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A minicourse on the low Mach number limit

Thomas Alazard
CNRS & Univ. Paris-Sud 11, France

1. Introduction

These lectures are devoted to the study of the so-called low Mach number limit for

classical solutions of the compressible Navier-Stokes or Euler equations for non-isentropic

fluids. The Mach number, hereafter denoted by ε, is a fundamental dimensionless number.

By definition, it is the ratio of a characteristic velocity in the flow to the sound speed in

the fluid. Hence, the target of the mathematical analysis of the low Mach number limit

ε → 0 is to justify some usual simplifications that are made when discussing the fluid

dynamics of highly subsonic flows (which are very common).

For highly subsonic flows, a basic assumption that is usually made is that the com-

pression due to pressure variations can be neglected. In particular, provided the sound

propagation is adiabatic, it is the same as saying that the flow is incompressible. We can

simplify the description of the governing equations by assuming that the fluid velocity is

divergence-free. (The fact that the incompressible limit is a special case of the low Mach

number limit explains why the limit ε → 0 is a fundamental asymptotic limit in fluid

mechanics.) On the other hand, if we include heat transfert in the problem, we cannot

ignore the entropy variations. In particular we have to take into account the compression

due to the combined effects of large temperature variations and thermal conduction. In

this case, we find that the fluid velocity satisfies an inhomogeneous divergence constraint.

The main difficulty to study the low Mach number limit presents itself: the limit ε→ 0

is a singular limit which involves two time scales. We are thus led to study a nonlinear

system of equations with a penalization operator. Our goal is precisely to study this

problem for the full Navier–Stokes equations. More precisely, we will study the low Mach

number limit for classical solutions of the full Navier-Stokes equations, in the general case

where the combined effects of large temperature variations and thermal conduction are

taken into account.

The mathematical analysis of the low Mach number limit begins with works of Ebin [30,

31], Klainerman and Majda [56, 57], Kreiss [60], Schochet [77, 78, 79] and many others.

Concerning the Euler equations, after some rescalings and changes of variables (which are
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explained below), we are thus led to analyze a quasi-linear symmetric hyperbolic system

depending on the Mach number ε ∈ (0, 1],

(1)


g1(∂tp+ v · ∇p) + ε−1 div v = 0,

g2(∂tv + v · ∇v) + ε−1∇p = 0,

∂tσ + v · ∇σ = 0.

The unknowns are the pressure p, the velocity v the entropy σ. The coefficients g1 and

g2 are C∞ positive functions of εp and σ.

It is clear on this system that the low Mach number limit is a singular limit which

involves two time scales. The fast components are propagated by a wave equation and

hence there are several geometrical factors that dictate the nature of the low Mach number

limit. The domain may be the torus, the whole space or a domain Ω ⊂ Rd. The flow

may be isentropic (σ = 0) or non-isentropic (σ = O(1)). The initial data may be prepared

(namely (div v(0),∇p(0)) = O(ε)), or general, which means here that (p(0), v(0), σ(0))

belongs to a given bounded subset of the Sobolev space Hs with s > d/2 + 1.

The analysis is in two steps. First, to study this singular limit one has to prove an

existence and uniform boundedness result for a time independent of ε. Then, the next

task is to analyze the limit of solutions as the Mach number ε tends to 0. The aim is to

prove that the limits of (p, v, σ) are given by the incompressible Euler equation:

(2)


div v = 0,

g2(∂tv + v · ∇v) +∇π = 0,

∂tσ + v · ∇σ = 0.

As first proved by Ukai [89], even if the initial data are compressible, the limit of the

solutions for small ε is incompressible. For the isentropic equations with general initial

data, the result is that the velocity is the sum of the limit flow, which is a solution of

the incompressible equations whose initial data is the incompressible part of the original

initial data, and a highly oscillatory term created by the sound waves (see [45]). In

the whole space case, the solutions are known to converge, although this convergence

is not uniform for time close to zero (see also the results of Asano [8], Iguchi [47] and

Isozaki [48, 49, 50]). Furthermore, one can study the convergence with periodic boundary

conditions by means of the filtering method (see Danchin [23], Gallagher [39, 40, 41, 42],

Grenier [45], Joly–Métivier–Rauch [51], Schochet [80]). In bounded domain, for the

barotropic Navier-Stokes system, Desjardins, Grenier, Lions and Masmoudi [27] have

proved that the energy of the acoustic waves is dissipated in a boundary layer.

For the isentropic equations, the analysis is well-developed, even for solutions which are

not regular. Indeed, the incompressible limit of the isentropic Navier-Stokes equations

has been rigorously justified for weak solutions by Desjardins and Grenier [26], Lions and

Masmoudi [66, 67], Bresch, Desjardins and Gérard-Varet [13] (see also [16, 27, 64]).
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For viscous gases, global well-posedness in critical spaces was established by Danchin

in [22], and the limit ε→ 0 was justified in the periodic case in [23], with the whole space

case earlier achieved in [24]. We should also mention, among many others, the results

of Hoff [46] and Dutrifoy and Hmidi [29]. Feireisl and Novotný initiated a program

to extend the previous analysis to the incompressible limit of the weak solutions of the

Navier–Stokes–Fourier system [36, 37, 38], which, in addition to the previous difficulties,

require subtle energy estimates.

For the non-isentropic Euler equations with general initial data, Métivier and Schochet

have proved some theorems [72, 73, 74] that supersede a number of earlier results.

In particular, they have proved the existence of classical solutions on a time interval

independent of ε (a part of their study is extended in [1] to the boundary case). The key

point is to prove uniform estimates in Sobolev norms for the acoustic components. This

is where the difference between almost isentropic and almost adiabatic enters. The reason

is the following: the acoustics components are propagated by a wave equation whose

coefficients are functions of the density, hence of the entropy. In the isentropic case, these

coefficients are almost constant (the spatial derivatives are of order of O(ε)). By contrast,

in the non-isentropic case, these coefficients are variable. This changes the nature of the

linearized equations. The main obstacle is precisely that the linearized equations are not

uniformly well-posed in Sobolev spaces. Hence, it is notable that one can prove that the

solutions exist and are uniformly bounded for a time independent of ε.

In [2, 3] we start a rigorous analysis of the corresponding problems for the general case

in which the combined effects of large temperature variations and thermal conduction

are taken into account. We prove in [2, 3] that solutions exist and they are uniformly

bounded for a time interval which is independent of the Mach number, the Reynolds

number and the Péclet number (thereby including the Euler equation as well). Based on

uniform estimates in Sobolev spaces, and using the decay to zero of the local energy of

the acoustic waves in the whole space established by Métivier and Schochet in [72], we

next prove that the penalized terms converge strongly to zero. In the end, this allows

us to rigorously justify, at least in the whole space case, some well-known computations

introduced by Majda [69] concerning the low Mach number limit.

The study of the incompressible limit is a vast subject of which we barely scratched

the surface here. To fill in this gap we recommend the well written survey papers of

Danchin [25], Desjardins and Lin [28], Feireisl [35], Gallagher [42], Masmoudi [70], Scho-

chet [81, 82] and Villani [90] (see also [4]). Let us also point out that the research of

numerical algorithms valid for all flow speeds is a very active field (see [34, 58, 59]).

Our goals in the next part of the introduction is to derive the non dimensionalized

Navier-Stokes equations, explain the physical background and state the main theorems.

1.1. The equations. The general equations of fluid mechanics are the law of mass

conservation, the conservation of momentum, the law of energy conservation and the laws
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of thermodynamics. For a fluid with density %, velocity v, pressure P , temperature T ,

internal energy e, Lamé coefficients ζ, η and coefficient of thermal conductivity k, the full

Navier-Stokes equations are
∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +∇P = div τ,

∂t(ρe) + div(ρve) + P div v = div(k∇T ) + τ ·Dv,

where τ denotes the viscous strain tensor given by (Newtonian gases):

τ := 2ζDv + η div vId,

where 2Dv = ∇v + (∇v)t and Id is the d× d identity matrix.

In order to be closed, the system is supplemented with a thermodynamic closure law,

so that ρ, P, e, T are completely determined by only two of these variables. Also, it is

assumed that ζ, η and k are smooth functions of the temperature.

The governing equations of fluid mechanics are merely written in this generality. In-

stead, one often prefers simplified forms. To obtain reduced systems, the easiest route

is to introduce dimensionless numbers which quantify the importance of various physical

processes. We distinguish three dimensionless parameters:

ε ∈ (0, 1], µ ∈ [0, 1], κ ∈ [0, 1].

The first parameter ε is the Mach number (recall that it is the ratio of a characteristic

velocity in the flow to the sound speed in the fluid). The parameters µ and κ are, up to

multiplicative constants, the inverses of the Reynolds and Péclet numbers; they measure

the importance of viscosity and heat-conduction.

To rescale the equations, one can cast equations in dimensionless form by scaling every

variable by its characteristic value [69, 75]. Alternatively, one can consider one of the

three changes of variables:

t→ ε2t, x→ εx, v → εv, ζ → µζ, η → µη, k → κk,

t→ εt, x→ x, v → εv, ζ → εµζ, η → εµη, k → εκk,

t→ t, x→ x/ε, v → εv, ζ → ε2µζ, η → ε2µη, k → ε2κk.

See [65, 91] for comments on the first two changes of variables. The third one is related

to large-amplitude high-frequency solutions (see [20]).

These two approaches yield the same result. The full Navier-Stokes equations, written

in a non-dimensional way, are:
∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +
∇P
ε2

= µ div τ,

∂t(ρe) + div(ρve) + P div v = κ div(k∇T ) + ε2µτ ·Dv.
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1.2. The limit constraint on the divergence of the velocity. We next give the

usual formal computations which give the zero Mach number system. We also refer to [76]

for formal computations including the Froude number, a case which will be studied in a

forthcoming paper.

Before we proceed, let us pause to explain further why the nature of the low Mach

number limit strongly depends on the size of the entropy variations. One can distinguish

three cases: the almost isentropic regime where the entropy is constant except for per-

turbations of order of the Mach number; the almost adiabatic case where the entropy of

each fluid particule is almost constant; the general non-adiabatic case. More precisely,

Almost isentropic: ∇S = O(ε),

Almost adiabatic: ∇S = O(1) and ∂tS + v · ∇S = O(ε),

Non-adiabatic: ∇S = O(1) and ∂tS + v · ∇S = O(1).

We claim that the fluid is asymptotically incompressible only in the almost isentropic or

adiabatic cases. The heuristic argument is the following. When ε goes to 0, the pressure

fluctuations converge to 0. Consequently, the limit entropy and density are functions of the

temperature alone. Therefore, the evolution equation for the entropy and the continuity

equation provide us with two values for the convective derivative of the temperature.

By equating both values, it is found that the limit divergence constraint is of the form

div v = κCp div(k∇T ). Hence, div v = 0 implies that κ∇T = 0, which means that the

limit flow is adiabatic (adiabatic means that each fluid particule has a constant entropy,

which is obvious if the flow is isentropic).

Note that many problems are non-adiabatic (see [32, 33, 58, 59, 65, 69, 75, 76]).

Such problems naturally arise, among others, in combustion which requires modeling

of multicomponents flows which allow for large heat release and large deviations of the

concentration of the chemical species. This is one motivation to study the general case

where the combined effects of large temperature variations and thermal conduction are

taken into account.

We now compute the limit system. We first make the following important observation:

for the low Mach number limit problem, the point is not so much to use the conservative

form of the equations, but instead to balance the acoustics components. This is one

reason why it is interesting to work with the unknowns P, v, T (see [69]). We thus

begin by forming evolution equations for the pressure and the temperature. To simplify

the presentation, consider perfect gases. That is, assume that there exist two positive

constants R and CV such that

P = RρT and e = CV T.
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Performing linear algebra, we compute that,
∂tP + v · ∇P + γP div v = (γ − 1)

{
κ div(k∇T ) + ε2µτ ·Dv

}
,

ρ(∂tv + v · ∇v) +
∇P
ε2

= µ div τ,

ρCV (∂tT + v · ∇T ) + P div v = κ div(k∇T ) + ε2µτ ·Dv,

with γ = 1 +R/CV .

Observe that, as the Mach number ε goes to zero, the pressure gradient becomes singular

and hence the variations in pressure converge to zero. Under assumptions that will be

made in the following, it implies that the pressure tends to a constant P . With this

notation, we find that the limit system reads

(3)


γP div v = (γ − 1)κ div(k∇T ),

ρ(∂tv + v · ∇v) +∇π = µ div τ,

ρCP (∂tT + v · ∇T ) = κ div(k∇T ),

where ρ = P/(RT ) and CP = γCV .

It is important to note that the incompressible limit is a special case of the low Mach

number limit. Namely, the limit velocity is incompressible (div v = 0) if and only if

κ div(k∇T ) = 0, which in turn is equivalent to the fact that the limit entropy satisfies

∂tS + v · ∇S = 0 (adiabatic regime).

Note that, one has a similar equation for general gases. For instance, if the gas obeys

Mariotte’s law (P = RρT and e = e(T ) is a function of T alone), then we find that limit

constraint on the divergence of the velocity reads:

P div v = κ
R

CV (T ) +R
div(k∇T ), CV =

∂e

∂T
·

This equation contains the main difference between perfect gases and general gases. For

perfect gases, the limit constraint is linear in the sense that it reads div ve = 0 with

ve = v−K∇T for some constant K. By contrast, for general equations of state, the limit

constraint is nonlinear.

1.3. Main results. We consider classical solutions, that is, solutions valued in the

Sobolev spaces Hs(D) with s large enough, where the domain D is either the whole

space Rd or the torus Td. Recall that, when D = Rd, the Sobolev spaces are endowed

with the norms

‖u‖2
Hσ := (2π)−d

∫
Rd
〈ξ〉2σ|û(ξ)|2 dξ,

where û is the Fourier transform of u and 〈ξ〉 :=
(
1 + |ξ|2

)1/2
. With regards to the case

D = Td, we replace the integrals in ξ ∈ Rd by sums on k ∈ Zd.
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As above, to simplify the presentation of the introduction, we restrict ourselves to

perfect gases. Recall that the system reads,

(4)


∂tP + v · ∇P + γP div v = (γ − 1)κ div(k∇T ) + (γ − 1)εQ,

ρ(∂tv + v · ∇v) +
∇P
ε2

= µ div τ,

ρCV (∂tT + v · ∇T ) + P div v = κ div(k∇T ) + εQ,

where ρ = P/(RT ) and Q := εµτ ·Dv. Equations (4) are supplemented with initial data:

(5) P|t=0 = P0, v|t=0 = v0 and T|t=0 = T0.

