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Abstract:

Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner with
only a limited number of available folds. They are therefore subjected to multiple divergent
and convergent evolutionary events. This and their frequent modularity render their
functional annotation in genomes difficult in a number of cases. A classification of
polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead
of a hydrolytic mechanism) is presented thoroughly for the first time. Based on the analysis
of a large panel of experimentally characterized polysaccharide lyases, we examined the
correlation of various enzyme properties with the three levels of the classification: fold,
families and subfamilies. The resulting hierarchical classification, which should help annotate
relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-
Active Enzymes Database (www.cazy.org).

Keywords: Polysaccharide lyases, modular structure, catalytic mechanism, enzyme families,
functional annotation

Introduction

Polysaccharide Lyases (PLs) are a group of enzymes (EC 4.2.2.-) that cleave uronic acid-
containing polysaccharides via a -elimination mechanism to generate an unsaturated
hexenuronic acid residue and a new reducing end at the point of cleavage (Figure 1) [1]. PLs
are ubiquitous in Nature, having been identified in organisms ranging from bacteriophages
and Archaea to Eubacteria and higher eukaryotes, such as fungi, algae, plants, and mammals
[2]. For all these organisms, polysaccharide lyases represent a complimentary mechanistic
strategy to the glycoside hydrolases (GHs; EC 3.2.1.-) [3] for the breakdown of C-6
carboxylated polysaccharides (Figure 1), with the contrasting feature that PL-catalyzed
cleavage occurs without intervention of a water molecule. PLs are implicit in diverse
biochemical processes, including biomass degradation, tissue matrix recycling, and
pathogenesis [2, 4-9]. Moreover, the widespread use of polyuronic acids in the food and
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medical sectors makes PLs attractive as specific catalysts for the modification of substrates
such as pectins, alginates, and heparins in biotechnological applications [2, 10-12].

The catalytic mechanism employed by PLs (Figure 2) can be broadly described as consisting
of three events: (1) abstraction of the C-5 proton on the sugar ring of a uronic acid or ester
by a basic amino acid sidechain, (2) stabilization of the resulting anion by charge
delocalization into the C-6 carbonyl group, and (3) lytic cleavage of the 0-4:C-4 bond,
facilitated by proton donation from a catalytic acid, to yield a hexenuronic acid (or ester)
moiety at the newly-formed non-reducing chain end [1, 13]. Depending on the
monosaccharide composition of the substrate and its conformation in the PL active site, the
proton removed from C-5 and departing oxygen on C-4 may lie either syn or anti to each
other. This, in turn, imposes certain requirements on the position of active site groups and
the possibilities for a stepwise or concerted elimination reaction (Figure 2A & B).
Polysaccharide recognition in PLs is often dependent on the interaction of tightly held
divalent cations (often Ca™), or positively charged amino acid sidechains, with uronic acid
groups in the substrate. Such cations may play an additional role in stabilizing the transient
anion in the reaction pathway. The extent to which these molecular events are concerted,
as well as the nature and individual contributions of the catalytic groups, in the mechanisms
of specific enzymes have not been fully clarified, although significant advances have been
made in a few cases (see [14, 15] and refs. therein). Detailed structural information on the
catalytic modules of PLs is available in [16].

In common with GHs, PLs frequently have multi-modular structures, in which the catalytic
module can be appended to a variable number of ancillary modules such as Carbohydrate
Binding Modules (CBMs) [17, 18], other catalytic modules, or modules with other functions
(see below). Interestingly, many non-catalytic modules borne by PLs may also be appended
to GHs. Following a full dissection of their modular organization, we have grouped the PLs
into amino acid sequence-based families to provide a framework for structural and
mechanistic studies. Here we present a hierarchical classification of PLs including sub-
families, families and clans/superfamilies and we discuss the value of these levels for
genome mining and functional prediction. This classification is implemented in the
Carbohydrate-Active Enzymes (CAZy) Database (www.cazy.org). [19].

