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MEROMORPHIC CONTINUATION OF THE GOLDBACH

GENERATING FUNCTION

GAUTAMI BHOWMIK AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. We consider the Dirichlet series associated to the number of rep-
resentations of an integer as a sum of primes. Assuming certain reasonable
hypotheses on the distribution of the zeros of the Riemann zeta function we
obtain the domain of meromorphic continuation of this series.

1. Introduction and Results

In this paper we consider the number Gr(n) of representations of an integer n as
the sum of r primes. One possible way to obtain information is the use of complex
integration. To do so Egami and Matsumoto[4] introduced the generating function

Φr(s) =

∞
∑

k1=1

· · ·

∞
∑

kr=1

Λ(k1) . . .Λ(kr)

(k1 + k2 + · · ·+ kr)s
=

∞
∑

n=1

Gr(n)

ns
.

This series is absolutely convergent for ℜ s > r, and has a simple pole at s = r. By
Perron’s formula we have

∑

n≤x

Gr(n) =
1

2πi

∫ c+iT

c−iT

Φr(s)
xs

s
ds+O(

xr+ǫ

T
).

To shift the path of integration to the left, one needs at least meromorphic continu-
ation to some half-plane ℜ s > r− δ as well as some information on the growth and
the distribution of the poles of Φr. Assuming the Riemann hypothesis, Egami and
Matsumoto[4] described the behavior for the case r = 2. In addition to the RH,
parts of their results depend on unproved assumptions on the distribution of the
imaginary parts of zeros of ζ. Denote by Γ the set of imaginary parts of non-trivial
zeros of ζ. While the assumption that the positive elements in Γ are rationally
independent appears to be folklore, Fujii[5] drew attention to the following special
case:

Conjecture 1. Suppose that γ1 + γ2 = γ3 + γ4 6= 0 with γi ∈ Γ. Then {γ1, γ2} =
{γ3, γ4}.

Egami and Matsumoto used an effective version of this conjecture, i.e.

Conjecture 2. There is some α < π
2 , such that for γ1, . . . , γ4 ∈ Γ we have either

{γ1, γ2} = {γ3, γ4}, or

|(γ1 + γ2)− (γ3 + γ4)| ≥ exp
(

− α(|γ1|+ |γ2|+ |γ3|+ |γ4|)
)

.

Obviously, Conjecture 2 implies Conjecture 1. In [4] it is proven that:
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Theorem 1. Suppose the Riemann hypothesis holds true. Then Φ2(s) can be mero-

morphically continued into the half-plane ℜs > 1 with an infinitude of poles on the

line 3
2+it. If in addition Conjecture 2 holds true, then the line ℜ s = 1 is the natural

boundary of Φ2. More precisely, the set of points 1+iκ with limσց1 |Φ2(σ+κ)| = ∞
is dense on R.

The above mentioned authors conjectured that under the same assumptions the
domain of meromorphic continuation of Φr should be the half-plane ℜs > r− 1. In
this direction we show that

Theorem 2. Let Dr ⊆ C be the domain of meromorphic continuation of Φr(s).

(1) If the RH holds true, then Φr(s) has a natural boundary at ℜs = r − 1 for

all r ≥ 2 if and only if Φ2(s) has a natural boundary at ℜs = 1.
(2) If the RH and Conjecture 1 hold true, then Φ2(s) has a natural boundary

at ℜs = 1.
(3) If the RH holds true, then Φ2 has a singularity at 2ρ1, where ρ1 = 1

2 +
14.1347 . . . i is the first root of ζ. Moreover,

(1) lim
σց0

(σ − 1)|φ2(2ρ1 + σ)| > 0.

(4) If Conjecture 2 holds true, then {s : ℜs > 2σ0} ⊆ D2 ⊆ {s : ℜs > 1}, where
σ0 is the infimum over all real numbers σ, such that ζ has only finitely

many zeros in the half-plane ℜs > σ0.

