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Summary 1 

Stable water isotopes such as oxygen 18, are natural tracers of water movement within the 2 

soil–vegetation–atmosphere continuum. They provide useful information for a better 3 

understanding of evaporation and water vapor transport within soils. This paper presents a 4 

novel controlled experimental set up. It is dedicated to detailed measurements of the 5 

evaporation fluxes from bare soil columns, as well as to the corresponding isotopic 6 

composition of the water vapor, under non steady state conditions. The experiment allowed an 7 

accurate determination of these quantities. The formulae encountered in the literature were 8 

used to estimate the isotopic composition of the evaporated water vapor. None of them was 9 

able to correctly reproduce the measured isotopic composition of water. The data were then 10 

used to estimate the value of the isotopic composition of the soil liquid water, which should 11 

be used to get the right results for the isotopic composition of the evaporated water vapor. 12 

Results suggest that, when liquid transfer is dominant within the soil, the isotopic composition  13 

of evaporation was controlled by the isotopic composition of the liquid water within very thin 14 

soil surface layers. When there is a peak in the isotopic profile, i.e. when water vapor is 15 

dominant close to the surface, the isotopic composition of the evaporated water seems to be 16 

governed by the isotopic composition of the soil liquid water at the peak.  17 

The data were also used to estimate the kinetic fractionation factor. The results suggest that 18 

the latter is not constant in time. The values seem to depend on the shape of the isotopic 19 

profile. In both cases, the uncertainty on the results is very large. The estimation of the kinetic 20 

fractionation factor is studied more in details using the modeling results presented in Part II of 21 

a companion paper where the data set is modeled using the SiSPAT_Isotope model.  22 

 23 

Keywords: Soil water, Water vapor, Soil evaporation, Oxygen 18, Kinetic fractionation 24 

factor, RUBIC IV reactor, Laboratory experiment 25 
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1. Introduction 1 

 2 

Evaporation from soils and transpiration by vegetation represent the major rainfall-recycling 3 

source over continents (Chahine, 1992, Parlange and Katul, 1992; Costanza et al., 1997; 4 

Zangvil et al., 2004). Consequently, a correct assessment of potential impacts of water 5 

management practices, land use and/or climate change on water resources relies on an 6 

accurate representation of evapotranspiration within atmosphere, hydrological or vegetation 7 

models. Soil Vegetation Atmosphere Transfer (SVAT) models represent the complex 8 

interactions between the atmosphere, the soil and the biosphere. Most of them provide 9 

separate estimates of soil evaporation, interception by the canopy and transpiration by plants. 10 

However, few data (relying mainly on sap flow and micro-lysimeters measurements) are 11 

currently available to validate that partition. Stable water isotopes are natural tracers of water 12 

movement. They can provide useful information to quantify and understand this partition 13 

(Yakir and Sternberg, 2000; Yepez et al., 2003; Williams et al., 2004). The isotopic 14 

composition  of water within soils is known to be modified under soil evaporation (i.e. Barnes 15 

and Allison, 1983), whereas no fractionation of isotopic forms of either oxygen or hydrogen 16 

occurs during root extraction (Zimmermann et al., 1967; Walker and Richardson, 1991; 17 

Bariac et al., 1994). The isotopic composition of evaporated and transpired water vapor is 18 

therefore expected to be different. In the field however, they cannot be measured separately as 19 

they are instantaneously mixed with the ambient air water vapor.  It is therefore necessary to 20 

estimate them from measurements of the isotopic composition of liquid water in soils, leaves 21 

and stems (e.g. Yakir and Sternberg, 2000; Yepez et al., 2003; Williams et al., 2004) with 22 

formulae established for water bodies or oceans such as the Craig and Gordon (1965) model 23 

(Yakir and Sternberg, 2000). Their use for deriving the isotopic composition of soil 24 

evaporated water vapor is particularly critical, as soils are generally unsaturated and the 25 



Paper published in Journal of Hydrology, 369, 1-16, 2009, 10.1016/j.jhydrol.2009.01.034    

 4

evaporation front moves below the surface as the soil dries out. To study the mechanisms 1 

controlling the isotopic composition of evaporating soils, we have developed a physically 2 

based model, called SiSPAT_Isotope (Braud et al., 2005a) for bare soil, representing the full 3 

interactions between the atmosphere, the soil and stable isotope species. The model was 4 

evaluated against two sets of laboratory data (Braud et al., 2005b). The data were composed 5 

of soil columns which were let evaporating freely in the atmosphere. The results of this first 6 

study showed that lots of uncertainty in the modeling and interpretation of stable isotope 7 

composition of water in terms of evaporation were related to a lack of control of the 8 

experimental conditions, especially of the atmospheric relative humidity and to a lack of 9 

knowledge of the kinetic fractionation factor for unsaturated soils. In this paper, we present a 10 

novel controlled experiment dedicated to the measurement of the evaporation flux from bare 11 

soil columns, as well as its isotopic composition. The experimental set up allowed a precise 12 

determination of the atmospheric conditions, of the evaporation fluxes and of their isotopic 13 

composition. In addition, the data provide an evaluation of the formulae traditionally used for 14 

deriving the isotopic composition of bare soil evaporated water vapor, and especially of the 15 

relevance of the kinetic fractionation factor values proposed in the literature for free water 16 

bodies (Merlivat and Jouzel, 1979; Cappa et al., 2003). We also propose estimations of this 17 

kinetic fractionation factor and of its associated standard error with the experimental data. 18 

Data interpretation was found to be very sensitive to the value of the isotopic composition of 19 

the soil surface liquid water. It raises questions about the relevant sampling depth which is 20 

required to properly estimate the isotopic composition of evaporated water vapor. This point 21 

is studied more in details in Part II of a companion paper (Braud et al., 2009) which presents 22 

the modeling of these experimental results using the SiSPAT_Isotope model.  23 

 24 

25 
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2. Material and methods 1 

2.1  Experimental set up 2 

The RUBIC IV reactor (Figures 1 and 2) was developed in order to determine the isotopic 3 

composition of the water vapor released by an evaporating soil and to monitor its time 4 

evolution as long as the soil was drying. The leak tight experimental set up allowed to inject 5 

directly a gas flow of dry air simultaneously over six evaporating soil columns and to 6 

continuously capture all the water vapor released by evaporation by cryoscopic trapping. 7 

Therefore, the only water vapor source was that of the evaporating soil columns, without any 8 

contamination from external sources in the laboratory. Furthermore, the cryoscopic trapping 9 

ensured that all the water vapor coming from the soil evaporation was completely trapped. In 10 

the design of the experimental set up, the following constraints were taken into account: 11 

- A continuous non destructive sampling for the water vapor phase and a destructive 12 

sampling for the liquid phase within the soil columns. That implied to dismantle the soil 13 

columns at successive dates, cut them into slices and analyze the isotopic composition of 14 

all samples, as well as their gravimetric water content 15 

- A leak tight experimental set up with regards to external contaminations and loss of vapor 16 

or water from the system through a leak 17 

- The continuous measurement and the regulation of climatic variables 18 

- The continuous measurement of the most important variables describing the moisture 19 

status of the soil (water pressure and water content) 20 

The various components of the experimental set up are detailed below. 21 

• Air circulation and cryoscopic trapping of the water vapor (Figure 2) 22 

In order to ensure the tightness constraints, the reactor was built in Pyrex material. It was 23 

composed of six columns, 12 cm in diameter and 50 cm in height. An argon leak test was 24 

performed in order to verify that there were no leaks. A dry air flow was continuously flowing 25 
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over the columns. The air flow, available in the laboratory was desiccated using two devices 1 

in series: 2 

- A pressured desiccating filter (DAS1 at 0.01 µm, Domnick Hunter), delivering a dew point 3 

equivalent to -40°C (Fig. 2 (a)) 4 

- A double cryoscopic trapping (Fig. 2 (b)) in an ethanol bath at –80°C (Thermo-Neslab 5 

CC100, Cryocool 1 free immersion cooler) 6 

The dry air was then introduced into an expansion fence (Fig. 2 (c)) where the pressure was 7 

put in equilibrium with the six columns (Fig. 2 (d)). The corresponding air pressure, 8 

temperature and humidity (in order to verify that the air was dry as expected) were first 9 

measured at this stage (Fig. 2 (e)). The dry air was then delivered individually to each soil 10 

column. The output air, once modified by the evaporation from the soil, was directed 11 

towards capacitive sensors measuring the partial pressure of the water vapor (leading to the 12 

temperature and relative humidity of the air) (Fig. 2 (f)). The choice to measure the air 13 

temperature and humidity above the columns at the outlet was dictated by the following: 14 

preliminary measurements of the air relative humidity above the soil columns highlighted 15 

some heterogeneity in the atmosphere. Therefore, it was difficult to have an identical 16 

position of the sensors above each of the six columns, due to the size of the sensors. All the 17 

heterogeneities were integrated by the measurement of the air temperature and relative 18 

humidity at the outlet. The air was then directed to mass flow controllers (Fig. 2 (g)) which 19 

regulated the vapor flux as function of a set point of the air humidity at the outlet of the 20 

columns. For this purpose a Proportional Integral Derivative-type system, which allowed 21 

accurate regulation of the relative humidity above the soil columns was used. Finally, two 22 

Cryocools (Thermo-Neslab CC100) were cooling continuously a cryoscopic device (Fig. 2 23 

(h)), allowing to trap the whole output water vapor. At the outlet of the cryocools, a 24 
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capacitive sensor (Fig. 2 (i)) was controlling the residual water vapor content and 1 

consequently the quality of the trapping. 2 

• Continuously measured variables 3 

A Campbell CR23X data logger and multiplexer AM 16/32 were used to record 44 variables 4 

with a 15- min averaging time step. These variables were aimed at documenting the water 5 

mass balance of the six columns and the soil moisture status of one of them, namely column 6 