Experimental
Included and excluded enzyme classes

For the purpose of this family classification, the scope of the term Polysaccharide Lyase is
restricted to those enzymes which operate according to the general mechanisms described
in Figures 1 and 2, to produce a terminal hexenuronic acid moiety by -elimination. Thisis a
clear distinction from the broader NC-IUBMB classification of carbon-oxygen lyases acting on
polysaccharides into EC 4.2.2.- (http://www.chem.gmul.ac.uk/iubmb/enzyme/). In
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particular, the following enzymes are not included PL classification described in CAZy, as they
are structurally and mechanistically more similar to the Glycoside Hydrolases (GHs):

* exo-o-(1,4)-D-glucan lyases (EC 4.2.2.13) cleave malto-oligosaccharides to produce
1,5-anhydro-D-fructose without the intervention of a water molecule. These
enzymes are structurally similar to GH31 a-glucoside hydrolases, with which they are
currently classified. Analogous to other GH31 enzymes, the first step in the catalytic
mechanism involves the formation of a covalent glycosyl-enzyme intermediate.
However, in a-glucan lyases this intermediate decomposes through a syn-elimination
mechanism, rather than hydrolysis [13, 20].

* Lytic transglycosylases (LT) cleave the 3-(1,4)-glycosidic bond between the N-
acetylmuramic acid and the N-acetylglucosamine residues of peptideglycan via a
substrate participation mechanism, with no intervention of water, to yield a 1,6-
anhydro sugar derivative [21]. LTs are structurally and mechanistically closely related
to lysozymes and are currently classified in GH families GH23, GH102, GH103, and
GH104 [22].

¢ Levan and inulin fructotransferases (EC 4.2.2.16, EC 4.2.217, EC 4.2.2.18) cleave
fructo-oligosaccharides by intra-molecular attack to yield various anhydro-
fructodisaccharides. These enzymes are presently classified into GH91, along with a
sequence-similar enzyme that hydrolyzes the a-D-fructofuranose B-D-fructofuranose
1,2":2,3'-dianhydride (DFA 1ll) product of the EC 4.2.2.18 inulin fructotransferase [23,
24]. As such, mechanistic commonality with GHs (and loosely with LTs) is predicted.

Family and subfamily groupings

The PL families were first built by searching sequence homologues of experimentally
characterized enzymes. To avoid the creation of large number of families, distant
homologues were assigned to existing families. These families have been presented online in
the CAZy database since its launch in 1998 with the occasional creation of novel families
subsequent to the experimental characterization of PLs with no or insufficient similarity to
known families. Within families, subfamilies have been defined by procedures similar to that
described for the large glycoside hydrolase family GH13, which is comprised of a diversity of
starch-active enzymes of similar structure [25].

Briefly, in each family, the sequences were edited to isolate the catalytic domains to avoid
interference from the presence or absence of additional modules. The catalytic domains
were then subject to a multiple sequence alignment using MUSCLE [26] and a distance
matrix was created using the BLOSUMG62 [27] substitution model. The distance matrix was
then used as input for an automatic analysis based on the SECATOR algorithm [28], which
proposes the breakdown of the family into a number of subfamilies, based on a
reconstructed phylogenetic tree. The robustness of the subfamilies was tested by a
resampling approach whereby a proportion of the sequences were randomly removed from
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the sample. The clustering procedure was iterated typically 10,000 times with random
variations of the parameters of the automatic partitioning algorithm. The percentage of
sequences removed from the sample was also picked randomly from 5 to 30% at each
iteration. Sequences found in the same cluster over 80% of the time were assigned to the
same subfamily. Finally, only subfamilies containing more than five members were retained
in order to define significant subfamilies. Unassigned sequences will be subjected to a new
round of analysis as more sequences become available.