The existence of a natural boundary already implies an Ω-theorem (confer [2]).
Here we can do a little better because of (1). We set

Hr(x) = −r
∑

ρ

xr−1+ρ

ρ(1 + ρ) . . . (r − 1 + ρ)

where the summation runs over all non-trivial zeros of ζ and we obtain the following
corollary.

Corollary 1. Suppose that RH holds true. Then we have

∑

n≤x

Gr(n) =
1

r!
xr +Hr(x) + Ω(xr−1).

We note that without (1) the omega term would still be Ω(xr−1−ǫ). The corre-
sponding O-result for r = 2 is [3]

Theorem 3. Suppose that the RH is true. Then we have

∑

n≤x

G2(n) =
1

2
x2 +H2(x) +O(x log5 x).

It extends easily to r ≥ 3. One might expect that the quality of the error term
would improve with r increasing, however this is not the case.

Part (1) of Theorem 2 follows immediately from the assertion that the analytic
behavior of Φr is completely determined by the behavior of Φ2. More precisely
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Theorem 4. Suppose the RH. Then for any r ≥ 3 there exist rational functions

f1,r, . . . , f4,r(s), such that

Φr(s) = f1,r(s)ζ(s− r + 1) + f2,r(s)ζ(s − r + 2)

+ f3,r(s)
ζ′

ζ
(s− r + 1) + f4,r(s)Φ2(s− r + 2) +R(s),

where R(s) is holomorphic in the half-plane ℜs > r − 1 − 1/10 and uniformly

bounded in each half-strip of the form ℜs > r− 1− 1/10+ ǫ, T < ℑs < T +1, with
T > 0.

The constant 1/10 can be improved, however, since we believe that Φ2 has
ℜ s = 1 as natural boundary, we saw no point in doing so.

Our proof expresses the function Φr(s) using the circle method. This approach
is the main novelty of this paper.

2. Proof of Theorem 4

In this section we prove Theorem 4 by computing the function using the circle
method. We use the standard notation.

Fix a large integer x, set e(α) = e2πiα,

S(α) =
∑

n≤x

Λ(n)e(αn),

T (α) =
∑

n≤x

e(αn),

T3(α) =
∑

|n|≤x

(x− |n|)2e(nα),

R(α) = S(α)− T (α).

Lemma 1. Under the Riemann hypothesis we have

R(α) ≪ x1/2 log2 x+ αx3/2 log2 x.

Proof. The Riemann hypothesis is equivalent to the estimate Ψ(x) = x+O(x1/2 log2 x),
hence,

R(α) =
∑

n≤x

(Λ(n)− 1)e(αn)

= (Ψ(x)− x)e(αx) −
∑

n≤x

(Ψ(n)− n)(e(αn+ α)− e(αn))

≪ x1/2 log2 x+ αx3/2 log2 x,

and our claim follows. �

The next statement is a consequence of partial summation.

Lemma 2. Let an be a sequence of complex numbers, set An =
∑

ν≤n an, d(s) =
∑

n ann
−s, and D(s) =

∑

n Ann
−s. Suppose that D(s) is absolutely convergent

for ℜ s > σ0 and has meromorphic continuation to ℜ s > σ1. Then d(s) has
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meromorphic continuation to ℜ s > σ1− 1, and there exist polynomials Qi, 0 ≤ i ≤
σ0 − σ1, such that

d(s) =

⌊σ0−σ1⌋
∑

i=0

Qi(s)D(s+ 1 + i) +R(s),

where R is holomorphic on ℜ s > σ1 − 1, and continuous on ℜ s ≥ σ1 − 1.

Proof. We have

d(s) =
∑

n

An

(

n−s − (n+ 1)−s
)

=
∑

n

An

N
∑

ν=1

(−1)ν+1s(s+ 1) . . . (s+ ν − 1)

ν!
n−s−ν +R(s)

=

N
∑

ν=1

(−1)ν+1s(s+ 1) . . . (s+ ν − 1)

ν!
D(s+ ν) +R(s),

where R(s) is holomorphic on ℜ s > σ0 −N . Choosing N > σ0 − σ1 + 1 our claim
follows. �

We can now establish Theorem 4.

