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It is shown that the use of a high power � of the Laplacian in the dissipative term of hydrodynamical

equations leads asymptotically to truncated inviscid conservative dynamics with a finite range of spatial

Fourier modes. Those at large wave numbers thermalize, whereas modes at small wave numbers obey

ordinary viscous dynamics [C. Cichowlas et al., Phys. Rev. Lett. 95, 264502 (2005)]. The energy

bottleneck observed for finite � may be interpreted as incomplete thermalization. Artifacts arising

from models with �> 1 are discussed.
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A single Maxwell daemon embedded in a turbulent flow
would hardly notice that the fluid is not exactly in thermal
equilibrium because incompressible turbulence, even at
very high Reynolds numbers, constitutes a tiny perturba-
tion on thermal molecular motion. Dissipation in real fluids
is just the transfer of macroscopically organized (hydro-
dynamic) energy to molecular thermal energy. Artificial
microscopic systems can act just like the real ones as far as
the emergence of hydrodynamics is concerned; for in-
stance, in lattice gases the ‘‘molecules’’ are discrete
Boolean entities [1] and thermalization is easily observed
at high wave numbers [2]. Another example has been
found recently by Cichowlas et al. [3] wherein the Euler
equations of ideal nondissipative flow are (Galerkin) trun-
cated by keeping only a finite—but large—number of
spatial Fourier harmonics. The modes with the highest
wave numbers k then rapidly thermalize through a mecha-
nism discovered by Lee [4] and studied further by
Kraichnan [5], leading in three dimensions (3D) to an
equipartition energy spectrum / k2. The thermalized
modes act as a fictitious microworld on modes with smaller
wave numbers in such a way that the usual dissipative
Navier–Stokes dynamics is recovered at large scales [6].

All the known systems presenting thermalization are
conservative. As we shall show thermalization may be
present in dissipative hydrodynamic systems when the
dissipation rate increases so fast with the wave number
that it mimics ideal hydrodynamics with a Galerkin trun-
cation. This is best understood by considering hydrody-
namics with hyperviscosity: the usual momentum diffusion
operator (a Laplacian) is replaced by the �th power of the
Laplacian, where �> 1 is the dissipativity. Hyperviscosity
is frequently used in turbulence modeling to avoid wasting
numerical resolution by reducing the range of scales over
which dissipation is effective [7].

The unforced hyperviscous 1D Burgers and multidimen-
sional incompressible Navier–Stokes (NS) equations are

@tvþ v@xv ¼ ��kG
�2�ð�@2xÞ�v; (1)

@tvþv � rv¼�rp��kG
�2�ð�r2Þ�v; r �v¼ 0:

(2)

The equations must be supplemented with suitable initial
and boundary conditions. We employ 2�-periodic bound-
ary conditions in space, so that we can use Fourier decom-
positions such as vðxÞ ¼ P

kv̂ke
ik�x. Note that minus the

Laplacian is a positive operator, with Fourier transform k2,
which can be raised to an arbitrary power �. The coeffi-
cient� is taken positive to make the hyperviscous operator
dissipative. The Galerkin wave number kG > 0 is chosen
off-lattice so that no wave number is exactly equal to kG. In
Fourier space the hyperdissipation rate is �ðk=kGÞ2�,
where k � jkj.
If we now hold � and kG fixed and let � ! 1 we see

that the hyperdissipation rate tends to zero, for k < kG, and
to infinity, for k > kG. This implies that in the limit of
infinite dissipativity, the solution of a hyperviscous hydro-
dynamical equation converges to that of the corresponding
inviscid equations Galerkin-truncated at wave number kG.
To define inviscid Galerkin truncation precisely, we

rewrite Eqs. (1) and (2) in the abstract form @tv ¼
Bðv; vÞ þ L�v, where B is a quadratic form representing
the nonlinear term (including the pressure p in the NS
case). The truncation projector PkG is the linear, low-pass

filtering operator that, when applied to v, sets all Fourier
harmonics with k > kG to zero. The inviscid, Galerkin-
truncated equation, with initial condition v0, is

@tu ¼ PkGBðu; uÞ; u0 ¼ PkGv0: (3)

Since u can be written in terms of a finite number of modes
with k < kG, Eq. (3) is a dynamical system of finite dimen-
sion. In addition to momentum, it conserves the energy and
other quadratic invariants for the inviscid equations [5].
There is good numerical evidence—but no rigorous
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proof—that the solutions of the Galerkin-truncated invis-
cid Burgers and 3D Euler equations tend, at large times, to
statistical equilibria defined by their respective invariants.