Results and Discussion
Modular structure of PLs

Carbohydrate-active enzymes are frequently comprised of a modular structure, in which a
catalytic module carries one or more ancillary modules [29]. Polysaccharide lyases are no
exception and there is a large variety of multi-modular PLs (Figure 3). Perhaps the most
common situation is the occurrence of one or more carbohydrate-binding modules in
tandem with the catalytic PL module. However, other arrangements have been observed,
such as the addition of domains that promote binding to other macromolecules, including
SLH domains for cell attachment [30] or dockerin modules for cellulosome assembly [31].
Some PLs may even be arranged with an additional PL module or a complementary
carbohydrate esterase (CE) module, as well as domains whose function is presently unknown
(termed “X” modules, Figure 3). The number of possible combinations of domains is in
principle unlimited, and their presence poses a specific challenge for sequence-based family
grouping and annotation. Whole genome annotations are particularly prone to false
identification (and subsequent misleading functional annotation) due to spurious hits on
ancillary modules common to two distinct proteins. Consequently, a systematic excision of
the ancillary modules was performed prior to all sequence alignments of PLs, and indeed this
approach is the principal modus operandi of the CAZy classification [19, 32].

Families and folds

In April 1999 there were about one hundred PL sequences arranged in nine families [33].
Since then, the number of PL sequences has increased approx. 20-fold, essentially due to
whole genome-sequencing projects. Thanks to the biochemical characterization of many
novel PLs, the number of PL families has progressively grown over the years to reach 21 in
2010. The corresponding eleven years of structural biology have vastly expanded knowledge
of the three-dimensional structures of PLs (for a thorough review on 3D-structure: function
relationships of PLs see [16]): Whereas only one of the initial nine families of PLs had a
structural representative in 1999, the fold of only two (PL12 and PL17) out of the 21 current
PL families remain to be determined (Figure 4).

PLs show a large variety of fold types, ranging from -helices to a/a barrels (Figure 4). The
abundance of PL folds indicates that PLs have been invented more than once during
evolution, from totally different scaffolds. The most extreme example of the convergent
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evolution of PLs is perhaps with PL1 and PL10 pectate lyases, in which the different folds
carry an identically poised catalytic machinery that performs the same reaction on the same
substrate [34]. The plasticity of the active site of polysaccharide lyases to accommodate a
variety of substrates is reminiscent of that of glycoside hydrolases [35]. Interestingly most of
the PL folds are also found in GH families, an indication of possible common evolutionary
origins between the two enzyme classes.

In addition to being well-characterized at the 3-D level, examination of the CAZy database
(www.cazy.org) shows that more than 10% of the PLs in the database have been
biochemically (kinetically) characterized, which is the highest proportion among all the
classes of carbohydrate-active enzymes described in CAZy (GHs, GTs, PLs, and CEs). This
wealth of biochemical data indicates that most PL families group enzymes with diverse
substrate specificities (Table 1). This situation has been previously observed for other
CAZyme classes, especially the glycoside hydrolases [32] and glycosyltransferases [36]. One
likely explanation for this phenomenon is that the number of available protein folds is
considerably smaller than the number of carbohydrate structures and hence Nature has
adventitiously tuned existing scaffolds for exquisite substrate specificity.

Less immediately apparent, however, are the structural similarities among the various
substrates processed by individual family members. As an example, family PL8 can be
considered polyspecific, as it groups together three different enzyme activities: hyaluronate
lyase (EC 4.2.2.1), xanthan lyase (EC 4.2.2.12) and chondroitin AC lyase (EC 4.2.2.5). Here,
the common names of these polysaccharides belie the fact that these three types of
enzymes act at the same position on the same sugar, i.e., they cleave the C-O bond at
position 4 of unsubstituted glucuronic acid in the backbone (Figure 5). What differentiates
the three substrates is the substituent attached to the 4-oxygen of the glucuronic acid, a
situation similar to, for instance, glycoside hydrolases that exhibit aglycon specificity [37].
The three enzymes therefore can —and in the case of PL8 do — utilize an identical catalytic
machinery to cleave their respective substrates.