We consider general initial data, that is we suppose that, initially,

∇v0 = O(1), ∇P0 = O(ε), ∇T0 = O(1),

where O(1) means uniformly bounded with respect to ε. In particular, we allow large

temperature, density and entropy variations. Also, we allow two times scales (since ∂tv

is of order of ε−2∇P , the assumption ∇P0 = O(ε) allow very large acceleration of order

of ε−1). The hypothesis ∇P0 = O(ε) does not mean that we prepare the initial data.

On the contrary, it is the natural scaling to balance the acoustic components (see (7)

and [24, 56, 58, 69, 72]).

We assume that ζ, η and the coefficient of thermal conductivity k are C∞ functions of

the temperature T , satisfying

k(T ) > 0, ζ(T ) > 0 and η(T ) + 2ζ(T ) > 0.

Also, we consider general equation: µ ∈ [0, 1] and κ ∈ [0, 1]. In particular we consider

the full Navier-Stokes equations (µ = 1 = κ) as well as the Euler equations (µ = 0 = κ).

The main result studied in these lectures asserts that the classical solutions exist and are

uniformly bounded for a time interval independent of ε, µ and κ.

Notation. Hereafter, A denotes the set of non dimensionalized parameters:

A :=
{
a = (ε, µ, κ) | ε ∈ (0, 1], µ ∈ [0, 1], κ ∈ [0, 1]

}
.

Theorem 1.1 ([2]). Let d ≥ 1 and D denote either the whole space Rd or the torus Td.

Consider an integer s > 1 + d/2. For all positive P , T and M0, there is a positive time T

such that for all a = (ε, µ, κ) ∈ A and all initial data (P a
0 , v

a
0 , T

a
0 ) such that P a

0 and T a0
take positive values and such that

ε−1 ‖P a
0 − P‖Hs+1(D) + ‖va0‖Hs+1(D) + ‖T a0 − T‖Hs+1(D) ≤M0,

the Cauchy problem for (4)–(5) has a unique classical solution (P a, va, T a) such that

(P a − P , va, T a − T ) ∈ C0([0, T ];Hs+1(D)) and such that P a and T a take positive values.

In addition there exists a positive M , depending only on M0, P and T , such that

sup
a∈A

sup
t∈[0,T ]

{
ε−1 ‖P a(t)− P‖Hs(D) + ‖va(t)‖Hs(D) + ‖T a(t)− T‖Hs(D)

}
≤M.
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Remark 1.2. Note that we control the initial data in Hs+1 and the solution in Hs.

We shall give below our main result a refined form where the solutions satisfy the same

estimates as the initial data do (see Theorem 4.10).

When ε tends to 0, the solutions of the full equations (4) converge to the unique solution

of (3) whose initial velocity is the pseudo-incompressible part of the original velocity.

Theorem 1.3 ([2]). Fix µ ∈ [0, 1] and κ ∈ [0, 1]. Assume that (P ε, vε, T ε) satisfy (4)

and

sup
ε∈(0,1]

sup
t∈[0,T ]

‖ε−1(P ε(t)− P )‖Hs + ‖vε(t)‖Hs + ‖T ε(t)− T‖Hs < +∞,

for some fixed time T > 0, reference states P , T and index s large enough. Suppose in

addition that the initial data T ε|t=0 − T are compactly supported. Then, for all s′ < s, the

pressure variations ε−1(P ε − P ) converges strongly to 0 in L2(0, T ;Hs′

loc(Rd)). Moreover,

for all s′ < s, (vε, T ε) converges strongly in L2(0, T ;Hs′

loc(Rd)) to a limit (v, T ) satisfying

the limit system (3).

Let us recall that the previous results concern perfect gases. The case of general gas is

studied below following [3]. Yet, to simplify the presentation, we do not include separate

statements in this introduction.

For the incompressible limit in the isentropic case, we will see that one can give a

rate of convergence of (div v,∇p) to 0 by means of Strichatz’ estimates. Here, we only

state that the penalized terms converge to zero: it is an open problem to give a rate of

convergence for the non-isentropic systems. One reason is that it is much more difficult to

prove dispersive estimates for variable coefficients wave equations (however one can quote

the notable results of Alinhac [6] and Burq [18]).

Also, in their pionnering work [72, 73, 74], Métivier and Schochet have shown that

the study of the non-isentropic equations involves many other very interesting additional

phenomena. In particular, under periodic boundary conditions, there are several difficult

open problems concerning the justification of the low Mach number limit for the non-

isentropic equations with large density variations (see also [14]).

With regards to Theorem 1.1, one technical reason why we are uniquely interested in

the whole space Rd or the Torus Td is that we will make use of the Fourier analysis. A

more serious obstacle is that, in the boundary case, there should be boundary layers to

analyze [14]. For the Euler equations (that is, µ = κ = 0), however, Theorem 1.1 remains

valid in the boundary case [1].

Another interesting problem is to study the previous systems in the multiple spatial

scales case (see [81] and [58, 59] for formal computations).
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2. Incompressible limit of the isentropic Euler equations

We start from scratch and consider first the isentropic Euler equations. Some important

features of the analysis can be explained on this simplified system.

Consider the isentropic Euler equations:
∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +
∇P
ε2

= 0,

with P = Aργ. As already explained, it is interesting to work with the unknowns P, v. It

is easily found that one can rewrite the previous system into the form
∂tP + v · ∇P + γP div v = 0,

P 1/γ(∂tv + v · ∇v) +
∇P
ε2

= 0.

We next seek P in the form P = Const. + O(ε). As in [72], since P is a positive

function, it is reasonable to set P = Peεp, where P is a given positive constants, say the

reference state at spatial infinity. Then, by writing ∂t,xP = εP∂t,xp it is found that (p, v)

satisfies a system of the form:

(6)

{
g1(εp)(∂tp+ v · ∇p) + ε−1 div v = 0,

g2(εp)(∂tv + v · ∇v) + ε−1∇p = 0.

We begin with the classical result that the solutions exist for a time independent of the

Mach number ε (note that Sideris [85] proved that there is blowup in finite time for some

initial data).

Theorem 2.1 (from Klainerman & Majda [56, 57]). Let d ∈ N∗ and s > d/2 + 1.

For all bounded subset B0 of Hs(Rd), there exist a time T > 0 and a bounded subset B
of C0([0, T ];Hs(Rd)) such that, for all ε ∈ (0, 1] and all initial data (p0, v0) ∈ B0, the

Cauchy problem for (6) has a unique classical solution (p, v) ∈ B.

Proof. The system is symmetric hyperbolic; therefore the Cauchy problem is well-

posed for fixed ε. We let Tε = T (ε,B0) > 0 denote the lifespan, that is the supremum of

all the positive times T such that the Cauchy problem for (6) has a unique solution in

C0([0, T ], Hs(Rd)). Furthermore, either Tε = +∞ or

lim sup
t→Tε

‖(p, v)(t)‖Hs = +∞.

On account of this alternative the problem reduces to establishing uniform Hs estimates.

To obtain uniform estimates, it is convenient to rewrite system (6) in the form

∂tu+
∑

1≤j≤d

Aj(u, εu)∂ju+ ε−1
∑

1≤j≤d

Sj∂ju = 0,
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where the matrices Aj and Sj are symmetric. The result then follows from the usual

estimates. Indeed, introduce

u̇ := (I −∆)s/2u,

where (I −∆)s/2 is the Fourier multiplier with symbol (1 + |ξ|2)s/2. Then u̇ satisfies

∂tu̇+
∑

1≤j≤d

Aj(u, εu)∂ju̇+ ε−1
∑

1≤j≤d

Sj∂ju̇ = f :=
∑

1≤j≤d

[Aj(u, εu),Λs]∂ju,

where [A,B] denotes the commutator AB −BA.

Denote by 〈 , 〉 the scalar product in L2. We obtain L2 estimates for u̇ uniform in ε by

a simple integration by parts in which the large terms in 1/ε cancel out. Indeed, since

S(∂x) = −S(∂x)
∗, one has

d

dt
‖u̇‖2

L2 =
∑

1≤j≤d

〈 (∂jAj(u, εu))u̇ , u̇ 〉+ 2〈 f , u̇ 〉,

where we use the symmetry of the matrice Aj (a word of caution: the previous identity is

clear if u̇ ∈ C1
t L

2
x. To prove the previous identity for u̇ ∈ C0

t L
2
x, one has to approximate u̇

by a sequence un in C0
tH

1
x such that un is the unique solution of an approximating system.

This can be accomplished by the usual Friedrichs Lemma).

Since

‖∂jAj(u, εu)‖L∞ ≤ C(‖(u, ∂ju)‖L∞) ≤ C(‖u‖Hs),

it remains only to estimate the commutator f . To do that, we recall the following nonlinear

estimates in Sobolev spaces.

a) If s > d/2, F ∈ C∞ and F (0) = 0 and u ∈ Hs(Rd), then

‖F (u)‖Hs ≤ C(‖u‖L∞) ‖u‖Hs .

b) If σ ≥ 0, s > 0 and P ∈ OpSm is a pseudo-differential operator of order m (say a

Fourier multiplier or a differential operator), then

‖P (fu)− fPu‖Hσ ≤ K ‖∇f‖L∞ ‖u‖Hσ+m−1 +K ‖f‖Hσ+m ‖u‖L∞ .

This implies that

‖∂jAj(u, εu)‖L∞ ≤ C(‖(u, ∂ju)‖L∞) ≤ C(‖u‖Hs),

‖[Aj(u, εu),Λs]∂ju‖L2 ≤ K ‖(Aj − Aj(0))(u, εu)‖Hs ‖∂ju‖Hs−1 ≤ C(‖u‖Hs).

The Gronwall lemma completes the proof. �

Our goal is to explain how to extend Theorem 2.1 to the full Navier-Stokes equations.

Yet, we can extend this result in many other directions. Let us mention three.
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• Schochet [77] has proved that the result remains true for the case with boundary,

for the non-isentropic Euler equations with small entropy variations (the case with

large entropy fluctuations is studied in [1] following [72]). An interesting open

problem is to extend this result to the compressible Navier-Stokes equations.

• By a standard re-scaling, Theorem 2.1 just says that the classical solutions with

small initial data of size δ exist for a time of order of 1/δ. See [5, 44, 86] for

further much more refined results for the lifespan of the rotationally invariant

or spherically symmetric solutions of the Euler equations whose initial data are

obtained by adding a small smooth perturbation to a constant state.

• Alvarez-Samaniego and Lannes [7] have studied the well-posedness of the initial

value problem for a wide class of singular evolution equations which allow losses

of derivatives in energy estimates (for fixed ε, the solutions are constructed by a

Nash-Moser iterative scheme).

Granted the uniform estimates established in the proof of the existence theorem, to

prove that the limits satisfy the limit equations, we need only to establish compactness

in time. We first consider well prepared initial data (div vε0 = O(ε) and ∇pε0 = O(ε)) so

that the first order time derivatives are bounded initialy. For instance one can consider

pε0 = 0 and a fixed divergence free vector field (say the data of the limit system).

For well prepared initial data, one can obtain compactness in time in the strong sense

of Ascoli. This follows from the Arzela–Ascoli’s theorem and the following result.

Proposition 2.2. Let T > 0 and {(pε, vε)} be a family of solutions uniformly bounded

in C0([0, T ];Hs(Rd)) for some s > 1+d/2. If ε−1(∇pε(0), div vε(0)) is uniformly bounded

in L2(Rd), then ∂t(p
ε, vε) is uniformly bounded in C0([0, T ];L2(Rd)).

Proof. Note that u̇ε := ∂t(p
ε, vε) satisfies a system of the form

∂tu̇
ε +
∑

Aεj(t, x)∂ju̇
ε + F ε(t, x)u̇ε + ε−1Su̇ε = 0,

where we can arrange that S is skew-symmetric and the matrices Aεj (resp. F ε) are uni-

formly bounded in W 1,∞([0, T ]× Rd) (resp. L∞([0, T ]× Rd)). The result then follows by

the usual L2 estimate (multiply by u̇ε and integrate by parts on Rd). �

Note that the same argument applies if the space variable belongs to the d-dimensional

Torus Td. In this case, by combining the previous uniform estimates for the time derivative

with the uniform estimates in space established in the proof of the existence theorem, one

immediately obtains convergence in C0(0, T ;Hs−δ(Td)) and in L∞(0, T ;Hk(Td)) weak-*.

In [10, 11], Beirão da Veiga established convergence in the strong C0([0, T ];Hk(Td)) norm

(see also [83]).

Let us now consider the problem of convergence for general initial data. In the whole

space case, the solutions converge, although this convergence is not uniform for time

11



close to zero for the oscillations on the acoustic time-scale prevent the convergence of the

solutions on a small initial layer in time (see [8, 47, 48, 50, 89]).

Theorem 2.3 (from Ukai [89]). Let T > 0 and {(pε, vε)} be a family of solutions

uniformly bounded in C0([0, T ];Hs(Rd)) for some s > 1+d/2. Suppose also that (pε, vε)(0)

is bounded in L1(Rd) and that Pvε(0) converge to v0 in Hs(Rd), where P is the Leray

projector onto divergence free vector fields. Define v as the unique solution of the Cauchy

problem

∂tv + P (v · ∇v) = 0, v(0, x) = v0(x).

Then, for all s′ < s and all 1 ≤ p < +∞, pε(t)→ 0 and vε(t)→ v(t) in Lp(0, T ;Hs′

loc(Rd)).

Proof. Rewrite the equations in the form

∂tu
ε +

i

ε
Luε = f ε,

with

uε =

(
pε

vε

)
, L = −i

(
0 ∇

div 0

)
,

so that

uε = e−itL/εuε(0)−
∫ t

0

e−i(t−s)L/εf ε(s) ds.