1. The measured variables were: 7 

- The air temperature and relative humidity at the outlet of the six columns (Vaisala HMP 45, 8 

with an accuracy of ± 0.2 °C and ± 1% of relative humidity) (12 variables). The regulation of 9 

the relative humidity of the atmosphere above the soil columns is the result of a compromise 10 

between the evaporation flux and the flux of dry air flowing through the head space of the 11 

columns. The value of the latter flux should not exceed 2.0 l min-1 because of the isotopic risk 12 

of fractionation of the water vapor related to the incomplete trapping of this vapor (Schoch-13 

Fisher et al., 1983). This constraint did not enable, initially, to reach a value lower than 80% 14 

for the relative humidity regulation. Then, as the evaporation flux decreased because of the 15 

fall in the soil water content, it was necessary to decrease the value retained for the regulation 16 

of the relative humidity. The values are provided in Table 1 and Figure 3.  17 

- The air flow: six mass flow meters (Bronkhorst EL-Flow) were under control of the 18 

previous hygrometers in order to regulate air humidity above the soil columns with an 19 

accuracy of 0.0081 l min-1 (6 variables) 20 

- The column mass: column 1, where soil moisture status was monitored, was weighted using 21 

a 30 kg Sartorius balance (model CP34001, accuracy 0.2 g). The five other columns were 22 

weighted by strain gauges (Tedea 1040 load cell, range 30 kg, accuracy 4 g) which were 23 

calibrated by comparison with the Sartorius balance (6 variables). The data were filtered to 24 

smooth the values 25 
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- The temperature of the cryoscopic trapping down and upstream of the columns was 1 

measured by thermocouples of K -type (2 variables) 2 

- The air temperature and residual air humidity were measured at the outlet of the cold traps 3 

using capacitive sensors (Vaisala HMP45) (4 variables) 4 

- The temperature of the room was measured using a Campbell T107 thermistance (1 5 

variable) 6 

- The atmospheric pressure was monitored using a Vaisala PT101B barometer. The absolute 7 

pressure in the expansion fence (slightly put in over-pressure) was measured using an 8 

Edwards EPS10 gauge (2 variables) 9 

-The soil water pressure was measured in column 1 by using ceramic porous cups (SDEC 10 

220) of 2 mm in diameter and 20 mm in length, provided with nylon capillary tubes and 11 

connected to pressure transducers. The calibration of the pressure transducers was carried out 12 

by using the variation of a water column for the pressure below 100 hPa and a SDEC 13 

manometer between 100 and 600 hPa. The data were corrected from the air pressure 14 

variations in the reactor. Three such porous cups were installed at –2.5, -8 and -16 cm depths 15 

(3 variables) 16 

- Capacitive moisture probes (SDEC HMS 9000) positioned at –2.5, -8, -16 and –24 cm 17 

depths were recording continuously the temperature and electric permittivity of the soil of 18 

column 1. Conversion of the permittivity values into volumetric water content ones ((θ-2.5 ; θ-8 19 

; θ-16 ; θ-24) was performed using a calibration based on gravimetric sampling. The 20 

temperature sensors were calibrated against a K-type thermocouple using a stat-controlled 21 

water bath (8 variables). In addition, some gravimetric samples were collected for the 0-2.5 22 

and 2.5-5 cm soil layers at various dates to determine the evolution of the surface moisture 23 

content and the isotopic composition of the liquid phase. The holes were then filled with 24 
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wood dowels and the corresponding surface was removed from the evaporating surface of the 1 

columns (note that this sampling required a temporary stop of the experiment). 2 

• Filling of the soil columns 3 

The soil used to fill the columns was a silt loam (18% clay, 65% loam, 17% sand). It had been 4 

collected at the field station of Lusignan (41.44°N, 0.14°W), France.  The water tightness 5 

constraints did not allow the use of undisturbed soil columns. Therefore, the soil was oven-6 

dried and sieved at 2 mm to remove stones and coarse organic matter. In order to get a dry 7 

bulk density closed to the in situ one (ρd = 1.4 g cm-3), the soil was humidified using 8 

demineralized water of known isotopic composition at a constant water content corresponding 9 

to a gravimetric value of 0.14 g g-1.  The columns were filled with wet soil by packing 10 

successive thin layers of constant mass in order to obtain the same dry bulk density values 11 

over each column height (35 cm of soil). The columns were closed at their base by clay 12 

marbles and by filters to facilitate their water saturation. This was achieved by capillary rise 13 

from the bottom of the columns up to the soil surface using connected tanks. At the end of the 14 

saturation process, a water sample was taken at the surface and the bottom of each column to 15 

determine the isotopic composition of the water by mass spectrometry. Results given in Table 16 

2 show a satisfying reproductibility of the initial conditions prevailing within all the columns. 17 

• Isotopic measurements 18 

The water samples were analyzed using mass spectrometers (OPTIMA, GV Instrument) to 19 

determine their content in oxygen 18.  20 

During the first three months, the water vapor was trapped twice a day and then once a day as 21 

evaporation decreased. To determine the atmospheric water vapor isotope concentration, the 22 

vapor was frozen out of a maximum air flow of 1.0 l min-1 into a trap cooled at -80°C.  23 
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The trapped vapor was analyzed using the CO2 equilibration technique to determine the 1 

oxygen 18 composition of water. Estimated standard deviation for the samples of water vapor 2 

was 0.1o/oo.  3 

For the liquid phase of the soil samples, the water was distilled at 90°C under vacuum 4 

conditions from the material into a trap cooled by liquid nitrogen. During the static vacuum 5 

distillation used for extracting soil water, the recovery was higher than 98 %. Water content 6 

was obtained from weight loss of soil during distillation. Isotopic contents of soil water were 7 

corrected according to the distillation yield by a Rayleigh-type law (Araguas-Araguas et al., 8 

1995). Although all the extraction carried out during the experiment had an efficiency higher 9 

than 98%, a correction, ranging from 0 to 0.4 °/°° was still necessary. The vacuum distillation 10 

technique provides accurate results, especially for soils with the highest water content.  As 11 

shown in Fig. 4, no significant differences were observed during the prior tests between the 12 

isotopic composition of soil water, exfiltrated water and supply water. Indeed, the extraction 13 

temperature has been kept at a low value (90°C) in order to minimize the impact of the 14 

immobile water distillation on the isotopic composition of the extracted soil water (Araguas-15 

Araguas et al., 1995). 16 

Note that throughout the paper, isotope measurements will be expressed in “δ” notation, as 17 

the deviation of the isotopic ratio in parts per thousand from that of the Vienna Standard 18 

Mean Ocean Water (V-SMOW, Gonfiantini, 1978).   19 

The experiment was launched on April 11 2005 at 12h 00 (Day of the Year: DoY 101) and 20 

lasted 338 days. At successive dates during the drying process (Table 3), one of the columns 21 

was dismantled. Soil slices were sampled throughout the profile and analyzed as described 22 

above. The thickness of the samples was about 0.5 cm between the surface and 10 cm depth 23 

and 1 cm below. 24 
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The nomenclature and list of symbols used in the following of the paper are provided in 1 

Appendix A. 2 

 3 

2.2 Calculation of the evaporation flux and correction of the reactor dynamics 4 

The evaporation flux was calculated using three methods (four for column 1) in order to 5 

verify mass conservation: 6 

- Method 1. The evaporation flux was calculated using the air temperature Tout, relative 7 

humidity huout (-) and the mass flow qout (l min-1) at the outlet of the columns as: 8 

 ( ) colaout

outaout
a SeP

qeE
−

=
exp

ρ           (1) 9 

where E (kg m-2 s-1) is the water vapor flux; qout (m3 s-1) is the flow of water vapor; 10 

eaout=f(Tout, huout) (Pa) is the water vapor pressure at the outlet of the column; Pexp (Pa) is the 11 

pressure in the expansion fence; ρa (kg m-3) is the water vapor volumetric mass and Scol (m2) 12 

is the evaporative surface of the column.  13 

- Method 2. The method uses directly the continuous weighting of the columns. The 14 

evaporation flux was obtained from mass difference between two time steps, with a filtering 15 

of the results. 16 

- Method 3. It was based on the weighting of the frozen vapor which was trapped at the outlet 17 

of the soil columns. The flux was obtained as the mass divided by the time step. Note that the 18 

time resolution of this method is coarser than methods 1 and 2, as water vapor was trapped 19 

twice or once a day. 20 

- Method 4. For column 1, an additional method was used to check the cumulative 21 

evaporation. It was based on the calculation of the change in soil water storage ΔS between a 22 

time step and the initial value. The soil water storage variation, ΔS (m), was deduced as the 23 

integral of the soil water content using the following approximation: 24 
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( )
35.0

15.008.00675.00525.035.035.0 241685.2
35.0

0

−−−−
−=

=

+++
−≈−=Δ ∫

θθθθθθθ s

z

z
s dzzS        (2) 1 

where θs (m3 m-3)is the volumetric water content at saturation, and θ-i is the volumetric water 2 

content at depth –i , the origin (z= 0) being positively oriented downwards. 3 

Appendix B provides the reactor equations. This Appendix shows that the approximation of 4 

equality between the water flow at the outlet and the evaporation flux was valid throughout 5 

the whole experiment. Appendix B also shows that the isotopic composition of the water 6 

vapor measured at the outlet of the columns can be assumed equal to that of the evaporated 7 

water vapor (Zimmerman et al., 1967). 8 

  9 

2.3 Isotopic composition  of evaporated water vapor 10 

For a free water, Craig and Gordon (1965) proposed the following equation for the derivation 11 

of the isotopic composition, v
iEδ , of the evaporated water vapor: 12 

 ( ) ( )( )
( )( )( ) 1

111
111

'

'

−
−++

++−+
=

aKe

e
v
iaa

l
isv

iE h
h
εε

εδδδ       (3) 13 

where l
isδ (resp. v

iaδ ) is the isotopic composition of the liquid water (resp. the ambient air water 14 

vapor), εe=(1-αe) and εK=(1-αK). The equilibrium isotopic fractionation factor *

1

e
v
i

l
i

e R
R

α
α ==  15 

(-) is defined as the ratio of the isotopic ratio in the liquid phase l
iR to the isotopic ratio in the 16 

vapor phase v
iR . Its expression is given by Majoube (1971) as a function of temperature T (K). 17 

