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STRICHARTZ ESTIMATES FOR WATER WAVES

by

T. Alazard, N. Burq & C. Zuily

Abstract. — In this paper we investigate the dispersive properties of the solutions of the
two dimensional water-waves system. First we prove Strichartz type estimates with loss of
derivatives at the same low level of regularity we were able to construct the solutions in [2].
On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal
Strichartz estimates (i.e, without loss of regularity compared to the system linearized at
(η = 0, ψ = 0)).

1. Introduction

In a time-dependent domain Ωt ⊂ Rd+1 which is located between a free hypersurface
Σt and a fixed known bottom Γ, consider a potential flow v = ∇x,yφ, with

∆x,yφ = 0 in Ωt, ∂nφ = 0 on Γ.

The surface-tension water-waves problem is given by two equations: a kinematic condition
(which states that the free surface moves with the fluid), and a dynamic condition (that
expresses a balance of forces across the free surface). The system reads

(1.1)




∂tη = ∂yφ−∇η · ∇φ on Σt = {y = η(t, x)},

∂tφ+
1

2
|∇x,yφ|

2 + gη = H(η) on Σt,

where ∇ = ∇x, g > 0 is the acceleration of gravity and

H(η) = div

(
∇η√

1 + (∂xη)2

)
.

is the mean curvature of the free surface.

Support by the French Agence Nationale de la Recherche, project EDP Dispersives, référence ANR-07-
BLAN-0250, is acknowledged.



1.1. Assumptions. — We work in a fluid domain such that there is uniformly a mini-
mum depth of water, more precisely we assume that for each time t one has

Ωt = Ω1,t ∩ Ω2

where Ω1,t is the half space located below the free surface Σt,

Ω1,t = { (x, y) ∈ Rd ×R : y < η(t, x) } (d ≥ 1)

for some unknown function η and Ω2 contains a fixed strip around Σt, that means that
there exists h > 0 such that,

(1.2) {(x, y) ∈ Rd ×R : η(t, x)− h ≤ y ≤ η(t, x)} ⊂ Ω2,

for all t ∈ [0, T ]. We shall also assume that the domain Ω2 (and hence the domain
Ωt = Ω1,t ∩Ω2) is connected.

We emphasize that no regularity assumption is made on the bottom Γ = ∂Ωt \ Σt.
We consider both cases of infinite depth and bounded depth bottoms (and all cases in-
between). Finally, we could consider the cases where the free surface is a graph over a
given smooth hypersurface and the bottom is time dependent.

1.2. Main results. — Following Zakharov we reduce the system to a system on the
free surface. If ψ = ψ(t, x) ∈ R is defined by

ψ(t, x) = φ(t, x, η(t, x)),

then φ(t, x, y) is the unique variational solution of

(1.3) ∆φ = 0 in Ωt, φ(t, x, η(t, x)) = ψ(t, x).

The Dirichlet-Neumann operator is then defined by

(G(η)ψ)(t, x) =
√

1 + |∇η|2 ∂nφ|y=η(t,x) = ∂yφ−∇η · ∇φ

y=η(t,x)

.

(we refer to Section 2 in [2] for a precise construction).

Then (η, φ) is solution of the water-waves system (1.1) if and only if (η, ψ) solves the
system

(1.4)





∂tη −G(η)ψ = 0,

∂tψ + gη −H(η) +
1

2
|∂xψ|

2 −
1

2

(
∂xη · ∂xψ +G(η)ψ

)2

1 + |∂xη|2
= 0.

Concerning the Cauchy theory, there are many results starting from the pionneering work
of K. Beyer and M. Günther [10]. See S.Wu [24], D. M. Ambrose and N. Masmoudi [7],
B. Schweiser [21], T. Iguchi [17], D. Coutand and S. Shkoller [15], J. Shatah and C. Zeng
[22], M. Ming and Z. Zhang [19], F. Rousset and N. Tzvetkov [20]. In [2], we established
new local well posedness results for the system (1.4) under sharp (as long as no dispersive
effects are taken into account) regularity assumptions on the initial data. We refer to the
introduction of [2] for references and a short historical survey of the background of these
problems.
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The purpose of this work is precisely, in the case d = 1, to investigate the dispersive
properties of these solutions. Our results are twofold: first we prove Strichartz type
estimates with loss of derivatives at the very same level of regularity we were able to
construct the solutions in [2]. On the other hand, for smoother initial data, we prove
that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity
compared to the system linearized at (η = 0, ψ = 0)). More precisely, our main results are
the following.

Theorem 1.1. — Let s > 5/2 and T > 0. Consider a solution (η, ψ) of (1.4) on the
time interval I = [0, T ] such that Ωt satisfies (1.2) for t ∈ I. If

(η, ψ) ∈ C0
(
I,Hs+ 1

2 (R) ×Hs(R)
)
,

then

(η, ψ) ∈ L4
(
I,W s+ 1

4
,∞(R)×W s− 1

4
,∞(R)

)
.

Theorem 1.2. — Let s > 11/2, T > 0 and p, q, σ be such that

2

p
+

1

q
=

1

2
, 2 ≤ q < +∞.

Consider a solution (η, ψ) of (1.4) on the time interval I = [0, T ] such that Ωt satis-
fies (1.2) for t ∈ I. If

(η, ψ) ∈ C0
(
I,Hs+ 1

2 (R) ×Hs(R)
)
,

then

(η, ψ) ∈ Lp
(
I,W

s+ 3
8
+ 1

4q
,q
(R)×W

s− 1
8
+ 1

4q
,q
(R)

)
.

Remark 1.3. — (i) Theorem 1.1 was obtained recently under the assumption s ≥ 15
by Christianson-Hur-Staffilani [14] .

(ii) Let s > 5/2 and (η0, ψ0) ∈ Hs+ 1
2 (R) ×Hs(R) satisfying dist(Σ0,Γ) ≥ c > 0, we

proved in [2] that there exist T > 0 and a solution (η, ψ) ∈ C0
(
[0, T ];Hs+ 1

2 (R)×Hs(R)
)

satisfying dist(Σt,Γ) ≥ c > 0.

(iii) Letting q tend to infinity we see that the result in Theorem 1.2 exhibits a gain
of 1/8 derivatives with respect to Theorem 1.1

(iv) For the end point (p, q) = (4,+∞) we prove in fact, under the assumptions in
Theorem 1.2, that

(η, ψ) ∈ L4
(
I,B

s+ 3
8

∞,2 (R)×B
s− 1

8
∞,2 (R)

)
.

where Bσ
∞,2 is the standard Besov space (see Section 6)

(v) The gain of regularity exhibited in Theorem 1.2 is optimal as can be seen at the
level of the linearized system around the trivial solution (η, ψ) = (0, 0) which reads (when
g = 0),

∂tη − |Dx|ψ = 0, ∂tψ −∆η = 0.
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Indeed u = |Dx|
1
2 η + iψ is a solution of the equation i∂tu − |Dx|

3
2 u = 0, for which one

can prove the optimal estimate
∥∥∥exp(−it |Dx|

3
2 )u0

∥∥∥
L4

(
I,W s−1

8 ,∞(R)
) ≤ C‖u0‖Hs ,

which gives the desired regularity on (η, ψ).

(vi) It is most likely that Theorem 1.1 remains valid when R is replaced by the one
dimensional torus T. Indeed, our proof relies on a semi-classical parametrix (on time
intervals taylored to the frequency) which exhibits finite speed of propagation and which
can consequently be easily localized in space.

(vii) Notice that the dispersive estimates proved in this paper can be combined with
our previous work to improve the regularity threshold obtained in [2] and give local well
posednesss for initial data below the s = 2 + 1

2 threshold. This will be the matter of a
forthcoming paper (including the 3-d water-waves system) [4].

(viii) Notice finally that dispersive properties of the operator linearized at (η = 0, ψ =
0) were used recently by Wu [25, 26] and Germain-Masmoudi-Shatah [16] to prove global
existence results.

1.3. Strategy of the proofs. — Following the approach in Alazard-Métivier [1], after
suitable paralinearizations, we have shown in [2] that the water waves system can be
arranged into an explicit paradifferential symmetric equation of Schrödinger type, and
we deduced the smoothing effect for the 2-d surface tension water waves. Here, we will
also take benefit of this paralinearization reduction, and this reduced system will be our
starting point. The guiding line for the rest of our proof is very classical: construction of
a parametrix to prove dispersion (L1 − L∞ estimates), and then TT ∗ argument.

There are two main difficulties in the analysis of this equation. First the coefficients
of the operator are time dependent and consequently we cannot get rid of the lower order
terms by simple conjugation arguments (see Burq-Planchon [13]). Second the coefficients
enjoy poor regularity, and finally, whereas the principal part in the operator is of order
3/2, the subprincipal part in the operator is of order 1 which gives only a 1/2 difference
compared to the usual 1 difference encountered for magnetic Schrödinger operators. As
will be shown in our analysis, the presence of such subprincipal parts will produce non
trivial oscillations which here have to be taken into account in the analysis.

The first common step for both theorems is to perform several reductions for the
paradifferential equation. The first one is to use Alinhac’s para-composition theory [5]
(see also Burq-Planchon [13] where a similar idea was used) to reduce the matters to the
study of a Schrödinger type operator with constant coefficients principal part. This is
particular to space dimension 1 and reflects the fact that there is only one metric on R.
The second reduction, inspired by works by Smith [23] and Bahouri-Chemin [8], consists
in smoothing out the coefficients of the operator.

Once this reduction has been achieved, we can construct the parametrix, for which
the natural time is the semi-classical one: s = t|ξ|−1/2. Here the differences between
our two theorems appear. Indeed, in the proof of Theorem 1.1, following the strategy in
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Burq-Gérard-Tzvetkov [12], we construct the parametrix on small times |s| ≤ c) and the
main difficulty is to handle sharp regularity threshold (for smooth enough initial data the
proof would be much simpler). In the proof of Theorem 1.2 the difficulties are different:
first we have to handle the oscillations generated by the subprincipal part and furthermore
we have to prove very large time asymptotics (|s| ≤ c|ξ|1/2) in the high frequency regime
|ξ| → +∞. Notice that, even for initial data with arbitrarily large smoothness, the analysis
would be non trivial. Finally, once the parametrix is constructed, the dispersion estimate
is obtained by using non classical stationary phase lemmas involving precise controls on
the remainder terms.

2. Preliminaries

In this section we recall some notations and results from [2] which will be used in the
sequel.

2.1. Paradifferential calculus. — In this paragraph we review classical facts about
Bony’s paradifferential calculus.

For ρ ∈ N, according to the usual definition, we denote by W ρ,∞(R) the Sobolev
spaces of L∞ functions whose derivatives of order ≤ ρ are in L∞. For ρ ∈]0,+∞[\N,
we denote by W ρ,∞(R) the space of bounded functions whose derivatives of order [ρ] are
uniformly Hölder continuous with exponent ρ− [ρ].

Definition 2.1. — Given ρ ≥ 0 and m ∈ R, Γm
ρ (R) denotes the space of functions

a(x, ξ) on R× (R \ 0), which are C∞ with respect to ξ and such that, for all α ∈ N and
all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to W ρ,∞(R) and there exists a constant Cα

such that,

(2.1) ∀ |ξ| ≥
1

2
,
∥∥∂αξ a(·, ξ)

∥∥
W ρ,∞(R)

≤ Cα(1 + |ξ|)m−|α|.

Definition 2.2. — Σm
ρ (R) denotes the space of symbols a(x, ξ) such that

a =
∑

0≤j<ρ

a(m−j) (j ∈ N),

where a(m−j) ∈ Γm−j
ρ−j (R) is homogeneous of degree m− j with respect to ξ.

Given a symbol a, we define the paradifferential operator Ta by

(2.2) T̂au(ξ) = (2π)−d

∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the first

variable, χ, ψ are two fixed C∞ functions such that

ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,

χ(θ, η) is homogeneous of degree 0 and satisfies, for 0 < ε1 < ε2 small enough,

χ(θ, η) = 1 if |θ| ≤ ε1 |η| , χ(θ, η) = 0 if |θ| ≥ ε2 |η| .
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We shall use quantitative results from Métivier [18] about operator norms estimates
in symbolic calculus. To do so we introduce the following semi-norms.

Definition 2.3. — For m ∈ R, ρ ≥ 0 and a ∈ Γm
ρ (R), we set

(2.3) Mm
ρ (a) = sup

|α|≤ d
2
+1+ρ

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(R)

.

The main features of symbolic calculus for paradifferential operators are given by the
following theorems.

Definition 2.4. — Let m ∈ R. An operator T is said of order ≤ m if, for all µ ∈ R, it
is bounded from Hµ(R) to Hµ−m(R).

Theorem 2.5. — Let m ∈ R. If a ∈ Γm
0 (R), then Ta is of order ≤ m. Moreover, for all

µ ∈ R there exists a constant K such that

(2.4) ‖Ta‖Hµ→Hµ−m ≤ KMm
0 (a).

Theorem 2.6 (Composition). — Let m ∈ R and ρ > 0. If a ∈ Γm
ρ (R) and b ∈ Γm′

ρ (R)

then TaTb − Ta#b is of order ≤ m+m′ − ρ, where

a#b =
∑

|α|<ρ

1

i|α|α!
∂αξ a∂

α
x b.

Moreover, for all µ ∈ R there exists a constant K such that

(2.5) ‖TaTb − Ta#b‖Hµ→Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

ρ (b).

If a = a(x) is a function of x only, the paradifferential operator Ta is a called a
paraproduct. Paraproducts can also be defined using the Littlewood-Paley decomposition
of the frequency space. Indeed, let φ : R → R be a smooth even function with φ(t) = 1
for |t| ≤ 1 and φ(t) = 0 for |t| ≥ 2. For k ∈ N, we introduce the symbol

φk(ξ) = φ
( ξ
2k

)
,

and then the operators Sk and ∆k defined by

Ŝkf(ξ) := φk(ξ)f̂(ξ), ∆̂kf(ξ) := (φk(ξ)− φk−1(ξ)) f̂(ξ)

For all f ∈ S ′(R), the spectrum of ∆kf satisfies spec∆kf ⊂ {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}.
Hence ∆j∆k = 0 if |j − k| ≥ 2. Moreover we have the Littlewood–Paley decomposition:

f = S0f +
∑

k∈N∗

∆kf.

With this decompositon, paraproducts can be defined by

Taf =
∑

k≥4

Sk−3(a)∆kf.
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Notice that the difference between paraproducts defined in these two ways is a smoothing
operator. Namely, if a ∈W ρ,∞(R) for some ρ > 0 then the difference is of order −ρ.

Theorem 2.7. — Let α, β ∈ R be such that α + β > 0. If a ∈ Hα(R) and b ∈ Hβ(R)

then ab− Tab− Tba ∈ Hα+β− 1
2 (R) and

‖ab− Tab− Tba‖
Hα+β−

1
2 (R)

≤ K‖a‖Hα(R)‖b‖Hβ (R)

for some positive constant K independent of a, b.

We use the following result which is a consequence of (2.5) with m = m′ = 0, ρ = 1.

Lemma 2.8. — Let s > 2 + 1
2 and a ∈ W 1,∞(R). Then for all σ ∈ R there exists a

constant C > 0 such that for all j ∈ N,

‖[∆j , Ta]u‖Hσ+1(R) ≤ C‖a‖W 1,∞(R)‖u‖Hσ(R).

2.2. The Dirichlet-Neumann operator. —

Lemma 2.9. — Let s > 2 + 1
2 and 1 ≤ σ ≤ s. Then there exists an increasing function

C : R+ → R+ such that for all (η, ψ) ∈ Hs+ 1
2 (R)×Hs(R)

‖G(η)ψ‖Hσ−1(R) ≤ C(‖η‖
Hs+1

2 (R)
)‖ψ‖Hσ(R).