Set Γ = I−Γ0 where Γ0 is the projection onto the null space of L. To prove Theorem 2.3,

the key point is to establish the pointwise convergence

∀t > 0, Γuε(t)→ 0 in Hs′

loc(Rd) as ε→ 0.

Since uε(t) is bounded in Hs, by Rellich’s theorem, it is enough to prove that

∀t > 0, Γuε(t)→ 0 in D′(Rd) as ε→ 0.

Write

(Γuε(t), g) = (uε(0), eitL/εΓg)−
∫ t

0

(f ε, ei(t−s)L/εΓg) ds.

Let us prove that the second term goes to 0. Since f ε is bounded in L∞t L
2
x, it is enough

to prove that ∫ t

0

(f ε, ei(t−s)L/εΓh) ds→ 0.

By density we can assume that ĥ ∈ C∞0 (Rd \ 0). Also, since f ε is bounded in L∞t L
1
x, it is

enough to prove that

ei(t−s)L/εΓh→ 0 in L∞(Rd).

This in turn follows from the stationary phase on the sphere, which implies that one has

convergence to zero in L∞(Rd):∥∥eiτL/εΓh∥∥
L∞
≤ C

( ε
τ

)(d−1)/2

‖h‖L1 .

�
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Remark 2.4. As proved by Isozaki [49], the result holds if x ∈ Ω where Ω is the exterior

of a bounded domain, with the solid wall boundary condition v · ν = 0 on the boundary

∂Ω. One can use a scattering argument to reduce the analysis to establishing the result in

the free space. Indeed, let S be the linearized operator of acoustics in L2(Ω), and denote

by Π the projection on the orthogonal complement of its kernel. By the completeness of

the wave operators, for all g ∈ L2(Ω) there exist h± ∈ L2(Rd) such that∥∥e−iτSΠg − e−iτLΓh±
∥∥
L2(Ω)

→ 0 as τ → ±∞.

Remark 2.5. The fact that we use the stationary phase on the sphere is related to

the fact that we study the wave equation. See Stein [87] for decay results for the Fourier

transform of measures supported on smooth curved hypersurfaces. For further results

about general constant coefficients symmetric hyperbolic systems, see [51]. In this paper,

Joly, Métivier and Rauch proved that the contributions of the singular terms of the

characteristic variety can be treated as error terms (see also [61]).

Strichartz’ estimates for the linear wave equation can be used to show that the gradient

part of the velocity converges strongly to zero; recall, in the Helmholtz decomposition of

the velocity field, it is the gradient part that satisfies the linear wave equation. For

instance one has the following estimate in the 3D case.

Proposition 2.6 (from [52]). There exists a constant C such that, for all δ ∈ (0, 1],

all τ ≥ 1 and all v ∈ C0([0,+∞);H2(R3)),

‖(δDx)v‖L2(0,τ ;L∞(R3)) ≤ C
√

log(τ/δ)
(
‖(∂t,xv)(0)‖L2(R3) +

∥∥∂2
t v −∆v

∥∥
L1(0,τ ;L2(R3))

)
,

where  is a smooth bump function satisfying (ξ) = 1 if |ξ| ≤ 1.

By applying this result with τ = T/ε and v(t, x) = u(εt, x), we find that, if

ε2∂2
t u

ε −∆uε = O(ε) in L1(0, T ;L2(R3)),

and if ε∂tu, ∂xu = O(1) initially, then one has strong convergence

uε = O(
√
ε log(1/ε)) in L2(0, T ;L∞(R3)).

A very interesting point is that one has a decay rate in terms of a power of the Mach

number. Such estimates have been proved in various contexts for the isentropic equations.

In particular, this allows to study the convergence on [0, T ] for all T < T0 where T0

is the lifespan of the limit system (see [25, 42]). We refer the reader to the papers

of Desjardins and Grenier [26] (for the incompressible limit of weak solutions of the

compressible Navier-Stokes on the whole space d = 2, 3; note that the strong convergence

of the divergence free part is shown in this paper by an alternative argument based on

time-regularity); Danchin [24] (incompressible limit of the solutions of the compressible

Navier-Stokes equations with critical regularity); Dutrifoy and Hmidi [29] (justification

of the incompressible limit to solutions of Yudovich type and to vortex patches).
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3. Low Mach number flows

3.1. The equations. We begin by rewriting the equations in the form

L(u, ∂t, ∂x)u+
1

ε
S(u, ∂x)u = 0,

which is the classical framework of a singular limit problem.

For a fluid with density %, velocity v, pressure P , temperature T , internal energy e,

Lamé coefficients ζ, η and coefficient of thermal conductivity k, the full Navier-Stokes

equations, written in a non-dimensional way, are
∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +
∇P
ε2

= µ
(
2 div(ζDv) +∇(η div v)

)
,

∂t(ρe) + div(ρve) + P div v = κ div(k∇T ) +Q,

where ε ∈ (0, 1], (µ, κ) ∈ [0, 1]2 and Q is an additional given source term (see [32,

58, 69]), this notations includes the harmless term εµτ · Dv. In order to be closed,

the system is supplemented with a thermodynamic closure law, so that ρ, P, e, T are

completely determined by only two of these variables. Also, it is assumed that ζ, η and

k are smooth functions of the temperature.

By assuming that ρ and e are given smooth functions of (P, T ), it is found that, for

smooth solutions, (P, v, T ) satisfies a system of the form:
α(∂tP + v · ∇P ) + div v = κβ div(k∇T ) + βQ,

ρ(∂tv + v · ∇v) +
∇P
ε2

= µ
(
2 div(ζDv) +∇(η div v)

)
,

γ(∂tT + v · ∇T ) + div v = κδ div(k∇T ) + δQ,

where the coefficients α, β, γ and δ are smooth functions of (P, T ).

Since ∂tv is of order of ε−2∇P , this suggests that we seek P in the form P = Const.+

O(ε). As in [72], since P and T are positive functions, it is reasonable to set

P = Peεp, T = Teθ,

where P and T are given positive constants, say the reference states at spatial infinity.

From now on, the unknown is (p, v, θ) with values in R × Rd × R. We are interested

in the general case where p and θ are uniformly bounded in ε (so that ∇T = O(1) and

∂tv = O(ε−1)). By writing ∂t,xP = εP∂t,xp, ∂t,xT = T∂t,xθ and redefining the functions

k, ζ and η, it is found that (p, v, θ) satisfies a system of the form:

(7)


g1(φ)(∂tp+ v · ∇p) +

1

ε
div v =

κ

ε
χ1(φ) div(k(θ)∇θ) +

1

ε
χ1(φ)Q,

g2(φ)(∂tv + v · ∇v) +
1

ε
∇p = µB2(φ, ∂x)v,

g3(φ)(∂tθ + v · ∇θ) + div v = κχ3(φ) div(k(θ)∇θ) + χ3(φ)Q,
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where φ := (θ, εp) and B2(φ, ∂x) = χ2(φ) div(ζ(θ)D·) + χ2(φ)∇(η(θ) div ·).
The limit system reads:

div v = κχ1 div(k∇θ) + χ1Q,

g2

(
∂tv + v · ∇v

)
+∇Π = µB2(∂x),

g3

(
∂tθ + v · ∇θ

)
= κ

(
χ3 − χ1

)
div(k∇θ) + (χ3 − χ1)Q,

where the coefficients gi, χi are evaluated at (θ, 0).

In the following we make several structural assumptions.

Assumption 3.1. To avoid confusion, we denote by (ϑ, ℘) ∈ R2 the place holder of the

unknown (θ, εp). Hereafter, it is assumed that:

(H1) The functions ζ, η and k are C∞ functions of ϑ ∈ R, satisfying k > 0, ζ > 0 and

η + 2ζ > 0.

(H2) The functions gi and χi (i = 1, 2, 3) are C∞ positive functions of (ϑ, ℘) ∈ R2.

Moreover,

χ1 < χ3.

The main hypothesis is the inequality χ1 < χ3. It plays a crucial role in proving

L2 estimates. Moreover, given the assumption k(ϑ) > 0, it ensures that the operator

−(χ3 − χ1

)
div(k∇θ) [which appears in the last equation of the limit system] is positive.

This means nothing but the fact that the limit temperature evolves according to the

standard equation of heat diffusion! One can prove (see the appendix in [3]) that this

assumption is satisfied by general gases.

Proposition 3.2. (H2) is satisfied provided that the density ρ and the energy e are

C∞ functions of the pressure P and the temperature T , such that ρ > 0 and

P
∂ρ

∂P
+ T

∂ρ

∂T
= ρ2 ∂e

∂P
,

∂ρ

∂P
> 0,

∂ρ

∂T
< 0,

∂e

∂T

∂ρ

∂P
>

∂e

∂P

∂ρ

∂T
·

Remark 3.3. The first identity is the second principle of thermodynamics. The last

three identities means that the coefficient of isothermal compressibility, the coefficient of

thermal expansion and the specific heat at constant volume are positive.

In addition to Assumption 3.1, we need two compatibility conditions between the pe-

nalization operator and the viscous perturbation.

Assumption 3.4. We assume that there exist two functions S and % such that (ϑ, ℘) 7→
(S(ϑ, ℘), ℘) and (ϑ, ℘) 7→ (ϑ, %(ϑ, ℘)) are C∞ diffeomorphisms from R2 onto R2, S(0, 0) =

%(0, 0) = 0 and

(8) g1
∂S

∂ϑ
= −g3

∂S

∂℘
> 0, g1χ3

∂%

∂ϑ
= −g3χ1

∂%

∂℘
< 0.

15



Remark 3.5. We claim several times that it is more convenient to work with the

unknown P, v, T . Yet, an important feature of the proof of the uniform stability result

is that we shall use all the thermodynamical variables. Indeed, σ = S(θ, εp) is the

entropy and ρ = %(θ, εp) is the density. The following computations explain why they

play such a role in the analysis. Suppose (p, v, θ) is a smooth solution of (7) and let

Ψ = Ψ(ϑ, ℘) ∈ C∞(R2). Then ψ := Ψ(θ, εp) satisfies

g1g3

(
∂tψ + v · ∇ψ

)
+
(
g1
∂Ψ

∂ϑ
+ g3

∂Ψ

∂℘︸ ︷︷ ︸
=:Γ1(Ψ)

)
div v = κ

(
g1χ3

∂Ψ

∂ϑ
+ g3χ1

∂Ψ

∂℘︸ ︷︷ ︸
=:Γ2(Ψ)

)(
div(k(θ)∇θ) +Q

)
,

where the coefficients gi, χi, ∂Ψ/∂ϑ and ∂Ψ/∂℘ are evaluated at (θ, εp). Hence, with S

and % as the previous assumption, we have

Γ1(S) = 0 and Γ2(S) > 0;

Γ1(%) > 0 and Γ2(%) = 0.

Remark 3.6. A fundamental point observed by Feireisl and Novotný in [37] is that

the Helmholtz’ free energy plays a key role to prove uniform estimates. Yet the estimates

proved in [37] and the estimates which we proved in [2, 3] are strongly different. Indeed,

in [37], Feireisl and Novotný consider the framework of the incompressible limit of weak

solutions to the Navier-Stokes-Fourier system in the case of small temperature variations.

As a result, they need a very subtle set of energy estimates without “remainder” terms.

Here, by contrast, we consider strong classical solutions and large temperature variations.

The penalized operator is much more complicated 1, but we do not need an exact en-

ergy estimates for the solutions; this allows us to use additional transformations of the

equations.

As alluded to in the introduction, there is a dichotomy between the case where χ1 is

independent of θ and the case where χ1 depends on θ. An important remark is that χ1 is

independent of θ for perfect gases. In this direction, another important remark is that χ1

depends on θ for common equations of states satisfying our assumptions and which are

very close to the perfect gases laws. Indeed, one can easily prove the following result.

Proposition 3.7. Assume that the gas obeys Mariotte’s law: P = RρT , for some

positive constant R, and e = e(T ) satisfies CV := ∂e/∂T > 0. Then, (H2) is satisfied.

Moreover, χ1(ϑ, ℘) is independent of ϑ if and only if CV is constant (that is for perfect

gases).

1Indeed, as shown in §5.1, it is easy to prove a uniform stability result for classical solutions in the
case of small temperature variations.
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3.2. Uniform stability results. We state here various uniform stability results,

which assert that the classical solutions of (7) exist and they are uniformly bounded

for a time independent of ε, µ and κ. We concentrate below on the whole space problem

(x ∈ Rd) or the periodic case (x ∈ Td) and we work in the Sobolev spacesHσ endowed with

the norms ‖u‖Hσ :=
∥∥(I −∆)σ/2u

∥∥
L2 . To clarify the presentation, we separate the state-

ments in four parts: 1) Euler equations, 2) Full Navier-Stokes system for perfect gases; 3)

Full Navier-Stokes system for general gases without source terms; 4) Full Navier-Stokes

system for general gases with source terms. The proofs are discussed in Sections 4 and 5.

The non-isentropic Euler equations. We begin with the non-isentropic Euler equa-

tions: consider the case µ = 0 = κ and introduce the entropy σ = S(θ, εp). The coeffi-

cients g1 and g2 are now viewed as C∞ positive functions of σ and εp. In this case, one

can rewrite System (7) under the form:

(9)


g1(σ, εp)

(
∂tp+ v · ∇p

)
+

1

ε
div v = 0,

g2(σ, εp)
(
∂tv + v · ∇v

)
+

1

ε
∇p = 0,

∂tσ + v · ∇σ = 0.

Theorem 3.8 (from Métivier & Schochet [72]). Let N 3 s > 1 + d/2 and D = Rd

or Td. For all bounded subset B0 ⊂ Hs(D), there exist T > 0 and a bounded subset

B ⊂ C0([0, T ];Hs(D)) such that, for all ε ∈ (0, 1] and all initial data (p0, v0, σ0) ∈ B0, the

Cauchy problem for (9) has a unique solution (p, v, σ) ∈ B.

The following example, due to Métivier and Schochet, gives a typical example of insta-

bility for this system. Consider {
g(σ)∂tu+ ε−1∂xu = 0,

∂tσ + b(u)∂xσ = 0.

