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Summary
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An introduction to finite volumes for gas dynamics

1) Advection equation and method of characteristics.

1.1 Advection equation.
• We consider a given real number a > 0 and we wish to solve the
so-called advection equation of unknown function u(x, t) :

(1.1.1)
∂u

∂t
+ a

∂u

∂x
= 0 , t ≥ 0 , x ∈ IR .

We first look to the homogeneity coherence of the different terms of equation
(1.1.1). On one hand, the ratio ∂u

∂t is homogeneous to the dimension [u] of

function u(•, •) divided by the dimension [t] of the time and we have : ∂u
∂t ∼

[u]
[t] . On the other hand the expression a ∂u

∂x is homogeneous to the dimension

[a] of scalar a multiplied by the ratio [u]
[x] and we have a ∂u

∂x ∼ [a] [u]
[x] . From

equation (1.1.1), the two previous terms ∂u
∂t and a ∂u

∂x have the same dimension

and we deduce from the previous formulae the equality : 1
[t] ∼ [a]

[x] . Then we

have established that the constant a is homogeneous to a celerity :

(1.1.2) [a] ∼ [x]

[t]
.

• The Cauchy problem for the model equation (1.1.1) is composed by the
equation (1.1.1) itself and the following initial condition :
(1.1.3) u(x, 0) = u0(x) , x ∈ IR ,
where IR ∋ x 7−→ u0(x) ∈ IR is some given function. We observe that the
solution of equation (1.1.1) is constant along the characteristic (straight) lines
that satisfy the differential equation

(1.1.4)
dx

dt
= a .

Proposition 1.1. The solution is constant along the characteristic lines.
Let 0 ≤ λ ≤ t be some given parameter and u(•, •) a solution of equation
(1.1.1). Then function u(•, •) is constant along the characteristic lines, i.e.
(1.1.5) u(x− aλ, t− λ) = u(x, t) , ∀ x, t, λ .

• The proof of Proposition 1.1 is obtained as follows. We consider
a fixed point (x, t) in space-time IR × [0, +∞[ and the auxiliary function
[0, t] ∋ λ 7−→ v(λ) = u(x − aλ, t − λ) . We have, due to the usual chain rule
for derivation of operators :
dv

dλ
=
[
(−a) ∂u

∂x
− ∂u

∂t

]
(x−aλ, t−λ) = 0 if function u(•, •) is solution

of the advection equation (1.1.1). Then v(λ) does not depend on variable λ
and we have in particular v(λ) = v(0) , which exactly expresses the relation


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(1.1.5). We have in particular for λ = t : u(x, t) = u(x−at, 0) = u0(x−at)
as illustrated on Figure 1.1.

t

x
x

t

t−λ

λ

x−λa

u  (x−at)0

u(x, t)

AA
AA

0

Figure 1.1. The solution u(x, t) of the advection equation
is constant along the characteristic lines.

x

t

u(y, 0) = u (y)0

x = a t

AA
AAx < a t

u(0, θ) = v (θ)
0

0

x > a tAAA
AAA
AAA

Figure 1.2. Initial-boundary value problem for the advection equation.

1.2 Initial-boundary value problems for the advection equation.
• The second step is concerned by the so-called initial-boundary value
problem considered for x > 0 and t > 0 with some given initial condition
u0(x) for t = 0 and a boundary condition v0(t) for x = 0 :

(1.2.1)
∂u

∂t
+ a

∂u

∂x
= 0 , t > 0 , x > 0 , (equation)

(1.2.2) u(x, 0) = u0(x) , x > 0 , (initial condition)





An introduction to finite volumes for gas dynamics

(1.2.3) u(0, t) = v0(t) , t > 0 , (boundary condition).

Proposition 1.2. Advection in the quadrant x > 0 and t > 0 .
We suppose that a > 0 . Then the solution of the advection equation (1.2.1)
with the initial condition (1.2.2) and the boundary condition (1.2.3) is given by
the relations
(1.2.4) u(x, t) = u0(x− at) , x− at > 0

(1.2.5) u(x, t) = v0

(
t − x

a

)
, x− at < 0 .

The initial condition u0(•) is advected towards space-time point (x, t) when
x− at > 0 and the boundary condition v0(•) is activated for x− at < 0 .

• Proof of Proposition 1.2.
In order to solve the problem (1.2.1)-(1.2.3), we use the method of characteristics.
We fix a point (x, t) of space-time domain that satisfies x > 0, t > 0 and we
go upstream in time with the help of the characteristic line that goes through
this point (see Figure 1.2) :
(1.2.6) x(λ) = x− aλ , t(λ) = t− λ .
• First case : x−at > 0 . When we take the particular value λ = t in the
previous relation (1.2.6), the particular point y = x(t) = x− at on the axis of
abscissa is strictly positive then the initial condition u0(y) is well defined. The
solution u(•, •) is constant on the characteristic line (see Proposition 1.1) that
contains this particular point. Then relation (1.2.4) is established.
• Second case : x − at < 0 . We consider the particular value λ = x

a
inside the expression (1.2.6). Then the corresponding foot of the characteristic
belongs to the time axis : θ = t−λ = t− x

a and θ > 0 due to the inequalities
x < at and a > 0 . The solution is constant along the characteristic line going
through this point and the relation (1.2.5) is established.

• In the particular case where datum u0(x) is identically equal to zero,
i.e.
(1.2.7) u0(x) = 0 , x > 0 ,
and if the boundary condition v0(t) is sinusöıdal for time positive to fix the
ideas,
(1.2.8) v0(t) = sin(ωt) , t > 0 ,
the solution of the advection equation in the domain x > 0 , t > 0 via the
relations (1.2.4) and (1.2.5) can be considered with the two following view points.

(i) We take a snap shot of the solution u(•, •) at a fixed time T > 0.
We consider the partial function [0, +∞[ ∋ x 7−→ u(x, T ) ∈ IR and taking into
account the relations (1.2.4), (1.2.5), (1.2.7) and (1.2.8), we have

(1.2.9) u(x, T ) =

{
sin
[
ω
(
T − x

a

)]
, x < aT

0 , x > aT .


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and this function is illustrated on Figure 1.3.