Furthermore, if (η, ψ) ∈ L∞(I;Hs+ 1
2 (R)×Hs(R)) is a solution of (1.4). Then

(2.6) ∂t(G(η)ψ) = G(η)(∂tψ −B∂tη)− div(V ∂tη)

where

(2.7) B(t, x) :=
∂xψ∂xη +G(η)ψ

1 + |∂xη|2
, V (t, x) := ∂xψ −B∂xη

2.3. Symmetrization. — We consider a solution (η, ψ) of (1.4) on the time interval
I = [0, T ] with 0 < T < +∞, satisfying the assumption (1.2) for all t ∈ I and such that

(η, ψ) ∈ C0
(
I,Hs+ 1

2 (R) ×Hs(R)
)
,

for some s > 5
2 . Then we set

(2.8) U = ψ − TBη.

where B has been defined in (2.7). It follows from the analysis in [2] that we have the
following symmetrization of the equations.

Lemma 2.10 ([2, Corollary 4.9]). — Let c, c1 be defined by

c =
(
1 + (∂xη)

2
)− 3

4 , c1 =
(
1 + (∂xη)

2
)− 1

2 .

There exists an elliptic symbol p ∈ Σ
1/2
s−1 such that the complex-valued unknown

(2.9) Φ = Tpη + iTc1U
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satisfies a scalar equation of the form

(2.10) ∂tΦ+ TV ∂xΦ+ i |Dx|
3
4 Tc |Dx|

3
4 Φ = F,

where V has been defined in (2.7) and F ∈ L∞(I,Hs(R)).

3. Reductions

3.1. Change of variables. — Our aim in this section is to simplify the equation (2.10)
by a change of variable. To compute the effect of a change of variable we shall use Alinhac’s
paracomposition operators and we refer to [5] for the general theory .

Let κ be a C1 diffeomorphism from R to R. We define the operator κ∗ by,

(3.1) κ∗u = u ◦ κ− T(∂xu)◦κκ.

One of the main properties of κ∗ is that there is a symbolic calculus theorem which allows
to compute the equation satisfied by κ∗u in terms of the equation satisfied by u (in analogy
with the paradifferential calculus).

Theorem 3.1. — Let d ≥ 1,m ∈ R, r > 1, ρ > 0 and set σ := inf{ρ, r − 1}. Consider a
Cr(Rd)-diffeomorphism χ and set κ = χ−1. Let a be symbol in Σm

ρ (Rd). Then there exists

a∗ ∈ Σm
σ (Rd) such that

κ∗Ta − Ta∗κ
∗ is order ≤ m− σ.

Moreover one can give an explicit formula for a∗. If a =
∑
am−k, then

(3.2) a∗(χ(x), η) =
∑

α

1

i|α|α!
∂αξ am−k(x,

tχ′(x)η)∂αy (e
iΨx(y)·η)|y=x,

where the sum is taken over all α ∈ Nd such that the summand is well defined, χ′(x) is
the differential of χ, t denotes transpose and

(3.3) Ψx(y) = χ(y)− χ(x)− χ′(x)(y − x).

We note that it is easy to obtain regularity results on u given results on κ∗u. Namely,
we have the following lemma.

Lemma 3.2. — Let ρ ≥ 0, κ ∈ W ρ,∞(R) and u ∈ W 1,∞(R). If κ∗u ∈ W ρ,∞(R) then
u ∈W ρ,∞(R).

Proof. — This follows from the fact that u = (κ∗u) ◦χ+(T(∂xu)◦κ)κ) ◦χ where χ = κ−1 ∈
W ρ,∞(R).

We are now ready to simplify (2.10). Define χ by

(3.4) χ(t, x) =

∫ x

0
c(t, y)−

2
3 dy =

∫ x

0

√
1 + (∂yη(t, y))2 dy,

so that

∂xχ(t, x) =
√

1 + (∂xη(t, x))2 = c(t, x)−
2
3 .
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Then for each t ∈ [0, T ], x 7→ χ(t, x) is a diffeomorphism from R to R. Introduce its
inverse

(3.5) κ = χ−1.

3.1.1. Notations:— We shall set I = [0, T ] and we shall denote

(3.6) A = C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (R)×Hs(R)

)

where C : R+ → R+ is an increasing function which may change from line to line.
Moreover we shall denote by f ◦ κ the function

(3.7) (f ◦ κ)(t, x) = f(t, κ(t, x)).

3.1.2. Estimates of χ and κ.— From (3.4), the equation ∂tη = G(η)ψ, the Lemma 2.9,
the Hölder inequality and the fact that s > 2 + 1

2 we deduce,

(3.8) ‖∂tχ‖L∞(I×R) ≤ A.

Now since

∂xχ(t, x) = 1 + f(∂xη), f ∈ C∞(R), f(0) = 0,

we deduce from the assumption s > 2 + 1
2 and the Sobolev embedding that,

(3.9) ‖∂xχ(t, x)− 1‖
L∞(I,Hs− 1

2 (R))
+ ‖∂xχ‖L∞(I×R) ≤ A.

Let us consider the function κ.

Since ∂tκ = − ∂tχ
∂xχ

◦ κ we have, using (3.8),

(3.10) ‖∂tκ‖L∞(I×R) ≤ A.

On the other hand we have ∂xκ = 1 + f(∂xη) where f ∈ C∞(R), f(0) = 0. It follows
that,

(3.11) ‖∂xκ− 1‖
L∞(I,Hs− 1

2 (R))
≤ A.

It is clear from the definition that we have,

(3.12) |∂xκ(t, x)| ≤ 1, ∀(t, x) ∈ I ×R.

It follows then by induction that for every p ∈ N we have,

(3.13) ‖κ‖L∞(I,W p,∞(R)) ≤ C
(
‖η‖L∞(I,W p,∞(R))

)
.

To go further we shall need the following elementary lemma.

Lemma 3.3. — Let p ∈ N∗ and κ : R → R be a diffeomorphism such that ∂xκ ∈
W p−1,∞(R). Set χ = κ−1. Then for all F ∈ Hµ(R) with 0 ≤ µ ≤ p we have F ◦κ ∈ Hµ(R)
and

(3.14) ‖F ◦ κ‖Hµ(R) ≤ ‖χ′‖L∞(R)C
(
‖∂xκ‖W p−1,∞(R)

)
‖F‖Hµ(R)

where C is an increasing function from R+ to R+.
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Now in our case for (almost all) fixed t and all ε > 0 we have,

(3.15) ‖∂xκ(t, ·)‖W p−1,∞(R) ≤ C(‖η(t, ·)‖W p,∞(R)) ≤ C(‖η(t, ·)‖
Hp+ 1

2+ε(R)
).

We deduce then from Lemma 3.3 that for 0 ≤ µ ≤ s− 1 and F ∈ L∞(I,Hµ(R)) we have,

(3.16) ‖F ◦ κ‖L∞(I,Hµ(R)) ≤ A‖F‖L∞(I,Hµ(R)).

Coming back to the regularity of χ we deduce from (3.4) that,

∂2xχ =
(∂xη)(∂

2
xη)

(1 + (∂xη)2)
1
2

.

It follows from (3.16) that,

(3.17) ‖(∂2xχ) ◦ κ‖L∞(I,Hs− 3
2 (R))

≤ A.

On the other hand we have,

∂x∂tχ =
(∂xη)∂x(G(η)ψ)

(1 + (∂xη)2)
1
2

.

So using Lemma 2.9 and (3.16) we obtain,

(3.18) ‖(∂x∂tχ) ◦ κ‖L∞(I,Hs−2(R)) ≤ A.

Now we would like to estimate ∂2t χ. Since ∂tη = G(η)ψ we have,

∂2t χ(t, x) = −

∫ x

0

[∂xη∂x(G(η)ψ)]
2

(1 + (∂xη)2)
3
2

dy +

∫ x

0

[∂x(G(η)ψ)]
2

(1 + (∂xη)2)
1
2

dy(3.19)

+

∫ x

0

∂xη∂x∂t(G(η)ψ)

(1 + (∂xη)2)
1
2

dy.(3.20)

Since s > 2 + 1
2 , the Hölder inequality and Lemma 2.9 show that the first two terms are

pointwise bounded by A. By the Holder inequality the last term can be pointwise bounded
by

‖∂xη‖L∞(I,L2(R))‖∂x∂t
(
G(η)ψ

)
‖L∞(I,L2(R)).

Using (2.6) and the equation satisfied by (η, ψ) we find, if s > 3 + 1
2 ,

‖∂x∂t
(
G(η)ψ

)
‖L∞(I,L2(R)) ≤ A.

Therefore if s > 3 + 1
2 we obtain,

(3.21) ‖∂2t χ‖L∞(I×R) ≤ A.

Finally let us estimate the term ∂x∂
2
t χ. Using again (2.6) and the equation satisfied by

(η, ψ) we find, if s > 4, that,

(3.22) ‖∂x∂
2
t χ‖L∞(I,Hs− 7

2 (R))
≤ A.
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3.1.3. Reduction of the equation. — With V defined in (2.7) and Φ defined in (2.9) let us
set (see (3.7)),

(3.23) W = V ◦ κ(∂xχ ◦ κ) + ∂tχ ◦ κ,

(3.24) Φ∗ = κ∗Φ = Φ ◦ κ− T(∂xΦ)◦κκ.

Then we have the following result.

Proposition 3.4. — Let s > 2 + 1
2 and I = [0, T ]. There exists a real valued function g

such that ∂xg ∈ Σ0
s− 3

2

and the function u = TeigΦ
∗ satisfies the equation

(3.25) (∂t + TW∂x + i |Dx|
3
2 )u = F,

with F ∈ L∞(I,Hs(Rd)) and W is defined by (3.23).

Proof. — We apply the operator κ∗ to the equation (2.10). We first show that

(3.26)
κ∗(∂t + TV ∂x)Φ = (∂t + TW∂x)Φ

∗ +R(Φ)

‖R(Φ)‖L∞(I,Hs(R)) ≤ C(‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R)
)‖Φ‖L∞(I,Hs(R)).

We begin by showing that

(3.27) κ∗(∂tΦ) = (∂t − T(∂tχ)◦κ)Φ
∗ +R1(Φ)

where R1 satisfies the estimate in (3.26).

We have
κ∗(∂tΦ) = (∂tΦ) ◦ κ− T(∂x∂tΦ)◦κκ

= ∂t(Φ ◦ κ)− (∂tκ)(∂xΦ ◦ κ)− T(∂x∂tΦ)◦κκ,

therefore,

(3.28)

κ∗(∂tΦ) = ∂t(κ
∗Φ) +B1 +B2,

B1 = T(∂2
xΦ◦κ)∂tκκ

B2 = T(∂xΦ)◦κ∂tκ− (∂tκ)(∂xΦ ◦ κ)

Let us consider the term B1 in (3.28) and let us set a = ∂tκ(∂
2
xΦ ◦ κ). We have,

Taκ =
∑

j≥4

Sj−3(a)∆j(κ) =
∑

j≥4

2−jSj−3(a)φ̃(2
−jD)(∂xκ) =

∑

j≥4

gj

where φ̃ ∈ C∞(R), supp φ̃ ⊂ {1
2 ≤ |ξ| ≤ 2}. Since ∂xκ = 1 + f(∂xη) with f(0) = 0, we

have ∆̃j(∂xκ) = ∆̃j(f(∂xη)) so,

‖gj‖L2(R) ≤ 2−j‖a‖L∞(R)2
−j(s− 1

2
)cjC(‖η‖

Hs+1
2 (R)

), (cj) ∈ l2.

On the other hand using (3.8), (3.9) we can write,

‖a‖L∞(I×R) ≤ ‖Φ‖L∞(I,Hs(R))‖∂tχ(∂xχ)
−1‖L∞(I×R)

≤ ‖Φ‖L∞(I,Hs(R))C(‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R)
).

11



It follows that,

(3.29) B1 ≤ C(‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R)
)‖Φ‖L∞(I,Hs(R)).

Let us consider the term B2.

We have, ∂tκ = ab where a = ∂tχ ∈ Γ0
1, b = ∂xκ ∈ Γ0

1. It follows from Theorem 2.6
that a#b = ab and Tab − TaTb is of order −1. Let us set

(3.30) B21 = ‖(Tab − TaTb)(∂xΦ ◦ κ)‖L∞(I,Hs(R)).

Using (2.5) we obtain,

B21 ≤ ‖∂tχ‖L∞(I,W 1,∞(R))‖∂xκ‖L∞(I,W 1,∞(R))‖(∂xΦ ◦ κ)‖L∞(I,Hs−1(R)).

Since s− 3
2 > 1, using (3.16) with µ = s− 1 we obtain,

(3.31) B21 ≤ C
(
‖η‖

L∞(I,Hs+1
2 (R))

)
‖Φ‖L∞(I,Hs(R)).

Therefore using (3.28), (3.29), (3.31) we obtain,

(3.32) κ∗(∂tΦ) = ∂tκ
∗Φ+ T∂tχT∂xκ∂xΦ ◦ κ+R2(Φ),

where R2 satisfies (3.26).

Now let us set

a = ∂xκ ∈ L∞(I,Hs− 1
2 (R)), b = ∂xΦ ◦ κ ∈ L∞(I,Hs−1(R)).

It follows from (2.7) that

(3.33) ‖ab− Tab− Tba‖L∞(I,H2s−2(R)) ≤ ‖a‖
L∞(I,Hs− 1

2 (R))
‖b‖L∞(I,Hs−1(R)).

Therefore we obtain

(3.34) κ∗(∂tΦ) = ∂t(κ
∗Φ)− T∂tχ∂x(Φ ◦ κ) + T∂tχT∂xΦ◦κ∂xκ+R3,

where R3 satisfies (3.26). Using (3.1) we obtain

κ∗(∂tΦ) = (∂t − T∂tχ∂x)((κ
∗Φ)− T∂tχ∂x(T∂xΦ◦κ) + T∂tχT∂xΦ◦κ∂xκ+R3,

where R3 satisfies (3.26).

It follows that

κ∗(∂tΦ) = (∂t − T∂tχ∂x)((κ
∗Φ)− T(∂2

xΦ◦κ)∂xκκ+R3.

Now the term T(∂2
xΦ◦κ)∂xκκ can be estimated exactly by the same method as the term B1,

therefore we obtain
κ∗(∂tΦ) = (∂t − T∂tχ∂x)(κ

∗Φ) +R4,

where R4 satisfies (3.26). This is precisely (3.27).

Now we claim that

(3.35) κ∗(TV ∂xΦ) = T(V ∂xχ)◦κ∂xκ
∗Φ+R5(Φ),

where R5 satisfies (3.26). But this is precisely a consequence of Theorem 3.1. Indeed we
have for (almost all) fixed t, a(x, ξ) = iV (t, x)ξ ∈ Σ1

s−1, and the diffeomorphism κ is in

W s− 3
2 (R), so σ = s− 3

2 and the remainder term is of order less than 1−(s− 3
2 ) =

5
2−s < 0.

Then (3.26) follows from (3.27) and (3.35).
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Let us consider now the principal part. Applying again Theorem 3.1 we find that,

κ∗(|Dx|
3
4Tc|Dx|

3
4Φ) = |Dx|

3
2κ∗Φ+ Taκ

∗Φ,

where a is of order 1
2 .

Finally, it remains to reduce to the case where a = 0. Indeed, let g be a real-valued
symbol such that ∂xg ∈ Γ0

s−3/2(R) and

{|ξ|3/2, g} = −a,

then if we set

(3.36) u = TeigΦ
∗,

we obtain by symbolic calculus that u satisfies

(∂t + TW∂x + i |Dx|
3
2 + iTa + Tb)u = F,

with F ∈ L∞(I,Hs(Rd)) and b = i{|ξ|3/2, g}. This completes the proof of Proposition
3.4.

3.1.4. Regularity of W. — The following result gives some informations on the function
W defined in (3.23).

Lemma 3.5. — Let I = [0, T ], E = L∞(I ×R), F = L∞(I,Hs−2(R)).

1. If s > 2 + 1
2 , we have W ∈ E, ∂xW ∈ F , and

‖W‖E + ‖∂xW‖F ≤ C(‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R))
).

2. If s > 4, we have ∂tW,∂
2
xW,∂t∂xW ∈ E and

‖∂tW‖E + ‖∂2xW‖E + ‖∂t∂xW‖E ≤ C(‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R))
).

Proof. — Let us recall that we have set,

(3.37) A = C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (R)×Hs(R)

)

where C : R+ → R+ is an increasing function which may change from place to place.
Since s > 2 + 1

2 using (2.7) we obtain,

(3.38) ‖V ‖E ≤ ‖∂xψ‖L∞(I,Hs−2(R)) + ‖B‖L∞(I,Hs−2(R))‖∂xη‖L∞(I,Hs−2(R)) ≤ A.