Subfamilies

The functional prediction (viz. substrate specificity) of thousands of putative carbohydrate
active enzymes derived from genome data is highly desirable, but requires a direct,
unequivocal relationship between sequence groupings and substrate specificity. Because the
sequence-based families of PLs generally do not correlate with the fine substrate specificity
as described above, we have examined the definition of subfamilies to assess whether
functional grouping and prediction could be improved. A similar approach was previously
applied to the large polyspecific GH13 family of a-amylase-related enzymes, in which most
of the sequence-derived subfamilies were indeed found to correspond to a single enzyme
activity [25].

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.
© 2010 The Authors Journal compilation © 2010 Portland Press Limited



Bl Biochemical Journal Immediate Publication. Published on 07 Oct 2010 as manuscript BJ20101185

THIS IS NOT THE VERSION OF RECORD - see d0i:10.1042/BJ20101185

With the sequence data available to date, we were able to break down the 21 PL families
into a total of 41 subfamilies covering 72% of all sequences analyzed (Table 1). The
sequences that could not be assigned to subfamilies will most likely generate new
subfamilies as more sequences become available in the future. The subfamilies are identified
by an Arabic numeral following the family identifier; for instance, PL5_1 designates
subfamily 1 within family PL5. As shown in Table 1, the vast majority of subfamilies have at
least one representative that has been characterized with respect to substrate specificity;
only 7 subfamilies are lacking an experimentally characterized member. Depending on the
subfamily, the cumulated biochemical characterization data varies from low (e.g.,
subfamilies PL3_1 & PL4_2) to high (e.g., PL1_5, PL1_6, & PL5_1). These variations can have
a profound effect on any subsequent functional predictions based on subfamily
membership, since reliability obviously depends (i) on the number of characterized enzymes
per subfamily and (ii) on how detailed and reliably each characterization was performed.

We observe that of the 41 subfamilies identified here, 37 (90%) appear monospecific, thus
indicating that the subfamilies correlate with substrate specificity significantly better than
the family level. Only three subfamilies remained apparently polyspecific (i.e. grouping
enzymes with different EC numbers): PL1_5, PL9 1 & PL14_3. These three subfamilies were
further inspected to identify the origin of their polyspecificity. In the case of subfamilies
PL1_5 and PL9_1, the apparent polyspecificity is due to the presence of both endo-acting (EC
4.2.2.2) and exo-acting (EC 4.2.2.9) polygalacturonate lyases. These two types of enzymes
have exactly the same substrate specificity and differ only in the degree of polymerization of
the released products. As with other types of carbohydrate-cleaving enzymes, the basis of
endo- vs. exo-activity within a family is typically due to subtle details in the three-
dimensional structure of the enzymes, and rigidly distinguishing the two activities can be
tricky [38]. In the case of subfamily PL14 3, the apparent polyspecificity is associated with
the presence of both poly- and oligo-alginate lyases (EC 4.2.2.3 and 4.2.2.-, respectively).
Here again, the difference is subtle: the bond cleaved is identical, and the difference in the
definitions of the activities pertains to the degree of polymerization of the substrate. It may
well be that such a difference is not biologically significant or, if it is, sequence data alone
will perhaps never be able to sort one from the other.