If σ(0, x) = σ is constant, then

u(t, x) = u(0, x− t/(εg(σ))).

Hence, a small perturbation of the initial entropy induces in small time a large perturba-

tion of the velocity. This is why it is remarkable that one can prove uniform estimates

in Sobolev spaces. In [72], the proof relies upon the fact that one can establish uniform

bounds by applying some spatial operators with appropriate weights to the equations.

The point is that the matrix multiplying the time derivatives depends on the unknown

only through σ and εu. This special structure of the equations implies that the derivatives

of the matrix multiplying the time derivatives are uniformly bounded with respect to ε.

Thus, one can think of the problem as an evolution equation with a penalization operator

with variable coefficients. Consider the problem

A0(t, x)∂tu+ ε−1L(∂x)u = 0.
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We cannot obtain Sobolev estimates by differentiating the equations since

A0(t, x)∂t(∂ju) + ε−1L(∂x)∂ju = −(∂jA0(t, x))∂tu = O(ε−1).

Simplify further the system and assume that A0 does not depend on time. Then one has

the following identity:

AetA = etAA with A := A0(x)−1L(∂x),

which allows us to prove a uniform L2 estimate for the penalised terms L(∂x)u. Indeed,

one has

‖L(∂x)u(t)‖L2 . ‖Au(t)‖L2 =
∥∥AetAu0

∥∥
L2 =

∥∥etA(Au0)
∥∥
L2 . ‖Au0‖L2 . ‖L(∂x)u0‖L2 ,

where, as in the proof of Theorem 2.1, we used the fact that, since L(∂x)
∗ = −L(∂x), we

have a uniform L2 estimate for the solution u(t) = etAu0.

Alternatively, one can estimate first the time derivatives and next use the structure of

the equations to estimate the spatial derivatives. The point is that time derivatives have

the advantage of commuting with the boundary condition. By doing so, one can prove

similar estimates in domains with boundary. In [1], it is proved that Theorem 3.8 is true

with D replaced by a bounded or unbounded domain.

Uniform stability result, perfect gases. We first state a uniform stability result for

the case where Q = 0 and the coefficient χ1 deos not depend on θ. Consider the system:

(10)


g1(φ)(∂tp+ v · ∇p) +

1

ε
div v =

κ

ε
χ1(εp) div(k(θ)∇θ),

g2(φ)(∂tv + v · ∇v) +
1

ε
∇p = µB2(φ, ∂x)v,

g3(φ)(∂tθ + v · ∇θ) + div v = κχ3(φ) div(k(θ)∇θ),

where φ = (θ, εp).

Theorem 3.9 (from [2]). Suppose that χ1 is independent of θ. Let N 3 s > 1+d/2 and

D = Rd or Td. For all bounded subset B0 ⊂ Hs+1(D), there exist T > 0 and a bounded

subset B ⊂ C0([0, T ];Hs(D)), such that for all (ε, µ, κ) ∈ (0, 1]× [0, 1]2 and all initial data

(p0, v0, θ0) ∈ B0, the Cauchy problem for (10) has a unique solution (p, v, θ) ∈ B.

Remark 3.10. Recall from Proposition 3.7 that χ1 is independent of θ for perfect gases.

Hence, Theorem 1.1 as stated in the introduction is now a consequence of Theorem 3.9.

Note that, for the study of classical solutions, we deliberately omitted the terms in εµτ ·Dv,

nothing is changed in the statements of the results, nor in their proofs (this term is very

important though for the study of weak solutions [12, 37]).

Remark 3.11. See Theorem 4.10 below for a refined statement where the solutions

satisfy the same estimates as the initial data.
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Uniform stability result, general gases. We now consider the case where the co-

efficient χ1 depends on θ:

(11)


g1(φ)(∂tp+ v · ∇p) +

1

ε
div v =

κ

ε
χ1(φ) div(k(θ)∇θ),

g2(φ)(∂tv + v · ∇v) +
1

ε
∇p = µB2(φ, ∂x)v,

g3(φ)(∂tθ + v · ∇θ) + div v = κχ3(φ) div(k(θ)∇θ),

where φ = (θ, εp).

In the free space R3, Theorem 3.9 remains valid without the assumption on χ1.

Theorem 3.12 (from [3]). Suppose that d ≥ 3. Let N 3 s > 1 + d/2. For all bounded

subset B0 ⊂ Hs+1(Rd), there exist T > 0 and a bounded subset B ⊂ C0([0, T ];Hs(Rd))

such that, for all (ε, µ, κ) ∈ (0, 1]× [0, 1]2 and all initial data (p0, v0, θ0) ∈ B0, the Cauchy

problem for (11) has a unique solution (p, v, θ) ∈ B.

Remark 3.13. We state the result for x ∈ Rd only. The reason is that the analysis

is easier in the periodic case. Moreover, in the periodic case, we have a uniform stabilty

result without restriction on the dimension (see Theorem 3.18 below).

Uniform stability result, combustion equations. We now consider the full Sys-

tem 7, which we recall:

(12)


g1(φ)(∂tp+ v · ∇p) +

1

ε
div v =

κ

ε
χ1(φ) div(k(θ)∇θ) +

1

ε
χ1(φ)Q,

g2(φ)(∂tv + v · ∇v) +
1

ε
∇p = µB2(φ, ∂x)v,

g3(φ)(∂tθ + v · ∇θ) + div v = κχ3(φ) div(k(θ)∇θ) + χ3(φ)Q.

Theorem 3.14 (from [3]). Let d = 1 or d ≥ 3 and N 3 s > 1 + d/2. For all source

term Q = Q(t, x) ∈ C∞0 (R×Rd) and all M0 > 0, there exist T > 0 and M > 0 such that,

for all (ε, µ, κ) ∈ (0, 1]× [0, 1]× [0, 1] and all initial data (p0, v0, θ0) ∈ Hs+1(Rd) satisfying

‖(∇p0,∇v0)‖Hs−1 + ‖(θ0, εp0, εv0)‖Hs+1 ≤M0,

the Cauchy problem for (12) has a unique solution (p, v, θ) in C0([0, T ];Hs+1(Rd)) such

that

sup
t∈[0,T ]

‖(∇p(t),∇v(t))‖Hs−1 + ‖(θ(t), εp(t), εv(t))‖Hs ≤M.

3.3. L2 estimates for the solutions. With regards to the low Mach number limit

problem, we will see below that one can rigorously justify the low Mach number limit for

general initial data provided that one can prove that the solutions are uniformly bounded

in Sobolev spaces (see Proposition 3.20). The problem presents itself: Theorem 3.14 only

gives uniform estimates for the derivatives of p and v. In this section, we give uniform

bounds in Sobolev norms. Again, let us insist on the fact that, for perfect gases, we have

uniform estimates in Sobolev spaces, and not only for the derivatives (see Theorem 3.9).
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Proposition 3.15. Let d ≥ 3. Consider a family of solutions (pa, va, θa) (a = (ε, µ, κ))

of (12) (for some source terms Qa) uniformly bounded in the sense that

sup
a∈A

sup
t∈[0,T ]

‖(∇pa(t),∇va(t))‖Hs + ‖θa(t)‖Hs+1 < +∞,

for some s > 2 + d/2 and fixed T > 0. Assume further that the source terms Qa are

uniformly bounded in C1([0, T ];L1 ∩ L2(Rd)) and that the initial data (pa(0), va(0)) are

uniformly bounded in L2(Rd). Then the solutions (pa, va, θa) are uniformly bounded in

C0([0, T ];L2(Rd)).

Remark 3.16. Theorem 3.12 is a consequence of Theorem 3.14 and Proposition 3.15.

Proof. The strategy of the proof consists in transforming the system (7) so as to

obtain L2 estimates uniform in ε by a simple integration by parts argument.

The main argument is that, given d ≥ 3 and σ ∈ R, the Fourier multiplier ∇∆−1

is well defined on L1(Rd) ∩ Hσ(Rd) with values in Hσ+1(Rd). Thus, we can introduce

Ua := (pa, va − V a)T where

V a := κχ1(φa)k(θa)∇θa +∇∆−1
(
−κ∇χ1(φa) · k(θa)∇θa + χ1(φa)Qa

)
.

Ua solves a system having the form

Ea(∂tU
a + va · ∇Ua) + ε−1S(∂x)U

a = F a,

where S(∂x) is skew-symmetric, the symmetric matrices Ea = Ea(t, x) are positive definite

and one has the uniform bounds

sup
a∈A
‖∂tEa‖L∞([0,T ]×Rd) +

∥∥(Ea)−1
∥∥−1

L∞([0,T ]×Rd)
+ ‖F a‖L1

T (L2) ≤ C(R),

with

R := sup
a∈A

sup
t∈[0,T ]

{
‖(∇pa(t),∇va(t))‖Hs + ‖θa(t)‖Hs+1

}
+ sup

a∈A
‖(pa(0), va(0))‖L2 .

This easily yields uniform L2 estimates for Ua and hence for (pa, va) since

sup
a∈A
‖(pa, va)‖L∞T (L2) ≤ sup

a∈A
‖Ua‖L∞T (L2) + C(R).

�

Remark 3.17. For our purposes, one of the main differences between R3 and R is the

following. For all f ∈ C∞0 (R3), there exists a vector field u ∈ H∞(R3) such that div u = f .

In sharp contrast, the mean value of the divergence of a smooth vector field u ∈ H∞(R)

is zero. This implies that Proposition 3.15 is false with d = 1.

As noted by Klainerman & Majda [56, 57], the convergence for well prepared initial

data allows us to prove that the limit system is well posed. The previous analysis thus

implies that the limit system is well posed for x ∈ R3; which improves previous result by

Embid on the Cauchy problem for zero Mach number equations [32, 33] when x ∈ Td.
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We end this part by discussing further the difference between the cases x ∈ Rd and

x ∈ Td. In this direction, the main result is that, if x ∈ Td, then one has a uniform

stability result without any restriction on the dimension (compare with Theorem 3.14).

Theorem 3.18. Let d ≥ 1 and N 3 s > 1 + d/2. For all source term Q ∈ C∞(R×Td)

and for all M0 > 0, there exist T > 0 and M > 0 such that, for all (ε, µ, κ) ∈ (0, 1]× [0, 1]2

and all initial data (p0, v0, θ0) ∈ Hs+1(Td) satisfying

‖(p0, v0)‖Hs + ‖(θ0, εp0, εv0)‖Hs+1 ≤M0,

the Cauchy problem for (12) has a unique solution (p, v, θ) in C0([0, T ];Hs+1(Td)) such

that

sup
t∈[0,T ]

‖∇p(t)‖Hs−1 + ‖v(t)‖Hs + ‖(θ(t), εp(t))‖Hs ≤M.

The proof follows from two observations: first, the anaysis used to prove Theorems 3.9–

3.14 applies mutatis mutandis in the periodic case; and second, the periodic case is easier

in that one can prove uniform L2 estimates for the velocity. This in turn implies that (as

in [2, 72]) one can directly prove a closed set of estimates by means of the estimate:

‖v‖Hs(Td) ≤ C ‖div v‖Hs−1(Td) + C ‖curl(γv)‖Hs−1(Td) + C ‖v‖L2(Td) ,

for some constant C depending only on ‖log γ‖Hs(Td).

Let us concentrate on the main new qualitative property:

Lemma 3.19. Let d ≥ 1, s > 1 + d/2 and fixed T > 0. Consider a family of solutions

(pa, va, θa) ∈ C1([0, T ]× Td) of (7) (for some source terms Qa) such that

sup
a∈A

sup
t∈[0,T ]

‖(∇pa(t),∇va(t))‖Hs + ‖θa(t)‖Hs+1 < +∞.

If Qa is uniformly bounded in C1([0, T ];L2(Td)) and (pa(0), va(0)) is uniformly bounded

in L2(Td), then va is uniformly bounded in C0([0, T ];L2(Td)).

Proof. The argument is due to Schochet [78]. Set

fa := κχ1(φa) div(k(φa)∇θa) + χ1(φa)Qa,

and introduce the functions V a = V a(t, x) and P a = P a(t) by

P a :=
〈fa〉
〈g1(φa)〉

and V a := ∇∆−1
(
fa − g1(φa)P a

)
.

Then Ua := (qa, va − V a)T with qa(t, x) = pa(t, x)− P a(t), satisfies

Ea(∂tU
a + va · ∇Ua) + ε−1S(∂x)U

a = F a,

where Ea, F a satisfy similar to those obtained in the proof of Proposition 3.15. We obtain

L2 estimates uniform in ε by the same integration by parts argument. �
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3.4. The low Mach number limit. We now consider the behavior of the solutions

of the full Navier-Stokes system in Rd as the Mach number ε tends to zero. Fix µ and κ

and consider a family of solutions (pε, vε, θε) of system:

(13)


g1(φε)(∂tp

ε + vε · ∇pε) +
1

ε
div vε =

κ

ε
χ1(φε) div(k(θε)∇θε) +

1

ε
χ1(φε)Q,

g2(φε)(∂tv
ε + vε · ∇vε) +

1

ε
∇pε = µB2(φε, ∂x)v

ε,

g3(φε)(∂tθ
ε + vε · ∇θε) + div vε = κχ3(φε) div(k(θε)∇θε) + χ3(φε)Q,

where recall φε := (θε, εpε) and B2(φε, ∂x) = χ2(φε) div(ζ(θε)D·) + χ2(φε)∇(η(θε) div ·).
We want to prove that the solutions converge to the unique solution of the limit system

div v = κχ1 div(k∇θ) + χ1Q,

g2

(
∂tv + v · ∇v

)
+∇Π = µB2(∂x),

g3

(
∂tθ + v · ∇θ

)
= κ

(
χ3 − χ1

)
div(k∇θ) + (χ3 − χ1)Q,

whose initial velocity is the incompressible part of the original velocity.

It is assumed that the family (pε, vε, θε) is bounded in C0([0, T ];Hs(Rd)) with s large

enough and T > 0. Strong compactness of θε is clear from uniform bounds for ∂tθ
ε. For the

sequence (pε, vε), however, the uniform bounds imply only weak compactness, insufficient

to prove that the limits satisfy the limit equations. We remedy this by proving that the

penalized terms converge strongly to zero. Namely, the key for proving the convergence

result is to prove the decay to zero of the local energy of the acoustic waves.