Then the estimate ‖W‖E ≤ A follows fom (3.8) and (3.9) .

Now we have

(3.39) ∂xW = ∂xV ◦ κ+ V ◦ κ(∂2xχ ◦ κ)∂xκ+ (∂t∂xχ ◦ κ)∂xκ.

Using (3.16) we see that,

(3.40) ‖V ◦ κ‖F + ‖∂xV ◦ κ‖F ≤ A‖V ‖L∞(I,Hs−1(R)) ≤ A.

Now using (3.11), (3.17) and the fact that Hs−2(R) is an algebra we deduce,

(3.41) ‖V ◦ κ(∂2xχ ◦ κ)∂xκ‖F ≤ A.

Then the estimate ‖∂xW‖F ≤ A follows from (3.18) and (3.11).
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Let us now prove 2. We have

(3.42)

∂tW = ∂tV ◦ κ(∂xχ ◦ κ) + ∂xV ◦ κ(∂xχ ◦ κ)∂tκ+ V ◦ κ(∂t∂xχ ◦ κ)

+ V ◦ κ(∂2xχ ◦ κ)∂tκ− ∂2t χ ◦ κ− ∂t∂xχ ◦ κ(∂xκ) =:

6∑

i=1

Bi.

It follows from (3.16),(3.9),(3.10),(3.17),(3.18), and the Sobolev embedding that

(3.43) |B2|+ |B3|+ |B4|+ |B6| ≤ A.

Now we have ∂tV = ∂x∂tψ−(∂tB)∂xη−B∂x∂tη. So using the equations satisfied by (η, ψ),
the Sobolev embedding and Lemma 2.9 we obtain

(3.44) ‖∂tV ‖
L∞(I,Hs− 5

2 (R))
≤ A.

It follows that

(3.45) |B1| ≤ A.

The term B5 is estimated by A using (3.21). Therefore using (3.43) and (3.45) we deduce
that ‖∂tW‖E ≤ A.

The claim on ∂2xW follows from the first part of the Lemma and the Sobolev embedding
since s > 3 + 1

2 . It remains to consider the quantity ∂t∂xW. We go back to (3.42). The

term ∂tV ◦ κ(∂xχ ◦ κ) is bounded by A in L∞(I,Hs− 5
2 (R)). The third term V ◦ κ(∂t∂xχ ◦

κ) is bounded by A in L∞(I,Hs−2(R)). The term ∂t∂xχ ◦ κ(∂xκ) is bounded by A in
L∞(I,Hs−2(R)). Therefore the ∂x derivative of these three terms are bounded by A in

L∞(I,Hs− 7
2 (R)). By (3.8) we have,

‖∂xV ◦ κ(∂xχ ◦ κ)∂tκ‖L∞(I×R) ≤ A‖∂xV ◦ κ(∂xχ ◦ κ)‖L∞(I×R)

≤ A‖∂xV ◦ κ(∂xχ ◦ κ)‖L∞(I,Hs−2) ≤ A.

We can apply the same argument for the term V ◦κ(∂2xχ◦κ)∂tκ. Finally we bound the term

V ◦ κ(∂x∂
2
ttχ ◦ κ) in the space L∞(I,Hs− 7

2 (R)) by using (3.16) and (3.22).This completes
the proof of our Lemma.

3.2. Symbol Smoothing. — In this section we follow an idea of Smith [23] (see also
Bahouri-Chemin [8]), and we are going to smooth out the coefficients of the function W
with respect to x. As already mentioned, here is the main place where the idea of allowing
loss in remainder terms enters. We define for 0 < δ ≤ 1,

T δ
W =

∑

j≥4

S[δ(j−3)](W )∆j,

The key difference between TW and T δ
W is made clear below.

Lemma 3.6. — The operator TW − T δ
W is of order −δ(s − 3

2).
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Proof. — Since for almost all fixed t we have, ∂xW (t, ·) ∈ Hs−2(R) we have,

∥∥Sj(W )− S[δj](W )
∥∥
L∞(R)

≤

j∑

n=[δj]

‖∆n(W )‖L∞(R)

≤ K

j∑

n=[δj]

2−n(s− 3
2
) ≤ K2−δj(s− 3

2
).

In the sequel we shall set

(3.46)





h = 2−j, j ∈ N,

W δ
h = S[δ(j−3)](W ),

a(ξ) = χ0(ξ)|ξ|
3
2 ,

where χ0 ∈ C∞
0 (R), suppχ0 ⊂ {1

4 ≤ |ξ| ≤ 4}, χ0 = 1 in {1
2 ≤ |ξ| ≤ 2}.

Lemma 3.7. — Let s > 2 + 1
2 . There exist δ < 1

2 , ǫ > 0 and fh ∈ L∞(I,Hs+ǫ− 1
2 (R))

such that

(3.47)
‖fh‖

L∞(I,Hs+ǫ− 1
2 (R))

≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (R)×Hs(R))

)
,

supp(f̂h) ⊂ {
1

2
h−1 ≤ |ξ| ≤ 2h−1}

and the functions uh = ∆ju satisfy

(3.48) (∂t +
1

2
(W δ

h∂x + ∂xW
δ
h) + ia(Dx))uh = fh

Proof. — First of all we remark that we have |Dx|
3
2 uh = a(Dx)uh. Now, applying the

operator ∆j to (3.25), we obtain

(3.49) (∂t + TW∂x + i |Dx|
3
2 )uh = ∆jf − [∆j , TW ]∂xu := g1h

Since by Lemma 3.5 we have ∂xW ∈ L∞(I,Hs−2(R)), it follows from Lemma 2.8 that g1h
satisfies (3.47) (for any 0 < ǫ ≤ 1

2). Then we can replace TW by T δ
W , which gives

(3.50) (∂t +
∑

|k−j|≤1

S[δ(k−3)](W )∆k∂x + i |Dx|
3
2 )uh = g1h + (T δ

W − TW )∂xuh := g1h + g2h

where, according to Lemma 3.6, g2h satisfies (3.47) with ǫ = δ(s − 3
2) −

1
2 > 0 if δ < 1

2 is

chosen close enough to 1
2 . Now, we have

S[δ(j−3)](W )∂xuh =
∑

|k−j|≤1

S[δ(j−3)](W )∆k∂xuh.
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Consequently, we obtain

(3.51) (∂t + S[δ(j−3)](W )∂x + i |Dx|
3
2 )uh

= g1h + g2h +
∑

|k−j|≤1

(S[δ(j−3)](W )− S[δ(k−3)](W ))∆k∂xuh = g1h + g2h + g3h,

and using that for |k − j| ≤ 1,
∥∥S[δ(k−3)](W )− S[δ(j−3)](W )

∥∥
L∞

≤ C2−jδ(s− 3
2
),

we obtain that g3h satisfies (3.47). Finally, we obtain

(∂t +
1

2
(W δ

h∂x + ∂xW
δ
h) + i |Dx|

3
2 )uh = g1h + g2h + g3h + g4h,

where g4h = 1
2S[δ(j−3)](∂xW )uh satisfies (3.47) (for any 0 < ǫ ≤ 1

2 ).

Lemma 3.8. — Let s > 11
2 and set

δ =
1

s− 3
2

∈]0,
1

4
[.

Then there exists fh ∈ L∞(I,Hs(R)) such that

(3.52)
‖fh‖L∞(I,Hs(R)) ≤ C

(
‖(η, ψ)‖

L∞(I,Hs+1
2 (R)×Hs(R))

)
,

supp(f̂h) ⊂ {
1

2
h−1 ≤ |ξ| ≤ 2h−1}

and the functions uh = ∆ju satisfy

(3.53) (∂t +
1

2
(W δ

h∂x + ∂xW
δ
h) + ia(Dx)uh = fh

Proof. — The proof is identical to that of Lemma 3.7, the only difference beeing that now
we take δ such that δ(s − 3

2) = 1.

4. Semi-classical parametrix

Following [12] we shall reduce the analysis to establishing semi-classical estimates.

Recall that 2−j = h and W δ
h = S[δ(j−3)](W ) = γ(hδDx)W , γ ∈ C∞

0 (R).

Theorem 4.1. — Let χ ∈ C∞
0 (R) with suppχ ⊂ {ξ : 1

2 ≤ |ξ| ≤ 2} and t0 ∈ R. For any

initial data u0,h = χ(hDx)u0, where u0 ∈ L1(R), let Uh := S(t, t0, h)u0,h be the solution of

(4.1) ∂tUh +
1

2
(W δ

h∂x + ∂xW
δ
h)Uh + ia(Dx)Uh = 0, Uh |t=t0= u0,h.

Then there exists ε > 0 such that for any 0 < h ≤ 1 and any |t− t0| ≤ h
1
2
−ε,

(4.2) ‖S(t, t0, h)u0,h‖L∞(R) ≤
C

h1/4|t− t0|1/2
‖u0,h‖L1(R).
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To prove this result, we shall follow a very classical trend and construct a parametrix.
Notice that our assumptions being time-translation invariant we can assume t0 = 0. The
parametrix will take the following form,

(4.3) Ũh(t, x) =
1

2πh

∫∫
e

i
h
(Φ(t,x,ξ,h)−zξ)B̃(t, x, z, ξ, h)u0,h(z)dzdξ,

where Φ will satisfy the eikonal equation and

(4.4) B̃(t, x, z, ξ, h) = B(t, x, ξ, h)ζ(x− z − th−
1
2 a′(ξ)),

where B will satisfy the transport equations and ζ ∈ C∞
0 (R), ζ(s) = 1 if |s| ≤ 1, ζ(s) = 0

if |s| ≥ 2.

In addition to χ we shall use two more cut-off functions χj ∈ C∞
0 (R), j = 1, 2, such

that

(4.5)





suppχ1 ⊂ {ξ :
1

3
≤ |ξ| ≤ 3}, χ1 = 1on suppχ,

suppχ0 ⊂ {ξ :
1

4
≤ |ξ| ≤ 4}, χ0 = 1on suppχ1.

4.1. The eikonal and transport equations. — We introduce some space of symbols
in which we shall solve our equations.

Definition 4.2. — For small ε, h0 to be fixed, we introduce the sets

Ωε =
{
(t, x, ξ, h) ∈ R4 : h ∈ (0, h0), |t| < h

1
2
−ε, 1 < |ξ| < 3

}
,

Oε =
{
(σ, x, ξ, h) ∈ R4 : h ∈ (0, h0), |σ| < h−ε, 1 < |ξ| < 3

}
.

If m ∈ R and ̺ ∈ R
+, we denote by Sm

̺,ε(Ωε) (resp.S
m
̺,ε(Oε)) the set of all functions f on

Ωε which are C∞ with respect to (t, x, ξ) (resp.(σ, x, ξ)) and satisfy the estimate

(4.6) |∂αx f(t, x, ξ, h)| (resp. |∂
α
x f(σ, x, ξ, h)|) ≤ Cαh

m−̺α,

for all (t, x, ξ, h) ∈ Ωε (resp.(σ, x, ξ, h) ∈ Oε).

Remark 4.3. — (i) If f ∈ Sm
̺,ε, g ∈ Sm′

̺,ε then fg ∈ Sm+m′

̺,ε ; if f ∈ Sm
̺,ε, (m ≥ 0) and

F ∈ C∞(C) then F (f) ∈ Sm
̺,ε; if f ∈ Sm

̺,ε, (m ≤ 0) and F ∈ C∞
b (C) then F (f) ∈ S0

̺−m,ε .

Let f ∈ Sµ
̺,ε, then ∂xf ∈ Sµ−̺

̺,ε . Moreover Sm
̺,ε ⊂ Sm

̺′,ε if ̺ ≥ ̺′

(ii) Let W be such that ∂xW ∈ Hs−2(R) with s > 2 + 1
2 and set W ̺

h = γ(h̺Dx)W

where γ ∈ S(R). Then ∂xW
̺
h ∈ S0

̺,ε.

Let δ ∈ (0, 12). We fix

(4.7) µ0 =
1

2

(
1

2
− δ

)
, ε ∈ (0,

µ0
5
).
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Until the end of this section, for the simplicity of notations we shall drop the index ε
and denote by Sm

̺ (Ω) the space Sm
̺,ε(Ωε). Finally we set,

(4.8)
L0 = ∂t +

1

2
(W δ

h∂x + ∂xW
δ
h) + iχ0(hDx) |Dx|

3
2 ,

a(ξ) = χ0(ξ) |ξ|
3
2 .

The main result of this section is the following.

Proposition 4.4. — There exist a phase Φ of the form

Φ(t, x, ξ, h) = xξ − h−
1
2 ta(ξ) + h

1
2Ψ(t, x, ξ, h)

with ∂xΨ ∈ S−ε
δ (Ω) and an amplitude B ∈ S0

δ+3ε(Ω) such that, with B̃ defined in (4.4),

(4.9) L0

(
e

i
h
ΦB̃
)
= e

i
h
ΦRh.

and for all N ∈ N we have,

(4.10)
∥∥∥
∫∫

e
i
h
(Φ(t,x,ξ,h)−zξ)Rh(t, x, z, ξ, h)u0,h(z) dz dξ

∥∥∥
H1(Rx)

≤ CNh
N‖u0,h‖L1(R),

for all t in [0, h
1
2
−ε].

Proof. — We set,

(4.11)

t = h
1
2σ, ϕ(σ, x, ξ, h) = Φ(σh

1
2 , x, ξ, h),

b̃(σ, x, ξ, h) = B̃(σh
1
2 , x, ξ, h), Vh(σ, x, h) =W δ

h(σh
1
2 , x, h),

L = h∂σ +
1

2
h

1
2
(
Vh(h∂x) + h∂xVh

)
+ ia(hDx).

Multiplying (4.9) by h
3
2 we see that it is equivalent to,

(4.12) L
(
e

i
h
ϕb̃
)
= e

i
h
ϕr(σ, x, z, ξ, h),

and (4.10) becomes,

(4.13)
∥∥∥
∫∫

e
i
h
(ϕ(σ,x,ξ,h)−zξ)r(σ, x, z, ξ, h)u0,h(z) dz dξ

∥∥∥
H1(Rx)

≤ CNh
N‖u0,h‖L1(R).

In the proof of (4.12), z, ξ, h will be considered as parameters.

We shall take ϕ of the form

(4.14) ϕ(σ, x, ξ, h) = xξ − σa(ξ) + h
1
2ψ(σ, x, ξ, h),

where ψ is the solution of the problem

(4.15)

{
∂σψ + a′(ξ)∂xψ = −ξVh,

ψ|σ=0 = 0.
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Differentiating (4.15) with respect to x and ξ, using an induction on k and the fact that
∂xVh ∈ S0

δ (O), we see easily that,

(4.16) |∂kξ ∂
α
xψ(σ, x, ξ, h)| ≤ Ckα|σ|h

−kεh−δ(α+k−1)+ ,

for every (σ, x, ξ, h) ∈ O, where a+ = sup(a, 0). It follows in particular that ∂xψ ∈ S−ε
δ (O),

∂σψ ∈ S−ε
δ (O) .

Now, since b̃ = b ζ we have,

(4.17)
e−

i
h
ϕ
(
h∂σ +

h
3
2

2
(Vh∂x + ∂xVh)

)
(e

i
h
ϕb̃) = i[h

1
2 ξVh − a(ξ) + h

1
2∂σψ + hVh∂xψ]̃b

+ h[∂σb+ h
1
2Vh∂xb+

1

2
h

1
2 (∂xVh)b]ζ + h[−a′(ξ) + h

1
2Vh]b ζ

′.