(ii) We fix a particular position X in space and we look, as time is
increasing, to the solution u(•, •) at this particular point. We show on Figure
1.4 the function [0, +∞[∋ t 7−→ u(X, t) ∈ IR and taking into account the
relations (1.2.4), (1.2.5), (1.2.7) and (1.2.8), we have

(1.2.10) u(x, T ) =

{
0 , t < X

a

sin
[
ω
(
T − x

a

)]
, t > X

a .

x0

u(x, T)

a T

Figure 1.3. Snap shot of the solution of the advection equation
at time t = T.

t0

u(X, t)

X/a

Figure 1.4. Evolution of the solution at the particular point x = X.

1.3 Inflow and outflow for the advection equation.
• We still suppose that celerity a is positive and we consider the resolution
of the advection (1.2.1) in the space-time domain
(1.3.1) 0 < x < L , t > 0 .
The relations (1.2.4) and (1.2.5) can still be applied because the proof of Propo-
sition 1.2 remains unchanged in this particular case. As a consequence of the
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An introduction to finite volumes for gas dynamics

previous property, we remark that no boundary condition is necessary at the
particular position x = L for solving the advection problem in the space-time
domain defined in relations (1.3.1). The initial condition (1.2.2) has simply to
be restricted in domain ]0, L[ :
(1.3.2) u(x, 0) = u0(x) , 0 < x < L ,
and the boundary condition (1.2.3) at x = 0 remains unchanged :
(1.3.3) u(0, t) = v0(t) , t > 0 .

x

t

0

the boundary  x=0
is an input 
when  a > 0

L

the boundary  x=L
is an output 
when  a > 0

Figure 1.5. Initial-boundary value problem for the advection equation
with a > 0 in the domain 0 < x < L and t > 0.

x

t

u(y, 0) = u (y)0

x−at > L

u(L, θ) = w  (θ)L

0 L

inputoutput

AA
AA

A
A

x−at = L

x−at < L

Figure 1.6. Initial-boundary value problem for the advection equation
with a < 0 in the domain 0 < x < L and t > 0.

• The difference between point x = 0 and point x = L for the resolution
of the advection equation in space-time domain (1.3.1) is due to the fact that we
choose an orientation of the characteristic lines x − at = constant associated
to an increase for the time direction. With this choice of time direction, the
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characteristic lines enter inside the space-time domain (1.3.1) at x = 0 and
they go outside at x=L . The boundary condition (1.3.3) is given at the input of
the domain (see Figure 1.5) and at x=L , there is a free output from space time
domain (1.3.1), without necessity to specify any numerical boundary condition.

• If we change the sign of celerity a, i.e. if we suppose now
(1.3.4) a < 0 ,
the above analysis remains unchanged, but the algebraic relations (1.2.4) and
(1.2.5) have to be modified (see Figure 1.6). We still start from relation (1.1.5)
that expresses that the solution of the advection equation (1.1.1) is constant
along the characteristics lines. The foot of the characteristic line that contains
the particular point (x, t) in space-time is either the point (y = x− at, 0) if
x− at < L , either the point

(
L, θ = t− 1

a (x−L)
)

if x− at > L . In the first
case, we have y > 0 and θ < 0 then the initial condition (1.3.2) is advected
inside the domain (1.3.1) and we have :
(1.3.5) u(x, t) = u0(x− at) , x− at < L .

• On the contrary, if x − at > L, we have y > L and θ > 0 then the
boundary condition at x = L that takes now the expression
(1.3.6) u(L, t) = wL(t) , t > 0 ,
is advected inside the domain of study and we have :

(1.3.7) u(x, t) = wL

(
t +

L

a
− x

a

)
, x− at > L .

We have established the following

Proposition 1.3. Advection in the domain 0 < x < L , a < 0.
Under the hypothesis (1.3.4), the resolution of the advection equation (1.2.1)
in the space-time domain (1.3.1) conducts to a well posed problem when we
introduce the initial condition (1.3.2) on the interval ]0, L[ and the boundary
condition (1.3.6) at the input region located at x=L , without any boundary
condition at the output located at x = 0 . The solution of Problem (1.2.1),
(1.3.2) and (1.3.6) is given by the relations (1.3.5) and (1.3.7).

2) Finite volumes for linear hyperbolic systems.
2.1 Linear advection.
• We still study the advection equation parameterized by some celerity
a > 0 :

(2.1.1)
∂W

∂t
+

∂

∂x

(
aW

)
= 0 , t > 0 , x ∈ IR ,

and we search a discrete version of this mathematical model. For doing this, we
introduce a space step ∆x > 0 and a space grid composed by points xj whose
coordinates are multiples of this space step ∆x, id est





An introduction to finite volumes for gas dynamics

(2.1.2) xj = j∆x , j ∈ ZZ .
For a finite domain, ]0, L[ to fix the ideas, the above grid is limited to integer
values j such that

(2.1.3) 0 ≤ j ≤ J =
L

∆x
and the vertices (xj)0≤j≤J are usually used in the context of the finite differ-
ence method. The intervals Kj+1/2 = ]xj , xj+1[ between two vertices can be
considered as finite elements (or finite volumes in our study) and they cover the
entire domain ]0, L[ :

(2.1.4) [0, L] =
⋃

0≤j≤J−1

[xj , xj+1] ,

as proposed in the general context of meshes (see e.g. Ciarlet [Ci78]). We
introduce also a time step ∆t > 0 and the discrete time values at integer
multiples of the above quantum :
(2.1.5) tn = n∆t , n ∈ IN .

We consider now a space-time volume V
n+1/2
j+1/2 obtained by cartesian product

of the two intervals ]xj , xj+1[ and ]tn, tn+1[ (see Figure 2.1) :

(2.1.6) V
n+1/2
j+1/2 = ]xj , xj+1[× ]tn, tn+1[ .

• The finite volume scheme consists simply in integrating the advection

equation (2.1.1) inside the space-time domain V
n+1/2
j+1/2 introduced previously :

(2.1.7)

∫

V
n+1/2
j+1/2

[
∂W

∂t
+

∂

∂x

(
aW

) ]
dxdt = 0 , 0 ≤ j ≤ J , n ≥ 0 .