αK (-) is the so-called isotopic kinetic fractionation factor. It is related to the difference in 18 

diffusivity between light and heavy water molecules (Merlivat, 1978). Finally '
ah is the air 19 

relative humidity, normalized to the temperature of the water surface, given by: 20 

 
( )
( )s

v
sat

a
v
sat

aa T
T

hh
ρ
ρ

='           (4) 21 
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where Ta (resp. Ts) is the air (resp. surface) temperature, ha (-) is the air relative humidity and 1 

( )Tv
satρ  is the saturated volumetric mass of the water vapor (kg m-3). Therefore, Eq. (3) can be 2 

rewritten in terms of isotopic ratio, equilibrium and kinetic fractionation factor: 3 

 ( )
( )'

'*

1
1

a

a
v
ia

l
ise

K

v
iE h

hRRR
−
−

=
α

α
        (5) 4 

This formula, established for free water, was shown to be valid for saturated soils by 5 

Zimmerman et al. (1967) and is also widely used to derive the isotopic composition of 6 

transpired water vapor (i.e. Yakir and Strenberg, 2000). For an unsaturated soil, the extension 7 

of the Craig and Gordon (1965) approach leads to the following expression for the isotopic 8 

composition of the evaporated water vapor: 9 

 ( )
( )'

'*1

as

a
v
ias

l
ise

K

v
iE hh

hRhRR
−
−

=
α

α
        (6) 10 

where hs is the soil surface relative humidity (-). Braud et al. (2005a) provided the following 11 

expressions for the evaporation flux E (kg m-2 s-1) and the corresponding isotopic flux Ei (kg 12 

m-2 s-1): 13 

 ( )as
a

a qq
r

E −=
ρ           (7) 14 

 ( )a
v
ias

v
is

w

i

aK

a
i qRqR

M
M

r
E −=

α
ρ        (8) 15 

where ρa (kg m-3) is the air volumetric mass; qs and qa (kg kg-1) are the specific humidity at 16 

the soil surface and in the atmosphere, respectively; ra (s m-1) is the aerodynamic resistance to 17 

heat and water vapor transfer; Mi and Mw (kg) are the molar mass of the isotopic species and 18 

of ordinary water, respectively; v
isR  and v

iaR  are the isotopic ratio of the water vapor at the 19 

surface and in the atmosphere, respectively. Braud et al. (2005a) assumed that the liquid 20 

isotopic composition l
isR  at the soil surface was in equilibrium with the water vapor, leading 21 

to: 22 



Paper published in Journal of Hydrology, 369, 1-16, 2009, 10.1016/j.jhydrol.2009.01.034    

 14

l
ie

v
i RR *α=             (9) 1 

The surface isotopic flux was thus rewritten as: 2 

 ( )a
v
ias

l
ise

w

i

aK

a
i qRqR

M
M

r
E −= *α

α
ρ        (10) 3 

The ratio of the isotope and water vapor flux is related to the isotopic ratio v
iER of the 4 

evaporating water vapor through: 5 

 v
iE

w

ii R
M
M

E
E

=           (11)   6 

Combining Eqs (7), (8) and (11), leads to the following equation: 7 

 ( )
( )

v
iE

w

i

as

a
v
ias

l
ise

w

i

K

i R
M
M

qq
qRqR

M
M

E
E

=
−
−

=
*1 α

α
     (12) 8 

from which the isotopic ratio of the evaporating water vapor can be deduced: 9 

 ( )
( )as

a
v
ias

l
ise

K

v
iE qq

qRqRR
−
−

=
*1 α

α
        (13) 10 

The difference between (13) and (6) is due to the fact that we expressed the gradient in water 11 

vapor density between the surface and the ambient air using the specific humidity instead of 12 

the relative humidity: ( )asair
v
a

v
s qq −=− ρρρ , but both expressions are strictly equivalent.  13 

In the following, Eq. (6) will be used as it is more commonly encountered in the isotopic 14 

literature. 15 

The experiment provided the data required to use Eq. (6). As a matter of fact, the soil surface 16 

temperature was measured at –2.5 cm. The gravimetric measurements of the 0-2.5 cm layer 17 

were converted into volumetric water content from the measured values of dry bulk density 18 

(Table 2). The volumetric water content was converted into water pressure h using the soil 19 

retention curve fitted to the Van Genuchten (1980) expression. The points were based on 20 

measured values of soil water content and soil water pressure at –2.5 cm soil depth (Fig. 5). 21 
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From the soil water pressure h, the soil surface relative humidity hs was deduced from the 1 

Kelvin law:  2 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s
s RT

ghh exp           (14) 3 

In Eq. (14), g (m2 s-1) is the acceleration of gravity and R = 461.5 J kg-1 is the perfect gas 4 

constant for vapor and Ts (K) is the soil surface temperature. The air temperature and 5 

humidity of the air above the soil column were assumed to be equal to those measured at the 6 

outlet of the column. As mentioned in section 2.1, the outlet measurements were integrating 7 

all the heterogeneities in the climatic variables above the soil column and thus, could be 8 

considered as representative of the values above the soil columns. The last quantity to 9 

estimate was the isotopic ratio of the soil surface liquid phase. This was achieved by the use 10 

of the isotopic composition of the gravimetric samples mentioned above. All the data are 11 

provided in Table 4. Finally, a value of the kinetic fractionation factor had to be prescribed. 12 

Various values from the literature were tested. For molecular diffusion conditions, Merlivat 13 

(1978) proposed 1.0285 for oxygen 18, whereas Cappa et al. (2003) suggested 1.03188. 14 

Under laminar situations, the kinetic fractionation factor is assumed to be ( ) 3/2
Kα and 15 

( ) 2/1
Kα for turbulent conditions (Dongmann et al., 1974), leading respectively to 1.0189 and 16 

1.014, for oxygen 18 with the Merlivat (1978) values. The values calculated using Eq. (6) 17 

were compared with the measured ones for various estimates of the kinetic fractionation 18 

factor (see the results section). The standard error in the estimation of v
iER  is also provided. 19 

The details of its calculation are given in Appendix C, using an extension of the approach 20 

proposed by Phillips and Gregg (2001).  21 

There was no agreement between Eq. (6) and the measured value of the isotopic composition  22 

of the evaporated water vapor. Therefore, the value of the isotopic composition of the soil 23 
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surface liquid water, l
isR which would be required so that both values match was also 1 

calculated as  2 

 ( )( )
se

KaKs
v
ioutl

is h
hhRR *

' 1
α

αα −−
=         (15) 3 

where v
ioutR  is the isotopic composition of the water vapor at the outlet of the columns. 4 

Appendix D provides the corresponding error calculation. 5 

Note that Eq. (15) is similar to the one proposed by Barnes and Allison (1983) for the 6 

calculation of the peak value in the soil water isotopic composition profile. The major 7 

difference is that, contrarily to Barnes and Allison (1983) conditions, the soil is not under 8 

permanent regime in the condition of our experiment. Thus the isotopic composition of the 9 

evaporated water vapor is not equal to that of the capillary rises/alimentation water and was 10 

measured.  11 

 12 

2.4 Estimation of the kinetic fractionation factor 13 

Appendix B shows that, for our experimental conditions, the isotopic composition of the 14 

evaporating water vapor v
iER  and the water vapor above the soil column v

iaR as well as at the 15 

outlet v
ioutR were the same. Therefore, the kinetic fractionation factor can also be deduced from 16 

Eq. (15) as: 17 

 ( )
( ) v

ioutas

a
v
iouts

l
ise

K Rhh
hRhR

'

'*

−
−

=
αα         (16) 18 

The data of the experiment as described in section 2.3 were used to perform these 19 

calculations. The standard error in the estimation of αK is also given. The details of its 20 

calculation are provided in Appendix E. 21 

 22 

3. Results and discussion 23 
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3.1 Evaporation flux 1 

Figure 6 shows two examples (for columns 1 and 4) of the comparison between the 2 

cumulative and instantaneous evaporation flux using the four (three) methods described in 3 

section 2.2. Table 5 provides the values of the cumulative evaporation for the six columns and 4 

all the methods. It shows that, apart from the ΔS method, the agreement between the methods 5 

is very satisfying. Differences on cumulative evaporation are less than 5 mm between the 6 

methods. Figure 6 also shows that the dynamics of the fluxes is similar between the methods.  7 

Figure 7 presents the measured evaporation fluxes and the corresponding cumulative 8 

evaporation, calculated by method 1, for the six columns. Although, the filling of the soil 9 

columns was carefully conducted, a certain degree of variability between them can be 10 

observed. This means a posteriori that the flux measurement of each of the six columns was 11 

necessary for the modeling and correct data interpretation. Several phases in the evaporation 12 

can be distinguished. In a first phase (between DoY 101 and 130), the evaporation flux is 13 

almost constant (fluctuations are linked with the diurnal variations of the air temperature (see 14 

Figure 3 for the example of column 1), which was not regulated within the room). In a second 15 

phase, the flux decreases regularly up to DoY 207 as long as the soil surface is drying 16 