On the other hand recall that we have for all M ∈ N∗ (see the appendix),

(4.18) e−
i
h
ϕa(hDx)

(
e

i
h
ϕb̃
)
= A+ r1 + r2,

where

(4.19) A =
M−1∑

k=0

hk

ikk!
∂ky

{
(∂kξ a) (ρ(x, y)) b̃(y)

}
y=x

.

with

(4.20) ρ(x, y) =

∫ 1

0

∂ϕ

∂x
(σ, λx+ (1− λ)y, ξ, h) dλ,

and the remainder r1, r2 are given by,

(4.21) r1 = c hM−1

∫∫∫ 1

0
e

i
h
(x−y)ηκ0(η)(1 − λ)M−1∂My [a(M)(λη + ρ((x, y))̃b(y)]dλdydη

and

(4.22) r2 =

M−1∑

k=0

ck,Mh
M+k

∫∫ 1

0
zM κ̂0(z)(1 − λ)M−1∂M+k

y [a(k)(θ)̃b]|y=x−λhzdλdz,

where cM , ck,M ∈ C, κ0 ∈ C∞
0 (R), κ0 = 1 in a neighborhood of the origin. Now since

b̃(σ, x, z, ξ, h) = b(σ, x, ξ, h)ζ(x − z − σa′(ξ)),

writing for simplicity b(y) = b(σ, y, ξ, h) and ζ = ζ(x− z − σa′(ξ)) we have,

(4.23)





A = (
M−1∑

k=0

Ak)ζ + r3,

Ak =
hk

ikk!
∂ky

{
(∂kξ a) (ρ(x, y)) b(y)

}
|y=x,

r3 =

M−1∑

k=1

k∑

j=1

cjkh
k∂k−j

y

{
(∂kξ a)(ρ(x, y))b(y)

}
|y=xζ

(j).
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The term A0 in (4.23) is equal to a(ξ + h
1
2∂xψ)b. Then

(4.24) A0 =




2∑

j=0

1

j!
a(j)(ξ)(h

1
2 ∂xψ)

j +
(h

1
2 ∂xψ)

3

2

∫ 1

0
(1− λ)2∂3ξa(ξ + λh

1
2 ∂xψ) dλ


 b.

The term A1 in (4.23) can be written as

A1 =
h

i

[
a′(ξ + h

1
2 ∂xψ)∂xb+

1

2
h

1
2 (∂2xψ)a

′′(ξ + h
1
2∂xψ)b

]
.

Therefore

(4.25)

A1 =
h

i

[{
a′(ξ) + h

1
2∂xψ

∫ 1

0
a′′(ξ + λh

1
2∂xψ) dλ

}
∂xb

+
1

2
h

1
2 (∂2xψ)a

′′(ξ + h
1
2 ∂xψ)b

]
.

Since hε∂xψ ∈ S0
δ , h

ε+δ∂2xψ ∈ S0
δ and 5ε ≤ µ0, we deduce from (4.24) and (4.25) that

(4.26) A0 +A1 =

[
a(ξ) + h

1
2a′(ξ)∂xψ +

h

2
a′′(ξ)(∂xψ)

2

]
b+

h

i
a′(ξ)∂xb

+ hhµ0hε(c1b+ c2h
3ε+δ∂xb)

for some cj ∈ S0
δ .

Now, consider the term Ak with k ≥ 2. We have

Ak =
hk

ikk!

k∑

k1=0

(
k
k1

)
∂k1y

[
(∂kξ a)(ρ(x, y))

] 
y=x

∂k−k1
x b.

Since h
1
2 ∂xψ ∈ S0

δ , we obtain,

ck,k1 := hk1δ∂k1y

[
(∂kξ a)(ρ(x, y))

] 
y=x

∈ S0
δ .

It follows that the generic term in Ak can be written as

hhk−1h−k1δck,k1h
−εh−(δ+3ε)(k−k1)hε(hδ+3ε∂x)

k−k1b.

We have, since 3ε < µ0 and k ≥ 2,

(4.27)
k − 1− k1δ − ε− (δ + 3ε)(k − k1) ≥ k(1− δ − 3ε) − 1− ε ≥ 2(1− δ − 3ε) − 1− ε

≥ 2(
1

2
− δ − 3ε)− ε ≥

1

2
− δ − ε ≥ µ0

so that

Ak = hhµ0hε
k∑

ℓ=0

cℓ(h
δ+3ε∂x)

ℓb, cℓ ∈ S0
δ .
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We deduce from (4.26) that

(4.28)

M−1∑

k=0

Ak =




2∑

j=0

1

j!
a(j)(ξ)(h

1
2∂xψ)

j


 b+ h

i
a′(ξ)∂xb+ hhµ0hε

M−1∑

ℓ=0

dℓ(h
δ+3ε∂x)

ℓb

with dℓ ∈ S0
δ .

Then it follows from (4.12),(4.17),(4.18) and (4.28) that

r = i
(
−a(ξ) + h

1
2 ξVh + h

1
2 ∂σψ + hVh∂xψ

)
b ζ

+ h[∂σb+ h
1
2Vh∂xb+

1

2
h

1
2 (∂xVh)b]ζ

+ i

[
a(ξ) + h

1
2 a′(ξ)∂xψ +

h

2
a′′(ξ)(∂xψ)

2

]
b ζ + ha′(ξ)∂xb ζ

+ hhµ0hε
M−1∑

ℓ=0

dℓ(h
δ+3ε∂x)

ℓb ζ +
3∑

j=1

rj .

Gathering the terms in powers of h, noting that the coefficient of h0 vanishes and using

the eikonal equation to see that the coefficient in h
1
2 vanishes, we are left with

(4.29) r = h

(
∂σb+ a′(ξ)∂xb+ ifb+ hµ0hε

M−1∑

ℓ=0

eℓ(h
δ+3ε∂x)

ℓb

)
ζ + i

4∑

j=1

rj.

where f = Vh∂xψ + a′′(ξ)(∂xψ)
2 is real-valued, eℓ ∈ S0

δ and

(4.30) r4 =
1

i
h[−a′(ξ) + h

1
2Vh]b ζ

′.

It follows from (4.16) that

(4.31) |∂αx ∂
k
ξ f(σ, x, ξ, h)| ≤ Ckασh

−εh−kεh−δ(α+k),

for every (σ, x, ξ, h) ∈ O. In particular f ∈ S−2ε(O).

Now we shall seek b under the form

(4.32) b =

J−1∑

j=0

hjµ0bj .

where the b′js are the solutions of the following problems

(4.33)





∂b0
∂σ

+ a′(ξ)
∂b0
∂x

+ ifb0 = 0,

b0|σ=0 = χ1(ξ),
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where χ1 ∈ C∞
0 (R) has been introduced in (4.5) and

(4.34)





∂bj
∂σ

+ a′(ξ)
∂bj
∂x

+ ifbj = −hε
M−1∑

ℓ=0

eℓ(h
δ+3ε∂x)

ℓbj−1,

bj|σ=0 = 0.

It is easy to see that for all j we have,

(4.35) bj(σ, x, ξ, h) = χ1(ξ)cj(σ, x, ξ, h).

For the estimates we shall use the following elementary lemma.

Lemma 4.5. — If u is a solution of the problem

∂σu+ a′(ξ)∂xu+ ifu = g, u|σ=0 = z ∈ C,

where f be real-valued, then it satisfies the estimate

|u(σ, x, ξ, h)| ≤ |z|+

∫ σ

0
|g(σ′, x+ (σ′ − σ)a′(ξ), ξ, h)|dσ′

for every (σ, x, ξ, h) ∈ O.

Proof. — Indeed, the solution is given by

u(σ, x, ξ, h) = e−i
∫ σ

0
f(σ′,x+(σ′−σ)a′(ξ),ξ,h)dσ′

×

×

{
z + hε

∫ σ

0
ei

∫ σ′

0
f(t,x+(t−σ)a′(ξ),ξ,h)dtg(σ′, x+ (σ′ − σ)a′(ξ), ξ, h) dσ′

}
.

Using this lemma we deduce the following.

Lemma 4.6. — The problems (4.33), (4.34) have unique solutions bj = χ1(ξ)cj where
the cj satisfy the estimates

(4.36) |∂αx ∂
k
ξ cj(σ, x, ξ, h)| ≤ Cαkjh

−kεh−(α+k)(δ+3ε)

for all (σ, x, ξ, h) ∈ O, all α, k ∈ N, and all j = 0, ...,M.

In particular c =
∑M

j=0 cj belongs to S0
δ+3ε(O).

Proof. — Let us look to the case j = 0. Then c0 satisfies the same equation and c0|σ=0 = 1.
We show first (4.36) for k = 0 and all α. By Lemma 4.5 we have |c0| ≤ Ch−ε. So assume
that (4.36) is true (for k = 0) up to the order α − 1 and let us differentiate the equation
(4.33) α time with respect to x. It follows that U = ∂αx c0 satisfies the equation

(4.37)
∂U

∂σ
+ a′(ξ)

∂U

∂x
+ ifU = −i

α∑

l=1

Cα
l (∂

l
xf)∂

α−l
x c0.
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Using (4.31), Lemma 4.5 and the induction we deduce that

|U | ≤ Ch−ε
α∑

l=1

h−2εh−l(δ+3ε)h−(α−l)(δ+3ε) ≤ Ch−α(δ+3ε).

This proves (4.36) for k = 0 and all α. Then using an induction on k we differentiate the
equation (4.37) k times wit respect to ξ we use again (4.31), Lemma 4.5 and the induction
to prove (4.36) for all k and α. The proof of (4.36) for j ≥ 1 is similar.

It follows from (4.29), (4.33), (4.34) that

r =

5∑

j=1

rj.

where

(4.38) r5 = hJµ0bJ−1ζ.

4.1.1. End of the proof of Proposition 4.4. — We are left with the proof of (4.13). For
rj, j = 1, 2, 5 defined in (4.21), (4.22) and (4.38) we have for all N ∈ N,

(4.39) 〈x− z − σa′(ξ)〉|rj(σ, x, z, ξ, h)| ≤ CNh
N |χ1(ξ)|.

To prove (4.39) we write in the integral giving r1 (resp.r2) , x − z − σa′(ξ) = (x − y) +
(y − z − σa′(ξ)), (resp. = (x − z − λhz − σa′(ξ)) + λhz) we integrate by parts using the

fact that h
i ∂ηe

i
h
(x−y)η = e

i
h
(x−y)η and we use the fact that

(4.40) b̃(y) = χ1(ξ)c(σ, y, ξ, h)ζ(y − z − σa′(ξ))

with c ∈ S0
δ+3ε and δ + 3ε < 1. Then (4.13) follows from (4.39) and Young’s inequality.

The terms corresponding to r3 and r4 defined in (4.23) and (4.30) will be treated in
the same manner and will use the fact that on the support of a derivative of the function

ζ one has |x − z − σa′(ξ)| ≥ 1. Since by (4.16) we have h
1
2 |∂ξψ| ≤ Ch

1
2 |σ| ≤ Ch

1
2
−ε we

deduce from (4.14) that |∂ξ(ϕ(σ, x, ξ, h)− zξ)| ≥ 1
2 if h is small enough. Therefore we can

integrate N times by parts using the vector field

L =
h

i(∂ξ(ϕ(σ, x, ξ, h) − zξ))
∂ξ.

Finally the estimate for the term r5 follows easily from the fact that the convolution of
L1(R) with L2(R) is contained in L2(R).

The proof of Proposition 4.4 is complete.

4.2. Refined Van der Corput estimate. — Let us recall that we have set (see (4.3))

(4.41) Ũh(t, x) =

∫
K̃(t, x, z, h)u0h(z) dz
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where

(4.42) K̃(t, x, z, h) =
1

2πh

∫
e

i
h
(Φ(t,x,ξ,h)−zξ)B̃(t, x, z, ξ, h) dξ.

In the variable σ = th−
1
2 we have

K̃(t, x, z, h) = K(σ, x, z, h)

where

K(σ, x, z, h) =
1

2πh

∫
e

i
h
(ϕ(σ,x,ξ,h)−zξ) b̃(σ, x, z, ξ, h) dξ,

where ϕ and b have been determined in (4.14), (4.33) and (4.34).

Proposition 4.7. — There exists C > 0 such that

(4.43) |K(σ, x, z, h)| ≤
C

h

(
h

σ

) 1
2

,

for all (σ, x, z, h) in ]0, h−ε[×R×R×]0, h0[.

Proof. — Since b ∈ S0
δ is bounded with compact support in ξ, the estimate (4.43) is trivial

for |σ| ≤ Ch. Let us assume that |σ| ≥ Ch. We have by (4.11),

L =

(
h∂σ + h

1
2W δ

h(h
1
2σ, x)(h∂x)

1

2
h

3
2 (∂xW

δ
h) + i |hDx|

3
2

)

By a scaling argument we can assume without loss of generality that σ ≥ 1. Indeed,
otherwise, setting

τ =
σ

σ0
, x̃ =

x

σ0
, h̃ =

h

σ0
,

we see that in the new variables, the operator reads

L̃ = h̃∂τ + h̃1/2W̃ δ
h h̃∂x + h̃

3
2 (∂x̃W̃

δ
h) + i|h̃Dx̃|

3/2

where

W̃ δ
h(τ, x̃) = σ

1/2
0 W δ

h(σ0τ, σ0x̃)

and consequently we have

W̃ δ
h ∈ L∞(Hs−1), ∂x̃W̃

δ
h ∈ S0

δ

with bounds uniform with respect to σ0.

Assume now that the dispersion estimate has been proved for the kernel of the operator

L̃ and σ = 1. Since we have

Sh(σ)u0(x) = (S̃
h̃
(
σ

σ0
)ũ0)(

x

σ0
), ũ0(

x

σ0
) = u0(x),
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we can write

(4.44) ‖Sh(σ0)u0‖L∞(R) = ‖S̃
h̃
(
σ

σ0
)ũ0‖L∞(R)

≤
C

|h̃|1/2
‖ũ0‖L1(R) ≤

C|σ0|
1/2

|h|1/2|σ0|
‖u0‖L1(R) ≤

C

|hσ0|1/2

which is the dispersion estimate for the kernel of the operator L and σ = σ0.

Let us set

(4.45) θ(x, y, ξ, h) = ϕ(σ, x, ξ, h) − zξ = (x− z)ξ + a(ξ)σ + h
1
2ψ(σ, x, ξ, h).

Then

∂2ξ θ(x, y, ξ, h) = ∂2ξa(ξ)σ + h
1
2 ∂2ξψ(σ, x, ξ, h).

Now by (4.5) and (4.8), on the support of χ1 we have a(ξ) = |ξ|
3
2 . Therefore ∂2ξa(ξ) =

3
4 |ξ|

− 1
2 ≥ c0 > 0. On the other hand from (4.16) we have |∂2ξψ| ≤ Cσh−δ−2ε which implies

h
1
2 |∂2ξψ| ≤ Cσh

1
2
−δ−2ε ≤ Cσhµ0 . It follows that on the support of χ1 one can find a

constant c1 > 0 such that

(4.46) 0 < c1σ ≤ ∂2ξ θ(x, y, ξ, h) ≤
1

c1
σ,

if h0 is small enough.

In the sequel we shall omit to note (x, z, h) which are fixed taking care of the fact that
all the constants are independent of (x, z, h) ∈ R×R×]0, h0[.

Let us denote by [α, β] ⊂ [13 , 3] the support of χ1.We deduce from (4.46) that the
function ξ → ∂ξθ(ξ) is increasing on [α, β]. Therefore one can find ρ ∈ [α, β] such that

∂ξθ(ξ) ≤ 0 for ξ ∈ [α, ρ], ∂ξθ(ξ) ≥ 0 for ξ ∈ [ρ, β].

Noting b(σ, x, ξ, h) = b(ξ) and assuming that ]ρ, β[ is non empty, we shall estimate

K+(σ, x, ξ, h) =
1

2πh

∫ β

ρ
e

i
h
θ(ξ)b(ξ)ζ(x− z − a′(ξ))dξ,

the estimate corresponding to the intervall [α, ρ] being similar. We write for small h,

(4.47)





K+ =
1

2πh
(I1 + I2),

I1 =

∫ ρ+(h
σ
)
1
2

ρ
e

i
h
θ(ξ)b(ξ)ζ(x− z − a′(ξ))dξ

I2 =

∫ β

ρ+(h
σ
)
1
2

e
i
h
θ(ξ)b(ξ)ζ(x− z − a′(ξ))dξ

We have obviously,

(4.48) |I1| ≤ C(
h

σ
)
1
2
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In the integral I2 using (4.46) and the Taylor formula we see that,

(4.49) ∂ξθ(ξ) ≥ c1σ
(h
σ

) 1
2 = C1(hσ)

1
2 , ∀ξ ∈ [ρ+ (

h

σ
)
1
2 , β].