W
n+1
j+1/2

W
n
j+1/2

f
n+1/2
j f

n+1/2
j+1

x j+1xj

t
n+1

t
n

V
n+1/2
j+1/2

W
n
j−1/2x j−1

Figure 2.1. Space-time grid for the finite volume method.

Proposition 2.1. Finite volume scheme.
Let IR × [0, +∞[∋ (x, t) 7−→ W (x, t) ∈ IR be a solution of the advection
equation (2.1.1). We introduce the space mean value Wn

j+1/2 of this solution

W (•, •) in the cell Kj+1/2 :


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(2.1.8) Wn
j+1/2 =

1

| Kj+1/2 |

∫ xj+1

xj
W (x, tn) dx

and the time mean value f
n+1/2
j of the so-called flux aW (•, •) at the space

position xj and between discrete times tn and tn+1 :

(2.1.9) f
n+1/2
j =

1

∆t

∫ tn+1

tn
(aW )(xj , t) dt .

Then we have the following constitutive relation of finite volumes schemes :

(2.1.10)
1

∆t

(
Wn+1

j+1/2 −Wn
j+1/2

)
+

1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
= 0 .

This numerical modelling characterizes the so-called finite volume method which
has been developed thanks to the work of S. Godunov [Go59], Godunov et al
[GZIKP79], Patankar [Pa80], Harten, Lax and Van Leer [HLV83] or Faille, Gal-
louët and Herbin [FGH91] among others.

• The proof of Proposition 2.1 consists in a precise evaluation of the
left hand side of equality (2.1.7). We use Fubini rule for the computation of
double integrals and we begin by integrating in time for the ∂

∂t term :
∫

V
n+1/2
j+1/2

∂W

∂t
dxdt =

∫ xj+1

xj

[ ∫ tn+1

tn
∂W

∂t
(x, t) dt

]
dx

=

∫ xj+1

xj

[
W (x, tn+1)−W (x, tn)

]
dx = ∆x

[
Wn+1

j+1/2 −Wn
j+1/2

]

due to the definition (2.1.8). We proceed in an analogous way with the ∂
∂x

term and begin now the Fubini procedure by integrating in space ; we have
∫

V
n+1/2
j+1/2

∂

∂x

(
aW

)
dxdt =

∫ tn+1

tn

[ ∫ xj+1

xj

∂

∂x

(
aW

)
(x, t) dx

]
dt

=

∫ tn+1

tn

[
(aW

)
(xj+1, t)−(aW

)
(xj , t)

]
dt = ∆t

[
f
n+1/2
j+1 −fn+1/2

j

]

according to the definition (2.1.9). We add the two previous results, use identity
(2.1.7) and divide by ∆t∆x. We obtain exactly the relation (2.1.10).

• The relation (2.1.10) is a very general form for the evolution of the mean
values Wj+1/2 between two time steps. The increment

(
Wn+1

j+1/2 −Wn
j+1/2

)

is, after correction by a multiplicative factor, equilibrated by the flux difference(
f
n+1/2
j+1 − f

n+1/2
j

)
. The idea of a finite volume scheme is to consider now that

the algebraic object Wj+1/2 is nomore the mean value of the exact solution
but an approximation of this mean value. Then the relation (2.1.10) proposes


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a numerical scheme for the discrete evolution of the approximated mean values
Wj+1/2 , j = 0, · · · , J−1. Nevertheless, the numerical scheme is not entirely
defined by the relation (2.1.10). Starting from mean values at the initial time
step, i.e.

(2.1.11) W 0
j+1/2 =

1

∆x

∫ xj+1

xj
W0(x) dx , j = 0, · · · , J−1 ,

we are able to increment the time step with relation (2.1.10) only if all the fluxes

f
n+1/2
j , j = 0, · · · , J have been a priori first determined as a functional of the
previous values. In a very general way, we say that the finite volume scheme

(2.1.10) is an explicit scheme if each flux f
n+1/2
j is a given function Ψj of

the mean values
(
Wn

k+1/2

)
k=1,···, J−1

at the preceding time step number n :

(2.1.12) f
n+1/2
j = Ψj

(
{Wn

k+1/2, k = 0, · · · , J−1}
)
, j = 0, · · · , J−1 .

The function Ψj is called the local numerical flux function at point xj and,
joined with the evolution equation (2.1.10), its choice determines the numerical
scheme.

• A natural hypothesis claims that we have translation invariance for
the evaluation of the flux if we move the discrete data in the same way ; in other
words, the numerical flux function Ψj only depends on the p first neighbors
of the interface xj . Then the explicit numerical flux is a given function Φ of
the p first neighbors and we have :

(2.1.13) f
n+1/2
j = Φ

(
Wn

j+1/2−p, · · · , Wn
j−1/2, W

n
j+1/2, · · · , Wn

j+1/2+p−1

)
.

A very important particular case is one of a two-point scheme for the evaluation
of the numerical flux. We have in this particular case :

(2.1.14) f
n+1/2
j = Φ

(
Wn

j−1/2, W
n
j+1/2

)
.

With this particular choice, the numerical scheme for incrementing in time of
the mean values takes the form :

(2.1.15)





1

∆t

(
Wn+1

j+1/2 −Wn
j+1/2

)
+

+
1

∆x

(
Φ
(
Wn

j+1/2, W
n
j+3/2

)
− Φ

(
Wn

j−1/2, W
n
j+1/2

))
= 0 .

It is also a three-point finite difference scheme. The finite volume scheme (2.1.10)
(2.1.13) is said to be consistent with the advection equation (2.1.1) when the
numerical flux function Φ satisfies the condition
(2.1.16) Φ

(
W, · · · , W, W, · · · , W

)
= aW , ∀W ∈ IR .

• The crucial question is how to choose a numerical finite volume scheme.
The simplest choice consists in a two point explicit scheme such that the fi-
nite difference scheme is identical to the upstream-centered scheme (see e.g.
Richtmyer-Morton [RM67]). It takes the following expressions :


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(2.1.17)
1

∆t

(
Wn+1

j+1/2 −Wn
j+1/2

)
+ a

(
Wn

j+1/2 −Wn
j−1/2

)
= 0 , a > 0

(2.1.18)
1

∆t

(
Wn+1

j+1/2 −Wn
j+1/2

)
+ a

(
Wn

j+3/2 −Wn
j+1/2

)
= 0 , a < 0 .