A rigorous proof of the convergence, as � ! 1, of
solutions of the hyperviscous Burgers equation (1) and of
the hyperviscous NS equation (2) in any dimension to
those of the associated Galerkin-truncated, inviscid equa-
tion will be given elsewhere. It uses standard tools of
functional analysis; note that the formidable mathematical
difficulties that beset the ordinary (� ¼ 1) 3D NS equation
disappear for � � 5=4 [8].

From a physicist’s point of view the convergence result
looks rather obvious, though it has hardly been noted
before (see, however, Refs. [9–11]): as � ! 1 all the
modes with k > kG are immediately suppressed by an
infinite dissipation, whereas those with k < kG obey invis-
cid truncated dynamics. Not surprisingly, the fate of cou-
plings between triads of modes whose wave numbers
straddle kG is a delicate point. In a Galerkin truncation
any such triad should be left out. It may be shown that for
� ! 1 such straddling couplings are suppressed, not only
for the Burgers and NS equation but also for the hyper-
viscous magnetohydrodynamical equations and for some
turbulence closures, specifically, the direct interaction ap-
proximation (DIA) [9] and the eddy-damped-quasi-nor-
mal-markovian (EDQNM) approximation [12]. Hence
the convergence to the corresponding Galerkin-truncated
equations holds for all the aforementioned equations in any
dimension of space.

There are, however, interesting exceptions among hy-
drodynamical equations for which the result does not hold.
They include the kinetic theory of resonant wave interac-
tions [13] and the Markovian random coupling model [14].

Indeed, the resonant wave interaction theory arises in the
limit when the period of the waves goes to zero and this
limit does not commute with the limit of a vanishing
damping time for modes having k > kG; a similar remark
can be made about the MRCM equation.
Let us stress that systems with a finite dissipativity—

however large—are quite different from Galerkin-
truncated systems. For example, consider the 3D NS equa-
tion with a random force, delta-correlated in time, for
which we know the mean energy input " per unit volume.
It is still true that, for � ! 1, the solution of this equation
converges to that of the Galerkin-truncated equation, but
this time with a random force. If E0 is the initial energy,
this solution has a mean energy EðtÞ ¼ E0 þ "t, which
grows indefinitely in time. But, as soon as � is given a
finite value, however large, a statistical steady state, in
which energy input and hyperviscous energy dissipation
balance, is achieved at large times. Such a steady state
presents an interesting interplay of thermalization and dis-
sipation, when � is large, as we show below.
The direct numerical simulation (DNS) of the Galerkin-

truncated 3D Euler equations in Ref. [3] used 16003

Fourier modes. Large-� simulations of Eq. (2) would
require significantly higher resolution to identify the vari-
ous spectral ranges that we can expect, namely, inertial,
thermalized, and far-dissipation ranges and transition re-
gimes between these. Fortunately, Bos and Bertoglio [15]
have shown that key features of the Galerkin-truncated
Euler equations, such as the presence of inertial and ther-
malized ranges, can be reproduced by the two-point
EDQNM closure [12] for the energy spectrum. For
Eq. (2), with stochastic, white-in-time, homogeneous,
and isotropic forcing with spectrum FðkÞ, the hyperviscous
EDQNM equations are

�
@t þ 2�

�
k

kG

�
2�
�
Eðk; tÞ ¼

ZZ
�k

dp dq �kpqbðk; p; qÞ k

pq
Eðq; tÞ½k2Eðp; tÞ � p2Eðk; tÞ� þ FðkÞ;