Let us estimate the integral I2.We introduce the following notation. We shall write A ⋊⋉ B

if |A−B| ≤ C
(
h
σ

) 1
2 where C is a constant depending only q. Then we can state the following

lemma which is a refined version of the well known Van der Corput Lemma.

Lemma 4.8. — For all k ∈ N we have

(4.50) I2 ⋊⋉ (−1)k
(h
i

)k
∫ β

ρ+(h
σ
)
1
2

e
h
i
θ(ξ) 1

(∂ξθ(ξ))k
∂kξ q(ξ)dξ

where q(ξ) = b(ξ)ζ(x− z − a′(ξ).

Proof. — Let us denote by Jk the term in the right hand side of (4.50). The Lemma is true

for k = 0. Assume it is true up to the order k. Using the fact that h
i∂ξθ(ξ)

∂ξe
i
h
θ(ξ) = e

i
h
θ(ξ)

and integrating by parts in Jk we obtain,

Jk = (−1)k+1
(h
i

)k+1
∫ β

ρ+(h
σ
)
1
2

e
h
i
θ(ξ)∂ξ

( 1

(∂ξθ(ξ))k+1

)
∂kξ q(ξ)dξ

+ (−1)k+1
(h
i

)k+1
∫ β

ρ+(h
σ
)
1
2

e
h
i
θ(ξ) 1

(∂ξθ(ξ))k+1
∂k+1
ξ q(ξ)dξ

+ (−1)k+1
(h
i

)k+1
[e

h
i
θ(ξ)
( 1

(∂ξθ(ξ))k+1

)
∂kξ q(ξ)]

β

ρ+(h
σ
)
1
2
= J1

k + J2
k + J3

k .

First of all we have J2
k = Jk+1. Now using (4.36) and (4.49) we can write,

|J3
k | ≤ Chk+1h

−k(δ+4ε)

(hσ)
k+1
2

≤ C
(h
σ

) 1
2hk(

1
2
−δ−4ε) ≤ C

(h
σ

) 1
2 ,

since σ ≥ 1. Now using again (4.36) we obtain,

|J1
k | ≤ Chk+1−k(δ+4ε)

∫ β

ρ+(h
σ
)
1
2

∣∣∣∣∂ξ
( 1

(∂ξθ(ξ))k+1

)∣∣∣∣ dξ.

Since by (4.46) the function ∂ξθ is increasing we have
∣∣∣∣∂ξ
( 1

(∂ξθ(ξ))k+1

)∣∣∣∣ = −∂ξ
( 1

(∂ξθ(ξ))k+1

)
.

Therefore we can write,

|J1
k | ≤ Chk+1−k(δ+4ε)[−

( 1

(∂ξθ(ξ))k+1

)
]β
ρ+(h

σ
)
1
2
.

We deduce exactly as for J3
k that,

|J1
k | ≤ C

(h
σ

) 1
2 .
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It follows that Jk ⋊⋉ J2
k which proves our induction.

Now using Lemma 4.8, (4.36) and (4.49) we can write,

|Jk| ≤ Chk
1

(hσ)
k
2

h−k(δ+4ε) ≤ C
(h
σ

) 1
2hk(

1
2
−δ−4ε)− 1

2 ≤ C
(h
σ

) 1
2hkµ0−

1
2hk(µ0−4ε),

so taking k such that kµ0 ≥ 1
2 and using (4.7) we deduce that |Jk| ≤ C

(
h
σ

) 1
2 . It follows

the from Lemma 4.8 that |I2| ≤ C
(
h
σ

) 1
2 and from (4.48), (4.47) that |K+| ≤

C
h

(
h
σ

) 1
2 which

completes the proof of Proposition 4.7.

4.3. End of the proof of Theorem 4.1. — Let us set Jε = [0, h
1
2
−ε]. It follows from

(4.3) and Proposition 4.4 that

(4.51) ∂tŨh +
1

2
(W δ

h∂x + ∂xW
δ
h)Ũh + ia(Dx)Ũh = Fh, Ũh|t=0 = Ũh(0, x),

with

(4.52) sup
s∈Jε

‖Fh(s, ·)‖H1(R) ≤ CNh
N‖u0,h‖L1(R).

We claim that,

(4.53) Ũh(0, ·) = u0,h + v0,h, ‖v0,h‖H1(R) ≤ CNh
N‖u0,h‖L1(R).

Indeed using (4.3),(4.11),(4.14),(4.33),(4.34) and (4.35) we see that,

(4.54) v0,h(x) = (2πh)−1

∫∫
e

i
h
(x−z)ξ(1− ζ(x− z))χ1(ξ)u0,h(z)dzdξ.

Since on the support of 1− ζ(x− z) we have |x− z| ≥ 1 we can integrate by parts as much
as we want to obtain that for all N ≥ 1,

v0,h(x) = cNh
N−1

∫∫
e

i
h
(x−z)ξ[

1− ζ(x− z)

(x− z)N
](∂Nξ χ1)(ξ)u0,h(z)dzdξ.

Using the Hölder inequality we deduce that,

|v0,h(x)|
2 ≤ CNh

N−1
(∫ ∣∣∣∣

1− ζ(x− z)

(x− z)N

∣∣∣∣
2

|u0,h(z)|dz
)
‖u0,h‖L1(R)

from which we deduce that,

‖v0,h‖L2(R) ≤ CNh
N−1‖u0,h‖L1(R).

Differentiating (4.54) with respect to x and using the same trick we obtain the estimate
in (4.53).

Now by (4.51), the Duhamel formula and the definition in Proposition 4.1 we can
write,

(4.55)

S(t, 0, h)u0,h = D1 +D2 +D3 where D1 = Ũh(t, x),

D2 = −S(t, 0, h)v0,h(x), D3 = −

∫ t

0
S(t, s, h)[Fh(s, x)]ds.
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First of all the estimate

(4.56) ‖D1(t)‖L∞(R) ≤
C

h1/4|t|1/2
‖u0,h‖L1(R)

follows from Proposition 4.7 and (4.41).

Let us estimate D2. We have by Sobolev inequality,

‖D2(t)‖L∞(R) ≤ C1‖D2(t)‖H1(R) ≤ C2‖v0,h‖H1(R),

therefore by (4.53),

(4.57) ‖D2(t)‖L∞(R) ≤ CNh
N‖u0,h‖L1(R).

Let us look now to the term D3. We have,

‖D3(t)‖L∞(R) ≤ C

∫

Jε

‖S(t, s, h)Fh(s, ·)‖H1(R)ds ≤ C ′

∫

Jε

‖Fh(s, ·)‖H1(R)ds,

from which we deduce,

(4.58) ‖D3(t)‖L∞(R) ≤ CNh
N‖u0,h‖L1(R).

Then Theorem 4.1 follows from (4.55), (4.56), (4.57), and (4.58).

4.4. The TT ∗ argument. — Having proved the dispersion estimate the Strichartz
estimates for the solution of (4.1) follow very classically.

Proposition 4.9. — There exist ε > 0, C > 0 such that for any 0 < h < 1 and any
initial data u0,h = χ(hDx)u0, we have

(4.59) ‖S(t, 0, h)u0,h‖
L4((0,h

1
2−ε),L∞(R))

≤ C‖u0,h‖
H

1
8 (R)

.

Proof. — Indeed, applying the usual TT ∗ argument, it suffices to prove that the operator

∫ h
1
2−ε

0
S(t, 0, h)S(s, 0, h)∗f(s)ds

maps continuously L
4
3 ((0, h

1
2
−ε), L1(R)) to L4((0, h

1
2
−ε), L∞(R)). But a direct calculation

shows that since 1
2 (W

δ
h∂x + ∂xW

δ
h) is self adjoint, one has

S(s, 0, h)∗ = S(0, s, h),

and consequently, Proposition 4.9 follows from the classical Hardy-Littlewood-Sobolev
inequality and the dispersion estimate (4.2).

Corollary 4.10. — Let u be a solution of the problem

∂tu+
1

2
(W δ

h∂x + ∂xW
δ
h)u+ ia(Dx)u = f, u|t=0 = 0

with supp f̂ ⊂ {1
2h

−1 ≤ |ξ| ≤ 2h−1}. Then we have,

‖u‖
L4((0,h

1
2−ε),L∞(R))

≤ Kh−1/8 ‖f‖
L1((0,h

1
2−ε),L2(R))

.
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Proof. — Indeed we have,

u(t, ·) =

∫ t

0
S(t, 0, h)S∗(s, 0, h)f(s, ·) ds.

Let us set Jε = [0, h
1
2
−ε]. It follows from Proposition 4.9 that,

‖u‖L4(Jε,L∞(R)) ≤ C

∫ h
1
2−ε

0
‖S(s, 0, h)∗f(s, ·)‖

H
1
8 (R)

ds

≤ C ′

∫ h
1
2−ε

0
‖f(s, ·)‖

H
1
8 (R)

ds ≤ C ′′h−1/8 ‖f‖L1(Jε,L2(R)) ,

since f̂ is supported in {1
2h

−1 ≤ |ξ| ≤ 2h−1}.

4.5. Gluying the estimates. — It remains to glue the estimates which up to now have

been proved on small time intervals of size h
1
2
−ε. Recall that from Lemma 3.7 we have

∂tuh +
1

2
(W δ

h∂x + ∂xW
δ
h)uh + i |Dx|

3
2 uh = fh ∈ L∞((0, τ);Hs+ε− 1

2 ).

Let ϕ ∈ C∞
0 (0, 2), equal to 1 on (12 ,

3
2). For −1 ≤ k ≤ hε−

1
2 , define

uh,k = ϕ
( t− kh

1
2
−ε

h
1
2
−ε

)
uh,

which satisfies

(4.60) ∂tuh,k +
1

2
(W δ

h∂xu+ ∂xW
δ
h)uh,k + i |Dx|

3
2 uh,k

= ϕ
( t− kh

1
2
−ε

h
1
2
−ε

)
fh + hε−

1
2ϕ′
(t− kh

1
2
−ε

h
1
2
−ε

)
uh, uh,k|

t=kh
1
2−ε = 0,

As a consequence, using Corollary 4.10 we obtain,

(4.61) ‖uh,k‖
L4((kh

1
2−ε,(k+2)h

1
2−ε), L∞(R))

≤ h−
1
8

∥∥∥ϕ
(t− kh

1
2
−ε

h
1
2
−ε

)
fh + hε−

1
2ϕ′
(t− kh

1
2
−ε

h
1
2
−ε

)
uh

∥∥∥
L1((kh

1
2−ε,(k+2)h

1
2−ε), L2(R))

≤ Ch
1
2
−ε− 1

8

(
‖fh‖L∞(0,τ), L2(R)) + hε−

1
2‖uh‖L∞((0,τ), L2(R))

)
≤ Chs−

1
8

where in the last inequality we used the assumption u ∈ L∞((0, τ),Hs(R)) and (3.47).
Eventually, noticing that,

‖uh‖
4
L4((0,τ), L∞(R)) ≤

hε− 1
2∑

k=−1

‖uh,k‖
4

L4((kh
1
2−ε,(k+2)h

1
2−ε), L∞(R))

,

we obtain

‖uh‖
4
L4((0,τ), L∞(R)) ≤ Chε−

1
2h4(s−

1
8
)
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which implies

‖uh‖
L4((0,τ), W s−1

4 ,∞(R))
≤ Chε/4

and consequently, since h = 2−j ,

(4.62) ‖u‖
L4((0,τ),W s+ ε

8−
1
4 ,∞(R))

≤
∞∑

j=0

‖u2−j‖
L4((0,τ), W s+ ε

8−
1
4 ,∞(R))

≤ C

∞∑

j=0

2−jε/4 < +∞.

5. Classical time parametrix

In this section we take s > 11
2 and we prove the usual Strichartz estimates. The main

step is, as before, the dispersion estimate. To do so, we seek a parametrix. The main
difference with respect to the previous section is that (in the semi-classical framework),

we are looking for a large (O(h−1/2)) time parametrix. As a consequence, the lower order
term TW∂x induces oscillations. This is reflected in the fact that the new eikonal equation
will be quasi-linear.

We begin by an analogue of Theorem 4.1.

Theorem 5.1. — Let χ ∈ C∞
0 (R) with suppχ ⊂ {ξ : 1

2 ≤ |ξ| ≤ 2} and t0 ∈ R. For any

initial data u0,h = χ(hDx)u0 where u0 ∈ L1(R) let us denote by S(t, t0, h)u0,h := Uh the
solution of

(5.1) ∂tUh +
1

2
(W δ

h∂x + ∂xW
δ
h)Uh + ia(Dx)Uh = 0, Uh |t=t0= u0,h.

Then there exists τ0 > 0 such that for any 0 < h ≤ 1 and any |t− t0| ≤ τ0,

(5.2) ‖S(t, t0, h)u0,h‖L∞(R) ≤
C

h1/4|t− t0|1/2
‖u0,h‖L1(R).

According to Lemma 3.8, Theorem 5.1, the Duhamel formula and the same TT ∗

argument as in Section 4, we deduce

Corollary 5.2. — With the notations of Lemma 3.8, we have

(5.3) ‖uh‖L4((0,T ),L∞(R)) = ‖∆ju‖L4((0,T ),L∞(R)) ≤ C2j(
1
8
−s)cj , cj ∈ ℓ2.

In the remaining of this section, we shall prove Theorem 5.1. We need first to refine the
constructions in Section 4 to handle large times. An important point in the construction
of the phase function is that handling large times leads us to non linear geometric optics.

Our parametrixe will be of the form (4.3),(4.4) that is,

(5.4) Ũh(t, x) =
1

2πh

∫∫
e

i
h
(Φ(t,x,ξ,h)−zξ)B̃(t, x, z, ξ, h)u0,h(z)dzdξ,

where Φ will satisfy the eikonal equation and

(5.5) B̃(t, x, z, ξ, h) = B(t, x, ξ, h)ζ(x− z − th−
1
2 a′(ξ)),
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where B will satisfy the transport equations and ζ ∈ C∞
0 (R), ζ(s) = 1 if |s| ≤ 1, ζ(s) = 0

if |s| ≥ 2.

5.1. Notations. — In this section we fix

s >
11

2
and δ =

1

s− 3
2

<
1

4
.

As before we shall set 2−j = h, where j ∈ N and we shall work with the semiclassical

time σ = th−
1
2 .

In addition to the function χ introduced in Theorem 5.1, we shall use two more cut-off
functions χj ∈ C∞

0 (R), j = 1, 2, such that,

(5.6)





suppχ1 ⊂ {ξ :
1

3
≤ |ξ| ≤ 3}, χ1 = 1on the support of χ,

suppχ0 ⊂ {ξ :
1

4
≤ |ξ| ≤ 4}, χ0 = 1on the support of χ1.

Recall that we have

W ∈ L∞([0, T ],W 2,∞(R)), ∂tW ∈ L∞([0, T ],W 1,∞(R)) (Lemma 3.5),(i)

W δ
h = S[δ(j−3)](W ) satisfies

∥∥∥∂αxW δ
h

∥∥∥
L∞

t,x

≤ Cα ‖∂
α
xW‖L∞

t,x
,(ii)

a(ξ) = χ0(ξ) |ξ|
3
2 ,(iii)

Definition 5.3. — For small h0, τ0 to be fixed, we introduce the sets

Ω =
{
(t, x, ξ, h) ∈ R4 : h ∈ (0, h0), |t| < τ0, 1 < |ξ| < 3

}

O =
{
(σ, x, ξ, h) ∈ R4 : h ∈ (0, h0), |σ| < τ0h

− 1
2 , 1 < |ξ| < 3

}
.

If m ∈ R and ̺ ∈ R
+, we denote by Sm

̺ (Ω) (resp.Sm
̺ (O)) the set of all functions f on Ω

(resp.O) which are C∞ with respect to (t, x, ξ) (resp.(σ, x, ξ) and satisfy the estimate

(5.7) |∂αx f(t, x, ξ, h)| (resp. |∂
α
x f(σ, x, ξ, h)|) ≤ Cαh

m−̺α,

for all (t, x, ξ, h) ∈ Ω (resp.(σ, x, ξ, h) ∈ O).