Proposition 3.20. Fix µ ∈ [0, 1] and κ ∈ [0, 1], and let d ≥ 1. Assume that (pε, vε, θε)

satisfy (13) and are uniformly bounded in C0([0, T ];Hs(Rd)) for some fixed T > 0 and

s large enough. Suppose that the initial data θε(0) converge in Hs(Rd) to a function θ0

decaying sufficiently rapidly at infinity in the sense that 〈x〉δθ0 ∈ Hs(Rd) for some given

δ > 2. Then, for all indices s′ < s,

pε → 0 strongly in L2(0, T ;Hs′

loc(Rd)),

div vε − χ1(φε) div(β(θε)∇θε)− χ1(φε)Q→ 0 strongly in L2(0, T ;Hs′−1
loc (Rd)).

The proof of Proposition 3.20 is based on the following theorem of Métivier and Scho-

chet about the decay to zero of the local energy for a class of wave operators with time

dependent coefficients.

Theorem 3.21 (from Métivier & Schochet [72]). Let T > 0 and let uε be a bounded

sequence in C0([0, T ];H2(Rd)) such that

ε2∂t(a
ε∂tu

ε)− div(bε∇uε) = εf ε,

where the source term f ε is bounded in L2(0, T ;H1(Rd)). Assume further that the coef-

ficients aε, bε are uniformly bounded in C1([0, T ];Hσ(Rd)), for some σ > 1 + d/2, and
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converge in C0([0, T ];Hσ
loc(Rd)) to limits a, b satisfying the decay estimates

|a(t, x)− a| 6 K |x|−1−γ , |∇a(t, x)| 6 K |x|−2−γ ,

|b(t, x)− b| 6 K |x|−1−γ , |∇b(t, x)| 6 K |x|−2−γ ,

for some given positive constants a, b, K and γ.

Then, the sequence uε converges to 0 in L2(0, T ;L2
loc(Rd)).

Proof of Proposition 3.20 given Theorem 3.21. We can directly apply Theo-

rem 3.21 to prove the first half of Proposition 3.20, that is, the convergence of pε to 0 in

L2(0, T ;L2
loc(Rd)). Indeed, applying ε2∂t to the equation for pε, we verify that

(14) ε2∂t(a
ε∂tp

ε)− div(bε∇pε) = εf ε,

with aε := g1(φε), bε := 1/g2(φε) and f ε is bounded in C0([0, T ];H1(Rd)). Hence Theo-

rem 3.21 applies.

To prove the second half of Proposition 3.20, we begin by proving that ṗε := (ε∂t)p
ε

converges to 0 in L2(0, T ;L2
loc(Rd)). To do so we apply (ε∂t) on equation (14), to obtain

ε2∂t(a
ε∂tṗ

ε)− div(bε∇ṗε) = εf̃ ε,

with

f̃ ε := ε∂tf
ε − ε∂t

(
∂ta

ε(ε∂t)p
ε
)

+ div
(
∂tb

ε∇pε
)
.

Again one can verify that f̃ ε is a bounded sequence in C0([0, T ];H1(Rd)), which proves

the desired result.

To complete the proof, observe that

div vε − χ1(φε) div(β(θε)∇θε)− χ1(φε)Q = −g1(ψε)(ε∂t)p
ε +O(ε).

Hence, the fact that div vε − χ1(θε, pε) div(β(θε)∇θε) converges to 0 in L2(0, T ;L2
loc(Rd))

follows from the previous step and the fact that g1(ψε) − g1(0) is uniformly bounded in

C0([0, T ];Hs(Rd)). �

4. Linear estimates for the linearized system

A key step in the analysis is to estimate the solution (p̃, ṽ, θ̃) of linearized equations.

We consider the system:

(15)


g1(φ)(∂tp̃+ v · ∇p̃) +

1

ε
div ṽ − κ

ε
div(k1(φ)∇θ̃) = F1,

g2(φ)(∂tṽ + v · ∇ṽ) +
1

ε
∇p̃− µB2(φ, ∂x)ṽ = F2,

g3(φ)(∂tθ̃ + v · ∇θ̃) + div ṽ − κχ3(φ) div(k(φ)∇θ̃) = F3,

where

k1 = χ1k,
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the unknown is Ũ := (p̃, ṽ, θ̃), which is a function of (t, x) ∈ R×D with values in R×Rd×R;

v and φ are coefficients: v = v(t, x) ∈ Rd and φ = φ(t, x) ∈ R2; F1, F2, F3 are given source

terms; gi, χi and are our given coefficients (recall that they are smooth positive functions

of φ ∈ R2 and that χ1 < χ3).

Remark 4.1. One can wonder why we consider this system and not the system ob-

tained by replacing the operator div(k1∇·) with the apparently more natural operator

χ1 div(k∇·). A first observation is that we cannot prove uniform estimates for the system

thus obtained! A key feature of the system (15) is that we can write the equation for p̃

under the form

g1(ψ)
(
∂tp̃+ v · ∇p̃

)
+

1

ε
div ve = F1,

for some velocity ve. This will allow us to symmetrize the equations.

Remark 4.2. One can also wonder why we can chose to work with System (15). A

notable fact in the forthcoming analysis of nonlinear estimates is that we can see unsigned

large terms ε−1f ε(t, x) in the equations for p and v as source terms provided that: 1) they

do not convey fast oscillations in time: ∂tf
ε = O(1); 2) it does not implies a loss of

derivatives. To be more precise: in the nonlinear estimates, we can see terms of the form

ε−1F (εp, θ,
√
κ∇θ) as source terms. In particular we will be able to handle

√
κε−1k∇χ1·∇θ

as a source term (note that, for perfect gases,
√
κε−1k∇χ1 · ∇θ = O(1) since χ1 = χ1(εp)

is a function of εp for perfect gases). However, this may cause a loss of derivatives in the

estimates! We avoided this technical point by assuming that k does not depend on εp.

Many results have been obtained concerning the symmetrization of the Navier Stokes

equations (see, e.g., [12, 15, 22, 37, 54, 55, 71]). Yet, the previous works do not

include the dimensionless numbers. Here we prove estimates valid for all a = (ε, µ, κ)

in A := (0, 1] × [0, 1] × [0, 1]. Our result improves earlier works [1, 56, 72] on allowing

κ 6= 0. Indeed, when κ = 0, the penalization operator is skew-symmetric and hence

the perturbation terms do not appear in the L2 estimate, so that the classical proof

for solutions to the unperturbed equations holds. In sharp contrast (as observed in [69]),

when κ 6= 0 and the initial temperature variations are large, the problem is more involved.

Several difficulties also specifically arise for the purpose of proving estimates that are

independent of µ and κ. In this regard we prove some additional damping effects for div v

and∇p (similar additional damping effects have been previously used by Danchin [22, 25]

to study the Cauchy problem in critical spaces).

Recall the notation:

∀σ ∈ R, ∀% ≥ 0, ‖f‖Hσ
%

:= ‖f‖Hσ−1 + % ‖f‖Hσ ,
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and introduce the energy:

‖(p̃, ṽ, θ̃)‖a,T := sup
t∈[0,T ]

{
‖(p̃, ṽ)(t)‖H1

εν
+ ‖θ̃(t)‖H1

ν

}
+

(∫ T

0

κ ‖∇θ̃‖2
H1
ν

+ µ ‖∇ṽ‖2
H1
εν

+ κ ‖div ṽ‖2
L2 + (µ+ κ) ‖∇p̃‖2

L2 dt

) 1
2

.

We estimate ‖(p̃, ṽ, θ̃)‖a,T in terms of the norm ‖(p̃, ṽ, θ̃)‖a,0 := ‖(p̃, ṽ)(0)‖H1
εν

+ ‖θ̃(0)‖H1
ν

of the data.

Theorem 4.3. There exists a function C(·) such that

‖(p̃, ṽ, θ̃)‖a,T ≤ C0e
TC
(
‖(p̃, ṽ)(0)‖H1

εν
+ ‖θ̃(0)‖H1

ν

)
+ C

∫ T

0

‖(F1, F2)‖H1
εν

+ ‖F3‖H1
ν
dt,

where

C0 = C(‖ψ(0)‖L∞(D)), C := C
(

sup
t∈[0,T ]

‖(ψ, ∂tψ + v · ∇ψ,∇ψ,∇v, ν∇2ψ)‖L∞(D)

)
.

Remark 4.4. The above mentioned damping effects correspond to the fact that:

→ we control div v in L2
t,x even if µ = 0 provided that κ > 0.

→ we control ∇p in L2
t,x whenever µ+ κ > 0.

These damping effects are not smoothing effect since we assume that (p, v) belongs to

H1
εν(Rd). Yet, as ε tend to zero, note that we control ν(div v,∇p) in L2

t,x while we only

assume that ε(div v,∇p) is uniformly bounded in L2
x initially.

To prove this estimate, first observe that the energy contains three main components:

‖(p̃, ṽ, θ̃)‖a,T ≈ sup
t∈[0,T ]

{
‖(p̃, ṽ, θ̃)(t)‖L2

}
+

(∫ T

0

κ ‖∇θ̃‖2
L2 + µ ‖∇ṽ‖2

L2 dt

) 1
2

+ ν sup
t∈[0,T ]

{
‖(θ̃, εp̃, εṽ)‖H1

}
+ ν

(∫ T

0

κ ‖∇θ̃‖2
H1 + µ ‖ε∇ṽ‖2

H1 dt

) 1
2

+

(∫ T

0

κ ‖div ṽ‖2
L2 + (µ+ κ) ‖∇p̃‖2

L2 dt

) 1
2

.

I briefly present the analysis in a simplified case. Consider the system

(16)


∂tp+

1

ε
div v − 1

ε
∆θ = 0,

∂tv +
1

ε
∇p = 0,

∂tθ + div v − β∆θ = 0.

Parallel to the assumption χ1 < χ3, suppose

(17) β > 1.

25



Lemma 4.5. We have

‖(p, v,∇θ)(t)‖2
L2 +

∫ t

0

‖div v − β∆θ‖2
L2 dτ ≤ Kβ ‖(p, v,∇θ)(0)‖2

L2 .

Proof. To symmetrize the large terms in ε−1, we introduce ve := v−∇θ. This change

of variables transforms (16) into
∂tp+ ε−1 div ve = 0,

∂tve + ε−1∇p−∇ div ve + (β − 1)∇∆θ = 0,

∂tθ + div ve − (β − 1)∆θ = 0.

Multiply by (p, ve,−η∆θ) to obtain

1

2

d

dt
‖(p, ve,

√
η∇θ)‖2

L2 + ‖div ve‖2
L2 − (β − 1 + η)〈∆θ , div ve 〉+ η(β − 1) ‖∆θ‖2

L2 = 0.

With η := β − 1 (> 0 by assumption), this yields

1

2

d

dt
‖(p, ve,

√
β − 1∇θ)‖2

L2 + ‖div ve − (β − 1)∆θ‖2
L2 = 0.

and hence the desired estimate

‖(p, v,∇θ)(t)‖2
L2 +

∫ t

0

‖div v − β∆θ‖2
L2 dτ ≤ Kβ ‖(p, v,∇θ)(0)‖2

L2 .

�

We thus have proved an L2 estimate independent of ε. To go beyond and obtain

smoothing effect on div v it is sufficient to estimate ∆θ independently.

Lemma 4.6. We have

‖(εp, εv, θ)(t)‖2
H1 +

∫ t

0

‖∇θ‖2
H1 dτ ≤ Kβ ‖(εp, εv, θ)(0)‖2

H1 .

Proof. The strategy is to incorporate the troublesome term div v [in the equation for

θ] into a skew-symmetric operator. To do so introduce

ζ := εβp− θ and vε := εv.

We compute 

∂tζ +
β − 1

ε
div vε = 0,

∂tvε +
1

βε
∇ζ +

1

βε
∇θ = 0,

∂tθ +
1

ε
div vε − β∆θ = 0.

This yields
1

2

d

dt
‖(
√

1/(β − 1)ζ,
√
βvε, θ)‖2

L2 + β ‖∇θ‖2
L2 = 0.

Note that we implicitly used the assumption β > 1.
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Integrate the previous inequality, to obtain

‖(ζ, vε, θ)(t)‖2
L2 +

∫ t

0

‖∇θ‖2
L2 dτ ≤ Kβ ‖(ζ, vε, θ)(0)‖2

L2 .

Since the coefficients are constants, we obtain

‖∇(ζ, vε, θ)(t)‖2
L2 +

∫ t

0

‖∇2θ‖2
L2 dτ ≤ Kβ ‖∇(ζ, vε, θ)(0)‖2

L2 .

On applying the triangle inequality, one can replace ζ with εp in the previous estimates.

�

Remark 4.7. How to prove Lemma 2 for the full linearized system (15)?

For the full system, set

ζ̃ := εg1(φ)χ3(φ)k(φ)p̃− g3(φ)χ1(φ)k(φ)θ̃,

then U := (ζ̃ , εṽ, θ̃) satisfies a mixed hyperbolic/parabolic system of the form

L1(v, φ)U − L2(µ, κ, φ)U +
1

ε
S(φ)U = F,

with

S =

 0 γ1 div 0

∇(γ1 · ) 0 ∇(γ2 · )
0 γ2 div 0

 with γ1 :=
1

g1χ3k
and γ2 :=

g3χ1

g1χ3

·

This operator (with variable coefficients!) is skew-symmetric.

By combining the previous estimates, we get

‖(p, v, θ)(t)‖L2 + ‖∇(θ, εp, εv)(t)‖L2 +

(∫ t

0

‖div v‖2
L2 + ‖∇θ‖2

H1 dτ

)1/2

≤ Kβ ‖(p, v, θ)(0)‖L2 +Kβ ‖∇(θ, εp, εv)(0)‖L2 .(18)

To conclude, it remains to estimate
∫ t

0
‖∇p‖2

L2 dτ .

Lemma 4.8. There holds

(19)

∫ t

0

‖∇p‖2
L2 dτ =

∫ t

0

‖div v‖2
L2 − 〈 div v , ∆θ 〉 dτ + ε

[
〈 v(τ) , ∇p(τ) 〉

]τ=t

τ=0
.