�kpq ¼ 1

�k þ�p þ�q

; bðk; p; qÞ ¼ p

k
ðxyþ z3Þ; �k ¼ �

�
k

kG

�
2� þ �

�Z k

0
p2Eðp; tÞdp

�
1=2

:

(4)

Here Eðk; tÞ is the energy spectrum, �k defines the set of
p � 0 and q � 0 such that k, p, q can form a triangle, x, y,
z are the cosines of its angles and the eddy-damping
parameter � is expressed in terms of the Kolmogorov
constant. The EDQNM equations have been studied nu-
merically for more than three decades [16], but their hyper-
viscous versions Eq. (4) present new difficulties that we
overcome as follows. Since we are interested in the steady
state we use an iterative method: the emission term,
Eðp; tÞEðq; tÞ in Eq. (4), is considered as a renormalization
of the force FðkÞ; the absorption term Eðq; tÞEðk; tÞ is
treated as a renormalization of the hyperviscous damping
[17]. We then construct a sequence of energy spectra that,
at stage nþ 1, is just the renormalized force divided by the
renormalized damping, both based on stage n. This gives
rapid convergence to the steady state at low wave numbers,

but, beyond a certain (�-dependent) wave number, con-
vergence slows down dramatically and it is better to use
time marching to obtain the steady state. At large values of
k and � the problem becomes very stiff, so we use a slaved
fourth-order Runge–Kutta scheme [18]. We discretize k
logarithmically, with Nc collocation points per octave.
Triad interactions involving wave number ratios signifi-
cantly larger than Nc are poorly represented [19]; so, since
wave number ratios of up to 50 play an important role for
large �, we have used Nc & 90; this is computationally
demanding because the complexity of the code is OðN3

cÞ.
We force at the lowest wave number (k ¼ 1) in our nu-
merical study of Eq. (4) with kG ¼ 105, � ¼ 0:36, and 1 �
� � 729. The resulting compensated, steady-state energy
spectra kþ5=3EðkÞ are shown in Fig. 1; flat regions, extend-
ing over two to five decades of k (depending on �), are
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close to the Kolmogorov inertial range; for large � there is
a distinct thermalized range with EðkÞ � k2 (also found in
the transition between classical and quantum superfluid
turbulence [20]), as we expect from our discussion of the
Galerkin-truncated Euler equations. In the far-dissipation
range k > kG the spectra fall off very rapidly. For all values
of � the far-dissipation range is preceded by a bump or
bottleneck. It is also observed, in some experiments [21]
and DNS of Navier-Stokes, with a shape that is quite
independent of the Reynolds number [22]. The bottleneck
for � ¼ 1 has previously been explained as the inhibition
of the energy cascade from low to high wave numbers
because of viscous suppression of the cascade in the dis-
sipation range [23]. Our work provides an alternative
explanation: the usual bottleneck may be viewed as incom-
plete thermalization.

At large values of � the thermalized range gives rise to
an eddy viscosity �eddy. This acts on modes with wave

numbers lower than those in the thermalized range; the
corresponding damping rate is �eddyk

2. The eddy viscosity

can be expressed as an integral over the thermalized range
[15,19]. As � grows, so does �eddy and, eventually, the

renormalized viscous damping overwhelms the hypervis-
cous damping for modes at low wave numbers (below
those in the thermalized range). The dynamics of these
modes is then governed by the usual � ¼ 1 equation. Not
surprisingly, then, we find a pseudodissipation range
around k ’ 104 that is shown in an expanded scale in the
inset of Fig. 1; a similar range for the Galerkin-truncated
case is discussed in Ref. [15] and is already visible in the
DNS of Ref. [3]. For large� the inset of Fig. 1 also shows a
secondary bottleneck range for 103 < k< 104; this may be
viewed as the usual (� ¼ 1) EDQNM bottleneck stem-
ming from �eddy.