The corresponding flux function is called the first order upstream-centered
flux, is simply given by the following relations :

(2.1.19) Φ(Wl, Wr) =

{
aWl , a > 0
aWr , a < 0 .

When this flux function acts at a given point xj of the mesh, we have :

(2.1.20) f
n+1/2
j = Φ

(
Wn

j−1/2, W
n
j+1/2

)
=

{
aWn

j−1/2 , a > 0

aWn
j+1/2 , a < 0 .

If a > 0, the exact solution of the advection equation propagates the information
from the left to the right ; the flux at the interface xj is issued from the cell
at the left of the interface and this cell at the number j−1/2 . If a < 0, the
propagation of the information with the advection equation is from right to left ;
the interface flux at the abscissa xj is due to the control volume on the right,
i.e. with number j+1/2 as depicted on Figure 2.2.

x
j

W
n

j−1/2 a > 0

W
n
j+1/2

a < 0

Figure 2.2. Upwinding of the information for the advection equation.

0
x  = 0

1
x       ...

j−1
x

j
x       ... 

J−1
x

J
x  = L

W1/2
f0 f

J

W
J−1/2

Wj−1/2

j−1/2
x

Figure 2.3. Notations for the one-dimensional finite volume method.
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• Recall that practical use of the upwind finite volume scheme like (2.1.17)
when a > 0 or (2.1.18) if a < 0 is restricted to the usual Courant-Friedrichs-
Lewy stability condition :

(2.1.21) a
∆t

∆x
≤ 1

as developed e.g. in the book of Richtmyer and Morton [RM67].

2.2 Numerical flux boundary conditions
• In this section, we focus on the problem of the numerical boundary
conditions. Recall that we study the advection equation in the space domain
[0, L] :
(2.2.1) 0 ≤ x ≤ L
and J = L

∆x ∈ IN control cells (or finite elements) have been used to define a
mesh :
(2.2.2) J ∆x = L .
Note that the jth cell is exactly the interval ]xj−1, xj [ and it is centered at
point xj−1/2 as shown on Figure 2.3.

• At time step n∆t , the discrete field is entirely known and is composed
of all the values Wn

j−1/2 for j = 1, · · · , J . With a flux function Φ(•, •) as

proposed at relation (2.1.14), we observe that the two boundary fluxes f
n+1/2
0

and f
n+1/2
J are not a priori defined because states Wn

−1/2 or Wn
J+1/2 does not

exist. The situation is more complex with numerical fluxes that use four points
or more as proposed in (2.1.13) and will not be detailed in this section. Even
if the formula giving the numerical flux at the boundaries has to be specifically
studied, the finite volume scheme remains defined by the relation (2.1.10) and
we have for the two cells encountering the boundary :

(2.2.3)
1

∆t

(
Wn+1

1/2 −Wn
1/2

)
+

1

∆x

(
f
n+1/2
1 − f

n+1/2
0

)
= 0 ,

(2.2.4)
1

∆t

(
Wn+1

J−1/2 −Wn
J−1/2

)
+

1

∆x

(
f
n+1/2
J − f

n+1/2
J−1

)
= 0 .

• The question is now to adapt the relation (1.2.14) in order to determine

the two boundary fluxes f
n+1/2
0 at the left of the domain and f

n+1/2
J at the

right. For the advection equation with celerity a > 0, we have observed in the
first section that some boundary condition v0(t) has to be assigned at x = 0
and it is not the case for x = L. It is therefore natural to take into account this
information at the input of the domain and to set :

(2.2.5) f
n+1/2
0 =

1

∆t

∫ tn+1

tn
a v0(t) dt





François Dubois

or simply

(2.2.6) f
n+1/2
0 = a v0

(
(n+ 1

2 )∆t
)
, a > 0 ,

if function t 7−→ v0(t) has a slow time variation at the scale defined by the
time step. At the output x = L, no numerical datum has to be assigned to set
correctly the continuous mathematical problem. We must maintain this property
if we wish the numerical method to follow the mathematical physics as efficiently
as possible. A simple boundary flux is associated with the previous numerical
upwind scheme. For x = xJ = L and a > 0, we observe that the upwind
scheme (2.1.20) is simply written as :

(2.2.7) f
n+1/2
J = aWn

J−1/2 , a > 0 ,

and this relation (2.2.7) defines a first order extrapolated boundary flux.

• The roles are reversed when a < 0. The abscissa x = 0 corresponds to
an output for the advection equation and the right boundary x = L is an input
where a time field t 7−→ wL(t) is given. In the first case, the upwind scheme
(2.1.20) can be applied without modification :

(2.2.8) f
n+1/2
0 = aWn

1/2 , a < 0 ,

and it corresponds to a first order extrapolation of the internal data
{
Wn

j−1/2,

j = 1, · · · , J
}

at the boundary at time step n∆t. For x = L, the boundary

flux f
n+1/2
J uses the given information between the two time steps :

(2.2.9) f
n+1/2
J = awL

(
(n+ 1

2 )∆t
)
, a < 0 .

Proposition 2.2.
Flux boundary conditions for the advection equation.

When we approach the advection equation (2.1.1) with the finite volume method,
the numerical boundary conditions induces a choice for the two boundary fluxes

f
n+1/2
0 and f

n+1/2
J . When a > 0, the boundary condition v0(t) at the input

can be introduced into the boundary with the relation (2.2.6) and the free output
at the right can be treated with an extrapolation of the type (2.2.7). When
a < 0, the free output at the left of the domain can be taken into account with
the help of relation (2.2.8) whereas the input condition wL(t) at the right can
be introduced thanks to relation (2.2.9).

