

LESAR was indeed able to generate a counter-example that exhibits a dead-
lock; the scenario it provides is almost the same as the one given [12] (and also
in Section 3.4). LESAR proved the absence of deadlock for the PCP on the three
examples. The results of those experiments are outlined in Fig. 3. When the
property is false, we indicate the length of the counter-example. When the prop-
erty is true, we indicate the diameter of the graph, and its number of states. All
runs lasted less that a second.

(ex. 1)

Fig. 2. Examples of tasks accessing shared resources.

An interesting point in those experiments is that it is not always worth using
the PCP (that is deadlock-free by construction) since the BIP and the lock
protocol can provably be deadlock-free in some configurations (e.g., in ex. 2).
Note that in order to avoid false alarms, we need to tell the state-explorer that
the inputs of the scheduler are not completely random. For instance, it was
necessary to assert that a thread cannot change its requests for resources when
it does not own the CPU.

Lock BIP PCP Lock BIP PCP
ex. 1| ko:5 | ko:5 | ok:5/40 ok: 6/46| ok: 6/46 | ok: 5/40
ex. 2|ok: 6/96|ok: 7/96| ok: 7/96 ko: 4 | ok:7/96 | ok:7/96
ex. 3| ko: 9 ko: 9 |ok: 12/2316 ko: 4 |ok: 10/3708|ok: 12/3216

Fig. 3. Deadlock property exp. Fig. 4. Priority-inversion property exp.



4.2 Priority inversion

The priority inversion corresponds to situations when a thread is blocked by a
lower priority thread. This occurs very naturally when two threads share the
same resource, locked by the lower priority thread. Priority inversion is more
problematic when it happens as in the example of Section 3.3 (which was the
example given in [12] to motivate the introduction of the BIP). Indeed, threads
are generally supposed to remain in critical section for a short time. Now, if
a thread that does not lock any resource preempts a lower priority thread in
critical section, the corresponding resource might be locked for a long time.

Therefore, we check the following property: if a thread ¢ gets the CPU, when
a higher priority thread asks to enter in critical section, then t; should have
at least a lock on one of the resource. In other words, we want to be sure that
a thread that does not lock any resource cannot block any higher priority thread:

Vie [2,n],Vj€[li—1]: (cpui A asks-cs') =\ yepy ) has-csy

We actually ask the model-checker to prove a slightly higher refined property,
which is that for any system that does not deadlock, there is no priority inversion.
Indeed, as soon as two tasks deadlock, any other thread can get the CPU even
if it is not supposed to, according to the priorities defined by the protocol. This
is the kind of subtlety that can be discovered using a model-checker.

As summarized in Fig. 4, LESAR found counter-examples that falsify the
property for the last two examples of Fig. 2 using the lock protocol. And it
proved the property with the BIP and the PCP. The second example is the one
given [12] (and in Section 3.3) for motivating the introduction of the BIP.

4.3 Schedulability

The thread scheduler we generate in Section 3 is just a part of the AADL2LUSTRE
translator [1]. The program that computes the values of the Dispatched; vari-
ables is derived from the AADL code (from the threads period and WCET).

In order to check the schedulability of an AADL system, we look at the
sequences of values taken by the Dispatched; and cpu; variables. The set of valid
sequences is defined by the automaton of Fig. 5. In this automaton, d stands for
“dispatch”, and is defined as the Dispatched rising edge; a stands for “activate”,
and is defined as the cpu rising edge; and r stands for “release”, and is defined as
the Dispatched falling edge. All omitted transitions in this automaton target the
“scheduling-error” state. A system is well-scheduled if this error state is never
reached. Indeed, nothing prevents the generated scheduler to issue a “dispatch”
event between an “activate” and a “release” event. This is what occurs when the
system is not schedulable, i.e., when some deadline is missed. Once encoded into
a LUSTRE formula, this automaton can be used to prove (by state-exploration)
that the system is schedulable.