Occurrence of PLs in genomes

We entered the genomic era about 15 years ago and the current pace of genome release is
on the order of 1 to 2 per day. Next generation sequencing will boost this flow of sequence
data even further. Our analyses of more than 1300 genomes from diverse organisms, ranging
from Archaea to higher plants and animals, show that the amount of PLs is usually low and
consistently less than that of GHs (representing 3 to 5% of the number of GHs). The most
likely explanation for this observation is that the substrates of PLs — polysaccharides
containing uronic acids — represent just a small proportion of all carbohydrate polymers. The
organisms that have the largest number of PLs share a common focus: the plant cell wall.
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The genomes of both plants and microorganisms that feed on living or dead plant tissue
(phytopathogens or saprophytes, respectively) typically encode large numbers of PLs (Table
2). The abundance of PLs in plants is due to the emergence of large multigene CAZy families
[39] and the biological importance of pectin in plant development [40]. The pectic network
contributes to the structural integrity of the plant cell wall, and as such, it is an obvious
target for phytopathogens and symbionts (including bacteria, fungi, oomycetes, and
nematodes) to gain access via an arsenal of pectinolytic enzymes. And, because it is far more
digestible than cellulose and lignin, pectin is also a delicacy for most saprophytic organisms,
which draw nutrients from decaying plant material.

Recommendations for large scale sequence annotation

Next generation sequencing machines will deliver ever more sequences, whose utility largely
depends on our ability to correlate them with molecular functions. The hierarchical
classification that we advocate here, based on fold, family, and subfamily, provides a
convenient way to produce the best possible functional assignments that take into account
distance with experimentally characterized enzymes.

Fold: At the most general end of the spectrum, very distant similarity (such as that resulting
from PSI-BLAST analyses or the use of degenerate HMMs) should be used only to assign a
protein to a folding class and not to a function. For example, Stam et al. have shown that a
PSI-BLAST search starting with a -helical polygalacturonase (EC 3.2.1.15) of family GH28
retrieved (3-helical pectate lyases of family PL1 and dextranases of family GH49 after only
two iterations [41], despite the fact that these two enzymes employ distinctly different
catalytic mechanisms. Although this may reflect ancient evolutionary events, the detection
of such distant similarities is of little use when it comes to anticipating a molecular function.

Family: The next level is the assignment to a family. This is typically reflected by significant
BLAST scores over the entire length of the catalytic module (not the entire protein, which
may contact multiply ancillary modules, vide supra). Here, similarity is sufficient to predict a
global "polysaccharide lyase" function, especially if the catalytic residues are conserved in
the sequence under consideration. Even though the PL families are often polyfunctional,
commonalities between the various substrates known to be cleaved by family members can
guide experimental design to determine the actual specificity of novel enzymes.

Subfamily: Finally, the most fine-grained annotation is reached at the other end of the
spectrum when a sequence can be assigned to one of the defined PL subfamilies. Two cases
will arise:

(i) The subfamily to which the sequence can be assigned contains one or several
experimentally characterized members (and, the more, the better). Here the function of the
guery protein can reasonably be assigned, for instance "putative hyaluronate lyase".
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(ii) The query protein belongs to a non-characterized subfamily, or does not belong to any
defined subfamily. Here the precise substrate cannot be predicted with confidence, and the
best possible annotation is simply "putative polysaccharide lyase".

One consequence of the above hierarchy is that functional predictions should be dynamic,
varying as biochemical data accumulates in the various subfamilies. Additionally, we suggest
that an EC number should only be assigned to the query protein and included in public
databases when and only when the precise substrate specificity has been established
experimentally, to avoid unchecked propagation of erroneous assignments. In general, we
advocate a conservative approach to functional assignment based on sequence analysis,
guided by the mantra that no annotation is better than a misleading annotation.
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Tables and Figures

Table 1: Activities in PL families and subfamilies.