Proof. Multiply the second equation in (16) by ε∇p and integrate over the strip

[0, t]× D, to obtain ∫ t

0

‖∇p‖2
L2 dτ = −

∫ t

0

〈 ∂tv , ε∇p 〉 dτ.

Integrating by parts both in space and time yields∫ t

0

〈 ε∂tv , ∇p 〉 dτ = −
∫ t

0

〈 v , ε∂t∇p 〉 dτ + ε
[
〈 v(τ) , ∇p(τ) 〉

]τ=t

τ=0

=

∫ t

0

〈 div v , ε∂tp 〉 dτ + ε
[
〈 v(τ) ,∇p(τ) 〉

]τ=t

τ=0
,
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which implies the desired identity.

This strategy has a long history and we refer the reader to Matsumura and Nishida [71]

for references and an application to the global in time Cauchy problem for the compressible

Navier-Stokes equation. �

All the terms that appear in the right hand side of (19) have been estimated previously.

As a consequence the estimate (18) holds true if we include
∫ t

0
‖∇p‖2

L2 dτ in its left hand

side. By doing so, we obtain the exact analogue of the estimate given in Theorem 4.3 (for

µ = 0 and κ = 1).

4.1. Back to the uniform stability result. We are now in position to give Theo-

rem 3.9 a refined form where the solutions satisfy the same estimates as the initial data

do.

Definition 4.9. Recall the notation: ‖u‖Hσ
%

:= ‖u‖Hσ−1 + % ‖u‖Hσ .

Let T ∈ [0,+∞), s ∈ R and a = (ε, µ, κ) ∈ A. Define

‖(p, v, θ)‖Hsa(T )

:=
∥∥(I −∆)s/2(p, v, θ)

∥∥
a,T

= sup
t∈[0,T ]

{
‖(p(t), v(t))‖Hs+1

εν
+ ‖θ(t)‖Hs+1

ν

}
+

(∫ T

0

µ ‖∇v‖2
Hs+1
εν

+ κ ‖∇θ‖2
Hs+1
ν

+ κ ‖div v‖2
Hs + (µ+ κ) ‖∇p‖2

Hs dt

)1/2

,

with ν :=
√
µ+ κ. Similarly, define

‖(p, v, θ)‖Hsa,0 :=
∥∥(I −∆)s/2(p, v, θ)

∥∥
a,0

= ‖(p, v)‖Hs+1
εν

+ ‖θ‖Hs+1
ν

.

(The hybrid norm ‖·‖Hs+1
εν

was already used by Danchin in [23].)

Theorem 4.10. Let d 6= 2, for all integer s > 1 + d/2 and for all positive M0, there

exists a positive T and a positive M such that for all a ∈ A and all initial data in

B(Hs
a,0;M0), the Cauchy problem has a unique classical solution in B(Hs

a(T );M).

One can also give refined statement for Theorem 3.12 and Theorem 3.14 (see [3]).

5. Nonlinear estimates

To prove the uniform stability results, the first task is to establish the local well posed-

ness of the Cauchy problem for fixed a = (ε, µ, κ) ∈ A. Secondly, one has to establish

uniform estimates, which is very long and technical. We merely give the scheme of the

proof, indicate the main tools and refer the reader to the original papers [2, 3] for details.

To establish the desired nonlinear estimates, the analysis is divided into four steps. This

happens for two reasons. Firstly, on the technical side, most of the work concerns the

separation of the estimates into high and low frequency components, where the division
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occurs at frequencies of order of 1/ε (since the second-derivative terms with O(1) coef-

ficients and the first-derivative terms with O(ε−1) coefficients balance there). Secondly,

there is a division into terms whose evolution is estimated directly by eliminating large

terms of size O(ε−1), and terms whose size is estimated by means of Theorem 4.3 and the

special structure of the equations.

We thus divide the estimates into:

A. High frequencies: (I − Jεν)(p, v, θ);
B. Low frequencies of the fast components: Jεν(div v,∇p);
C. Slow components: curl(eϕv) (sor some appropriate weight ϕ) and the low frequency

compoent of the temperature Jενθ.

This scheme of estimates has two useful properties. Firstly, it avoids estimating the L2

norm of p and v. Secondly, it allows us to overcome the factor 1/ε in front of the source

term Q. Indeed, the linear estimate in Theorem 4.3 is applied only to high-frequencies

and weighted time derivatives (ε∂t)
m. Hence, the fact that the source term is assumed to

be neither of high frequency nor have rapid time oscillations allows us to recover the lost

factor of ε in the nonlinear estimates.

Notable technical aspects include the use of new tools to localize in the frequency space

as well as a proof of a variable coefficients Friedrichs’ estimate for div/curl system.

5.1. Local existence for fixed (ε, µ, κ). Case∇P = O(ε), ∇T = O(ε), div v = O(1).

The following result contains an analysis of the easy case where initially θ0 = O(ε). This

regime is interesting for the incompressible limit (see [9]).

Proposition 5.1. Let d ≥ 1 and R 3 s > 1 + d/2. For all M0 > 0, there exists T > 0

and M > 0 such that for all a ∈ A and all initial data (p0, v0, θ0) ∈ Hs(Rd) satisfying

(20) ‖(p0, v0)‖Hs + ε−1 ‖θ0‖Hs ≤M0,

the Cauchy problem for (7) has a unique classical solution (p, v, θ) in C0([0, T ];Hs(Rd))

such that

(21) sup
t∈[0,T ]

‖(p(t), v(t))‖Hs + ε−1 ‖θ(t)‖Hs ≤M.

Proof. The proof is based on the change of unknown (p, v, θ) 7→ (%(θ, εp), v, θ) where

% is as given by Assumption 3.4. By setting ρ = %(θ, εp) it is found that (p, v, θ) satisfies

(7) if and only if 
χ3(∂tρ+ v · ∇ρ) + (χ3 − χ1) div v = 0,

g2(∂tv + v · ∇v) + ε−2γ1∇θ + ε−2γ2∇ρ− µB2v = 0,

g3(∂tθ + v · ∇θ) + div v − κχ3 div(k∇θ) = 0,

where γ1 = (χ1g3)/(χ3g1) and γ2 = 1/g1. Notice that Assumption (H2) implies that the

coefficients gi, γi, χ3 and χ3 − χ1 are positive.
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We note that the unknown u := (ρ̃, v, θ̃), where ρ̃ := ε−1ρ(θ, εp) and θ̃ := ε−1θ, solves

a coupled hyperbolic/parabolic system of the form

(22) A0(εu)∂tu+
∑

1≤j≤d

Aj(u, εu)∂ju+ ε−1S(εu, ∂x)u = B(µ, κ, u, ∂x)u.

Thanks to assumption (20), the fact that the change of unknowns is singular in ε causes

no difficulty: the Hs-norm of the initial data u(0) = (ρ̃(0), v(0), θ̃(0)) is estimated by a

constant which depends only on M0. Since A0 depends only on the unknown through εu,

one easily verify that the proof of Theorem 2.1 applies. By that proof, we conclude that

the solutions of (22) exist and are uniformly bounded for a time T independent of ε.

Once this is granted, it remains to verify that the solutions (p, v, θ) of System (7) exist

and are uniformly bounded in the sense of (21). Because (ϑ, ℘) 7→ (ϑ, %(ϑ, ℘)) is a C∞

diffeomorphism with %(0, 0) = 0, one can write εp = P
(
θ, %(θ, εp)

)
= P (θ, ρ), for some

C∞ function P vanishing at the origin. Therefore

‖p‖Hs = ε−1 ‖P (θ, ρ)‖Hs ≤ ε−1CP (‖(θ, ρ)‖L∞) ‖(θ, ρ)‖Hs ≤ C(‖(θ̃, ρ̃)‖Hs),

so that ‖(p, v)‖Hs + ε−1 ‖θ‖Hs ≤ C(‖u‖Hs). �

5.2. Div/Curl estimates. Recall the estimate

(23) ‖∇v‖Hs ≤ ‖div v‖Hs + ‖curl v‖Hs ,

which is immediate using Fourier transform. We prove a variant where curl v is replaced

by curl(ρv) where ρ is a positive weight.

Since the commutator [curl, ρ] is a zero-order operator, it follows from the product rule

in Sobolev spaces that, if s > d/2, then (see [72])

‖∇v‖Hs(Rd) ≤ C ‖div v‖Hs(Rd) + C ‖curl(eϕv)‖Hs(Rd) + C ‖v‖L2(Rd) ,

for some constant C depending only on ‖ϕ‖Hs+1 .

If d 6= 2, then we can prove that this estimate remains valid without control of the low

frequencies.

Proposition 5.2. Let d ≥ 3 and N 3 s > d/2. There exists a function C such that,

(24) ‖∇v‖Hs(Rd) ≤ C
(
‖ϕ‖Hs+1(Rd))

(
‖div v‖Hs(Rd) + ‖curl(eϕv)‖Hs(Rd)

)
.

This estimate is obvious if d = 1. The fact that Theorem 3.14 precludes the case d = 2

is a consequence of the fact that I do not know if (24) holds for d = 2.

30



5.3. Localization in the frequency space. We separate the estimates into high and

low frequency components, where the division occurs at frequencies of order of the inverse

of ε (since the second-derivative terms with O(1) coefficients and the first-derivative terms

with O(ε−1) coefficients balance there). We now develop the analysis needed to localize

in the frequency space.

We shall consider two families of smoothing operators. Firstly, consider the family{
Jh := (hDx)

h ∈ (0, 1]
}
,

where

0 ≤  ≤ 1, (ξ) = 1 for |ξ| ≤ 1, (ξ) = 0 for |ξ| ≥ 2, (ξ) =  (−ξ) .

The Friedrichs mollifiers Jh are interesting because they are essentially projection opera-

tors Jh = JhJch (for all 0 ≤ c ≤ 2−1. Alternatively, it is also interesting to use a family of

invertible smoothing operators. A good candidate is the family{
Λm
h := (I − h2∆)m/2 |h ∈ (0, 1]

}
.

The fact that these operators are invertible allows us to derive a product estimate,

which, in words, says that the smoothing effect of the operators Λ−mh is distributive.

Proposition 5.3. Let σ0 > d/2, (σ1, σ2) ∈ R2
+ and (m1,m2) ∈ R2

+ be such that

σ1 + σ2 +m1 +m2 ≤ 2σ.

There exists K = K(d, σ, σi,mi), such that for all h ∈ (0, 1] and ui ∈ Hσ0−σi−mi,∥∥Λ−m1−m2
h (u1u2)

∥∥
Hσ0−σ1−σ2 ≤ K

∥∥Λ−m1
h u1

∥∥
Hσ0−σ1

∥∥Λ−m2
h u2

∥∥
Hσ0−σ2 .

The main result we use to localize in the frequency space is the following, which com-

plements the usual Friedrichs’ Lemma. The thing of interest is that we give a precise rate

of convergence which does not require much on the high wave number part of u.

Proposition 5.4. Let s > d/2 + 1 and m ∈ [0, 1]. For all σ ∈ (−s + m, s − 1], there

exists a constant K, such that for all h ∈ (0, 1], all f ∈ Hs(Rd) and all u ∈ H−s(Rd),∥∥Jh(fu)− fJhu
∥∥
Hσ−m+1 ≤ hmK

∥∥f∥∥
Hs

∥∥Λ
−(s+σ)
h u

∥∥
Hσ .

Proof. Let us prove a slightly weaker estimate

‖[Jh, f ]Λs+σ−1
h ‖Hσ→Hσ . h‖f‖Hs .

Split

[Jh, f ] = [Jh, f ]Jh/5 + [Jh, f ](I − Jh/5).

To estimate the first term, we use the following commutator estimate: let s > d/2 + 1,

m ∈ [0,+∞), σ ∈ [−s+m, s− 1] and consider a Fourier multiplier P of order m, then

‖P (fu)− fPu‖Hσ−m+1 ≤ K ‖f‖Hs ‖u‖Hσ .
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This implies that

‖[Jh, f ]Λs+σ−1
h Jh/5‖Hσ→Hσ . ‖[Jh, f ]‖Hσ→Hσ = h‖[h−1(I − Jh), f ]‖Hσ→Hσ

. h‖f‖Hs ,

since the symbols of the operators h−1(I − Jh), viewed as Fourier multipliers of order 1,

are uniformly bounded.

For the second term: set U := Λs+σ−1
h (I − Jh/5)u. Use Jh(I − Jh/5) = 0 to obtain

[Jh, f ]U = Jh(fU) = Jh
(
((I − Jh)f)U

)
,

and conclude via the easily proved estimates:∥∥Jh{((I − Jh)f)U
}∥∥

Hσ . h−(s+σ−1) ‖((I − Jh)f)U‖H−(s−1) .

‖((I − Jh)f)U‖H−(s−1) . ‖(I − Jh)f‖Hs−1 ‖U‖H−s+1 . h ‖f‖Hs ‖U‖H−s+1 ,

‖U‖H−(s−1) . ‖hs+σ−1 |Dx|s+σ−1 u‖H−(s−1) . hs+σ−1 ‖u‖Hσ .

�

5.4. High frequency regime. To obtain estimates in Sobolev norms, the classical

approach consists in differentiating the equations so as to apply the energy estimates

proved for the linearized system (see Theorem 4.3). This certainly fails here since it

reveals terms in ε−1. Yet, one can follows this strategy in the high frequency regime

where the parabolic behavior prevails.

Set U = (p, v, θ). We estimate the size of (I −Jh)ΛsU by means of Theorem 4.3, where

recall Jh := (hDx) where  is a bump function, and Λs := (I −∆)s/2.

The parameter h has the form εν where ν measures the smoothing effect. We take

ν =
√
µ+ κ since the main smoothing effect concerns the penalized terms:(∫ T

0

(µ+ κ) ‖div v‖2
Hs + (µ+ κ) ‖∇p‖2

Hs + κ2 ‖∇θ‖2
Hs+1 dt

)1/2

≤ ‖(p, v, θ)‖Hsa(T ) ,

where ‖(p, v, θ)‖Hsa(T ) is as defined in Definition 4.9.