5.2. The eikonal and transport equations. — In all this section we keep the nota-
tions of (4.11),(4.12), and (4.17) to (4.23).

The main result is the following.

Proposition 5.4. — There exist a phase Φ of the form

Φ(t, x, ξ, h) = xξ − h−
1
2 ta(ξ) + h

1
2Ψ(t, x, ξ, h)

with ∂xΨ ∈ S0
δ (Ω) and an amplitude B ∈ S0

δΩ) such that, with B̃ defined in (5.5),

(5.8) L0

(
e

i
h
ΦB̃
)
= e

i
h
ΦRh.
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and for all N ∈ N we have,

(5.9)
∥∥∥
∫∫

e
i
h
(Φ(t,x,ξ,h)−zξ)Rh(t, x, z, ξ, h)u0,h(z) dz dξ

∥∥∥
H1(Rx)

≤ CNh
N‖u0,h‖L1(R),

for all t in [0, τ0].

Proof. — According to (4.23) we have,




A0 = a(x, ξ + h
1
2∂xψ)b,

A1 =
h

i
a(x, ξ + h

1
2 ∂xψ)∂xb+

h
3
2

i
(∂2xψ)a

′(x, ξ + h
1
2 ∂xψ)b.

We deduce that L0(e
i
h
ϕb̃) = e

i
h
ϕr with

(5.10)

r = i
{
h

1
2 ∂σψ − a(ξ) + a(x, ξ + h

1
2 ∂xψ) + hW δ

h∂xψ + h
1
2 ξW δ

h

}
b ζ

+ h
{
∂σb+ a(x, ξ + h

1
2∂xψ)∂xb+ h

1
2W δ

h∂xb+
1

2
h

1
2 (∂xW

δ
h)b

+ h
1
2 (∂2xψ)a

′(x, ξ + h
1
2∂xψ)b +

i

h

M−1∑

k=2

Ak

}
ζ + i

4∑

j=1

rj ,

where r1, r2 are defined in (4.21), (4.22), r3 in (4.23) and

(5.11) r4 =
h

i

{
−a′(ξ) + h

1
2W δ

h

}
b ζ ′.

5.2.1. The eikonal equation. — As already mentioned, an important point in the construc-
tion of the phase function is that handling large times leads us to non linear geometric
optics. Namely, we determine ψ by solving the following nonlinear problem,

(5.12)




∂σψ +

a(ξ + h
1
2 ∂xψ)− a(ξ)

h
1
2

+ h
1
2W δ

h(h
1
2σ, x)∂xψ = −W δ

h(h
1
2σ, x)ξ,

ψ(0, x, ξ, h) = 0.

In this system, ξ and h are seen as parameters. We begin by establishing that the solutions

exist for a time interval of size h−
1
2 and satisfy some uniform estimates.

Proposition 5.5. — There exists τ0 > 0 such that the problem (5.12) has a unique
C∞ solution ψ in the set O such that ∂xψ and ∂2xψ are uniformly bounded on O by
C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (R)×Hs(R))

)
where C is an increasing function from R+ to itself.

Proof. — Let us differentiate the equation (5.12) with respect to x and let us set ψ1 = ∂xψ.
Then ψ1 is solution of the quasi-linear equation

(5.13) ∂σψ1 +A(σ, x, h, ξ, ψ1)∂xψ1 = B(σ, x, h, ξ, ψ1), ψ1(0, x, h, ξ) = 0.

where

(5.14)

{
A(σ, x, h, ξ, z) = a′(ξ + h

1
2 z) + h

1
2W δ

h(h
1
2σ, x),

B(σ, x, h, ξ, z) = −h
1
2 (∂xW

δ
h)(h

1
2σ, x)z − ξ(∂xW

δ
h)(h

1
2σ, x).
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We shall solve (5.13) by the method of characteristics.
The characteristics are given by the system

(5.15)





σ̇(s) = 1, σ(0) = 0,

Ẋ(s) = A(s,X(s), h, ξ, Z(s)), X(0) = x,

Ż(s) = B(s,X(s), h, ξ, Z(s)), Z(0) = 0.

Since A is uniformly bounded and |B| ≤ C1+C2|z|, the above system has a unique global
solution (i.e defined for s ∈ [0,+∞[).

5.2.2. Properties of the flow.— (i) We have,

(5.16) ∃τ0 > 0, c1 > 0, c2 > 0 : c1 ≤ |Ẋ(s)| ≤ c2, 0 ≤ s ≤ τ0h
− 1

2 .

We show first that

(5.17) h
1
2 |Z(s)| ≤ Cτ0‖∂xW‖L∞ exp

(
τ0‖∂xW‖L∞

)
, 0 ≤ s ≤ τ0h

− 1
2 .

To see this we integrate the equation satisfied by Z and use (5.14). We obtain

(5.18) |Z(s)| ≤ C‖∂xW‖L∞

t,x
|s|+ h

1
2‖∂xW‖L∞

t,x

∫ s

0
|Z(σ)|dσ, 0 ≤ s ≤ τ0h

− 1
2 .

Then (5.17) follows from the Gronwall inequality.

On the other hand, setting m(s) = (s,X(s), h, ξ, Z(s)), we have

A(m(s)) = a′(ξ) + h
1
2Z(s)

∫ 1

0
a′′(ξ + λh

1
2Z(s))dλ+ h

1
2W δ

h(h
1
2σ,X(s))dσ

:= a′(ξ) +R

where

|R| ≤ τ0C(τ0, ‖∂xW‖L∞

t,x
)‖a′′‖L∞ + h

1
2‖W‖L∞

t,x
)

Since for 1/2 ≤ |ξ| ≤ 3 we have |a′(ξ)| ≥ 2c1 > 0 we obtain

|A(s,X(s), h, ξ, Z(s))| ≥ c1

when 0 ≤ s ≤ τ0h
− 1

2 , (τ0 and h small enough). This proves (5.16).

(ii) We have,

(5.19) |Ẍ(s)| ≤ h
1
2C
(
‖∂xW‖L∞

t,x
+ ‖∂tW‖L∞

t,x

)
, 0 ≤ s ≤ τ0h

− 1
2 .

Indeed let us set m(s) = (s,X(s), h, ξ, Z(s)).Then we have,

Ẍ(s) = (∂sA)(m(s)) + (∂xA)(m(s))Ẋ(s) + (∂zA)(m(s))Ż(s).

Moreover we have,

(∂sA)(m(s)) = h(∂sW
δ
h)(σh

1
2 , x), (∂xA)(m(s)) = h

1
2 (∂xW

δ
h)(σh

1
2 , x)

(∂zA)(m(s)) = a′′(ξ + h
1
2Z(s)).

Then (5.19) follows from the expressions of Ẋ(s), Ż(s) and (5.17).
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(iii) We improve now (5.17). We have,

(5.20) |Z(s) ≤ C
( ∑

|α|≤1

‖∂αW‖L∞

t,x

)
, ∂ = (∂t, ∂x).

Indeed we can write

(5.21) Z(s) = −ξ

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))dσ − h

1
2

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))Z(σ)dσ

Now, using (5.16) we have,

(5.22) (∂xW
δ
h)(σh

1
2 ,X(σ)) =

∂σ[W
δ
h(σh

1
2 ,X(σ))]

Ẋ(σ)
−
h

1
2 (∂sW

δ
h)(σh

1
2 ,X(σ))

Ẋ(σ)
.

After an integration by parts we obtain,

I =:

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))dσ =

W δ
h(sh

1
2 ,X(s))

Ẋ(s)
−
W δ

h(0,X(0))

Ẋ(0)

+

∫ s

0

Ẍ(σ)

(Ẋ(σ))2
W δ

h(σh
1
2 ,X(σ))dσ − h

1
2

∫ s

0

1

Ẋ(σ)
(∂sW

δ
h)(σh

1
2 ,X(σ))dσ.

Using (5.16),(5.19) we deduce that for 0 ≤ s ≤ τ0h
− 1

2 we have,

|I| ≤ C
( ∑

|α|≤1

‖∂αW‖L∞

t,x

)
∂ = (∂s, ∂x).

It follows from (5.21) that,

|Z(s)| ≤ C
( ∑

|α|≤1

‖∂αW‖L∞

t,x

)
+ ‖∂xW

δ
h‖L∞

t,x
h

1
2

∫ s

0
|Z(σ)dσ,

which using Gronwall inequality proves (5.20).

We are going now to give some estimates on the x-derivative of the flow.

We claim that,

(5.23) |
∂X

∂x
(s)|+ |

∂Z

∂x
(s)| ≤ C

(
‖∂tW‖W 1,∞ + ‖W‖W 2,∞

)
0 ≤ s ≤ τ0h

− 1
2

(5.24) |
∂X

∂x
(s)− 1| ≤

1

2
, 0 ≤ s ≤ τ0h

− 1
2 ,

if τ0C
(
‖∂tW‖W 1,∞ + ‖W‖W 2,∞)

)
is small enough.
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Indeed using (5.15) we can write,

˙∂X

∂x
(s) = h

1
2 (∂xW

δ
h)(sh

1
2 ,X(s))

∂X

∂x
(s) + h

1
2a′′(ξ + h

1
2Z(s))

∂Z

∂x
(s),

˙∂Z

∂x
(s) = −ξ(∂2xW

δ
h)(sh

1
2 ,X(s))

∂X

∂x
(s)− h

1
2 (∂2xW

δ
h)(sh

1
2 ,X(s))

∂X

∂x
(s)Z(s)

− h
1
2 (∂xW

δ
h)(sh

1
2 ,X(s))

∂Z

∂x
.

From the first equation we deduce

(5.25) |
∂X

∂x
(s)| ≤ 1 + h

1
2 ‖(∂xW

δ
h)‖L∞

t,x

∫ s

0
|
∂X

∂x
(σ)|dσ + h

1
2 ‖a′′‖L∞

∫ s

0
|
∂Z

∂x
(σ)|dσ.

From the second equation we deduce,

(5.26)





∂Z

∂x
(s) = I1 = I2 + I3 where,

I1 = −ξ

∫ s

0
(∂2xW

δ
h)(σh

1
2 ,X(σ))

∂X

∂x
(σ)dσ,

I2 = −h
1
2

∫ s

0
(∂2xW

δ
h)(σh

1
2 ,X(σ))

∂X

∂x
Z(σ)dσ,

I3 = −h
1
2

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))

∂Z

∂x
dσ.

We have easily,

(5.27) |I3| ≤ h
1
2‖∂xW‖L∞

t,x

∫ s

0
|
∂Z

∂x
(σ)|dσ

Moreover using (5.20) we get,

(5.28) |I2| ≤ h
1
2C
( ∑

|α|≤1

‖∂αW‖L∞

t,x

)
‖∂2xW‖L∞

t,x

∫ s

0
|
∂X

∂x
(σ)|dσ.

We are left with the estimate of I1. We use (5.22) applied to ∂xW
δ
h .We obtain

I1 =− ξ

∫ s

0

∂σ[∂xW
δ
h(σh

1
2 ,X(σ))]

Ẋ(σ)

∂X

∂x
(σ)dσ(5.29)

− h
1
2 ξ

∫ s

0

(∂x∂sW
δ
h)(σh

1
2 ,X(σ))

Ẋ(σ)

∂X

∂x
(σ)dσ =: A+B.(5.30)

We see easily that

(5.31) |B| ≤ Ch
1
2 ‖∂s∂xW‖L∞

t,x

∫ s

0
|
∂X

∂x
(σ)|dσ.

35



Let us consider the term A. After an integration by parts one can write,

A = −ξ
((∂xW δ

h)(sh
1
2 ,X(s))

Ẋ(s)

∂X

∂x
(s)−

(∂xW
δ
h)(0, x)

Ẋ(0)

+ ξ

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))

˙∂X

∂x
(s)

dσ

Ẋ(σ)

− ξ

∫ s

0
(∂xW

δ
h)(σh

1
2 ,X(σ))

Ẍ(σ)

(Ẋ(σ))2
∂X

∂x
(σ)dσ.

Using (5.24), (5.16), (5.19) and the equation satisfied by ∂X
∂x we obtain

(5.32) |A| ≤ C
(
‖∂xW‖L∞

t,x

)(
1 + h

1
2

∫ s

0
(|
∂X

∂x
(σ)| + |

∂Z

∂x
(σ)|)dσ

)
.

Using (5.26) to (5.32) we obtain

|
∂Z

∂x
(s)| ≤ C

(
‖∂xW‖L∞

t,x

)

+ C
(
‖∂tW‖

L∞

t W 1,∞
x

+ ‖W‖
L∞

t W 2,∞
x

)∫ s

0

( ∣∣∣∣
∂X

∂x
(σ)

∣∣∣∣ +
∣∣∣∣
∂Z

∂x
(σ)

∣∣∣∣
)
dσ

so using (5.25) and the Gronwall inequality we obtain (5.23).

Then coming back to the equation satisfied by ∂X
∂x we deduce

∣∣∣∣
∂X

∂x
(s)− 1

∣∣∣∣ ≤ C
(
‖∂tW‖

L∞

t W 1,∞
x

+ ‖W‖
L∞

t W 2,∞
x

)
h

1
2 |s|

for 0 ≤ s ≤ τ0h
− 1

2 . Therefore taking τ0 small enough we obtain (5.24).

5.2.3. Resolution of the eikonal equation.— We claim now that for all s in [0, τ0h
− 1

2 ] the
map x → X(s, x) is a global diffeomorphism from R to R. Indeed we have for such fixed
s,

X(s, x) = x+

∫ s

0
A(σ,X(σ), h, ξ, Z(s))dσ.

Since A is bounded by ‖a′‖L∞ +h
1
2‖W‖L∞

t,x
we have lim|x|→+∞ |X(s, x)| = +∞. Moreover

by (5.24) we have, ∂X
∂x (s, x) 6= 0 for all 0 ≤ s ≤ τ0h

− 1
2 and all x ∈ R. Therefore our claim

follows from a well known result by Hadamard. Then

(5.33) X(s, x) = y ⇔ x = Y (s, x), x, y ∈ R,

and the function (s, y) → Y (s, y) is C∞ by the implicit function theorem. Let us consider
then the set

S = {(s,X(s, x), Z(s, x), 0 ≤ s ≤ τ0h
− 1

2 , x ∈ R}.

It follows from (5.33) that S is a submanifold of R3 of dimension two to which the vector
field L = ∂

∂σ +A(σ, x, h, ξ, z) ∂
∂x +B(σ, x, h, ξ, z) ∂

∂z is tangent. It follows then from (5.33)
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that the function ψ1(s, y, h, ξ) = Z(s, Y (s, y)) is the solution of our eikonal equation (5.13).
Then ψ1 ∈ L∞. Moreover we have

∂ψ1

∂y
=
∂Z

∂x
(s, Y (s, y))

∂Y

∂y
(s, y) =

∂Z

∂x
(s, Y (s, y))(

∂X

∂x
(s, Y (s, y)))−1,

so, since ∂Z
∂x is bounded and from (5.24) we deduce,

|
∂ψ1

∂y
| ≤ C

(
‖∂tW‖W 1,∞ + ‖W‖W 2,∞

)
.

It follows that the solution ψ of our eikonal equation (5.12) is such that

∂ψ

∂x
∈ L∞

t,x ,
∂2ψ

∂x2
∈ L∞

t,x ,

uniformly in h, ξ.

5.2.4. Properties of the solution.— We investigate in this section futher regularity of the
solution ψ.

Proposition 5.6. — Let ψ be the solution of (5.12) given by Proposition 5.5 Then we
have ψ ∈ L∞(O), ∂xψ ∈ L∞(O), ∂2xψ ∈ S0

δ (O).

Proof. — The first two claims have been proved in Proposition 5.5, let us consider the
third one. We shall prove that ∂xψ1 ∈ S

0
δ (O) where ψ1 = ∂xψ. Let us set for

1
2 ≤ |ξ| ≤ 2,

(5.34) v(σ, x, ξ, h) = ∂xψ1(σ, x, ξ, h) −
ξ

a′(ξ)
∂xW

δ
h(σh

1
2 , x).