Proof of Theorem 4. Define the sequence of functions Ak
r by A0

r(n) = Gr(n), and
Ak+1

r (n) =
∑

ν≤n A
k
r (ν).

We compute A3
r(x) using the circle method. We have

A3
r(x) =

1
∫

0

Sr(α)T3(α)dα

=

r
∑

k=0

(

r

k

)

1
∫

0

T (α)r−kRk(α)T3(α)dα

=

r
∑

k=0

(

r

k

)

Br,k(x),

say. Our aim is to show that Br,0(x), Br,1(x), Br,2(x) are quite regular and have
main terms corresponding to the Dirichlet-series explicitly mentioned in Theorem 4,
and that Br,k(x) for k ≥ 3 is of order O(xr−1/10). We collect the contribution of
the coefficients Br,k(x) into a Dirichlet-series, which converges uniformly in any
half-plane of the form ℜ s > r + 1 − 1/10 + ǫ, which can be absorbed into R(s).
Once we have shown these facts, Theorem 4 follows.

We first show that terms with k ≥ 3 are negligible. Note that T3(α) ≪
min(x3, α−3). We split the integral into the range [−β, β] and [β, 1 − β]. In the
former range, we use Lemma 1 to bound all occurring values of R, whereas in the

latter we use the estimate
∫ 1

0 |R(α)|2 dα ≪ x log2 x. By symmetry it suffices to
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consider the integral over [0, 1/2], we begin with the case of small α. We have

β
∫

0

|T (α)|r−k|R(α)|k|T3(α)|dα ≪

β
∫

0

min(xr+3−k, αk−3−r)(x1/2 + αx3/2)kxǫ dα

≪ xr+2−k/2+ǫ +

β
∫

x−1

α2k−2−rx3k/2+ǫ dα

≪ xr+2−k/2+ǫ +

{

β2k−1−rx3k/2+ǫ, 2k − 1− r > 0

xr+2−k/2, 2k − 1− r ≤ 0

Using k ≥ 3 we see that in the second case the integral is bounded by xr+1/2,
which is sufficient. In the first case we take β = x−1/2 and obtain that the integral
is bounded by x(k+r+1)/2, since k ≤ r, this is also of order xr+1/2, and therefore
admissible.

For the remainder of the integral we use the L2-estimate
∫ 1

0
|R(α)|2dα ≪ x1+ǫ

and the trivial bound |R(α)| ≪ x1+ǫ and obtain

1/2
∫

x−1/2

|T (α)|r−k|R(α)|k|T3(α)|dα ≪ x1+ǫ max
x−1/2≤α≤1/2

αk−3−rxk−2 = x(k+r+1)/2,

Using k ≤ r again we see that this is also O(xr+1/2+ǫ). Hence, we find that the
Dirichlet-series with coefficients Br,k(n) converge absolutely for σ > r + 3/2.

Next, we explicitly compute the contribution of the terms k ≤ 2. We have

Br,0(x) =
∫ 1

0 T (α)rT3(α) dα, that is,

Br,0(x) =
∑

n≤x

(x − n)#{n1 + · · ·+ nr = n}

=
∑

n≤x

(x − n)2
(

n+ r − 1

r − 1

)

= Pr(x)

for some polynomial Pr of degree r+2. Hence, the Dirichlet-series with coefficients
Br,0 can be expressed as a linear combination of the functions ζ(s), ζ(s−1), . . . , ζ(s−
r − 2).

The corresponding computations for Br,1 and Br,2 are simplified by observing
that

1
∫

0

T (α)r−1R(α)T3(α) dα =

1
∫

0

T (α)r−1S(α)T3(α) dα−

1
∫

0

T (α)rT3(α) dα
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and

1
∫

0

T (α)r−2R(α)2T3(α) dα =

1
∫

0

T (α)r−2S(α)2T3(α) dα

− 2

1
∫

0

T (α)r−1S(α)T3(α) dα+

1
∫

0

T (α)rT3(α) dα.