(volumetric water content at –2.5 cm, not shown). On DoY 207, the set point of air humidity 17 

was decreased from 80% to 60% in order to maintain the air flow above the columns (and to 18 

avoid a contamination of cold traps by a back flow of water vapor coming from the 19 

laboratory). This provokes a drastic increase of the evaporation flux and then another 20 

continuous decrease. The other changes in the prescribed relative humidity do not produce 21 

such peaks.  22 

 23 

3.2 Volumetric and isotopic soil profiles 24 
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Table 2 shows that the saturation of the soil columns was in general correctly achieved with 1 

an isotopic composition of the liquid water which was equal, within ± 0.2 o/oo, at the surface 2 

and at the bottom of the column. In general, the latter were also equal, within ± 0.2 o/oo, to the 3 

isotopic composition of the saturation water which was -6.4 o/oo. It was not the case for 4 

columns 4 and 5 for which the isotopic composition of the liquid water at the bottom were 0.5 5 

to 0.9 o/oo higher than that of the saturation water This difference is not obvious to explain: it 6 

may be caused by leaks at the base of the soil column, isotopic variation in the source water, 7 

mixing with residual water... This difference does not affect data interpretation because we 8 

used the measured values for all the calculations and simulations.  Figure 8 provides the water 9 

content and oxygen 18 isotopic ratio profiles of the six columns at dates they were 10 

dismantled. It shows the progressive drying of the soil column until the soil surface reaches an 11 

almost zero residual water content. The whole soil column is affected by the drying, and all 12 

depths are participating to evaporation. The isotopic ratio profiles show a progressive isotopic 13 

enrichment located close to the surface at the beginning of the drying process. After 163 days 14 

of drying (DoD), a back diffusion is observed with a peak at –2.5 cm. The depth of the peak 15 

increases up to –4 cm after 235 DoD and reached –10 cm after 338 DoD of drying. As 16 

proposed by Barnes and Allison (1983) and verified by Braud et al. (2005a) using the 17 

SiSPAT_Isotope model, the depth of the isotopic ratio peak can be associated with the depth 18 

of the evaporation front, i.e. the depth above which water vapor transport is dominant as 19 

compared to the liquid one. 20 

 21 

3.3 Isotopic composition of the evaporated water vapor 22 

The oxygen 18 isotopic composition of the water vapor at the outlet of the columns is shown 23 

in Fig. 9. As observed for the evaporation flux, there is certain variability amongst the six 24 

columns. This confirms the importance of having measured the flux and isotopic composition 25 
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of the evaporated water vapor of each soil column separately. The shape of the various curves 1 

is comparable. A rapid increase of the isotopic composition of the evaporated water vapor is 2 

first observed. Then a stabilization around an almost constant value can be noticed. The latter 3 

is close to the value of the initial water (-6.4 o/oo).  Then, the isotopic composition of the 4 

evaporated water vapor progressively decreases. This decrease coincides with the apparition 5 

of back diffusion close to the surface, leading to the decrease of the soil surface liquid 6 

isotopic composition. This impoverishment of the isotopic composition of the evaporated 7 

water vapor increases as long as the soil dries. At the end of the experiment, a stabilization 8 

around a value of about –14 o/oo can be observed.  9 

 10 

3.4 Estimation of the isotopic composition of the evaporated water vapor 11 

Table 6 provides the comparison between the measured and calculated (using Eq. (6)) oxygen 12 

18 isotopic composition of the evaporated water vapor for various values of the kinetic 13 

fractionation factor. Figures 10 and 11 show the comparison of the estimated and measured 14 

values for αK=1.0189 (laminar diffusion). Error bars on the estimation, as well as the 15 

minimum and maximum values estimated from Eq. (C.23 in Appendix C) are also provided. 16 

In Fig. 10, errors on the measured variables are assumed to be due to analytical or sensors 17 

accuracy only. In Fig. 11, sampling errors are considered. For both cases, the retained errors 18 

on the measured variables are given in Table 7.  19 

Table 6 and Figs 10 and 11 show that, whatever the value retained for the kinetic fractionation 20 

factor, the calculated isotopic composition of the evaporated water vapor is much lower than 21 

the measured one. Figure 10 shows that analytical and sensors errors alone cannot explain this 22 

discrepancy as their use leads to very small standard errors. On the other hand, when 23 

sampling errors are considered (Fig. 11), the confidence intervals sometimes encompass the 24 

measured values. In the remaining of the paper, only standards errors calculated using 25 
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sampling errors will be presented, as they provide more realistic standard error values. Figure 1 

12 provides the decomposition of the sources of errors, including (bottom) or excluding (top) 2 

errors on the kinetic fractionation factor. It shows that error on the isotopic composition of the 3 

soil surface liquid water is the major source of uncertainty in the estimation of the isotopic 4 

composition of the evaporated water using Eq. (6). Error on the soil surface water content 5 

becomes significant when the soil becomes very dry. When error on the kinetic fractionation 6 

factor is taken into account, it becomes the major source of uncertainty.   7 

Table 6 and Figs 10 and 11 allow comparing the results for 6 dates with soil samples taken 8 

over different depths (grey lines). When the sampling depth is the smallest, the calculated 9 

isotopic composition of the evaporated water vapor is closer to the measured one before the 10 

apparition of the back diffusion (DoY 132, 154 and 192). In this case, a lower sampling depth 11 

is associated with a higher value of the soil isotopic ratio and to a higher value of the isotopic 12 

composition of the evaporated water (the partial derivative is positive under evaporation – see 13 

Eq. (C.20) in Appendix C). Therefore, when there is no back diffusion, the isotopic 14 

composition of the evaporated water seems to be controlled by the very soil surface isotopic 15 

ratio, which is difficult to sample. On the other hand, when back diffusion has taken place 16 

(DoY 264, 336, 439), the calculated isotopic composition of the evaporated water vapor is 17 

closer to the measured one when the thicker sampling depth is used. In case of back diffusion, 18 

the very soil surface isotopic composition of the liquid water does not seem to be the one 19 

controlling the isotopic composition of the evaporated water vapor, which appears to be 20 

related to the isotopic composition of the liquid water in deeper layers.  21 

To investigate this point further, Table 8 provides the isotopic composition of the soil surface 22 

liquid water, given by Eq. (15), which would be required to match the measured and 23 

calculated values of the isotopic composition of the evaporated water. Results are provided 24 

for several values of the kinetic fractionation factor. The corresponding standard errors 25 
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(taking into account or not errors on the kinetic fractionation factor) are also given and the 1 

results are plotted in Fig. 13. Figure 14 shows the contribution of the various sources of errors 2 

to the total error. Table 8 shows that the calculated values for the isotopic composition of the 3 

soil liquid water are systematically higher than the values measured over the 0-2.5 or 0-0.5 4 

cm depth, although the error bars encompass the measured values. The calculated values are 5 

close to the maximum value observed in the measured isotopic soil profiles (see Fig. 8 and 6 

Table 8), which corresponds to the evaporation front. The calculated values decrease when the 7 

kinetic fractionation factor decreases. Before the appearance of back diffusion (before DoY 8 

193), the measured maximum are closer to the values calculated with the lowest kinetic 9 

fractionation factor value. After the appearance of back diffusion (after DoY 193), they are 10 

closer to values calculated with a kinetic fractionation factor of 1.0189. The standard error is 11 

generally between 2 and 4 o/oo, but increased up to 7-8 o/oo when error on the kinetic 12 

fractionation factor is considered (Table 8). When the kinetic fractionation factor is not taken 13 

into account, the contribution of errors on the air and soil temperature, air relative humidity 14 

and isotopic composition of the evaporated water contribute equally well to the total error (see 15 

Fig. 14). Errors on the soil surface water content become significant when the soil is very dry. 16 

When error on the kinetic fractionation factor is included, Fig.14 shows that it has the same 17 

contribution as the other factors before the appearance of the water vapor back diffusion 18 

(before DoY 193). After this date, it becomes the major source of uncertainty.  19 

The analysis presented in this section shows that the isotopic composition of the evaporated 20 

water vapor strongly depends on the soil isotopic composition of the soil liquid water. Before 21 

back diffusion, this isotopic composition seems to be controlled by the isotopic composition 22 

of the soil liquid water at the very surface. Such depth cannot be sampled up to now. When 23 

back diffusion has taken place, the picture still remains unclear. This point will be further 24 

analyzed in the companion paper using the modeling approach, especially to determine if a 25 
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relationship with the depth of the evaporating front (depth of the peak isotopic ratio in the 1 

soil) can be evidenced.  2 

The results also suggest that the value of the kinetic fractionation factor which should be used 3 

in Eq. (6) is variable in time, with a notable difference before and after the appearance of back 4 

diffusion. This hypothesis is further examined in the following section where we try to 5 

estimate the value of the kinetic fractionation factor which ensures that measured and 6 

calculated (Eq. (6)) values of the isotopic composition of the evaporated water are equal. For 7 

this calculation the measured values (Table 4) of the isotopic composition of the soil surface 8 

liquid water were used, although the calculations performed in this section suggest that they 9 

might not be relevant all the time. 10 

 11 

3.5 Estimation of the kinetic fractionation factor  12 

Table 9 provides the values of the kinetic fractionation factor calculated using Eq. (16) for 13 

oxygen 18. It also provides estimates of the standard error, minimum and maximum estimated 14 

values using the method described in Appendix E, when considering sampling errors. Figure 15 

15 gives the contribution of the various sources of errors to the total standard error. Table 9 16 

shows that the calculation can lead to negative values of the kinetic fractionation factor, which 17 

is of course inconsistent with its definition. This result must be mitigated given the large 18 

uncertainty. Furthermore, the kinetic fractionation factor is an increasing function of the soil 19 

surface isotopic composition of water (Eq. E.12 in Appendix E). Therefore, the highest values 20 

of the soil surface isotopic ratio provide the highest estimates of the kinetic fractionation 21 

factor. Before the establishment of back diffusion (before DoY 193), the isotopic composition 22 

of the soil surface water is underestimated if thicker layers are taken into account (see also the 23 

comparison between the results for various depths in Table 9, grey lines). The best estimates 24 

of the kinetic fractionation factors would therefore be the upper bound of the estimation. After 25 
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the establishment of back diffusion (after DoY 193), the results are inverted, as also discussed 1 

in section 3.4. Higher values of the estimated kinetic fractionation factor are obtained when 2 

the soil surface isotopic ratio is estimated with thicker layers (grey lines in Table 9). The 3 

estimations of the kinetic fractionation factor provided in Table 9 are in general lower than the 4 

values commonly used in the literature (14 to 28.5 °/°°, Merlivat, 1978) for a free water 5 

surface, but the uncertainty is large. Figure 15 shows that the uncertainty on the isotopic 6 

composition of the  soil liquid water is the major source of uncertainty in the calculation. 7 