To apply Theorem 4.3, we have to estimate the commutators:

fa,ν1,HF(U) :=
[
g1(φ),Qεν

]
Dtp + g1(φ)

[
v,Qεν

]
· ∇p +

κ

ε

[
B1(φ),Qεν

]
θ,

fa,ν2,HF(U) :=
[
g2(φ),Qεν

]
Dtv + g2(φ)

[
v,Qεν

]
· ∇v + µ

[
B2(φ),Qεν

]
v,

where φ := (θ, εp), Dt := ∂t + v · ∇ and

Qεν := (I − Jεν)Λs.

We use the following estimates: there exists a constant K = K(d, s) such that∥∥[f, P ]u∥∥
H1
εν
≤ ενK ‖∇f‖L∞ ‖u‖Hs + ενK ‖∇f‖Hs ‖u‖L∞ ,∥∥[f, P ]u∥∥

H1
ν
. νK ‖∇f‖L∞ ‖u‖Hs + νK ‖∇f‖Hs ‖u‖L∞ .
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The fact that the right-hand side only involves ∇f follows from the most simple of all

the sharp commutator estimates established in [62]: for all s > 1 + d/2 and all Fourier

multiplier A(Dx) of order s, there exists a constant K such that, for all f ∈ Hs(Rd) and

all u ∈ Hs(Rd),

‖[f, A(Dx)]u‖L2 ≤ K ‖∇f‖L∞ ‖u‖Hs−1 +K ‖∇f‖Hs−1 ‖u‖L∞ .

With this preliminary established, we obtain tame estimates (which are linear with respect

to the biggest norms):∥∥fa,ν1,HF(U)
∥∥
H1
εν
≤C(R)

{
1 + ‖εDtp‖Hs

ν
+ κ ‖θ‖Hs+2

ν

}
,∥∥fa,ν2,HF(U)

∥∥
H1
εν
≤C(R)

{
1 + ‖εDtv‖Hs

ν
+ µ ‖εv‖Hs+2

}
,

with R := ‖(θ, εp, εv)‖Hs+1
ν

.

Also, to apply Theorem 4.3, we have to estimate the commutator of Qεν and the

equation for θ in H1
ν . Yet, this commutator is not uniformly bounded. To overcome this

difficulty, we first note that one has uniform estimates for the H1
ν norm of:

fa,ν3,HF(U) :=
[
g3(φ),Qεν

]
Dtθ + g3(φ)

{
v · ∇θ;Qεν

}
+ κ
[
B3(φ),Qεν

]
θ,

where {
v;P

}
· ∇θ := v · ∇Pθ + (Pv) · ∇θ − P (v · ∇θ).

Indeed, the fact that we linearized the product v · ∇θ allows us to obtain∥∥fa,ν3,HF(U)
∥∥
H1
ν
≤ C(R)

{
1 + ‖Dtθ‖Hs

ν
+ κ ‖θ‖Hs+2

}
.

To conclude, we have to verify that Theorem 4.3 remains valid if the system (15) is

replaced with
g1(φ)(∂tp̃+ v · ∇p̃) +

1

ε
div ṽ − κ

ε
div(k1(φ)∇θ̃) = F1,

g2(φ)(∂tṽ + v · ∇ṽ) +
1

ε
∇p̃− µB2(φ, ∂x)ṽ = F2,

g3(φ)(∂tθ̃ + v · ∇θ̃) +G(φ,∇φ) · ṽ + div ṽ − κχ3(φ) div(k(φ)∇θ̃) = F3,

where G is smooth in its arguments with values in Rd. The fact that Theorem 4.3 remains

valid for this system is not obvious; we use the additional damping for the pressure.

5.5. Estimates in the low frequency region. It remains to estimate JενU where

ν :=
√
µ+ κ. This is the most delicate part. Note that, for the Euler equations (µ = 0 =

κ), one has Jεν = I, and hence it is clear that it is the main part!

As alluded to previously, the nonlinear energy estimates cannot be obtained from the L2

estimates by an elementary argument using differentiation of the equations with respect

to spatial derivatives. For such problems a general strategy can be used. First we apply

to the equations some operators based on (ε∂t). Next, one uses the special structure of

the equations to estimate the spatial derivatives.
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To clarify matters, consider the example of a 1D scalar equation:

a0(t, x)∂tu+ a(u)∂xu+ ε−1∂xu = 0.

The link between (ε∂t) and ∂x is clear:

(25) ∀k ≤ s ∈]d/2 + 1,+∞[, ‖(ε∂t)ku‖Hs−k ≤ C(‖u‖Hs).

The L2 norm of (ε∂t)
su is uniformly bounded since [a0, (ε∂t)

s]∂tu = O(1). Since (ε∂t)
su =

a−1
0 (ε∂t)

s−1∂xu plus a term of order of O(ε), for ε small enough, this yields an L2 estimate

for (ε∂t)
s−1∂xu = ∂x(ε∂t)

s−1u. Hence (ε∂t)
s−1u is estimated in H1. By induction one

estimates (ε∂t)
ku in Hs−k, and hence u in Hs.

For the full Navier-Stokes equations, we begin by estimating (ε∂t)
sJενU . We next use

the structure of the equation to estimate ((ε∂t)
s−1 div Jενv, (ε∂t)

s−1∇Jενp).

As stated, this strategy works only for perfect gases [2]. For the case of greatest physical

interest (d = 3), it applies (with only minor changes) to the general gases as well. Yet,

if d ≤ 2, because of the lack of L2 estimates for the velocity, we cannot use the time

derivatives. For this problem, we use an idea introduced by Secchi in [84]. Namely, we

replace ∂t by the convective derivative Dt = ∂t + v · ∇. To simplify the presentation, we

avoid such technical points below, and work with time derivatives instead of convective

derivatives.

Note that this basic strategy has many roots, at least for hyperbolic problems (see, e.g.,

[1, 48, 83, 84]). For our purposes, the key point is that the hyperbolic behavior prevails

in the low frequency regime. Yet, in sharp contrast with the Euler equations (µ = κ = 0),

the form of the equations (13) shows that the time derivative and the spatial derivatives

do not have the same weight. In particular, our analysis requires some preparation.

Introduce the function Ψ defined by

Ψ :=
(
ψ, ∂tψ,∇ψ

)
with ψ := (θ, εp, εv).

One can verify that Ψ satisfies an equation of the form

ε∂tΨ =
∑

1≤j≤d

Ba,j(Ψ)∂jΨ + ε(µ+ κ)
∑

1≤j,k≤d

∂j
(
Ba,jk(Ψ)∂kΨ

)
.

for some Ba,· uniformly bounded in C∞.

We want to introduce an operator based on (ε∂t) which has the weight of a spatial

derivative. The previous result suggests introducing:

Z`
ε,ν := Λ−`εν (ε∂t)

`.

The operators Z1
ε,ν do have the weight of a spatial derivative. Indeed, one can prove

that, for m ∈ N, Zm
ε,ν Ψ satisfies the same estimates as ΛmF (Ψ) does (where F is a given
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function):
s∑
`=0

∥∥Z`
ε,ν Ψ

∥∥
Hs−`−1 ≤ C

(
‖Ψ‖Hs−1

)
,

s∑
`=0

∥∥Z`
ε,ν Ψ

∥∥
Hs−`
ν
≤ C

(
‖Ψ‖Hs−1

)
‖Ψ‖Hs

ν
.

The proof of these estimates uses the fact that one can distribute the smoothing effect

according to (see Proposition 5.3):∥∥Λ−m1−m2
h (u1u2)

∥∥
Hσ−σ1−σ2 .

∥∥Λ−m1
h u1

∥∥
Hσ−σ1

∥∥Λ−m2
h u2

∥∥
Hσ−σ2 .

To localize in the low frequency region, we next have to prove commutator estimates

with gain of a factor ε. We establish some estimates which allows us to commute Jεν(ε∂t)
m

with the equations. In this direction, the main result is that there exists a constant K

such that, for all ε > 0 and all ν ≥ 0, all T > 0, all N 3 m ≤ s, and all smooth functions

defined on [0, T ],∥∥[f, Jεν(ε∂t)m]u
∥∥
Hs−m+1
εν

. εν ‖f‖Hs

∥∥Zm
ε,ν u

∥∥
Hs−m + ε

m−1∑
`=0

∥∥Z`
ε,ν ∂tf

∥∥
Hs−1−`

∥∥Z`
ε,ν u

∥∥
Hs−`−1 .

Here, we used Proposition 5.4: if s > d/2+1 and m ∈ [0, 1], then for all σ ∈ (−s+m, s−1],∥∥Jh(fu)− fJhu
∥∥
Hσ−m+1 . hm

∥∥f∥∥
Hs

∥∥Λ
−(s+σ)
h u

∥∥
Hσ .

With these preliminaries established, we can proceed to give an estimate for Jεν(ε∂t)
sU

by means of Theorem 4.3. The fast components Jεν(div v,∇p) are estimated next by

using the following induction argument: Set

‖u‖Kσν (T ) := ‖u‖L∞(0,T ;Hσ−1) + ν ‖u‖L2(0,T ;Hσ) ,

and let Ũ := (p̃, ṽ, θ̃) solve
g1(φ)(∂tp̃+ v · ∇p̃) + ε−1 div ṽ − κε−1χ1(φ) div(k(θ)∇θ̃) = f1,

g2(φ)(∂tṽ + v · ∇ṽ) + ε−1∇p̃− µB2(φ, ∂x)ṽ = f2,

g3(φ)(∂tθ̃ + v · ∇θ̃) + div ṽ − κχ3(φ) div(k(θ)∇θ̃) = f3.

If the support of the Fourier transform of Ũ is included in the ball {|ξ| ≤ 2/εν}, then

‖∇p̃‖Kσν (T ) + ‖div ṽ‖Kσν (T )

≤ C̃ ‖(ε∂t)p̃‖Kσν (T ) + C̃ ‖(ε∂t) div ṽ‖Kσ−1
ν (T )

+ C̃ ‖∇p̃‖L∞T (L2) + C̃ ‖θ̃(0)‖Hσ+1
ν

+ εC ‖µṽ‖Kσ+1
ν (T )

+ εC ‖(f1, f2)‖Kσν (T ) + νC̃ ‖f3‖L2
T (Hσ) ,

with C̃ := C0e
(
√
T+ε)C , where C depends only on the norm ‖(p, v, θ)‖Hsa(T ).
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5.6. Slow components. To complete the proof, it remains to estimate curl v and θ;

which is not straightforward.

A basic idea is to apply the curl operator to the equation for the velocity so as to cancel

the large term ε−1∇p. However, by doing so, we obtain

g2∂tω + g2v · ∇ω − µB(∂x)ω = F −∇g2 × ∂tv,

with F = O(1). This does not yield the desired result since ∇g2 × ∂tv is not uniformly

bounded. In particular, we cannot estimate curl v directly. The idea in [72] is to estimate

ω2 := curl(g2v) which satisfies an equation of the form:

∂tω2 + v · ∇ω2 − µB(φ, ∂x)ω2 = F2 − (∂tg2)v,

where F2 and (∂tg2)v are uniformly bounded in ε (since g2 = g2(θ, εp) and ∂tθ, (ε∂t)p

are uniformly bounded in ε). Hence, curl(g2v) is a slow component: ∂t curl(g2v) = O(1).

However, this does not suffices do prove the desired estimates in Sobolev spaces, uniformly

in µ, for the Navier-Stokes equations. Indeed, if we compute the term F2, it is found that

F2 contains second order derivatives of the velocity which causes a loss of one derivatives in

the estimates. As shown by Métivier and Schochet, the good slow component is curl(eϕv)

for a weight ϕ which is a function of the entropy σ alone (σ = S(θ, εp) with S as given in

the assumptions, see (8)).

One interesting feature of the entropy evolution equation is that it is coupled to the

momentum equation only through the convective term. Indeed, for the purpose of proving

estimates independent of κ, we cannot see the term div v in the equation for θ as a source

term. Starting from (see (8))

dS(ϑ, ℘) = g3(ϑ, ℘) dϑ− g1(ϑ, ℘) d℘,(26)

we find:

(27) ∂tσ + v · ∇σ = κG1(φ,∇θ) + κG2(φ)∆θ

for some C∞ functions G1 and G2, with G1(0, 0) = 0.

This yields uniform estimates for the L∞t H
s
x norm of σ by the usual Hs-estimates for

hyperbolic equations. An interesting point is that the low frequency component Λ−1
εν σ

satisfies parabolic-type estimates, where recall Λ−1
εν = (I − εν∆)−1/2.

Let us form a parabolic evolution equation for σ̇ := νΛ−1
εν ∇σ. Writing the identity (26)

in the form dϑ = c1(ϑ, ℘) dS + c2(ϑ, ℘) d℘ with c1 := 1/g−1
3 and c2 := g1/g3, yields

(28) ∇θ = c1(φ)∇σ + εc2(φ)∇p.

Inserting this expression for ∇θ into the equation (27), yields

(29) ∂tσ + v · ∇σ − κk(φ)∆σ = G3 + G4 := κG3(φ,∇φ) + κεG4(φ,∇φ)∆p,
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where k := (χ3 − χ1)kc1 is a smooth positive function; G3, G4 ∈ C∞ and G3(0, 0) = 0.

Consequently, we find that

(30) ∂tσ̇ + v · ∇σ̇ − κk(φ)∆σ̇ = G,

where the source term is given by

G := −νΛ−1
εν (∇v · ∇σ) + ν[v,Λ−1

εν

]
· ∇∇σ

+ κΛ−1
εν (∇k(φ)∆σ) + κν[k(φ),Λ−1

εν ]∆∇σ

+ νκΛ−1
εν ∇G3 + νκΛ−1

εν ∇G4.

In light of the standard parabolic estimates we need only to prove that the source

term G can be split as G1 +
√
κG2 with G1 estimated in L1(0, T ;Hs), and G2 estimated in

L2(0, T ;Hs−1). The main point is to show why we can see the term with three derivatives

acting on p as a source term. Write:

‖ν
√
κΛ−1

εν ∇G4‖L2(0,T ;Hs−1)

:= ‖ν
√
κΛ−1

εν ∇{εG4(φ,∇φ)∆p}‖L2(0,T ;Hs−1)

. ‖
√
κG4(φ,∇φ)∆p‖L2(0,T ;Hs−1) (εν∇Λ−1

εν . I)

. (1 + ‖G̃4(φ,∇φ)‖L∞(0,T ;Hs−1)) ‖
√
κp‖L2(0,T ;Hs+1) (straightforward).