Family | Taxonomical Sub Known activities Characterized enzymes *
range™ Family
PL1 A,B,E,U
1 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 4/173
2 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 1/53
3 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 10/38
4 pectin lyase (EC 4.2.2.10) 18/40
5 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 16/38
exo-polygalacturonate lyase (EC 4.2.2.9) 4/38
6 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 19/66
7 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 7/22
8 pectin lyase (EC 4.2.2.10) 4/22
PL2 AB
1 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 4/21
£ 2 exo-polygalacturonate lyase (EC 4.2.2.9) 2/23
g PL3 B,E
S 1 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 3/137
% 2 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 16/115
§ endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 1/8
3 PL4 B,E
8 1 rhamnogalacturonan lyase (EC 4.2.2.-) 2/21
° 2 0/15
8 3 rhamnogalacturonan lyase (EC 4.2.2.-) 1/7
3 4 rhamnogalacturonan lyase (EC 4.2.2.-) 1/6
DI PL5 B
% 1 poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 9/27
8 PL6 B poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 1/21
E chondroitin-sulfate-ABC endolyase (EC 4.2.2.4) 1/21
o pPL7 B,E
CZ> 1 poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 1/20
) 2 0/7
5 3 poly(a-L-guluronate) lyase (EC 4.2.2.11) 2/8
E 4 0/5
E 5 poly(a-L-guluronate) lyase (EC 4.2.2.11) 4/17
5 PL8 AB
e 1 hyaluronate lyase (EC 4.2.2.1) 11/85
) 2 chondroitin-sulfate-ABC endolyase (EC 4.2.2.20) 3/30
%) 3 chondroitin AC lyase (EC 4.2.2.5) 3/7
= PL9 BE
1 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 6/66
exo-polygalacturonate lyase (EC 4.2.2.9) 2/66
2 0/18
PL10 B
1 endo-polygalacturonate (pectate) lyase (EC 4.2.2.2) 5/47
PL11 ABE
1 rhamnogalacturonan lyase (EC 4.2.2.-) 4/64
PL12 AB
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0/35
heparin-sulfate lyase (EC 4.2.2.8) 2/10
PL13 B heparin lyase (EC 4.2.2.7) 2/7
PL14 B,E,V
glucuronate lyase (EC 4.2.2.-) 1/8
0/6
poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 1/13
exo-oligo-alginate lyase (EC 4.2.2.-) 1/13
PL15 B
oligo-alginate lyase (EC 4.2.2.-) 3/5
PL16 B,V
0/14
hyaluronate lyase (EC 4.2.2.1) 2/8
hyaluronate lyase (EC 4.2.2.1) 1/10
PL17 B
0/14
poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 1/15
PL18 B poly(b-D-mannuronate) lyase (alginate lyase) (EC 4.2.2.3) 3/6
poly(a-L-guluronate) lyase (EC 4.2.2.11) 3/6
PL20 B,E endo-b-1,4-glucuronan lyase (EC 4.2.2.14) 1/11
PL21 B heparin lyase (EC 4.2.2.7) 1/9
heparin-sulfate lyase (EC 4.2.2.8) 1/9
PL22 A,B oligogalacturonate lyase(EC 4.2.2.6) 1/47

1t A=Archea, B=Bacteria, E=Eukaryota, U=Unclassified, V=Virus.

¥ Number of characterized enzymes/total number of enzymes in subfamily. An enzyme was considered characterized if we

could identify published direct evidence for its activity.
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Table 2: List of fully sequenced organisms with the highest number of PLs.

Number

Organism Reference | of PLs* | Description
Phytophthora infestans T30-4 [42] 67 Phytopathogenic oomycete
Phytophthora sojae [43] 54 Phytopathogenic oomycete
Phytophthora ramorum [43] 49 Phytopathogenic oomycete
Populus trichocarpa [44] 39 Plant
Arabidopsis thaliana [45] 34 Plant
Nectria haematococca mpVI [46] 33 Phytopathogenic fungus
Saccharophagus degradans 2-40 [47] 32 Marine saprophytic bacterium
Meloidogyne incognita [48] 30 Phytopathogenic nematode
Aspergillus oryzae RIB40 [49] 23 Phytopathogenic fungus
Aspergillus nidulans FGSC A4 [50] 21 Phytopathogenic fungus
Pedobacter heparinus DSM 2366 [51] 18 Soil bacterium
Oryza sativa Japonica Group [52] 16 Plant
Dickeya zeae Ech1591 JGI-DOE Phytopathogenic bacterium