After back diffusion (last three lines of Table 9), the kinetic fractionation factor was also 8 

estimated using the maximum values of soil water content and isotopic ratio encountered in 9 

the profile and corresponding to the evaporation front. In this case, the calculated values are 10 

well within the range of literature values (Merlivat, 1978) and confirms that, after back 11 

diffusion, the isotopic composition of the evaporated water vapor seems to be linked to the 12 

isotopic ratio at the evaporation front. 13 

 14 

4. Conclusions 15 

In Part I of this paper, we have presented a novel experiment which allows to measure 16 

simultaneously the evaporation flux and the isotopic composition of the evaporated water 17 

under controlled conditions for bare soil. We compared the measured isotopic composition of 18 

the evaporated water with traditional estimates. The results show that, using experimental 19 

data, none of the kinetic fractionation factor values encountered in the literature was able to 20 

give results in agreement with the measured ones. The error analysis also showed the high 21 

sensitivity of the results to the isotopic composition of the very soil surface liquid water. This 22 

raises question about the sampling depth required to get satisfactory results. Our results 23 

suggest that, when back diffusion has not occurred, the sampling depth should be as small as 24 

possible. On the other hand, when back diffusion has taken place (and the top soil profile 25 
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water movement takes place in the vapor phase), the isotopic composition of the evaporated 1 

water seems to be controlled by the value at the peak (evaporation front). If this results can be 2 

easily understood before back diffusion occurs, the relationship with the depth of the 3 

evaporation front requires further investigation. This is done in Part II of a companion paper 4 

(Braud et al., 2009) dedicated to the modeling of the experimental results using the 5 

SiSPAT_Isotope model of Braud et al. (2005a). 6 

The data measured during the experiment allowed us to propose estimates of the kinetic 7 

fractionation factor of an evaporating soil. The uncertainty of the estimate is very large, as 8 

before, due to large uncertainties in the sampling depth required for the estimation of the 9 

isotopic composition of the soil liquid water. Although the average of the estimated values are 10 

lower than the values of Merlivat (1978) or Cappa et al. (2003) proposed in the literature and 11 

obtained for free surface water, results analysis suggest that a higher accuracy in the 12 

experimental design should be required to get a reliable estimate of the kinetic fractionation 13 

factor. Improvements must address the soil sampling to get a higher vertical resolution and 14 

also a better control of temperature in addition to the relative air humidity, so that the water 15 

vapor pressure, which controls  the evaporation is more constant in time. 16 
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Appendix A : Nomenclature of the variables used in the core of the paper (Appendices 22 
excluded) 23 
 24 
DoD  Day of Drying 25 
DoY  Day of the Year 26 
eaout  Water vapor pressure at the outlet of the column (Pa) 27 
E  Water vapor or evaporation flux (kg m-2 s-1) 28 
Ei  Isotopic water vapor flux at the surface (kg m-3) 29 
g   Acceleration of gravity (m2 s-1) 30 
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h  Soil water pressure (m) 1 
'
ah   Air relative humidity, normalized to the temperature of the water surface (-) 2 

ha   Air relative humidity (-) 3 
hs  Soil surface relative humidity (-) 4 
Mi   Molar mass of the isotopic species (kg) 5 
Mw   Molar mass ordinary water (kg) 6 
Pexp  Pressure in the expansion fence (Pa) 7 
qout  Flow of water vapor at the outlet of the columns (m3 s-1) 8 
qa  Air specific humidity (kg kg-1) 9 
qs  (Soil) surface specific humidity (kg kg-1) 10 
ra  Aerodynamic resistance to heat and water vapor transfer (s m-1) 11 
R   Perfect gas constant for vapor (461.5 J kg-1) 12 

l
iR   Isotopic ratio in the liquid phase (-) 13 
v
iR   Isotopic ratio in the vapor phase (-) 14 
v
iER   Isotopic ratio of the evaporated water vapor (-) 15 
v
isR   Isotopic ratio of the water vapor at the (soil) surface (-) 16 
v
iaR   Isotopic ratio of the water vapor in the atmosphere (-) 17 
v
ioutR   Isotopic ratio of the water vapor at the outlet of the columns (-). In the context of 18 

the experiment, we have v
ioutR = v

iaR = v
iER  19 

l
isR   Isotopic ratio of the liquid water at the (soil) surface (-) 20 

Scol  Evaporative surface of the column (m2) 21 
Ta  Air temperature (K) 22 
Ts  Surface temperature (K) 23 
z  Depth within the soil column (positively oriented downwards) (m) 24 
αe  Equilibrium isotopic fractionation factor (-) ee αα /1* =  25 
αK  Isotopic kinetic fractionation factor (-) 26 

v
iEδ   Isotopic composition of the evaporated water vapor (delta) 27 
l
isδ   Isotopic composition of the (soil) surface liquid water (delta) 28 
v
iaδ   Isotopic composition of the ambient air water vapor (delta) 29 
θ-i  Volumetric water content at depth –i (m3 m-3) 30 
θs  Volumetric water content at saturation (m3 m-3) 31 
ρa  Water vapor volumetric mass (kg m-3) 32 

( )Tv
satρ  Saturated volumetric mass of the water vapor (kg m-3)  33 

ΔS  Soil water storage variation (m) 34 
 35 

Appendix B : Equations of the RUBIC IV reactor 36 

Lets consider qin (m3 s-1) the incoming air flow, v
inC (kg m-3) its concentration in water vapor 37 

and v
iniR _  (m3 s-1) its isotopic ratio. The notations are: qout, v

outC , and v
outiR _  for the air at the 38 

outlet of the column. Φev (kg s-1) is the water vapor flux released by the soil and v
iER  its 39 
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isotopic ratio. Vc (m3) is the air volume above the soil column, v
colC  (kg m-3) its water vapor 1 

concentration and v
coliR _  its isotopic ratio.  2 

The mass balance equation of the air above the soil column can be written as: 3 

 ( ) v
outoutev

v
inin

v
colc CqCq

dt
CVd

−+= φ         (B.1) 4 

Assuming that the reactor is a perfect mixing device and that the water vapor concentration 5 

above the column is instantaneously equal to that of the outlet vapor, i.e. v
colC = v

outC ,  Eq. 6 

(B.1) can be rewritten as: 7 
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Considering that between t and t +Δt, qin, qout and Φev fluxes are constant, the integration of 9 

the equation leads to:   10 
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where the 0 superscript refers to the value at time t. 12 

The concentration at the outlet is measured and the unknown in Eq. (B.3) is the evaporation 13 

flux which is obtained by rearranging Eq. (B.3) as: 14 
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Similar equations can be written for the isotopic species. They lead to:  16 
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In Eqs (B.4) and (B.8), the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

c

out

V
tqexp  term takes into account a possible inertia of the 4 

reactor in transmitting the evaporation flux towards the outlet.  5 

With the experimental conditions prevailing in the reactor, the incoming air was dry, therefore 6 

v
inC =0. The air volume above the column was 332

c m10131.1HRV −=π= , with R = 0.06 m for 7 

the radius and H = 0.1 m for the height above the soil surface. The integration time was 8 

Δt=900 s, qout was ranging between 0.5 and 0.15 l min-1, i.e. 8.33 and 2.5 10-6 m3 s-1. 9 

Therefore the exponential term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

c

out

V
tqexp was ranging between 1.32 10-3 at the beginning 10 

of the experiment to 0.137 at the end. The calculation of the evaporation flux with Eq. (B.4) 11 

showed that the correction was negligible with a difference in cumulated evaporation of less 12 

than 0.1 mm. 13 

For the isotopic trapping, the time step was Δt=86400 s, therefore the same exponential term 14 

was close to zero. Therefore, for the conditions of the experiment, the following 15 

approximations: 16 

 v
outoutev Cq=φ   (A.9)       and              v

out
v
iE RR =   (B.10) 17 

were valid and have been used in the data analysis. 18 
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 1 

Appendix C: Derivation of standard error for the estimated isotopic composition of the 2 

evaporated water vapor 3 

The isotopic composition of the evaporated water vapor is given by Eq. (6) 4 
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with v
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v
ia RR =  in the context of the experiment. The standard error can be obtained using an 6 

extension of the formula proposed by Phillips and Gregg (2001). The result of Eq. (C.1) 7 

depends on errors on the measurements of the air temperature and humidity Ta and ha, the soil 8 

temperature Ts, the soil surface water content θ, the isotopic composition of the soil surface 9 

liquid water l
isδ  and of the water vapor above the soil column v

iaδ . We can also take into 10 

account the error on the kinetic fractionation factor αK (last term in parentheses in Eq. (C.2)). 11 

Assuming that the errors on all these factors are independent, the standard error 
v
iER

σ can be 12 

expressed as:  13 
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The partial derivatives of Eq. (C.2) can be obtained using the chain rules: 15 
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The partial derivatives appearing in these expressions are given below: 1 
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where Rref  are the reference values for the isotopic ratio (2005.2 10-6  for H2
18O) 12 
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We also estimated the standard error using a more empirical method by deriving a series of 14 

estimation of the water vapor isotopic composition and by combining all the possibilities with 15 
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+ or – standard errors on all the variables (64 combinations with 6 variables) using Eq. (C.23). 1 
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We checked that the standard deviation of the corresponding series was equal to the standard 3 

error given by Eq. (C.2 in Appendix C). With this method we were able to get minimum and 4 

maximum values for the estimation of the composition of the soil evaporation and to know 5 

which combinations of errors were leading to values closer to the observations.  6 

 7 

Appendix D: Derivation of standard error for the estimated isotopic composition of the soil 8 

liquid water which matches the observed isotopic composition of the evaporated water vapor. 9 

The corresponding value is given by Eq. (15) 10 
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The standard error can be obtained using an extension of the formula proposed by Phillips and 12 