To evaluate these integrals we transform them back into counting problems. We
have

1
∫

0

T (α)rT3(α) dα =
∑

n1+···+nr+m=0

0≤ni≤x, |m|<x

(x− |m|)2

=
∑

0≤m≤x

(x−m)2
(

m+ r − 1

r − 1

)

= P (x),

where P is a polynomial of degree r + 2. Hence, the generating function of
1
∫

0

T (α)rT2(α) dα is a linear combination of ζ(s), ζ(s− 1), . . . , ζ(s− r − 2).

Similarly,

1
∫

0

T (α)r−1S(α)T3(α) dα =
∑

n1+···+nr+m=0

0≤ni≤x, |m|<x

Λ(m)(x− |m|)2

=
∑

0≤m≤x

(x−m)Λ(m)

(

m+ r − 1

r − 1

)

=
∑

0≤m≤x

Λ(m)P1(m) + x
∑

0≤m≤x

Λ(m)P2(m),

where P1 is a polynomial of degree r + 2, and P2 a polynomial of degree r + 1.

The generating function of Λ(m)P1(m) is a linear combination of ζ′

ζ (s),
ζ′

ζ (s −

1), . . . , ζ′

ζ (s−r−1), applying partial summation we find that the generating function

of
∑

0≤m≤x Λ(m)P1(m) is a linear combination with rational coefficients plus a
remainder, which is holomorphic in the half-plane ℜ s > 0, the same argument
applies to the second sum.

Finally,

1
∫

0

T (α)r−2S(α)2T3(α) dα =
∑

n1+···+nr−1+m=0

0≤ni≤x, |m|<x

G2(nr−1)(x− |m|)

and as for the previous integral we find that the generating function with coefficients
1
∫

0

T (α)r−2S(α)2T3(α) dα is a linear combination of Φ2(s), . . . , Φ2(s − r − 1) with

rational coefficients, plus a function which is holomorphic in the half-plane ℜ s > 0.
Combining this observation with Lemma 2 we find that Φr(s) can be written as

a linear combination of the functions ζ(s), . . . , ζ(s− r+1), ζ′

ζ (s), . . . ,
ζ′

ζ (s− r+1),
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Φ2(s), . . . , Φ2(s − r + 2) with rational coefficients plus a remainder R(s) which
is holomorphic in the half-plane ℜ s > r − 3/2. But among these functions only

ζ(s−r+2), ζ(s−r+1), ζ′

ζ (s−r+2), ζ′

ζ (s−r+1),Φ2(s−r+3) and Φ2(s−r+2) are

not holomorphic in the half-plane ℜ s > r− 2, hence, all but this six functions can
be subsumed under R. Moreover, since we work under the Riemann hypothesis,
ζ′

ζ (s− r+2) and Φ2(s− r+3) are holomorphic in ℜ s > r− 3/2 with the exception

of a pole at s = r− 1, hence, we can replace these functions by ζ(s− r+2). Hence,
the claim of the theorem follows. �

3. Proof of Theorem 2

Part (1) of the theorem follows from Theorem 4 because in the half plane ℜ(s) >
r − 1− 1/10 only Φ2(s− r + 2) has essential singularities.

We now indicate the proof of part (4) which is closely related to the one given
under the Riemann hypothesis by Egami and Matsumoto. The following serves as
a substitute for [4, Lemma 4.1]

Lemma 3. let D be the closure of the set {ρ1 + ρ2 : ζ(ρi) = 0,ℜρi > 0}. Then

C\D is not connected, and, denoting by D the component containing the half-plane

ℜs > 2, we have

{s : ℜs > 3/2} ⊆ D ⊆ {s : ℜs > 1}.

