Highly siderophile element behaviour accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Geochimica et Cosmochimica Acta Année : 2009

Highly siderophile element behaviour accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain

Résumé

Highly siderophile element concentrations (HSE: Re and platinum-group elements (PGE)) are presented for gabbros, gabbroic eclogites and basaltic eclogites from the high-pressure Zermatt-Saas ophiolite terrain, Switzerland. Rhenium and PGE (Os, Ir, Ru, Rh, Pt, Pd) abundances in gabbro- and eclogite-hosted sulphides, and Re-Os isotopes and elemental concentrations in silicate phases are also reported. This work, therefore, provides whole rock and mineral-scale insights into the PGE budget of gabbroic oceanic crust and the effects of subduction metamorphism on gabbroic and basaltic crust. Chondrite-normalised PGE patterns for the gabbros are similar to published mid-ocean ridge basalts (MORB), but show less inter-element fractionation. Mean Pt and Pd contents of 360 and 530 pg/g, respectively, are broadly comparable to MORB, but gabbros have somewhat higher abundances of Os, Ir and Ru (mean: 64, 57 and 108 pg/g). Transformation to eclogite has not significantly changed the concentrations of the PGE, except Pd which is severely depleted in gabbroic eclogites relative to gabbros (similar to 75% loss). In contrast, basaltic eclogites display significant depletion of Pt (>= 60%), Pd (>85%) and Re (50-60%) compared with published MORB, while Os, Ir and Ru abundances are broadly comparable. Thus, these data suggest that only Pt, Pd and Re, and not Os, Ir and Ru, may be significantly fluxed into the mantle wedge from mafic oceanic crust. Re-Os model ages for gabbroic and gabbroic eclogite minerals are close to age estimates for igneous crystallisation and high-pressure metamorphism, respectively, hence the HSE budgets can be related to both igneous and metamorphic behaviour. The gabbroic budget of Os, Ir, Ru and Pd (but not Pt) is dominated by sulphide, which typically hosts >90% of the Os, whereas silicates account for most of the Re (with up to 75% in plagioclase alone). Sulphides in gabbroic eclogites tend to host a smaller proportion of the total Os (10-90%) while silicates are important hosts, probably reflecting Os inheritance from precursor phases. Garnet contains very high Re concentrations and may account for >50% of Re in some samples. The depletion of Pd in gabbroic eclogites appears linked, at least in part, to the loss of Ni-rich sulphide. Both basaltic and gabbroic oceanic crust have elevated Pt/Os ratios, but Pt/Re ratios are not sufficiently high to generate the coupled Os-186-Os-187 enrichments observed in some mantle melts, even without Pt loss from basaltic crust. However, the apparent mobility of Pt and Re in slab fluids provides an alternative mechanism for the generation of Pt- and Re-rich mantle material, recently proposed as a potential source of Os-187-Os-186 enrichment.

Dates et versions

hal-00420072 , version 1 (28-09-2009)

Identifiants

Citer

C. W. Dale, K. W. Burton, D. G. Pearson, Abdelmouhcine Gannoun, Olivier Alard, et al.. Highly siderophile element behaviour accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain. Geochimica et Cosmochimica Acta, 2009, 73 (5), pp.1394-1416. ⟨10.1016/j.gca.2008.11.036⟩. ⟨hal-00420072⟩
90 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More