Gregg (2001). The result of Eq. (D.1) depends on errors on the measurements of air 13 

temperature and humidity Ta and ha, the soil temperature Ts, the soil surface water content θ, 14 

and of the water vapor above the soil column, equal to that at the outlet of the column v
ioutδ . 15 

We assume that the errors on all these factors are independent. Thus the standard error 16 

l
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The partial derivatives of Eq. (D.2.) can be obtained using the chain rules: 19 
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The partial derivatives appearing in these expressions, not already provided in Appendix C, 4 

are given below: 5 
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As in Appendix C, we also derived an empirical estimation of the error using the following 9 

equation: 10 
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Appendix E: Derivation of standard error for the estimated kinetic fractionation factor using 13 

Eq. (16) 14 

The kinetic fractionation factor is given by Eq. (16) 15 
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The standard error can be obtained using an extension of the formula proposed by Phillips and 1 

Gregg (2001). The result of Eq. (E.1) depends on errors on the measurements of air 2 

temperature and humidity Ta and ha, the soil temperature Ts, the soil surface water content θ, 3 

the isotopic composition of the soil surface liquid water l
isδ  and of the water vapor above the 4 

soil column, equal to that at the outlet of the column v
ioutδ . We assume that the errors on all 5 

these factors are independent. Thus the standard error 
Kασ can be obtained as:  6 
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The partial derivatives of Eq. (E.2) can be obtained using the chain rules: 9 
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The partial derivatives appearing in these expressions, not already provided in Appendix C, 13 

are given below: 14 
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As in Appendix C, we also derived an empirical estimation of the error using the following 1 

equation: 2 
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List of figures 1 

Figure 1. Photo of the experimental set up. 2 

Figure 2. Scheme of the experimental set up (view from the top). 3 

Figure 3: Time evolution of air temperature and relative humidity at the outlet of column 1. 4 

Figure 4. Evolution of the oxygen 18 composition of the liquid water as function of the 5 

gravimetric water content (kg kg-1). The results were obtained after 15h of distillation and 6 

corrected for the efficiency of the extraction. The target initial oxygen 18 isotopic 7 

composition of the liquid water is -7.10 ± 0.05 °/°°. Vertical bars correspond to the analytical 8 

errors (± 0.1 °/°°). 9 

Figure 5. Retention curve h(θ) of the soil. The squares correspond to the measured (h,θ) 10 

couples at –2.5 cm (full square), -8 cm (crosses), -16 cm (open triangles). The continuous line 11 

corresponds to the fitted Van Genuchten model 
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the -2.5 cm data. Values of the parameters are n=2.36, hVG =-1.05 m, θsat=0.444. 13 

Figure 6. Comparison of the cumulative evaporation (left) and the instantaneous flux (right) 14 

estimated by using the measures of air flow and water vapor humidity at the outlet (full 15 

black), the weighting of the columns (dashed black), the trapped water volume at the outlet 16 

(dashed light) and the calculated soil water storage (full light) for column 1 (top) and column 17 

4 (bottom). 18 

Figure 7. Evaporation flux of the six columns (top) and cumulative evaporation of the six 19 

columns (bottom). Values were calculated using Method 1. 20 

Figure 8. Volumetric water content (left) and oxygen 18 isotopic ratio (right) (in °/°°) of the 21 

six soil columns when they were dismantled. The vertical straight lines are the initial values. 22 

DoY is Day of the Year 23 
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Figure 9. Time evolution of the oxygen 18 isotopic ratio of the evaporated water vapor for the 1 

six columns. The horizontal black line gives the composition of the initial water –6.4 °/°°.  The 2 

sampling frequency is twice a day from DoY 101 to 136; once a day from DoY 137 to 224 3 

and then about one sample every two or three days. 4 

Figure 10. Comparison of the measured oxygen 18 composition of the evaporated water vapor 5 

(squares) and the calculated one using Eq. (6) with αK =1.0189 (points). Values of the 6 

standard error, as well as their minimum and maximum, estimated using analytical and sensor 7 

accuracy errors are also plotted. Results with soil water content and liquid isotopic ratios 8 

sampled over the 0-2.5 cm and 0-0.5 or 0-1 cm layers are represented in the top and bottom 9 

panels, respectively.  10 

Figure 11. Comparison of the measured oxygen 18 composition of the evaporated water 11 

vapour (squares) and the calculated one using Eq. (6) with αK=1.0189 (points). Values of the 12 

standard error, as well as their minimum and maximum, estimated using sampling errors are 13 

plotted. Results with soil water content and liquid isotopic ratios sampled over the 0-2.5 cm 14 

and 0-0.5 or 0-1 cm layers are represented in the top and bottom panels, respectively. 15 

Figure 12. Contribution of the various sources of errors on the calculated isotopic composition 16 

of the evaporated water vapor for oxygen 18 for the sampling errors and αK=1.0189. Top 17 

panel: when error on αK is not taken into account. Bottom panel: when error on αK is taken 18 

into account. The dates in abscissa correspond to the lines in Table 6 in the same order. In the 19 

legend, the labels refer to errors on soil temperature Ts (Ts), isotopic composition of the soil 20 

surface liquid water l
isδ (deltal), water vapor above the soil column v

iaδ (deltair), air 21 

temperature Ta (Ta), air relative humidity ha (ha), soil water content θ (theta) and kinetic 22 

fractionation factor αK (alphak).  23 
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Figure 13. Value of the isotopic composition of the soil liquid water, required so that the 1 

isotopic composition of the evaporated water vapor calculated using Eq. (6) matches the 2 

measured value. The standard error, minimum and maximum values estimated using sampling 3 

errors are also plotted. Measured values correspond to the 0-2.5 cm depth layer. 4 

Figure 14 Contribution of the various sources of errors on the calculated isotopic composition 5 

of the soil liquid water required so that the isotopic composition of the evaporated water 6 

vapor calculated using Eq. (6) matches the measured value calculated using oxygen 18 and 7 

the sampling errors. Top: error on the kinetic fractionation factor is not considered. Bottom: 8 

Error on the kinetic fractionation factor is considered. The dates in abscissa correspond to the 9 

lines in Table 8 in the same order. In the legend the labels refer to errors on soil temperature 10 

Ts (Ts), water vapor above the soil column v
iaδ (deltair), air temperature Ta (Ta), air relative 11 

humidity ha (ha), soil water content θ (theta) and kinetic fractionation factor αK (alphak). 12 

Figure 15. Contribution of the various sources of errors on the calculated kinetic fractionation 13 

factor for oxygen 18 and for the sampling errors. The dates in abscissa correspond to the lines 14 

in Table 9 in the same order. In the legend the labels refer to errors on soil temperature Ts 15 

(Ts), isotopic composition of the soil surface liquid water l
isδ (deltal), water vapor above the 16 

soil column v
iaδ (deltair), air temperature Ta (Ta), air relative humidity ha (ha), soil water 17 

content θ (theta). 18 

 19 

20 
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Table 1 Dates and values at which the constraint on the relative humidity above the soil 1 

column was modified 2 

Date of change of the 

prescribed relative 

humidity 

Corresponding Day 

of the Year 

Time since 

beginning of 

simulation  (s) 

Value of the 

prescribed relative 

humidity (-) 

April 11 2005 12h00 

July 25 2005 16h45 

August 28 2005 15h00 

September 26 2005 12h45 

October 14 2005 16h15 

November 2 2005 12h00 

DoY 101 12h00 

DoY 207 16h45 

DoY 241 15h00 

DoY 269 12h45 

DoY 287 16h15 

DoY 306 12h00 

0 

9.1735 106 

1.21068 107 

1.45179 107 

1.60857 107 

1.7712 107 

0.8 

0.6 

0.5 

0.4 

0.3 

0.2 

3 
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Table 2 Initial weight, moisture and isotopic conditions of the six columns 1 

 Column 

6 

Column 

5 

Column 

3 

Column  

2 

Column 

4 

Column 

1 

Soil Volume (cm3) 

Dry soil mass (g) 

Water mass for the saturation of the 

soil (g) 

Saturated water content(a)  (m3 m-3) 

Dry bulk density(b)   (g cm-3) 

Isotopic concentration in  H2
18O of 

the initial water at the surface (°/°°) 

Isotopic concentration in H2
18O of 

the initial water at –0.35 m (°/°°) 

3958 

5603 

 

1678 

0.42 

1.42 

 

-6.5 

 

-6.5 

3958 

5698 

 

1742 

0.44 

1.44 

 

-6.4 

 

-5.5 

3958 

5456 

 

1724 

0.44 

1.38 

 

-6.5 

 

-6.4 

3958 

5470 

 

1717 

0.43 

1.38 

 

-6.6 

 

-6.3 

3958 

5580 

 

1691 

0.43 

1.41 

 

-6.3 

 

-5.8 

3971 

5661 

 

1728 

0.44 

1.44 

 

-6.5 

 

-6.4 

 (a) Calculated as the water volume divided by the soil volume 2 

(b) Calculated as the ratio of the soil mass to the soil volume 3 

4 
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Table 3 Dates at which the columns were dismantled. The experiment was launched on April 1 

11 2005 at 12h 00 (DoY 101) 2 

Column 
number 

Date of dismantling 
of the columns 

Date of Year 
(DoY) 

Number of days after 
beginning of drying 

6 

5 

3 

2 

4 

1 

May 12 2005 

June 3 2005 

July 11 2005 

September 21 2005 

December 2 2005 

March 15 2006 

132 

154 

192 

264 

336 

439 (74+365) 

31 

53 

91 

163 

235 

338 

3 
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Table 4 Data used for the estimation of the isotopic composition of the evaporated water vapor and the kinetic fractionation factor. Lines in grey 1 
correspond to the same dates but the soil water content and isotopic ratio were sampled over different depths: 0-2.5cm in the top panel and 0-0.5 2 
or 0-0.1cm in the bottom panel. 3 
Decimal Day 
of the Year 