Proof. Let ǫ > 0 and t0 ∈ R be given. We show that there are zeros ρ1, ρ2 of ζ such
that ρ1 + ρ2 is within the square 1 ≤ ℜs < 1 + ǫ, t0 < ℑs < t0 + ǫ, which implies
the claim. Let N(T, σ) be the number of zeros ρ of ζ with ℜρ > σ and 0 < ℑρ < T .
Call a real number t good, if there is a zero ρ of ζ with 1

2 <≤ ℜs < 1
2 + ǫ/2,

t0 < ℑs < t0 + ǫ/2, and let T be the set of good numbers. We have to show that
there exists good numbers t1, t2 with t1 + t2 = t0. This in turn would follow if we
show that asymptotically almost all real numbers are good. To do so, we use the

estimate N(T, σ) ≪ T
3(1−σ)
2−σ log5 T due to Ingham and the fact that the distance

between consecutive abscissae of zeros tends to zero, proven by Littlewood. The
second statement shows that every sufficiently large real number t is good, unless
there is a zero of ζ in the domain ℜs > 1

2 + ǫ/2, t < ℑs < t+ ǫ/2. Hence, we obtain

|T ∩ [0, T ]| ≥ T − C(ǫ)−N(T,
1 + ǫ

2
) ∼ T,

that is, for T sufficiently large the measure of T ∩ [0, T ] supersedes T/2, hence, we
find real numbers t1, t2 ∈ T with t1 + t2 = t0. �

It follows from [4, Lemma 4.2], that under Conjecture 2 every complex number
of the form ρ1 + ρ2, ζ(ρ1) = ζ(ρ2) = 0 is a singularity of Φ2. The proof of the fact
that Φ2 is meromorphic in the half plane ℜs > 2σ0 runs parallel to the proof of [4,
Theorem 2.1] and need not be repeated here.

Finally we prove parts (2) and (3).
Let ρ1, ρ2 be zeros of ζ. Our aim is to show that either there are zeros ρ3, ρ4 with

ρ1+ρ2−ρ3−ρ4 = 0 and |ℑρ3|+ |ℑρ4| ≤ 5(|ℑρ1|+ |ℑρ2|), or |Φ2(ρ1+ρ2+ η)| ≫ 1
η

for η ց 0. Our proof starts similar to the proof by Egami and Matsumoto (confer
[4, section 4]).
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Lemma 4. Put M(s) = − ζ′

ζ (s). Then we have

Φ2(s) =
M(s− 1)

s− 1
−
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)
M(s− ρ)−M(s) log 2π

+
1

2πi

−ǫ+i∞
∫

−ǫ−i∞

Γ(s− z)Γ(z)

Γ(s)
M(s− z)M(z)dz

= −
1

Γ(s)

∑

ρ,ρ′

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′
+R(z),

where R is meromorphic in the whole complex plane

Proof. This follows from [4, (2.2)] and[4, (4.2)]. �

Now suppose that ρ1 = 1
2 + iγ1, ρ2 = 1

2 + iγ2 are zeros of ζ. We want to show
that in a small neighourhood of 1+ i(γ1 + γ2) the behaviour of Φ2(s) is dominated
by the summand coming from ρ1, ρ2. To do so we estimate the contribution of
different ranges for ρ, ρ′ in different ways.

Consider pairs ρ, ρ′ with |ρ + ρ′ − ρ1 − ρ2| >
1
4 . For |s− ρ1 − ρ2| <

1
8 , the sum

can be bounded as

∑

ρ,ρ′

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′
=

∑

ρ,ρ′

|ρ1+ρ2−ρ−ρ′|>ρ′/2

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′

+
∑

ρ,ρ′

|ρ1+ρ2−ρ−ρ′|≤ρ′/2

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′

=
∑

1
+
∑

2
,

say. We have

∑

1
≪

∑

ρ,ρ′

|ρ1+ρ2−ρ−ρ′|>ρ′/2

Γ(ρ)

ρ′2
≪

∑

ρ,ρ′

|ρ1+ρ2−ρ−ρ′|>ρ′/2

Γ(ρ)

ρ′2

and
∑

2
≪

∑

ρ,ρ′

|ρ1+ρ2−ρ−ρ′|≤ρ′/2

Γ(s+ 1− ρ)Γ(ρ) ≪
∑

ρ

Γ(ρ)N(2|ρ|),

Since N(T ) ≪ T logT , and Γ(σ + it) ≪ e−ct, we see that this sum converges
uniformly in the open ball B 1

8
(ρ1 + ρ2).