CP001655 16
Bacteroides thetaiotaomicron VPI-5482 [53] 16 Human gut bacterium
Cellvibrio japonicus Uedal07 [54] 14 Soil saprophytic bacterium

Wellcome Soil bacterium

.. Trust Sanger
Streptomyces scabiei 87.22 .
Institute

FN554889 13
Pectobacterium carotovorum subsp. [55] Phytopathogenic bacterium
carotovorum PC1 13
Pectobacterium atrosepticum SCR11043 [55] 13 Phytopathogenic bacterium
Dickeya dadantii Ech586 (Erwinia JGI-DOE . .

. Phytopathogenic bacterium
chrysanthemi) CP001836 13
. . [56] Environmental bacterium isolated
Actinosynnema mirum DSM 43827
13 from grass

“numbers derived from the CAZy database at www.cazy.org
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Figure 1. Comparison of the products of polysaccharide lyases (PL) and glycoside
hydrolases (GH), exemplified by polygalacturonate (pectate) cleavage. Both enzyme classes
generate a new reducing chain end (light grey). GHs cleave the glycosidic bond (C-1":0-4) by
addition of water, maintaining the 4-OH group at the new non-reducing chain end. PLs, in
contrast, generate a hexeneuronic acid moiety (HexA, 4-deoxy-hex-4-eneuronic acid) at the
new non-reducing end by eliminative cleavage of the 0-4:C-4 bond.
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Figure 2. General mechanisms of polysaccharide lyases (PL). A, syn-Elimination, as in
chondroitin lyase; B, anti-Elimination, as in a- (1,4)-polygalacturonan (pectate) lyase. In both,
polysaccharides are cleaved to produce a 4-deoxy-hex-4-eneuronic acid moiety at the newly-
formed non-reducing end of the chain; due to loss of the asymmetric center at C-4, gluco- or
galacto-configured substrates yield essentially the same product (depending on the
stereochemistry at C-1). As a prelude to chain scission, the C-5 proton adjacent to the
carbonyl group is abstracted by a suitably poised basic amino acid sidechain (B:). Departure
of the glycosidic oxygen is likely to be facilitated by proton donation from a catalytic acid
(B:H). Coordinating and charge-stabilizing cations, Ca™ or a positively charged amino-acid
sidechain, are also a common feature of PL actives sites.
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Figure 3: Examples of modular PLs. PL: polysaccharide lyase module, CBM: carbohydrate-
binding module and CE: carbohydrate esterase module. Other modules include dockerins
(DOC), S-layer homology domains (SLH), fibronectin type 3 domains (FN3) and conserved
domains of unknown function (X). Unassigned regions are in grey. GenBank accession
numbers are indicated for each protein.
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Figure 4: Folds and structures of PL families with known three-dimensional structures.
Representative structures for each family are shown organized by fold. The following Protein
Databank (PDB) entries are depicted: PL1(PDB:2QY1), PL3(1EE6), PL6(10FM), PL9(1RU4),
PL11(2ZUY), PL22(3C5M), PL5(1HV6), PL8(10JM), PL15(3A00), PL21(2FUQ),PL2(2V8K),
PL10(1GXN), PL4(INKG), PL7(1UAIl), PL13(3IKW), PL14(3AON), PL18(1J1T), PL20(2ZZ)),
PL16(2YWO0). Within the p-propeller grouping, PL11 and PL22 members are comprised of 8-
bladed and 7-bladed B-propellers, respectively.
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Figure 5: Structures of polysaccharide lyase family 8 (PL8) substrates. A, hyaluronan; B, chondroitin
(R = R” = H) and chondroitin sulphates A (R = SO;, R” = H) and C (R = H, R’ = SO3); C, xanthan. The
common glucuronic acid residue is in dark grey, and the scissile bond is identified with an arrow. All
monosaccharides not explicitly drawn are D-sugars in the pyranose ring form.
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