Tair (°C) hu_air (-) Tsoil        at 
-2.5cm (°C)

Volumetric water 
content   (m3 m-3) 

δl
is H2

18O   
(°/°°) 

δv
ia H2

18O 
(°/°°) 

Soil surface 
water pressure 
(m) 

Soil surface 
relative 
humidity hs  (-) 

Normalized 
air relative 
humidity ha

’(-) 

Soil water content and isotopic ratio values averaged over 0-2.5 cm      
101.50 24.48 0.77 24.6 0.44 -6.5 -17.0 -0.3 1.000 0.77 
132.46 22.02 0.80 22.5 0.34 0.7 -7.4 -2.1 1.000 0.77 
138.63 19.95 0.80 20.1 0.33 3.3 -6.2 -2.2 1.000 0.83 
145.41 21.46 0.80 21.5 0.31 4.4 -5.3 -2.7 1.000 0.77 
154.43 24.87 0.80 24.7 0.26 5.1 -4.1 -4.5 1.000 0.75 
164.58 18.61 0.80 19.0 0.26 6.7 -3.5 -4.8 1.000 0.85 
171.65 21.00 0.80 21.3 0.20 5.5 -3.9 -9.4 0.999 0.87 
181.58 21.25 0.80 21.6 0.15 4.7 -3.3 -20.0 0.999 0.90 
192.53 22.75 0.80 22.7 0.13 1.4 -5.4 -34.3 0.998 0.79 
203.48 22.15 0.80 22.1 0.11 NA -5.6 -47.2 0.997 0.79 
220.74 22.36 0.60 22.4 0.07 3.1 -9.1 -185.0 0.987 0.60 
231.77 22.60 0.60 22.7 0.07 2.3 -9.7 -185.0 0.987 0.59 
252.42 21.42 0.50 22.2 0.05 4.6 -9.4 -347.5 0.975 0.47 
264.55 20.42 0.50 20.6 0.05 2.8 -10.2 -514.4 0.963 0.50 
287.65 22.00 0.40 22.6 0.04 1.9 -10.6 -720.1 0.950 0.39 
336.58 22.60 0.20 22.9 0.03 5.6 -12.0 -1929.3 0.871 0.20 
439.58 21.97 0.20 22.9 0.02 0.8 -13.1 -4358.3 0.731 0.19 
Soil water content and isotopic ratio averaged over 0-0.5 or 0-1 cm      
132.46 22.02 0.80 22.5 0.34 2.1 -7.4 -2.0 1.000 0.77 
154.43 24.87 0.80 24.7 0.26 7.4 -4.1 -4.8 1.000 0.75 
192.53 22.75 0.80 22.7 0.12 2.9 -5.4 -44.6 0.997 0.79 
264.55 20.42 0.50 20.6 0.04 0.5 -10.2 -955.9 0.933 0.50 
336.58 22.60 0.20 22.9 0.03 1.5 -12.0 -2156.7 0.857 0.20 
439.58 21.97 0.20 22.9 0.02 -0.1 -13.1 -3912.5 0.755 0.19 

4 
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Table 5 Values of the cumulative evaporation (mm) for the six columns estimated by four 1 

methods 2 

Method Column 

6 

Column 

5 

Column 

3 

Column 

2 

Column 

4 

Column 

1 

Method 1: measures of air 

flow and humidity 

Method 2: weighting of the 

columns 

Method 3: trapped volumes 

Method 4: soil water storage 

variation 

35.3 

 

36.8 

 

37.2 

- 

58.4 

 

58.3 

 

57.8 

- 

77.2 

 

79.5 

 

80.5 

- 

105.1 

 

102.6 

 

102.9 

- 

113.3 

 

108.7 

 

112.3 

- 

130.2 

 

133.1 

 

132.5 

120.8 

 3 

4 
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Table 6 Comparison between the measured isotopic composition of the evaporated water 1 

vapor and the use of Eq. (6) with different values of the kinetic fractionation factor:1.014 2 

(turbulent transport), 1.0189 (laminar transport) and 1.0285 (molecular transport). Lines in 3 

grey correspond to the same dates but the soil water content and isotopic ratio were sampled 4 

over different depths: 0-2.5cm in the top panel and 0-0.5 or 0-0.1cm in the bottom panel. 5 

Day of the 
Year (DoY) 

Measured δv
iE 

H2
18O   

Calculated δv
iE 

H2
18O  with 

αK=1.014 

Calculated δv
iE 

H2
18O  with 

αK=1.0189 

Calculated δv
iE 

H2
18O  with 

αK=1.0285 

Calculation with soil values averaged over 0-2.5 cm  
101.50 -17.0 -25.1 -29.7 -38.8 
132.46 -7.4 -27.1 -31.8 -40.8 
138.63 -6.2 -21.1 -25.8 -34.9 
145.41 -5.3 -18.4 -23.1 -32.2 
154.43 -4.1 -18.8 -23.5 -32.6 
164.58 -3.5 -15.5 -20.2 -29.4 
171.65 -3.9 -18.7 -23.5 -32.6 
181.58 -3.3 -24.5 -29.2 -38.3 
192.53 -5.4 -32.5 -37.2 -46.2 
220.74 -9.1 -16.1 -20.9 -30.0 
231.77 -9.7 -17.1 -21.9 -31.0 
252.42 -9.4 -14.6 -19.3 -28.5 
264.55 -10.2 -17.1 -21.9 -31.0 
287.65 -10.6 -19.3 -24.0 -33.1 
336.58 -12.0 -15.4 -20.1 -29.2 
439.58 -13.1 -20.8 -25.5 -34.6 
Calculation with soil values averaged over 0-0.5 or 0-1 cm  
132.46 -7.4 -21.1 -25.8 -34.9 
154.43 -4.1 -6.9 -11.7 -20.9 
192.53 -5.4 -25.3 -29.9 -39.0 
264.55 -10.2 -21.6 -26.3 -35.4 
336.58 -12.0 -20.5 -25.2 -34.3 
439.58 -13.1 -22.0 -26.8 -35.8 
 6 

7 
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Table 7 Values of the error retained for the calculation of the error bars on the composition of 1 

evaporated water vapor or the derivation of the kinetic fractionation factors. Two cases are 2 

considered. Case 1: Analytical and sensor accuracy only. Case 2: Sampling errors 3 

Variable Analytical and 
sensor 
accuracy errors 

Sampling errors Comments on the choice of the values for 
the sampling errors 

Soil and air 
temperature 
Ts and Ta 

 

Air relative 
humidity ha  

 

Soil water 
content θ 

 

 

Water vapor 
isotopic 
composition 

v
ioutδ  

Soil surface 
liquid 
isotopic 
composition 

l
isδ  

Kinetic 
fractionation 
factor αK 

ΔTs =  ΔTa = 
0.2 °C 

 

 

Δha =  0.01 

 

Δθ= 0.01 m3 
m-3 
 

 
v

outO18δΔ = 0.5  

 

 
l

sO18δΔ = 0.5  

 

 

 

18KOαΔ = 0.0096  

ΔTs =  ΔTa =2 °C

 

 

 

Δha =  0.1 

 

Δθ=  0.02 m3 m-3

 

 
v

outO18δΔ = 1.25 

 

 
l

sO18δΔ = 5 

 

 

 

18KOαΔ = 0.0096  

 

Takes into account possible difference 
between the soil surface and the depth at 
which the measured is taken for soil 
temperature and possible heterogeneity 
above the soil column for air temperature 

Takes into account possible heterogeneity 
of relative humidity above the soil column 

Takes into account possible difference in 
the thickness of the soil used to estimate 
the soil surface water content and 
inaccuracy in the estimation of the 
retention curve 

Estimation based on differences between 
the values of different columns (see Fig. 9)

 

Estimation based on differences between 
values averaged over the 0-2.5 cm or 0-0.5 
or 0-1 cm depths (see Table 4) 

 

No difference 

 4 
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Table 8 Estimation of the isotopic composition of the liquid water required to match the measured value of the isotopic composition of the 1 
evaporated water vapor with the calculated value using Eq. (6). Standard errors calculated using the formulae of Appendix D are also given when 2 
sampling errors are taken into account. Lines in grey correspond to the same dates but the soil water content and isotopic ratio were sampled over 3 
different depths: 0-2.5cm in the top panel and 0-0.5 or 0-0.1cm in the bottom panel. 4 
  Calculation with αK = 1.014 Calculation with αK = 1.0189 Calculation with αK = 1.0285 
Decimal Day 
of the Year 
(DoY) 

Measured at 
the surface 
(Maximum in 
the profile) 