2.3 A model system with two equations
• Let a > 0 and b > 0 be two positive real number. We study in this
section a model problem that is composed by the juxtaposition of an advection
equation with celerity a and an advection with celerity −b. We explicit the
associated algebra :

(2.3.1)
∂u

∂t
+ a

∂u

∂x
= 0 , t > 0 , x ∈ IR ,
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(2.3.2)
∂v

∂t
− b

∂v

∂x
= 0 , t > 0 , x ∈ IR .

We associate the two equations (2.3.1) and (2.3.2) and consider a unique problem
with a vector field as unknown. We set :

(2.3.3) ϕ =

(
u
v

)

and the set of equations (2.3.1)-(2.3.2) can naturally be written as a system :

(2.3.4)
∂ϕ

∂t
+

(
a 0
0 −b

)
∂ϕ

∂x
= 0 .

By introducing the flux function F (ϕ) according to the relation

(2.3.5) F (ϕ) =

(
au
−b v

)

the system (2.3.4) takes the general conservative form :

(2.3.6)
∂ϕ

∂t
+

∂

∂x

(
F (ϕ)

)
= 0 .

• The approximation of system (2.3.6) with a grid parameterized by a
space step ∆x and a time step ∆t is conducted exactly as in the case of the
advection equation. The following property is a straightforward generalization
of Proposition 2.1. We left the proof to the reader.

Proposition 2.3. Finite volume scheme.
Let IR × [0, +∞[ ∋ (x, t) 7−→ ϕ(x, t) ∈ IR × IR be a solution of the linear
conservation law (2.3.6). We define the space mean value ϕn

j+1/2 of this solution

ϕ(•, •) in the cell Kj+1/2 :

(2.3.7) ϕn
j+1/2 =

1

| Kj+1/2 |

∫ xj+1

xj
ϕ(x, tn) dx

and the time mean value f
n+1/2
j of the flux function introduced in (2.3.5) at

the space position xj between discrete times tn and tn+1 :

(2.3.8) f
n+1/2
j =

1

∆t

∫ tn+1

tn
F
(
ϕ(xj , t)

)
dt .

We have the following relation that characterizes the finite volumes schemes :

(2.3.9)
1

∆t

(
ϕn+1
j+1/2 − ϕn

j+1/2

)
+

1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
= 0 .

• We have now to propose a precise numerical flux function analogous
to the relation (2.1.12) to transform the conservation property (2.3.9) into a
finite volume numerical scheme able to propagate the discrete values ϕn

j+1/2

up to the discrete time tn+1. For internal interfaces xj , j = 1, · · · , J−1 , it is
natural to apply the upwinding scheme (2.1.20) with a left upwinding for the first
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equation and a right upwinding for the equation (2.3.2). Figure 2.4 illustrates
the associated algebra :

(2.3.10) f
n+1/2
j = Φ

(
ϕn
j−1/2, ϕ

n
j+1/2

)
=

(
aunj−1/2

−b vnj+1/2

)
, j = 1, · · · , J−1 .

u
n
j+1/2

v n
j−1/2

x j

−b < 0

a > 0
u n

j−1/2

v n
j+1/2

Figure 2.4. Interface upwind numerical flux
for a model problem with two equations.

t

x

x=Lx=0

u (t)
0 v (t)

L

uv v u

Figure 2.5. Boundary conditions for a model problem with two equations.

• At the left boundary x = 0 , we have an input for the variable u and
we suppose given the associated datum [0, +∞[∋ t 7−→ u0(t) ∈ IR :
(2.3.11) u(0, t) = u0(t) , t > 0
whereas it is an output for the v variable. By association of relations (2.2.6)
and (2.2.8), we obtain

(2.3.12) f
n+1/2
0 =

(
au0

(
(n+ 1

2 )∆t
)

−b vn1/2

)
.

At the other boundary of the interval ]0, L[ , we have an output for the first vari-
able u and an input for the second one, and an associated boundary condition
[0, +∞[∋ t 7−→ vL(t) ∈ IR is supposed to have been given :
(2.3.13) v(L, t) = vL(t) , t > 0
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as illustrated on Figure 2.5. The numerical flux at the right is evaluated by
association of the relations (2.2.7) and (2.2.9) :

(2.3.14) f
n+1/2
L =

(
aunJ−1/2

−b vL
(
(n+ 1

2 )∆t
)
)
.

2.4 Unidimensional linear acoustics
• We consider a gas in a pipe of uniform section at normal conditions
of temperature and pressure. The reference density is denoted by ρ0 and the
reference pressure is named p0. The sound celerity c0 of this gas satisfies the
relation

(2.4.1) c0 =

√
γp0
ρ0

with γ = 1.4 as proved e.g. in the book of Landau and Lifchitz [LL54]. A
sound wave is a small perturbation of this reference state. The differences of
density, pressure and velocity fields are denoted respectively by ρ, p and u. The
hypothesis of a small perturbation implies that the entropy of the reference state
is maintained for all the time evolution and in consequence, it is easy to establish
the following relation between the perturbations of density and pressure :
(2.4.2) p = c20 ρ .

• The conservation of mass leads to a first order linear conservation law :

(2.4.3)
∂ρ

∂t
+ ρ0

∂u

∂x
= 0

and the conservation of momentum links the time evolution of velocity with the
spatial gradient of pressure :

(2.4.4) ρ0
∂u

∂t
+

∂p

∂x
= 0 .

We introduce the vector W =

(
p
u

)
of unknowns. Then the equations (2.4.3)

and (2.4.4) can be written as a linear hyperbolic system of conservation laws :

(2.4.5)
∂W

∂t
+ A

∂W

∂x
= 0

with

(2.4.6) A =

(
0 ρ0 c

2
0

1
ρ0

0

)
.