Then according to (5.13) the function v is solution of the equation,

(5.35)

∂σv + (a′(ξ + h
1
2ψ1)+h

1
2W δ

h)∂xv + h
1
2a′′(ξ + h

1
2ψ1)v

2

+(2h
1
2 a′′(ξ + h

1
2ψ1)

ξ

a′(ξ)
∂xW

δ
h + 2h

1
2∂xW

δ
h)v = f,

where,

(5.36)

f =−
ξ

a′(ξ)
h

1
2 ∂x∂tW

δ
h +

ξ

a′(ξ)
∂2xW

δ
h

(
a′(ξ + h

1
2ψ1)− a′(ξ)

)

− h
1
2

ξ

a′(ξ)
W δ

h∂
2
xW

δ
h + h

1
2 (

ξ

a′(ξ)
)2a′′(ξ + h

1
2ψ1)(∂xW

δ
h)

2

+ 2h
1
2

ξ

a′(ξ)
(∂xW

δ
h)

2 − h
1
2 (∂2xW

δ
h)ψ1.

Let us set Λ = hδ∂x.We shall prove by induction on k ∈ N that,

(5.37) Λjv ∈ L∞(O), 0 ≤ j ≤ k.

This will imply our claim since ∂xW
δ
h ∈ S0

δ (O).
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Notice that (5.37) is true for k = 0 by Proposition 5.5. Assume it is true up to the
order k − 1. It follows then, using the Faa-di Bruno formula that,

(5.38) Λl[b(h
1
2ψ1)] ∈ h

1
2
+δL∞(O), 1 ≤ l ≤ k,

for any C∞-bounded function b from R to R.

Applying the operator Λk to both sides of (5.35) and using (5.38) and the fact that
∂αW δ

h ∈ S0
δ (O) for ∂ = (∂t, ∂x), |α| ≤ 2, α 6= (2, 0) we find that Λkv is solution of the

problem

(5.39) (∂σ + a′(ξ + h
1
2ψ1)∂x + h

1
2W δ

h∂x + h
1
2d(σ, x, ξ, h))Λkv ∈ h

1
2L∞(O),

where d ∈ L∞(Oε).

Let us set ṽk = (Λkv)(σ, x + a′(ξ)σ). Then ṽk is solution of the problem,
(
∂σ + h

1
2

∫ 1

0
a′′(ξ + λh

1
2 ψ̃1) dλ ψ̃1∂x + h

1
2 W̃ δ

h∂x + h
1
2 d̃(σ, x, ξ, h)

)
ṽk ∈ h

1
2L∞(O),

Then the desired conclusion follows from the following Lemma.

Lemma 5.7. — Let c1, c2 be two real valued functions such that c1, ∂xc1, c2 belong to

L∞(O) and P = ∂σ + h
1
2 c1(σ, x, ξ, h)∂x + h

1
2 c2(σ, x, ξ, h). Then for any F ∈ L∞(O), the

problem
Pu = F, u|σ=0 = 0,

has a unique solution u which satisfies the estimate

|u(σ, x, ξ, h)| ≤ C

∫ σ

0
‖F (s, ·, ξ, h)‖L∞(R) ds,

for all (σ, x, ξ, h) in O, uniformly in h.

Proof of Lemma 5.7. — Let us set t = σh
1
2 and c̃j(t, x) = cj(h

− 1
2 t, x), j = 1, 2. Then we

are led to the problem

P̃ ũ = h
1
2 F̃ , ũ|σ=0 = 0 (t ∈ [0, τ0], x ∈ R),

where P̃ = ∂t + c̃1(t, x)∂x + c̃2(t, x). Recall that c̃1 ∈ L∞, ∂xc̃1 ∈ L∞, c̃2 ∈ L∞. Then
the claim of the lemma follows from the classical method of characteristics. Indeed, the
characteristics are given by t(s) = s and

Ẋ(s, x) = c̃1(s,X(s, x)), X(0, x) = x.

Then x 7→ X(t, x) is globally invertible for each t ∈ [0, τ0] i.e. X(t, x) = y ⇔ x = Y (t, y)
with Y ∈ C0 ∩ L∞. Then

d

dt
[ũ(t,X(t, x))] = c̃2(t,X(t, x))u(t,X(t, x)) + F (t,X(t, x)).

Therefore ũ given by

ũ(t, y) = exp

(
−

∫ t

0
c̃2(t

′,X(t′, Y (t, y)) dt′
)∫ t

0
F (t′,X(t′, Y (t, y)) dt′

is our solution.

38



Corollary 5.8. — Let ψ be defined by Proposition 5.5 and L be the operator

(5.40) L = ∂σ + a′(ξ + h
1
2 ∂xψ)∂x + h

1
2 d1∂x + h

1
2 d2,

where d1, ∂xd1, d2 are real valued and belong to S0
δ (O).

Then for any F such that ‖ΛjF‖L∞(O) is finite for every j ∈ N, the problem

Lu = F, u|σ=0 = 0,

has a unique solution which satisfies the estimate,

(5.41) |Λku(σ, x, ξ, h)| ≤ Ckσ

k∑

j=0

‖ΛjF‖L∞(O),

for all (σ, x, ξ, h) ∈ O, where Λ = hδ∂x.

Proof. — Since by Proposition 5.6 we have ∂2xψ ∈ S0
δ (O) one can write,

L = ∂σ + a′(ξ)∂x + h
1
2d3∂xψ + h

1
2 d2.

where d3, ∂xd3, d2 belong to S0
δ (O). Setting

U = u(σ, x+ σa′(ξ), ξ, h), c1 = d3(σ, x+ σa′(ξ), ξ, h),

c2 = d2(σ, x+ σa′(ξ), ξ, h),

we see that c1, ∂xc1, c2 belong to S0
δ (O) and U is a solution of the equation

(5.42) L1U := (∂σ + h
1
2 c1∂xψ + h

1
2 c2)U = F1.

We shall prove by induction on k that U satisfies the estimate (5.41). The case k = 0
follows immediately from Lemma 5.7. Assume now that (5.41) is true up to the order
k − 1, k ≥ 1. By the Leibniz formula we have

LΛkU + kh
1
2 (∂xc1)Λ

kU = −h
1
2

(k−2)+∑

i=0

(
k
i

)
(Λk−ic1)Λ

i∂xU

− h
1
2

k−1∑

i=0

(
k
i

)
(Λk−ic2)Λ

iU + ΛkF1 := Gk.

The sum in the first line can be written, −h
1
2
∑k−1

i=1

(
k

i− 1

)
(Λk−i∂xc1)Λ

iU. According to

our assumptions on c1, c2,we can apply the Lemma 5.7 to the operator L+ kh
1
2 (∂xc1).We

obtain, using the induction and the fact that h
1
2σ ≤ τ0,

|ΛkU(σ, x, ξ, h)| ≤ σ‖ΛkF‖L∞(O) + Cσ

k−1∑

j=0

‖ΛjF‖L∞(O),

which completes the induction.
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Proposition 5.9. — Let Λ = hδ∂x. The solution of (5.12) given by Proposition 5.5
satisfies the estimates,

(5.43)
|Λk∂ξψ(σ, x, ξ, h)| + |Λk∂x∂ξψ(σ, x, ξ, h)| ≤ Ckσ,

|Λk∂2ξψ(σ, x, ξ, h)| ≤ Ckτ0h
− 1

2σ,

for all (σ, x, ξ, h) ∈ O, where C depends only on ‖(η, ψ)‖
L∞(I,Hs+1

2 (R)×Hs(R))
.

Proof. — Differentiating (5.12) with respect to ξ we find that U = ∂ξψ satisfies the
equation

(5.44) ∂σU + (a′(ξ + h
1
2 ∂xψ) + h

1
2W δ

h)∂xU = −(∂xψ)

∫ 1

0
a′′(ξ + h

1
2λ∂xψ)dλ −W δ

h .

Then the estimate of the first term in the first line of (5.43) follows from Corollary 5.8.
To estimate the second term we differentiate with respect to ξ the equation (5.13). We
find that the fuction U1 = ∂ξψ1 = ∂x∂ξψ satisfies the equation

∂σU1 + (a′(ξ + h
1
2ψ1) + h

1
2W δ

h)∂xU1 + h
1
2 a′′(ξ + h

1
2ψ1)∂xψ1U1 = −∂xW

δ
h .

The second estimate in the first line of (5.43) follows from Corollary 5.8. Finally to
estimate U2 = ∂2ξψ we differentiate (5.44) with respect to ξ and we find that U2 satisfies
the equation

∂σU2 + (a′(ξ + h
1
2∂xψ) + h

1
2W δ

h)∂xU2 = F

where

F = −h
1
2 (∂x∂ξψ)

2a′′(ξ + h
1
2∂xψ) + (∂x∂ξψ)a

′′(ξ + h
1
2∂xψ)

+
a′′(ξ + h

1
2∂xψ)− a′′(ξ)

h
1
2

.

So using the estimate on ∂xψ and ∂x∂ξψ obtained before, we deduce from Corollary 5.8
the last estimate of (5.43).

5.2.5. The symbol equations. — According to the formulas (4.18)–(4.23), since the phase
ψ now satisfies the eikonal equation (5.12), we are lead to solve the following transport
equation

(5.45)

∂σb+ a′(ξ + h
1
2 ∂xψ)∂xb+ h

1
2W δ

h∂xb− h
1
2 (∂2xψ)a

′′(ξ + h
1
2∂xψ)b

+
1

2
h

1
2 (∂xW

δ
h)b = −

i

h

N∑

k=2

Ak,

with

(5.46) b|σ=0 = χ1(ξ),

where χ1 ∈ C∞
0 (R) is equal to one on the support of the function χ given in Theorem 5.1.

Let

µ0 =
1

2
− 2δ,
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where we recall that δ < 1/4.

Let us set

(5.47) Λ = hδ∂x.

Then according to (4.23) and the Leibniz formula one can write

(5.48)
1

h
Ak = hk(1−δ)−1

k∑

k1=0

ck,k1(h
δ∂y)

k−k1
[
(∂kξ a)(ρ((x, y))

] 
y=x

Λk1b,

where ck,k1 ∈ C.

We shall take b of the form

(5.49) b = χ1(ξ)e
θ̃, θ̃ =

M∑

j=0

θ̃j, θ̃j = hjµ0θj.

Then Λk1b is a finite linear combination of terms of the form(
Λα0eθ̃0

)
· · ·
(
ΛαM eθ̃M

)
, α0 + · · ·+ αM = k1.

Let
ω =

{
α ∈ NM+1 : |α| = k1

}
,

and, for 0 ≤ p ≤M ,

ωp = {α ∈ ω, α = (α0, · · · , αp, 0, · · · , 0) with αp 6= 0} .

Then ω is the disjoint union of the ωp. It follows that

(5.50) Λk1b =
M∑

p=0

∑

α∈ωp

dp,α

(
Λα0eθ̃0

)
· · ·
(
Λαpeθ̃p

)
exp




M∑

j=p+1

θ̃j


 , dα,p ∈ C.

Now by the Faa-di Bruno formula we have for 0 ≤ ℓ ≤M ,

(5.51) Λαℓeθ̃ℓ = eθ̃ℓ
αℓ∑

s=1

Esℓ

where Es,ℓ is a finite linear combintation of terms of the form

s∏

i=1

(
Λpi θ̃ℓ

)qi
where 1 ≤

s∑

i=1

qi ≤ αℓ,

s∑

i=1

piqi = αℓ.

Since
∑s

i=1 qi ≥ 1 and p(p+ 1)/2 ≥ p, it follows from (5.50) and (5.49) that

(5.52) Λk1b = eθ̃
M∑

p=0

hpµ0
∑

|β|≤k1

Gpβ

(
h,Λβ0θ0, . . . ,Λ

βpθp

)
,

where Gp,β(h, ζ0, . . . , ζp) are bounded in h and polynomial in ζ. Coming back to (5.48)

we remark first that since k ≥ 2 and µ0 =
1
2 − 2δ > 0 we have

(5.53) k(1− δ)− 1 ≥ 2(1− δ)− 1 =
1

2
+ µ0.
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Let us note that this is the only point where we use the fact that δ < 1
4 .

On the other hand we have,

(5.54) (hδ∂y)
k−k1

[
(∂kξ a)(ρ((x, y))

] 
y=x

∈ S0
δ .

It follows then from (5.48), (5.52), (5.53), (5.54) that for k ≥ 2

(5.55)
1

h
Ak = h

1
2

M∑

p=0

k∑

k1=0

∑

|β|≤k1

h(p+1)µ0fk,k1Hp,β

(
h,Λβ0θ0, . . . ,Λ

βpθp

)
eθ̃,

where fk,k1 ∈ S0
δ , Hp,β(h, ζ0, . . . , ζp) are bounded in h and polynomial in ζ.

Let us denote by L the linear operator appearing in (5.45),

(5.56) L = ∂σ + a′(ξ + h
1
2∂xψ)∂x + h

1
2W δ

h∂x.

Since b = eθ̃ with θ̃ =
∑M

p=0 h
pµ0θp we have Lb = eθ̃Lθ̃. It follows from (5.55) that the

transport equation (5.45) can be written, modulo a remainder,

Lθ0 − h
1
2
{
(∂2xψ)−

1

2
(∂xW

δ
h)
}

+

M−1∑

p=0

h(p+1)µ0

(
Lθp+1 − h

1
2Gp(θ0, . . . , θp)

)
= 0,

where Gj(θ0, . . . , θp) are polynomials in Λβθℓ for |β| ≤ N . Therefore we shall take for
θp, 0 ≤ p ≤M − 1, the solutions of the problems

(5.57)




Lθ0 = h

1
2
{
(∂2xψ)a

′′(ξ + h
1
2∂xψ) −

1

2
(∂xW

δ
h)
}
, θ0|σ=0 = 0,

Lθp+1 = h
1
2Gp(θ0, . . . , θp), θp+1|σ=0 = 0 (0 ≤ p ≤M − 1).

We have the following result.

Proposition 5.10. — Let Λ = h
1
2 ∂x. Then (5.57) has a unique solution (θ1, ..., θM ) such

that for 0 ≤ p ≤M and all integers k ∈ N,

(5.58)
|Λkθp(σ, x, ξ, h)| ≤ Ck, |Λk∂ξθp(σ, x, ξ, h)| ≤ Ckh

−δσ,

|Λk∂2ξ θp(σ, x, ξ, h)| ≤ Ckh
− 1

2
−2δσ.

Proof. — We proceed by induction on p. If p = 0, the estimate of the first term in the
first line of (5.58) follows immediately from Proposition 5.6 and Corollary 5.8. Now ∂ξθ0
is solution of the equation

(5.59)
L∂ξθ0 = h

1
2
{
(∂ξ∂

2
xψ)a

′′(ξ + h
1
2 ∂xψ) + (∂2xψ)(1 + h

1
2∂x∂ξψ)a

′′′(ξ + h
1
2∂xψ)

}

− (1 + h
1
2 ∂ξ∂xψ)a

′′(ξ + h
1
2∂xψ)∂xθ0 := F0.

It follows from (5.43) and the first estimate that ‖ΛjF0‖L∞(O) ≤ Cjh
−δ. Using Corollary

5.8 we obtain the estimate of the second term in the first line of (5.58). To estimate ∂2ξ θ0
we differentiate one more time the equation (5.59) and we find using the same arguments
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that L∂2ξ θ0 = F1 where F1 satisfies, ‖ΛjF1‖L∞(O) ≤ Cjh
− 1

2
−2δ. The estimate of the term

in the second line of (5.58) follows the from Corollary 5.8. Assuming that (5.58) is true
up to the order p the estimate θp+1 follows from the second equation in (5.57) and the
induction.

It follows then from (5.10),(5.12), (5.45) and (5.57) that

(5.60) r =

5∑

j=1

rj,

where r1, r2, r3, r4 are defined in (4.21),(4.22),(4.23),(5.11) and

r5 = h
1
2h(M+1)µ0GM (θ0, .., θM )χ1(ξ)e

θ̃ζ.

5.2.6. End of the proof of Proposition 5.4. — Since we have

b̃ = χ1(ξ)c(σ, x, ξ, h)(ζ(x − z − σa′(ξ))

with c = eθ̃ = e
∑M

p=0 h
pµ0θp ∈ S0

δ (Ω) the same arguments as those used in section 4.1.1 give
the proof of (5.9).