Note that this schedulability property somehow does not only concern the
part of the AADL2LUSTRE translator described in this article. But we mention
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Fig. 5. The automaton recognizing well-scheduled systems. There is one such automa-
ton per thread to schedule.

it here because we believe this analysis is particularly interesting in presence of
shared resources.

5 Related work

The Cheddar tool [14, 15] can perform Schedulability analysis over AADL specifi-
cation, but it ignores the functional aspects of AADL components, and it is more
oriented towards quantitative analysis: resource usage, number of preemptions,
number of context switches, etc. Cheddar allows users to define dedicated (user
defined) schedulers and perform simulations [16].

Using a synchronous framework to model software architectures is not a
new idea [9,10,8,11]. Gamatié et al. [9,10] defined a framework that provides a
library of components, written in SIGNAL [17] and C++, suitable for modeling
systems following the ARINC (Aeronautical Radio Incorporated) 653 standard.
They demonstrate how to use the SIGNAL language as an ADL — whereas we
translate AADL architecture models into LUSTRE. They mention that model-
checking could be possible since the system is described in SIGNAL, but the task
scheduler is implemented in C++, which would make its model-checking difficult
— they do not pretend to be able to check the scheduler tough. Anyway, they do
not mention any particular protocol with respect to shared resource handling.

Formal verification of priority inheritance protocols has also been conducted
using the Pvs theorem prover [18]. The kind of outcome that one obtains using
a theorem prover is of course different of what can be achieved with a model-
checker. With Pvs, Dutertre proves very general property about the PCP cor-
rectness. On the contrary, we model-check the protocol together with the system
architecture description, plus the functional components. We are therefore able
to prove much more fine-grained properties, not only about the whole system
behavior, but also about the scheduling protocol itself. Moreover, some proto-
col properties can be false in the general case; for example, we proved that the
second system of Fig. 2 does not deadlock with the BIP.

Penix et al. used a model-checker to verify a rate monotonic scheduler of a
real time operating system [19]. But as their scheduler model is very detailed,
here again the rest of the architecture is kept abstract. Elaborated protocols for
dealing with shared resources are not addressed either.



6 Conclusion

Defining an automated translation from AADL models to a purely Boolean syn-
chronous scheduler, that can be directly model-checked, has many advantages.

— Firstly, the model-checker was very useful to debug our scheduler generator.

— Secondly, we claim it can also be useful for the AADL end-users; for exam-
ple, the PCP is a refinement of the BIP that has been introduced to avoid
deadlocks. However, for some particular topologies of threads and resources,
it may happen that deadlocks cannot occur even with the BIP scheduler,
and that a model-checker is able to prove it on our model.

— Finally, in presence of shared resources, the analytic schedulability criteria
may be too conservative, and reject schedulable systems. Moreover, as soon
as the system contains sporadic events (when the thread activation depends
on the output of some other thread), the analytic method can be meaningless.
Consider for example two components activated by a third one, which both
outputs cannot be true at the same instant.

Of course with our technique, one cannot deal with generic properties (i.e., for
any number of tasks and resources), but since the generation of models for
verification is automatic, the verification can be replayed for each instance.

When the verification problem is too large, an exhaustive verification can be
untractable. However, our encoding can still be useful to perform intensive auto-
matic simulations using testing tools like Lurette [20]. The absence of deadlocks,
the schedulability, and the non-inversion properties are used as test oracles (i.e.,
runtime monitors). The assertions on the scheduler inputs (e.g., no rising edges
for the asking of a resource by threads that do not have the CPU) are used to
constrain the random input generator [21].

Another case where such tests and simulations are the only tractable methods
is when the AADL model contains sporadic threads activated by software compo-
nents that are not implemented in Lustre (or in any other language with formal
semantics). A way around this problem would be to have a Lustre abstraction
of all the possible behavior of such components; but such an abstraction is not
always easy to define.
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