• When we consider the eigenvalues and eigenvectors of matrix A, it is
natural to introduce the characteristic variables defined respectively by
(2.4.7) ϕ+ = p + ρ0 c0 u
(2.4.8) ϕ− = p − ρ0 c0 u
and the quantity ρ0 c0 is named the acoustic impedance. We have from the
relations (2.4.3) and (2.4.4) :
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∂ϕ+

∂t
+ c0

∂ϕ+

∂x
=
(∂p
∂t

+ ρ0 c0
∂u

∂t

)
+
(
c0
∂p

∂x
+ ρ0 c

2
0

∂u

∂x

)

= c20

(∂ρ
∂t

+ ρ0
∂u

∂x

)
+ c0

(
ρ0
∂u

∂t
+

∂p

∂x

)
= 0 ,

∂ϕ−

∂t
− c0

∂ϕ−

∂x
=
(∂p
∂t

− ρ0 c0
∂u

∂t

)
− c0

(∂p
∂x

− ρ0 c0
∂u

∂x

)

= c20

(∂ρ
∂t

+ ρ0
∂u

∂x

)
− c0

(
ρ0
∂u

∂t
+

∂p

∂x

)
= 0 ,

and we recover a system of the type (2.3.4) studied previously :

(2.4.9)
∂

∂t

(
ϕ−

ϕ+

)
+

(
−c0 0
0 c0

)
∂

∂t

(
ϕ−

ϕ+

)
= 0 .

• A typically physical problem is the following : a given acoustic pressure
wave [0, +∞[ ∋ t 7−→ Π(t) > 0 is injected at the left x = 0 of the pipe and
the waves go away freely at the right boundary x=L . At t = 0, the velocity
and pressure of the fluid are given :
(2.4.10) u(x, 0) = u0(x) , 0 < x < L
(2.4.11) p(x, 0) = p0(x) , 0 < x < L .
From a mathematical viewpoint, the boundary conditions have to respect the
dynamics of this system of acoustic equations written in diagonal form (2.4.9) :
the variable ϕ+ must be given at x= 0 and the variable ϕ− at the abscissa
x=L. From (2.4.7) and (2.4.8), we determine the pressure as a function of the
two characteristics variables ϕ+ and ϕ− :

(2.4.12) p =
1

2

(
ϕ+ + ϕ−

)

and if the pressure is imposed at x = 0, the relation (2.4.12) can be written
under the form :
(2.4.13) ϕ+(0, t) = −ϕ−(0, t) + 2Π(t) , x = 0 , t > 0 ,
that makes in evidence a reflection operator : the input variable ϕ+ is a given
affine function of the output variable ϕ− . At the other boundary x=L , the
notion of free output expresses that the waves that go outside of the domain
of study have no reflection at the boundary. When x = L , the characteristic
variable ϕ+ is going outside and there is no boundary condition for this variable.
We have to express also that this wave has no influence on the characteristic ϕ−

that wish to go inside the domain ]0, L[. In other terms, the input value ϕ− is
independent of the variable ϕ+ and also of time. We have in consequence

(2.4.14)
∂

∂t
ϕ−(L, t) = 0 .

We have established
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Proposition 2.4. Boundary conditions for acoustic problem.
The mathematical boundary conditions associated with the datum of a given
acoustic pressure wave [0, +∞[ ∋ t 7−→ Π(t) > 0 at the left of the domain
]0, L[ admits the expression (2.4.13) and a condition of free output of the waves
at the right boundary x=L can be expressed by the relation (2.4.14).

0 L x

L
c0

p = Π(t)

t

ϕ (L , t) = ϕ  (L , 0)− −

Figure 2.6. Solution of the acoustic equations in one space dimension
for a model problem with two equations

• The above acoustic problem associated with the first order partial dif-
ferential equations (2.4.3) (2.4.4), the initial conditions (2.4.10) (2.4.11) and the
boundary conditions (2.4.13) (2.4.14) is illustrated on Figure 2.6. The initial
conditions are active in the beginning of the evolution in time (t ≤ L

c0
) and

have a trace for higher times due to the boundary conditon (2.4.13), that gives,
due to (2.4.8) and (2.4.13) :

(2.4.15) ϕ−(x, t) ≡ p(x, t)− ρ0 c0 u(x, t) = p0(L)− ρ0 c0 u0(L) , t ≥ L

c0
.

On the other hand, the inflow boundary condition (2.4.12) and the second row
of matrix equation (2.4.9) implies :

(2.4.16)

{
ϕ+(x, t) ≡ p(x, t) + ρ0 c0 u(x, t) =

= 2Π
(
t− x

c0

)
− ϕ−

(
0, t− x

c0

)
, t ≥ L

c0
.

We deduce from the relations (2.4.15) (2.4.16) joined with the definitions (2.4.7)
and (2.4.8) :
(2.4.17) p(x, t) = Π

(
t− x

c0

)
, 0 ≤ x ≤ L , t ≥ L

c0

(2.4.18) u(x, t) = u0(L) +
1

ρ0 c0

(
Π
(
t− x

c0

)
−p0(L)

)
, 0 ≤ x ≤ L , t ≥ L

c0
.

• We turn now to the numerical finite volume scheme. We have to de-
termine the internal fluxes f

n+1/2
j , j = 1, · · · , J−1 and the boundary fluxes
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f
n+1/2
0 and f

n+1/2
J . Recall first that the physical flux F (W ) function for the

acoustic equation (2.4.5) is equal to

(2.4.19) F (W ) =

(
ρ0 c

2
0 u

1
ρ0

p

)
with W =

(
p
u

)
.

Proposition 2.5. Upwind scheme for computational acoustics.
The extension of the upwind finite volume scheme (2.3.10), (2.3.12) and (2.3.14)
is determined by the following relations :

(2.4.20) f
n+1/2
j =

(
ρ0 c2

0

2

(
unj−1/2 + unj+1/2

)
− c0

2

(
pnj+1/2 − pnj−1/2

)
1

2 ρ0

(
pnj−1/2 + pnj+1/2

)
− c0

2

(
unj+1/2 − unj−1/2

)
)

for the internal fluxes, i.e. for indexes j that satisfy 1 ≤ j ≤ J−1 . The two
boundary fluxes follow the following relations :

(2.4.21) f
n+1/2
0 =

(
ρ0 c

2
0 u

n
1/2 + c0

(
Π
(
(n+ 1

2
)∆t

)
− pn1/2

)

1
ρ0

Π
(
(n+ 1

2 )∆t
)

)

(2.4.22) f
n+1/2
J =

(
ρ0 c2

0

2

(
unJ−1/2 + u0J−1/2

)
− c0

2

(
p0J−1/2 − pnJ−1/2

)
1

2 ρ0

(
pnJ−1/2 + p0J−1/2

)
− c0

2

(
u0J−1/2 − unJ−1/2

)
)
.