Now consider pairs of zeros with |ρ|+ |ρ′| > 5(|ρ1|+ |ρ2|) and |ρ+ρ′−ρ1−ρ2| ≤
1/4. For s ∈ B 1

8
(ρ1 + ρ2) we have

s+ 1− ρ = 1 + ρ1 + ρ2 − ρ+ θ/8 = 1 + ρ′ + 3θ/8,
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where θ is a complex number of absolute value ≤ 1, hence, the sum taken over all
ρ, ρ′ in this range is bounded by

∑

ρ,ρ′

∣

∣

∣

∣

Γ(ρ)max|s−ρ′|≤3/8 |Γ(1 + s)|

(s− ρ− ρ′)ρ′

∣

∣

∣

∣

<
1

η

∑

|ρ|+|ρ′|>5(|ρ1|+|ρ2|)

|ρ+ρ′−ρ1−ρ2|<1

|ρ′Γ(ρ)Γ(ρ′)|

<
1

η





∑

ρ>2(|ρ1|+|ρ2|)−1

|ρΓ(ρ)|





2

.

To transform the sum over zeros into a sum over integers, we use the following
bound, which follows from a more precise result by Backlund[1].

Lemma 5. We have N(T + 1)−N(T ) < logT for T ≥ 1.

Using this bound together with the estimate Γ(σ + it) < e−
π
4 t we obtain that

the contribution of zeros of the form under consideration is bounded by

1

η





∑

n≥2(|ρ1|+|ρ2|)−2

n logne−
π
4 n





2

<
270

η
e−

12
5 (|ρ1|+|ρ2|),

where we used the fact that |ρ1|+ |ρ2| > 28.
On the other hand, the pair ρ1, ρ2 itself contributes

1

η

(

Γ(ρ1 + 1 + η)Γ(ρ2)

ρ1
+

Γ(ρ2 + 1 + η)Γ(ρ1)

ρ2

)

∼
2

η
Γ(ρ1)Γ(ρ2),

hence, the contribution of these zeros cannot be canceled by the contribution of
zeros satisfying |ρ|+ |ρ′| > 5(|ρ1|+ |ρ2|) since

2e−
4
5 (|ρ1|+|ρ2|) > 270e−

12
5 (|ρ1|+|ρ2|).

In fact the above inequality follows from |ρ1|+ |ρ2| > 28.
The arguments used till now were under the assumption of RH. Now we separate

the arguments for parts (2) and (3).
If in addition to the RH we assume Conjecture 1, then the finitely many pairs ρ, ρ′

different from ρ1, ρ2 which we have not yet dealt with define a function meromorphic
on C without poles on the line ℑs = γ1 + γ2. In some neighborhood of ρ1 + ρ2 this
function is bounded and the proof of part (2) is done.

We did not actually use the full strength of Conjecture 1 but only the non-
existence of linear relations γ1 + γ2 = γ3 + γ4 6= 0 for |γ1| + |γ2| ≤ 5(|γ3| + |γ4|).
Even though this condition seems as unreachable as Conjecture 1, for each fixed
pair γ1, γ2 it can be verified. Taking the minimal value 14.1347. . . for γ1, γ2 there
are only 39 zeros with imaginary part at most 142 it is easy to check that no other
pair adds up to γ1 + γ2. hence 2ρ1 is a singularity of Φ2 and we are done.

We now prove the Corollary. Set

∆r(x) =
∑

n≤x

Gr(n)−
1

r!
xr −Hr(x).

In view of Lemma 2 and Theorem 2, part (3) the generating Dirichlet-series D(s)
of ∆r has a singularity at 2ρ1 + r − 1 . Moreover,

lim
σց0

σ|D(σ + 2ρ1 + r − 1)| > 0
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and if we have ∆r(x) = o(xr−1), the last limit is zero. Thus our claim follows.
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