5.3. The stationary phase lemma. — In the sequel we will use the following ele-
mentary version of the stationary phase inequality where we allow complex valued phase
functions.

Lemma 5.11. — For any real numbers α, β, h, ρ such that

α < β, 0 < h ≤ 1, ρ > 0

and for any functions φ ∈ C2([α, β],C), p ∈ C1([α, β],C) such that

∀ξ ∈ [α, β], |Imφ(ξ)| ≤ h,
∣∣Imφ′′(ξ)

∣∣ ≤ ρ,
ρ

2
≤ Re

(
φ′′(ξ)

)
≤ ρ,

we have ∣∣∣∣
∫ β

α
e

i
h
φ(ξ)p(ξ) dξ

∣∣∣∣ ≤
(
8‖p‖L∞ + 2

∫ β

α

∣∣p′(ξ)
∣∣ dξ

)(h
ρ

) 1
2
.

Proof. — Notice that we can assume that ρ ≥ h (otherwise, the conclusion is straightfor-
ward). Notice now that, using the monotonicity assumption of the real part of the phase
φ, we can decompose the interval (α, β) into the disjoint union of at most three intervals

(α, β) = I1 ∪ I2 ∪ I3,

where I1, I2 or I3 are possibly empty and satisfy

∀ξ ∈ I1, Re(φ′(ξ)) ≤ −(ρh)1/2,

∀ξ ∈ I2, − (ρh)1/2 ≤ Re(φ′(ξ)) ≤ (ρh)1/2,

∀ξ ∈ I3, Re(φ′(ξ)) ≥ (ρh)1/2.
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Let us first study the contribution of I3. Either I3 = ∅ or I3 is an interval contained in
[δ, β] for some δ ∈ [α, β[. Then, using that

h

iφ′(ξ)
∂ξ
(
e

i
h
φ(ξ)
)
= e

i
h
φ(ξ),

and integrating by parts, we obtain

(5.61)

∫ β

δ
e

i
h
φ(ξ)p(ξ)dξ =

[ h

iφ′(ξ)
e

i
h
φ(ξ)p(ξ)

]β
δ
−

∫ β

δ
e

iφ(ξ)
h ∂ξ

( h

iφ′(ξ)
p(ξ)

)
dξ

=
[ h

iφ′(ξ)
e

i
h
φ(ξ)p(ξ)

]β
δ
−

∫ β

δ
e

iφ(ξ)
h

h

iφ′(ξ)
∂ξp(ξ)dξ +

∫ β

δ
e

iφ(ξ)
h
hφ′′(ξ)

φ′(ξ)2
p(ξ)dξ

Clearly, the contributions of the two first terms are easily handled by means of the lower
bound on Re(φ′(ξ)) on I3, and to conclude, it suffices to bound the last term. But according
to the assumption on the phase, we now have

Re(φ′(δ)) ≥ (ρh)1/2 ⇒ Re(φ′(ξ)) ≥ (ρh)1/2 +
ρ

2
(ξ − δ),

and consequently, the last term is bounded by

‖p‖L∞

∫ β

δ

4hρ

(2(hρ)1/2 + ρ(ξ − δ))2
dξ ≤

2h‖p‖L∞

(hρ)1/2
,

where the last inequality is obtained by a straightforward computation.

Now, of course, the contribution of I1 is dealt with similarly, and consequently we can
focus on the contribution of I2. Now remark that according to the assumptions on φ′′, the
length of I2 is smaller that 4(h/ρ)1/2, which implies

∣∣∣∣
∫

I2

e
i
h
φ(ξ)p(ξ)dt

∣∣∣∣ ≤ 4 ‖p‖L∞

(h
ρ

)1/2
.

This completes the proof.

5.4. End of the proof of Theorem 5.1. — As in the preceding section we have

(5.62)





S(t, 0, h)u0,h = D1 +D2 +D3 where D1 = Ũh(t, x),

D2 = −S(t, 0, h)v0,h(x), D3 = −

∫ t

0
S(t, s, h)[Fh(s, x)]ds.

The terms D2 and D3 are estimated exactly as in section 4.3 while D1 will be estimated
differently using Lemma 5.11 instead of Van der Corput Lemma. Indeed recall that ac-
cording to (5.5) and (5.49) our amplitude in the parametrix (5.4) is given by

b̃(σ, x, z, ξ, h) = χ1(ξ)e
θ̃(σ,x,z,ξ,h)ζ(x− z − σa′(ξ)).

The new fact here is that we shall glue the term eθ̃ with the phase and apply the

Lemma 5.11 with the new phase ϕ − zξ + h
i θ̃. Using (5.4) we can write in the variable
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σ = th−
1
2 ,

D1 =

∫
K(σ, x, z, ξ, h)u0h(z) dz,

K =
1

2πh

∫
e

i
h
(ϕ(σ,x,ξ,h)−zξ+h

i
θ̃(σ,x,ξ,h))χ1(ξ)ζ(x− z − σa′(ξ)) dξ.

Therefore we shall apply the Lemma 5.11 with,




φ = ϕ(σ, x, ξ, h) − zξ +
h

i
θ̃(σ, x, ξ, h), ϕ = xξ + σa(ξ) + h

1
2ψ(σ, x, ξ, h),

p = χ1(ξ)ζ(x− z − σa′(ξ)),

ρ = Cσ, C > 0.

Let us show that all the hypotheses in this lemma are satisfied. For this we shall use (5.43)
and (5.58). First of all, since δ ∈]0, 14 [ we have,

| Imφ| = h| Im θ̃| ≤ Ch, |∂2ξ Imφ| ≤ h|∂2ξ θ̃| ≤ Chh−
1
2
−2δσ ≤ σ.

Moreover,

|∂2ξ Reφ| ≤ |a′′(ξ)|σ + h
1
2 |∂2ξψ|+ h|∂2ξ θ̃| ≤ Cσ.

Finally,

|Reφ| ≥ |a′′(ξ)|σ − h
1
2 |∂2ξψ| − h|∂2ξ θ̃| ≥ |a′′(ξ)|σ − C1τ0σ − C2h

1
2
−2δσ ≥ C3σ,

if τ0 and h are small enough.

It follows the from Lemma (5.11) that,

|K| ≤ Ch−1
(h
σ

) 1
2
{
1 +

∫
σ|a′′(ξ)||ζ ′(x− z − σa′(ξ)|dξ

}
.

Since the last integral is bounded by C ′
∫
|ζ ′(t)|dt, we deduce that the term D1 satisfies

the estimate (5.2) which completes the proof of Theorem 5.1.

6. Back to estimates for (η, ψ)

Notice that up to now, we only proved estimates for the dyadically localized functions
∆ju. In this section, we shall show how we can recover estimates for (η, ψ), the solutions
of the water-wave system (1.4). Recall that the Besov space Br

∞,2 is defined by

u ∈ Br
∞,2(R) ⇔

∑

j∈N

22jr ‖∆ju‖
2
L∞ < +∞.

We will use the following elementary lemma

Lemma 6.1. — If the symbol a ∈ Γm
0 , then the operator Ta is bounded from Bs

∞,2(R) to

Bs−m
∞,2 (R).

We have the slightly stronger result (compared to Theorems 1.1, 1.2)
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Proposition 6.2. — Let I = [0, T ]. Under the assumptions of Theorem 1.1, there exists
ε > 0 such that

(6.1) (η, ψ) ∈ L4(I,B
s− 1

4
+ 1

2
+ε

∞,2 (R)×B
s− 1

4
+ε

∞,2 (R)).

Under the assumptions of Theorem 1.2, we have

(6.2) (η, ψ) ∈ L4(I,B
s− 1

8
+ 1

2
∞,2 (R)×B

s− 1
8

∞,2 (R)).

Notice that Theorem 1.1 follows from the first part in Proposition 6.2, using that,

Bσ+ε
∞,2 (R) ⊂W σ,∞(R).

On the other hand, using complex interpolation theory (see [9, Theorem 6.4.5 (6)]), we
have, with q ≥ 2, (since Hσ2 = Bσ2

2,2),

[Bσ1
∞,2,H

σ2 ] 2
q
= Bσ

q,2 ⊂W σ,q, σ = (1−
2

q
)σ1 +

2

q
σ2.

Taking σ1 = s− 1
8 and σ2 = s we obtain σ = s− 1

8 +
1
4q . It follows that

‖ψ(t, .)‖
W

s− 1
8+ 1

4q ,q
(R)

≤ C‖ψ(t, .)‖
1− 2

q

B
s− 1

8
∞,2 (R)

‖ψ(t, .)‖
2
q

Hs(R).

It follows that, with (p, q) satisfying 2
p + 1

q = 1
2 , 2 ≤ q < +∞, we have

‖ψ‖p

Lp(I,W
s− 1

8+ 1
4q ,q

(R))
≤ C‖ψ‖4

L4(I,B
s− 1

8
∞,2 (R))

‖ψ‖p−4
L∞(I,Hs(R)).

which implies Theorem 1.2 (the estimate for η being similar).

Let us now turn to the proof of Proposition 6.2. For conciseness, we will only
prove (6.2), the proof of (6.1) being similar (easier). Recall that the function u is ob-
tained from (η, ψ) through the following steps:

1. u = TeigΦ
∗, where the function g is real and satisfies ∂xg ∈ Γ0

s− 3
2

(which implies

eig ∈ Γ0
s− 1

2

) .

2. Φ∗ = κ∗Φ where (see (3.12)) κ ∈ L∞(I,W 2,∞(R)).

3. Φ = Tpη + iTc1U , with p ∈ Σ
1/2
s−1 is an elliptic symbol and c1 = (1 + (∂xη)

2)−
1
2 .

4. U = ψ − TBη, where B ∈ L∞(I,Hs−1(R)) is defined in (2.7).

Step 1: Starting from Corollary 5.2, we have

‖u‖
L4(I,B

s− 1
8

∞,2 )
< +∞

According to the symbolic calculus, since eig ∈ Γ0
0, we have

u = TeigΦ
∗ ⇒ Φ∗ = Te−igu+R−1(Φ

∗)
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where R−1 is of order −1 (i.e. bounded from Hs(R) to Hs+1(R)) . Since Hs+ 1
2 (R) ⊂

Bs
∞,2(R) it follows from Lemma 6.1, the boundedness of Φ∗ in L∞(I,Hs(R)) that

‖Φ∗‖
L4(I,B

s− 1
8

∞,2 (R))
< +∞.

Step 2: We have

Φ∗ = κ∗Φ ⇔ Φ ◦ κ = Φ∗ + T∂xΦ◦κκ

Notice that ∂xΦ ◦ κ ∈ L∞(I ×R) and ∂xκ ∈ L∞(I,Hs− 1
2 ). As a consequence, T∂xΦ◦κκ ∈

L∞(I,Hs+ 1
2 ) ⊂ L∞(I,Bs

∞,2). We deduce from Step 1

‖Φ ◦ κ‖
L4(I,B

s− 1
8

∞,2 (R))
< +∞.

We conclude that

‖Φ‖
L4(I,B

s− 1
8

∞,2 (R))
< +∞,

by using the following lemma (with χ = κ−1, r = s− 1
8 and r < σ < s).

Lemma 6.3. — Let σ > 1. Consider χ such that ∂xχ ∈ W σ−1,∞(R). Then, for any
0 < r < σ, the map u 7→ u ◦ χ is continuous on Br

∞,2.

Indeed, a simple calculation shows that for any ρ ≤ σ, the map u 7→ u◦χ is continuous
on W ρ,∞, and we conclude by choosing r1 < r < r2 ≤ σ with ri /∈ N (notice that this
impliesW ri,∞ = Bri

∞,∞) and using the real interpolation result (see [9, Theorem 6.4.5 (1)])

[Br1
∞,∞, B

r2
∞,∞]θ,2 = Br

∞,2, r = (1− θ)r1 + θr2.

Step 3: Separating real and imaginary parts, we obtain

‖Tpη‖
L4(I,B

s− 1
8

∞,2 (R))
+ ‖Tc1U‖

L4(I,B
s− 1

8
∞,2 (R))

< +∞

and the same proof as in Step 1 (using that p is elliptic, s − 3
2 ≥ 1 ⇒ p−1 ∈ Γ

− 1
2

1 and for

fixed t, c−1
1 (t, .) ∈W 1,∞(R) ⊂ Γ0

1) gives

‖η‖
L4(I,B

s− 1
8+ 1

2
∞,2 (R))

+ ‖U‖
L4(I,B

s− 1
8

∞,2 (R))
< +∞.

Step 4: We have ψ = U + TBη. So using the boundedness of η in L∞(I,Hs+ 1
2 (R)),

of B in L∞(I,Hs−1(R)) ⊂ L∞(I ×R) and Sobolev injections, we obtain,

‖ψ‖
L4(I,B

s− 1
8

∞,2 )
< +∞,

which completes the proof of Proposition 6.2 and consequently of Theorems 1.1 and 1.2.
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7. Appendix

In this section we give a proof of (4.18) to (4.22).

Let a ∈ C∞
0 (R) with supp a ⊂ {|ξ| ≤ C0}, b ∈ C∞

0 (R) and ϕ ∈ C∞(R) real valued

such that sup |∂ϕ∂x (x)| ≤ C0. Let us set

(7.1) I = e−
i
h
ϕ(x)a(hD)

(
b e

i
h
ϕ
)
(x).

We have

I = (2πh)−1

∫∫
e

i
h
((x−y)ξ+ϕ(y)−ϕ(x))a(ξ)b(y)dydξ.

Moreover we can write

ϕ(x)− ϕ(y) = (x− y)ρ(x, y), ρ(x, y) =

∫ 1

0

∂ϕ

∂x
(λx+ (1− λ)y)dλ.

We have |ρ| ≤ C0 so, setting η = ξ − ρ(x, y) we obtain,

I = (2πh)−1

∫∫
e

i
h
(x−y)ηκ0(η)a(η + ρ((x, y))b(y) dydη

where κ0 ∈ C
∞
0 (R) is such that χ0(η) = 1 if |η| ≤ 2C0.

Using the Taylor expansion of the function a at the point θ(x, y) we obtain I = I1+R1

where,

I1 = (2πh)−1
M−1∑

k=0

1

k!

∫∫
ηke

i
h
(x−y)ηκ0(η)a

(k)(θ(x, y))b(y)dydη

and,

R1 = cMh
−1

∫∫
ηMe

i(x−y)η
h κ0(η)

∫ 1

0
(1− λ)M−1a(M)(λη + ρ((x, y))b(y)dλdydη.

Now we have ηke
i
h
(x−y)η = (−h

i ∂y)
ke

i
h
(x−y)η , so integrating by parts in the integrals I1

and R1 we obtain,

I1 = (2πh)−1
M−1∑

k=0

hk

ikk!

∫∫
e

i
h
(x−y)ηκ0(η)∂

k
y [a

(k)(θ(x, y))b(y)]dydη

I1 = (2πh)−1
M−1∑

k=0

hk

ikk!

∫
κ̂0(

x− y

h
)∂ky [a

(k)(θ(x, y))b(y)]dy,

R1 = c′hM−1

∫∫∫ 1

0
e

i(x−y)η
h κ0(η)(1 − λ)M−1∂My [a(M)(λη + ρ((x, y))b(y)]dλdydη.

Let us set

f(x, y) = ∂ky [a
(k)(θ(x, y))b(y)].
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Now we set in the integral, x− y = hz and we write,

f(x, x− hz) =
M−1∑

j=0

(−hz)j

j!
(∂jyf)(x, x)

+
(−hz)M

(M − 1)!

∫ 1

0
(1− λ)M−1(∂My f)(x, x− λhz)dλ.

Then we use the following equality, which reflects the fact that κ0 is equal to one near the
origin. For j ∈ N we have, ∫

zj κ̂0(z)dz = 2πδj,0,

where δj,0 is the Kronecker symbol. It follows that,

I1 =
M−1∑

k=0

hk

ikk!
∂ky [a

(k)(θ(x, y))b(y)]

y=x

+R2,

where R2 =
∑M−1

k=0 ckh
k+Mrk with

rk =

∫∫ 1

0
zM κ̂0(z)(1 − λ)M−1∂M+k

y [a(M)(θ(x, y))b(y)]

y=x−λhz

dλdz.

Thus we obtain (4.18) to (4.22).
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