• The internal fluxes are determined with the scheme (2.3.10) applied with
the diagonal form of relation (2.4.9). We have

(2.4.23) ϕ
n+1/2
+, j = ϕn

+, j−1/2 ≡ pnj−1/2 + ρ0 c0 u
n
j−1/2

(2.4.24) ϕ
n+1/2
−, j = ϕn

−, j+1/2 ≡ pnj+1/2 − ρ0 c0 u
n
j+1/2

then the relation (2.4.20) is established.
The left boundary flux uses the extension of relation (2.3.12). We first determine
the characteristic variables on the left boundary according to relation (2.4.13)

(2.4.25) ϕ
n+1/2
+, 0 = 2Π

(
(n+

1

2
)∆t

)
− ϕ

n+1/2
−, 0

and use a first order extrapolation of the outgoing characteristic variable :

(2.4.26) ϕ
n+1/2
−, 0 = ϕn

−, 1/2 ≡ pn1/2 − ρ0 c0 u
n
1/2 .

Then we solve the system (2.4.25) (2.4.26) and find finally the relation (2.4.21).
The process is analogous for the right boundary. The input datum is imposed
according to the relation (2.4.14) :

(2.4.27) ϕ
n+1/2
−, J = ϕ0

−, J ≡ p0(L)− ρ0 c0 u0(L) ≈ p0J−1/2 − ρ0 c0 u
0
J−1/2

and the output characteristic variable is extrapolated from the interior of the
domain :
(2.4.28) ϕ

n+1/2
+, J = ϕn

+, J−1/2 ≡ pnJ−1/2 + ρ0 c0 u
n
J−1/2 .

The relation (2.4.22) follows after two steps of elementary algebra.
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• We remark that both relations (2.4.20) and (2.4.22) are identical, except
that the boundary state W0(L) ≈W 0

J−1/2 has replaced the right state Wn
j+1/2 .

Moreover the flux boundary condition (2.4.21) that involves the pressure is a
natural discretization of the exact characteristic solution (2.4.17) (2.4.18) at
x=0 .

2.5 Characteristic variables.
• We suppose now to fix the ideas that the unknown vector W (•, •)
(2.5.1) [0, L]× [0, +∞[ ∋ (x, t) 7−→W (x, t) ∈ IR3

has three real components w1, w2 and w3. We suppose also that the function
W (•, •) is solution of a conservation law of the type

(2.5.2)
∂W

∂t
+

∂

∂x
F (W ) = 0

where the flux F (W ) is a linear function of vector W :
(2.5.3) F (W ) = A •W
and A is a 3 by 3 diagonalizable real matrix.

• We first detail the fact that matrix A is a diagonalizable matrix. There
exists three non null real vectors r1 , r2 , r3 and three real scalars λ1 , λ2 ,
λ3 in such a way that
(2.5.4) A • rj = λj rj , j = 1, 2, 3.
¿From a matricial viewpoint, we denote by Rk j the k0 component of the
eigenvector rj , i.e.

(2.5.5) rj =



R1 j

R2 j

R3 j


 ≡




(
rj
)
1(

rj
)
2(

rj
)
3




and we introduce the 3 by 3 matrix R composed by the scalars Rk j . The vector
rj is the k0 column of matrix R. The relation (2.5.4) can also be written as
(2.5.6) A •R = R •Λ ,
and Λ is the diagonal matrix whose diagonal terms are equal to the eigenvalues
λj :

(2.5.7) Λ =



λ1 0 0
0 λ2 0
0 0 λ3


 .

• We consider now two distinct bases for linear space IR3 : on one hand
the canonical basis

(
ej
)
j=1, 2, 3

defined by

(2.5.8) e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1



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where the vector W admits the natural decomposition introduced above :

(2.5.9) W =
∑k=3

k=1 wk ek ,

and on the other hand the basis of IR3 composed by the eigenvectors (rj)j=1, 2, 3.
In the latter, the vector W can be decomposed with a formula of the type

(2.5.10) W =
∑j=3

j=1 ϕj rj

and the scalar ϕj define the characteristic variables associated with the
system (2.5.2) (2.5.3). The link between the relations (2.5.9) and (2.5.10) is
classical : we consider the components Rk j of vector rj inside the canonical
basis and we get from the relation (2.5.5) :

(2.5.11) wk =
∑j=3

j=1 ϕj Rk j .

Then the relation (2.5.11) can be re-written under a matricial form :

(2.5.12) W = R •ϕ .

• The relation (2.5.12) proposes to change the unknown function, i.e.
to replace the research of W (x, t) ∈ IR3 by the equivalent research of the
characteristic vector ϕ(x, t) ∈ IR3 and defined by :

(2.5.13) ϕ = R−1
•W .

Proposition 2.6. Characteristic variables satisfy advection equations.

The vector [0, L]×[0, +∞[ ∋ (x, t) 7−→ ϕ(x, t) ∈ IR3 of characteristic variables
satisfy the matrix equation

(2.5.14)
∂ϕ

∂t
+ Λ •

∂ϕ

∂x
= 0

that takes also the equivalent scalar form :

(2.5.15)
∂ϕj

∂t
+ λj

∂ϕj

∂x
= 0 , j = 1, 2, 3 .

• We have from (2.5.2), (2.5.3), (2.5.6) and (2.5.12) :

∂W

∂t
+ A

∂W

∂x
= R •

∂ϕ

∂t
+ A •R •

∂ϕ

∂x
= R •

(
∂ϕ

∂t
+ R−1

•A •R •
∂ϕ

∂x

)

= R •

(
∂ϕ

∂t
+ Λ •

∂ϕ

∂x

)
= 0 ,

and since the matrix R is invertible, we deduce from the previous calculus the
relation (2.5.14). The relation (2.5.15) is an immediate consequence of (2.5.14)
and (2.5.7).
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λ
2

λ
3

λ
1

λ
3

λ
2λ

1

x = 0 x = L

t

x

Figure 2.7. Linear hyperbolic system with three equations
and eigenvalues satisfying λ1 < 0 < λ2 < λ3.