We next use that we have already proved that p is well estimated, since we have already

estimated its high and low frequency components.

6. Decay to zero of the local energy

We conclude this part by explaining the proof of Theorem 3.21. The strategy in [72]

consists in introducing some semi-classical measures and prove that they vanish, which

implies the strong compactness in time. Together with the strong compactness in space,

this gives the desired result. The semi-classical measures will be defined as defect measures

of wave-packets transforms. The definitions rely upon the works of Gérard [43], Lions

and Paul [68] and Tartar [88]. In [43] microlocal defect measures are defined for bounded

sequences in L2
loc(V , H), where V is an open set of Rd and H is a separable Hilbert space.

It leads to positive measure on the cosphere bundle of V by use of Garding’s inequality.

And in [68] semi-classical measures are defined by means of Wigner transform. It leads

to positive measures via the Husimi’s transform. Garding’s inequality has been known to

be related to the wave-packets transforms since the work of Córdoba and Fefferman [21].

Moreover, in [68], the authors point out the connection between Husimi’s transform and

the wave-packets transform. Detailed accounts of the subject can be found in [17, 19].

Let us start by defining semi-classical defect measures for scalar valued-functions. For

all bounded sequence in L2(Rd), one can extract a subsequence which converges weakly

in L2(Rd). Defect measures are measures which help us understand what can prevent the

strong convergence.
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Theorem 6.1 (from Gérard [43]). Let (un) be a bounded sequence in L2
loc(Rd). Assume

that (un) converges weakly to 0. Then there exist a subsequence (uϕ(n)) and a positive

Radon measure µ on Rd × Sd−1 such that, for all classical pseudo-differential operator A

of order m ≤ 0 on Rd, with principal symbol σ(A) of order 0, and for all bump function

χ such that σ = χσ,(
A(χuϕ(n)), χuϕ(n)

)
→
∫

Rd×Sn−1

σ(A)(x, ξ) dµ(x, ξ).

The measure µ is called a micro-local defect measure. For further uses, an important

remark is that this could be extended to functions with values in Hilbert spaces.

The proof of this result is strongly based on the Garding inequality, which implies that

lim sup
n→+∞

‖A(χun)‖L2 ≤ C(χ) sup |σ(A)| .

Indeed, to define µ, consider a compact K ⊂ Rd and a subset {ak | k ∈ N} ⊂ C∞0 (R2n)

which is dense in {u ∈ C0(R2n) : suppu ⊂ K}. Let, for k ∈ N, Ak be a pseudo-differential

operator with principal symbol σ0(Ak) = ak. By a standard diagonal argument, construct

a sequence εn converging to 0 such that, for all k ∈ N,
(
Ak(χuϕ(n)), uϕ(n)

)
converges

towards a limit denoted by Φ(ak) ∈ C. By continuity and density, and a further diagonal

argument, the map Φ can be extended to a bounded linear functional on C0(R2n). The

Riesz representation theorem then implies the existence of the measure µ. In addition,

the Garding inequality also implies that µ is a (real) nonnegative measure.

An alternative to the Garding inequality is to use a positive quantization rule (see

[63]) to define pseudo-differentials operators. We will not explicitly introduce the Wick

quantization rule. Instead, we introduce the wave-packets transform associated to the

scale ε−1. Since we will work with vector valued function, we consider functions that

depend on the space variable (viewed as an extra parameter). Define

W εv(t, τ, x) = cε−3/4

∫
R
e(i(t−s)τ−(t−s)2)/εv(s, x) ds.

Then, with c = (2π3)−1/4, W ε extends as an isometry from L2(R×Rd) to L2(R×R×Rd).

To introduce the wave-packets transform of uε, we have to carefully extend the functions

to t ∈ R. Hereafter, a subscript zero indicates compact support. Let χε ∈ C∞0 ((0, T )) be a

family of functions such that χε(t) = 1 for t ∈ [ε1/2, T − ε1/2] and ‖ε∂tχε‖L∞ 6 2ε1/2. We

set ũε := χεu
ε. Next, we choose extensions ãε, b̃ε of aε, bε, supported in t ∈ [−1, T + 1],

uniformly bounded in C1
0(R;Hσ(Rd)), and converging to ã, b̃ in C1

0(R;Hσ′

loc(Rd)). Note

that ũε satisfies

ε2∂t(ã
ε∂tũ

ε)− div(̃bε∇ũε) = εf̃ ε,

where (f̃ ε) is a bounded family in C0
0(R;H1(Rd)).

The wave packets transform is a nice tool to measure in the phase plane how much of

a function oscillates at frequencies O(ε−1). In particular, one has
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Lemma 6.2. Let U ε = W εũε. As ε tends to 0,

(31) F ε := τ 2ãεU ε + div(̃bε∇U ε)→ 0 in L2(R2;H1(Rd)).

Proof. This follows from the fact that the wave-packets operators conjugate the action

of pseudo-differential operators, approximately, to multiplication by symbols (see [21,

63]). As an example, let a ∈ C1
0(R;Hσ(Rd)) with σ > 1 + d/2. We have

aW εv −W ε(av) = cε−3/4

∫
e(i(t−s)τ−(t−s)2)/ε (a(t, x)− a(s, x)) v(s, x) ds.

Using the identity
∫
ei(u−s)τ/ε dτ = 2πεδ0(u− s), we find

(32) ‖aW εv −W ε(av)‖2
L2(R2×Rd)

= c2ε
−1/2

∫∫∫
e−2(t−s)2/ε |a(t, x)− a(s, x)|2 |v(s, x)|2 ds dt dx.

Since σ − 1 > d/2, the Sobolev embedding implies that

‖aW εv −W ε(av)‖2
L2(R2×Rd)

≤ c2ε
−1/2

∫∫
e−2(t−s)2/ε ‖a(t)− a(s)‖2

Hσ−1(Rd) ‖v(s)‖2
L2(Rd) dt ds.

From the previous bound and
[
W ε, ∂x

]
= 0, we easily get

‖aW εv −W ε(av)‖L2(R2;H1(Rd)) 6 K
√
ε ‖a‖C1

0 (R;Hσ(Rd)) ‖v‖L2(R;H1(Rd)) .

Similarly, one has

(33) ‖W ε(ε∂tv)− iτW εv‖L2(R2;H1(Rd)) 6 K
√
ε ‖v‖L2(R;H1(Rd)) .

�

We are now in position to define the semi-classical measures. For technical reasons, it

appears convenient to state the result for the family

Θε := U ε −∆U ε.

We denote by L, K, and L1 the spaces of bounded, compact, and trace class operators

in L2(Ω), respectively, and we denote by K+ and L1
+ the subspaces of non-negative self-

adjoint operators in K and L1, respectively (we refer to [53] for details and definitions).

If A ∈ L1, we denote by tr(A) the trace of A. Recall that the dual space of (K, ‖·‖L)

is (L1, ‖·‖L1) with the duality bracket tr(AB). If A ∈ C0(R2,K), then A acts on Θ ∈
L2(R2 × Rd) following (AΘ)(t, τ, x) = (AΘ(t, τ, ·))(x).

The semi-classical defect measures are then defined as defect measures for the wave

packets transforms.

39



Proposition 6.3. Let Θε = U ε−∆U ε. There are a subsequence Θεn, a finite nonneg-

ative Borel measure µ on R2, and M ∈ L1(R2,L1
+, µ), such that for all A ∈ C0(R2,K),

(34)

∫
R2

(
A(t, τ)Θεn(t, τ),Θεn(t, τ)

)
dt dτ →

∫
tr
(
A(t, τ)M(t, τ)

)
µ(dt, dτ),

and

(35)
(
ã(t)τ 2 + div

(̃
b(t)∇·

))
(I −∆)−1M(t, τ) = 0 µ-a.e.

A difficult result proved in [72] is that the characteristic variety is trivial: that is, the

kernel of the operator (ã(t)τ 2 + div(̃b(t)∇))(I −∆)−1 in L2(Rd) is reduced to {0}. Then,

(34) and (35) imply that, for all ϕ ∈ C0(R2) and all K ∈ K+,

(36)

∫
R2

ϕ(t, τ)
(
KΘεn(t, τ), KΘεn(t, τ)

)
dt dτ −→

n→∞
0.

We want to show that this convergence holds for ϕ(t, τ) = 1. The idea is that, on the one

hand, ũε is compactly supported in time; so is Θε in the sense given below by (37). And,

on the other hand, ũε oscillates in time at most at frequencies O(ε−1).

First, let ζ ∈ C∞0 ((−1, T + 1)) be such that ζ(t) = 1 for t ∈ [0, T ]. In view of (32), one

infers that

‖ζΘε −W ε
(
(1−∆)ζũε

)
‖L2(R2×Rd) 6 C

√
ε‖∂tζ‖L∞(R)‖(1−∆)ũε‖L2(R×Rd).

Furthermore, from the definition of ũε we have ζũε = ũε. Therefore, the previous inequal-

ity implies that

(37)

∫
R2

(
1− ζ(t)

)2 ‖Θε(t, τ)‖2
L2(Rd) dt dτ −→ε→0

0.

Note that (ε∂tũ
ε)ε is a bounded family in C0(R, Hs−1(Rd), it follows from (33) that (τΘε)ε

is bounded in L2(R2 × Rd). Thus with (36) and (37) we conclude that for all K ∈ K+,

(38)

∫
R2

‖KΘεn(t, τ)‖2
L2(Rd) dt dτ −→n→∞ 0.

Recall that, by the definition of Θε = (1 − ∆)W εũε. Since W ε is an isometry from

L2(R×Rd) to L2(R2×Rd), and since W ε commutes with K(1−∆), the convergence (38)

implies that

(39) ∀K ∈ K+, ‖K(1−∆)ũεn‖L2(R×Rd) −→n→∞ 0.

Given that ũε is bounded in L2(R;Hs(Rd)), the convergence (39) implies the convergence

of ũεn to 0 in L2(R, Hs′

loc(Rd)) for all s′ < s. Since the limit is zero the convergence holds

for the given family ũε. It concludes the proof of Theorem 3.21 and hence concludes the

proof of Proposition 3.20.
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About exterior domains. As alluded to above, the analysis extends to exterior do-

mains (see [1]). I conclude this part by explaining where the boundary condition enters.

Consider the equations

aε(ε∂t)p
ε + div vε = εf ε1 ,

rε(ε∂t)v
ε +∇pε = εf ε2 ,

supplemented with the solid wall boundary condition vε · ν = 0 on ∂Ω where ν is the

normal to the boundary. With U ε = (Ψε,mε) = (W εq̃ε,W εṽε) ∈ L2(R2;Hs(Ω)), one has

iτaεΨε + div(mε) = F ε
1 ,

iτrεmε +∇Ψε = F ε
2 ,

where F ε converge to 0 in L2(R2;H1(Ω)). Using vε|R×∂Ω · ν = 0, we obtain that mε · ν = 0

on the boundary R × R × ∂Ω. Taking the inner product of the second equation with ν,

we infer that

∂νΨ
ε := ∇Ψε · ν = F ε

2 · ν on R× R× ∂Ω,

which is meaningful since F ε ∈ L2(R2;H1(Ω)). Conversely, we can recover Ψε from

Θε := (I −∆)Ψε and F ε
2 . One has

Ψε = (I −∆N)−1Θε +N(F ε
2 · ν),

where we used the following definitions: given g ∈ L2(Ω), ϕ ∈ H1/2(∂Ω),

f = (I −∆N)−1g if and only if (I −∆)f = g in Ω and ∂νf = 0 on ∂Ω,

f = N(ϕ) if and only if (I −∆)f = 0 in Ω and ∂νf = ϕ on ∂Ω.

The important point is that N(F ε
2 · ν) converges to 0 in L2(R2 × Ω).
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en dimension deux, Invent. Math. 111 (1993), no. 3, 627–670.

[6] S. Alinhac, Free decay of solutions to wave equations on a curved background, Bull. Soc. Math. France
133 (2005), no. 3, 419–458.

41



[7] B. Alvarez-Samaniego and D. Lannes, A nash-moser theorem for singular evolution equations. appli-
cation to the serre and green-naghdi equations, Indiana University Mathematical Journal, to appear.

[8] K. Asano, On the incompressible limit of the compressible Euler equation, Japan J. Appl. Math. 4
(1987), no. 3, 455–488.

[9] C. Bardos and B. Nicolaenko, Navier-Stokes equations and dynamical systems, Handbook of dynam-
ical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 503–597.

[10] H. Beirão da Veiga, Singular limits in compressible fluid dynamics, Arch. Rational Mech. Anal. 128
(1994), no. 4, 313–327.

[11] H. Beirão da Veiga, On the sharp singular limit for slightly compressible fluids, Math. Methods Appl.
Sci. 18 (1995), no. 4, 295–306.

[12] D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations
for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9) 87 (2007), no. 1, 57–90.

[13] D. Bresch, B. Desjardins, and D. Gérard-Varet, Rotating fluids in a cylinder, Discrete Contin. Dyn.
Syst. 11 (2004), no. 1, 47–82.

[14] D. Bresch, B. Desjardins, E. Grenier, and C.-K. Lin, Low Mach number limit of viscous polytropic
flows: formal asymptotics in the periodic case, Stud. Appl. Math. 109 (2002), no. 2, 125–149.

[15] D. Bresch, B. Desjardins, and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication,
and shallow water systems, Comm. Partial Differential Equations 28 (2003), no. 3-4, 843–868.

[16] D. Bresch, M. Gisclon, and C.-K. Lin, An example of low Mach (Froude) number effects for com-
pressible flows with nonconstant density (height) limit, M2AN Math. Model. Numer. Anal. 39 (2005),
no. 3, 477–486.

[17] N. Burq, Mesures semi-classiques et mesures de défaut, Astérisque (1997), no. 245, Exp. No. 826, 4,
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