Our results apply to compressible flows also. We have
studied the simplest instance, that is the unforced hyper-
viscous 1D Burgers equation (1). Its solution converges to
the entropy solution, i.e., the standard solution with shocks,
obtained when kG ! 1 for any � � 1 [24]. Here we are
interested in the large-� behavior at fixed kG. We do not

have to resort to closure now since we can solve the
primitive equation (1) directly by a pseudospectral method.
If we choose a single initial condition the resulting spec-
trum is noisy because, unlike the ordinary Burgers equa-
tion, its Galerkin-truncated version and thus also the
high-� versions are believed to be chaotic dynamical
systems [25]. So we solve (1) with the two-mode random
initial condition v0ðxÞ ¼ sinxþ sinð2xþ�Þ, where � is
distributed uniformly in the interval ½��;��. We use 214

collocation points and set � ¼ 1, kG ¼ 342:1, and � ¼
1000. In Fig. 2 we show the Burgers energy spectrum
EðkÞ ¼j ~vðkÞ j2 , averaged over 20 realizations of the phase
� at various times. At the latest output times the spectrum
is almost completely flat, i.e., thermalized, with equiparti-
tion of the energy between all the Fourier modes. At earlier
times EðkÞ behaves approximately as k�2 in an inertial
range that corresponds to shocks in physical space; there
is a thermalized range at higher wave numbers up to kG; for
k > kG the spectrum falls very rapidly. No pseudodissipa-
tion range is observed here between the inertial and ther-
malized ranges as seen in the 3D NS case (Fig. 1). Perhaps
the data are too noisy, but a careful examination of vðxÞ in
physical space indicates that this phenomenon might arise
from the compressible nature of the Burgers dynamics:
thermalization begins over the whole physical range (as
high-frequency noise with wave number� kG); noise gen-
erated close to shocks is absorbed by them and not enough
is left to produce any appreciable eddy viscosity that could
broaden the shocks.
We now summarize our main findings from the study of

hyperviscous hydrodynamical equations with powers � of
the Laplacian ranging from unity to very large values.
The simplest results are obtained for very large �. The

solutions of the 1D Burgers equation or the Navier–Stokes
equations in any space dimension d are then very close to
the solutions of the corresponding Galerkin-truncated
equations, displaying thermalization at wave numbers be-
low kG. The detailed scenario will of course be affected by
the dimension of space. In 3D, with enough resolution, we
may be able to observe up to five ranges: an inertial range,
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a secondary bottleneck, a pseudodissipation range, a ther-
malized range, and a far-dissipation range. Because of
enstrophy conservation and of the predominance of
Fourier-space nonlocal interactions, the 2D case is rather
special and deserves a separate study.

The most relevant case is of course that of ordinary
dissipation (� ¼ 1). The energy-spectrum bottleneck gen-
erally observed at high Reynolds numbers in 3D incom-
pressible turbulence may be viewed as an incomplete
thermalization: as we increase � larger and larger bottle-
necks are present, eventually displaying thermalization on
their rising side.

We finally deal with the case of moderately large � of
the sort used in many simulations [7]. How safe is this
procedure and what kind of artifacts can we expect?

Using large values of � in simulations to ‘‘avoid wasting
resolution’’ is hardly advocated by anybody, but we now
understand what goes wrong: a huge thermalized bottle-
neck will develop at high wave numbers, whose action on
smaller wave numbers is an ordinary � ¼ 1 dissipation
with an eddy viscosity much larger than what would be
permissible in a normal � ¼ 1 simulation.

When� is chosen just a bit larger than unity (e.g.,� ¼ 2
which is standard in oceanography [7]) the advantage of
widening the inertial range may be offset by artifacts at
bottleneck scales; indeed, even an incomplete thermaliza-
tion will bring the statistical properties of such scales
closer to Gaussian, thereby reducing the rather strong
intermittency which would otherwise be expected [26].
For similar reasons spurious isotropization can be expected
for problems with an anisotropic constraint, such as rapidly
rotating or stratified flow or MHD with a strong uniform
magnetic field.
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