 
Calculated 
average 
 

Standard error 
without αK 

Standard error 
with αK 

 
Calculated     
average 
 

Standard error 
without αK 

Standard error 
with αK 

 
Calculated 
average 
 

Standard error 
without αK 

Standard error 
with αK 

Soil values are averaged over the 0-2.5 cm depth 
101.5 -6.5 -4.5 2.5 3.3 -3.4 3.8 4.4 -1.1 4.5 5.1 
132.46 0.7 5.3 2.5 3.3 6.3 3.9 4.5 8.5 4.6 5.1 
138.63 3.3 6.4 2.6 3.3 7.4 4.0 4.4 9.4 4.8 5.2 
145.41 4.4 7.2 2.6 3.2 8.1 4.0 4.4 10.1 4.8 5.2 
154.43 5.1 8.0 2.6 3.2 8.9 4.0 4.4 10.8 4.8 5.1 
164.58 6.7 9.5 2.6 3.3 10.5 3.9 4.5 12.6 4.7 5.2 
171.65 5.5 8.8 2.5 3.3 9.8 3.9 4.4 11.9 4.7 5.2 
181.58 4.7 9.4 2.5 3.3 10.4 3.9 4.4 12.5 4.7 5.2 
192.53 1.4 6.9 2.6 3.2 7.9 4.0 4.4 9.8 4.8 5.1 
220.74 3.1 6.0 2.3 4.4 7.8 3.6 5.3 9.6 4.8 5.2 
231.77 2.3 5.4 2.3 4.4 7.3 3.6 5.3 11.6 4.1 5.6 
252.42 4.6 7.3 2.1 5.3 9.8 3.5 6.0 11.1 4.1 5.6 
264.55 2.8 6.3 2.2 5.2 8.6 3.6 5.9 14.7 3.8 6.2 
287.65 1.9 7.2 2.1 6.1 10.1 3.4 6.6 13.3 4.0 6.1 
336.58 5.6 8.4 2.2 7.7 12.0 3.5 8.2 15.8 3.7 6.8 
439.58 0.8 6.7 3.7 8.0 10.2 5.3 8.9 19.5 3.9 8.4 
Soil values are averaged over the 0-0.5 or 0-1 cm depth 
132.46 2.1 (2.1) 5.3 2.5 3.3 6.3 3.9 4.4 17.3 7.2 10.1 
154.43 7.4 (7.4) 8.0 2.6 3.2 8.9 4.0 4.4 8.5 4.6 5.1 
192.53 2.9 (2.9) 6.9 2.6 3.2 7.8 4.0 4.4 10.8 4.8 5.1 
264.55 0.5 (5.1) 6.1 2.4 5.1 8.3 3.7 5.8 9.7 4.8 5.1 
336.58 1.5 (11.6) 8.3 2.3 7.7 12.0 3.6 8.2 12.8 4.3 6.2 
439.58 -0.1 (11.5) 6.9 3.3 7.9 10.4 4.8 8.6 19.4 4.0 8.4 

5 
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Table 9 Estimation of the kinetic fractionation factor for H2
180 by using Eq. (16). Calculated 1 

values of the standard error as well as their minimum and maximum are also reported, based 2 

on estimates of sampling errors (Appendix E). Values are given in per mil (1-αK) *1000 and 3 

σαK*1000. Lines in grey correspond to the same dates but the soil water content and isotopic 4 

ratio were sampled over different depths: 0-2.5cm in the top panel and 0-0.5 or 0-0.1cm in the 5 

bottom panel. For the last three lines figures in parenthesis provide the results when the soil 6 

water content and liquid isotopic ratio were taken at the peak. 7 

Decimal 
Day of 
the Year 

Averaged 
αK 

18O  
Minimum 
αK 

18O 
Maximum 
αK

 18O 
Standard 
error αK

 

18O 

Soil values are averaged over the 0-2.5 cm depth 
101.50 5.4 -14.3 25.0 10.7 
132.46 -6.3 -29.3 16.8 11.7 
138.63 -1.1 -19.2 17.0 11.5 
145.41 0.4 -16.8 17.6 11.8 
154.43 -0.8 -19.5 17.9 12.2 
164.58 1.6 -14.7 17.9 10.8 
171.65 -1.1 -18.4 16.2 11.0 
181.58 -7.6 -33.4 18.3 12.6 
192.53 -13.7 -50.6 23.3 16.8 
220.74 6.8 -5.3 19.0 6.4 
231.77 6.4 -5.4 18.1 6.3 
252.42 8.8 -1.1 18.7 5.1 
264.55 6.9 -3.0 16.8 5.2 
287.65 5.1 -2.0 12.3 4.1 
336.58 10.6 3.5 17.6 3.5 
439.58 6.1 -1.4 13.6 3.8 
Soil values are averaged over the 0-0.5 or 0-1 cm depth 
132.46 0.0 -15.4 15.3 10.6 
154.43 11.0 -20.9 42.9 15.0 
192.53 -6.1 -32.3 20.1 13.2 
264.55 2.3 (11.5) -5.9 (-0.1) 10.4 (23.0) 5.1 (5.6) 
336.58 5.3 (17.8) -0.4 (10.4) 11.0 (25.2) 3.2 (3.8) 
439.58 4.8 (18.9) -1.7 (11.6) 11.3 (26.3) 3.5 (3.8) 

8 
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Fig.1. Photo of the experimental set up. 1 

 2 

Fig. 2. Scheme of the experimental set up (view from the top). 3 
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Fig. 3: Time evolution of air temperture and relative humidity at the outlet of column 1 1 
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Figure 4. Evolution of the oxygen 18 composition of the liquid water as function of the 1 

gravimetric water content (kg kg-1). The results were obtained after 15h of distillation and 2 

corrected for the efficiency of the extraction. The target initial oxygen 18 isotopic 3 

composition of the liquid water is -7.10 ± 0.05 °/°°. Vertical bars correspond to the analytical 4 

errors (± 0.1 °/°°). 5 

 6 

7 
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Figure 5. Retention curve h(θ) of the soil. The squares correspond to the measured (h,θ) 1 

couples at –2.5 cm (full square), -8 cm (crosses), -16 cm (open triangles). The continuous line 2 

corresponds to the fitted Van Genuchten model 
n
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Figure 6. Comparison of the cumulative evaporation (left) and the instantaneous flux (right) 1 

estimated by using the measures of air flow and water vapor humidity at the outlet (full 2 

black), the weighting of the columns (dashed black), the trapped water volume at the outlet 3 

(dashed light) and the calculated soil water storage (full light) for column 1 (top) and column 4 

4 (bottom). 5 
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Figure 7. Evaporation flux (top) and cumulative evaporation (bottom) of the six columns. 1 

Values were calculated using Method 1. 2 
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Figure 8. Volumetric water content (left) and oxygen 18 isotopic ratio (right) (in °/°°) of the 1 

six soil columns when they were dismantled. The vertical straight lines are the initial values. 2 

DoY is Day of the Year 3 
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Figure 9. Time evolution of the oxygen 18 isotopic ratio of the evaporated water vapor for the 1 

six columns. The horizontal black line gives the composition of the initial water –6.4 °/°°.  The 2 

sampling frequency is twice a day from DoY 101 to 136; once a day from DoY 137 to 224 3 

and then about one sample every two or three days. 4 
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Figure 10. Comparison of the measured oxygen 18 isotopic composition of the evaporated 1 

water vapor (squares) and the calculated one using Eq. (6) with αK =1.0189 (points). Values 2 

of the standard error, as well as their minimum and maximum, estimated using analytical and 3 

sensor accuracy errors are also plotted. Results with soil water content and liquid isotopic 4 

ratios sampled over the 0-2.5 cm and 0-0.5 or 0-1 cm layers are represented in the top and 5 

bottom panels, respectively.  6 
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Figure 11. Comparison of the measured oxygen 18 isotopic composition of the evaporated 1 

water vapor (squares) and the calculated one using Eq. (6) with αK=1.0189 (points). Values of 2 

the standard error, as well as their minimum and maximum, estimated using sampling errors 3 

are plotted. Results with soil water content and liquid isotopic ratios sampled over the 0-2.5 4 

cm and 0-0.5 or 0-1 cm layers are represented in the top and bottom panels, respectively.  5 

Day of the year 2005-2006

E
va

po
ra

te
d 

va
po

r (
pe

r m
il)

100 200 300 400

-6
0

-4
0

-2
0

0

+
+

+ + +
+ +

+

+ + + + + +
+

+ ++ + + + + + +
+ + + + + + +

Measured
Calculated average

+ Calculated Min-Max

Soil estimation over the 0-2.5cm layer

Day of the year 2005-2006

E
va

po
ra

te
d 

va
po

r (
pe

r m
il)

100 200 300 400

-6
0

-4
0

-2
0

0

+ +
+

+ + +

+
+

+ + +

Measured
Average calculated

+ Min-Max calculated

Soil estimation over the 0-0.05 or 0-1 cm layer

6 



Paper published in Journal of Hydrology, 369, 1-16, 2009, 10.1016/j.jhydrol.2009.01.034    

 59

Figure 12. Contribution of the various sources of errors on the calculated isotopic composition 1 

of the evaporated water vapor for oxygen 18 for the sampling errors and αK=1.0189. Top 2 

panel: when error on αK is not taken into account. Bottom panel: when error on αK is taken 3 

into account. The dates in abscissa correspond to the lines in Table 6 in the same order. In the 4 

legend the labels refer to errors on soil temperature Ts (Ts), isotopic composition of the soil 5 

surface liquid water l
isδ (deltal), water vapor above the soil column v

iaδ (deltair), air 6 

temperature Ta (Ta), air relative humidity ha (ha), soil water content θ (theta) and kinetic 7 

fractionation factor αK (alphak). 8 
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Figure 13. Value of the isotopic composition of the soil liquid water, required so that the 1 

isotopic composition of the evaporated water vapor calculated using Eq. (6) matches the 2 

measured value. The standard error, minimum and maximum values estimated using sampling 3 

errors are also plotted. Measured values correspond to the 0-2.5 cm depth layer. 4 
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Figure 14 Contribution of the various sources of errors on the calculated isotopic composition 1 

of the soil liquid water required so that the isotopic composition of the evaporated water 2 

vapor calculated using Eq. (6) matches the measured value calculated using oxygen 18 and 3 

the sampling errors. Top: error on the kinetic fractionation factor is not considered. Bottom: 4 

Error on the kinetic fractionation factor is considered. The dates in abscissa correspond to the 5 

lines in Table 8 in the same order. In the legend the labels refer to errors on soil temperature 6 

Ts (Ts), water vapor above the soil column v
iaδ (deltair), air temperature Ta (Ta), air relative 7 

humidity ha (ha), soil water content θ (theta) and kinetic fractionation factor αK (alphak). 8 
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Figure 15. Contribution of the various sources of errors on the calculated kinetic fractionation 1 

factor for oxygen 18 and for the sampling errors. The dates in abscissa correspond to the lines 2 

in Table 9 in the same order. In the legend the labels refer to errors on soil temperature Ts 3 

(Ts), isotopic composition of the soil surface liquid water l
isδ (deltal), water vapor above the 4 

soil column v
iaδ (deltair), air temperature Ta (Ta), air relative humidity ha (ha), soil water 5 

content θ (theta). 6 
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