• To fix the ideas, we suppose that the eigenvalues λj of matrix A
are distinct, enumerated with an increasing order and with distinct signs as
illustrated on Figure 2.7 :

(2.5.16) λ1 < 0 < λ2 < λ3 .

The propagation of the first variable ϕ1 goes from right to left (because λ1 < 0 )
with celerity |λ1 |, the second characteristic variable ϕ2 from left to right with
celerity λ2 and the same property holds for variable ϕ3 with eigenvalue λ3.

• A set of well posed boundary conditions is a consequence of the diagonal
form (2.5.15) of the equations and of the particular choice (2.5.16) for the signs.
The directions associated with eigenvalues λ2 and λ3 are ingoing at x=0 and
we have to give some boundary condition for ϕ2 and ϕ3 at this point :

(2.5.17) ϕ2(x=0, t) = β0(t)

(2.5.18) ϕ3(x=0, t) = γ0(t) .

The direction associated with the eigenvalue λ1 is ingoing at the abscisssa x=L,
and this condition imposes to have some datum concerning ϕ1 at this particular
point :

(2.5.19) ϕ1(x=L, t) = αL(t) .

The previous boundary conditions (2.5.17) to (2.5.19) define a well posed prob-
lem. Nevertheless, the introduction of physically relevant boundary conditions
(as a pressure condition as seen in the previous section) requires a more general
formulation of the boundary condition. In the linear case, the stability study
developed by Kreiss [Kr70] shows that the ingoing characteristic can be an affine
function of the outgoing characteristic through a reflection operator at the
boundary. We can explicit the former with the above example.
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Figure 2.8. Reflection operator at x = 0.
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θ σ

Figure 2.9. Reflection operator at x = L.

• At x=0 , the first characteristic is outgoing and the two last ones are
going inside the domain of study. Then we can replace the conditions (2.5.17)
and (2.5.18) by the following ones :
(2.5.20) ϕ2(x=0, t) = β0(t) + p(t)ϕ1(x=0, t)
(2.5.21) ϕ3(x=0, t) = γ0(t) + q(t)ϕ1(x=0, t) ,
where t 7−→ p(t) and t 7−→ q(t) are given fixed real functions of time. The
conditions (2.5.20) and (2.5.21) are illustrated on Figure 2.8. We can also write
them
(2.5.22) ϕin(x, t) = g(t) + S(t) •ϕout(x, t) , x point on the boundary,

with ϕin =

(
ϕ2

ϕ3

)
, g(t) =

(
β0(t)
γ0(t)

)
, S(t) =

(
p(t)
q(t)

)
, ϕout = ϕ1

when x = 0 .

• When x=L, the relation (2.5.19) is replaced by a more general one
(2.5.23) ϕ1(x=L, t) = αL(t) + θ(t) ϕ2(x=L, t) + σ(t) ϕ3(x=L, t)
illustrated on Figure 2.9 and including an affine component of the outgoing
characteristic variables. The boundary condition (2.5.23) takes again a form of





An introduction to finite volumes for gas dynamics

the type (2.5.22) with this time the following relations : ϕin = ϕ1 , g(t) =

αL(t) , S(t) =
(
θ(t) σ(t)

)
, ϕout =

(
ϕ2

ϕ3

)
when x=L .

2.6 A family of model systems with three equations
• We still study a 3 by 3 linear hyperbolic system of the type (2.5.2)
(2.5.3) with the condition (2.5.16) to fix a particular example. We suggest in

this section to explicit a way for evaluation of the numerical flux f
n+1/2
j that

is the key point for the discrete evolution in time of the mean values Wj+1/2 :

(2.6.1)
1

∆t

(
Wn+1

j+1/2 − Wn
j+1/2

)
+

1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
= 0 .

The internal fluxes
(
f
n+1/2
j

)
j=1,···, J−1

are evaluated with the help of a two-

point numerical flux function Φ(•, •) :

(2.6.2) f
n+1/2
j = Φ(Wn

j−1/2, W
n
j+1/2)

and the boundary fluxes f
n+1/2
0 and f

n+1/2
J are detailed in a forthcoming

sub-section.
t

W
left

W
right

x

Figure 2.10. Discontinuity at the interface between two cells.

• We change the notations and wish to determine the numerical flux
Φ(Wl, Wr) for Wl = Wleft and Wr = Wright given respectively at the left
and at the right of the interface (see Figure 2.10). When we consider the ad-
vection equation (and in that case the variables Wl and Wr are real num-
bers) the relation (2.1.19) gives the result : Φ(Wl, Wr) = aWl when a > 0
and Φ(Wl, Wr) = aWr when a < 0 . We have to generalize this study when
the field W (•, •) is three-dimensional. We first decompose the vector Φ(Wl,
Wr) with the basis rj of eigenvectors and introduce its (scalar) components
ψj(Wl, Wr) :

(2.6.3) Φ(Wl, Wr) =
∑j=3

j=1 ψj(Wl, Wr) rj
i.e.
(2.6.4) Φk(Wl, Wr) =

∑j=3
j=1 Rk j ψj(Wl, Wr) .

For j = 1, we have λ1 < 0 then the numerical scheme has to be upwinded in
the right direction :
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(2.6.5) ψ1(Wl, Wr) = λ1 ϕ1, r

whereas for j=2 or j=3, we have λ2 > 0 and λ3 > 0 and the scheme must
be upwinded to the left. It comes
(2.6.6) ψ2(Wl, Wr) = λ2 ϕ2, l , ψ3(Wl, Wr) = λ3 ϕ3, l .
In consequence of the relations (2.6.3) to (2.6.6), the numerical flux function
Φ(•, •) can be written globally :
(2.6.7) Φ(Wl, Wr) = λ1 ϕ1, r r1 + λ2 ϕ2, l r2 + λ3 ϕ3, l r3 ,
or in an equivalent way with introducing the Cartesian components :
(2.6.8) Φk(Wl, Wr) = λ1 ϕ1, r Rk 1 + λ2 ϕ2, lRk 2 + λ3 ϕ3, lRk 3 , k=1, 2, 3 .

• We can also re-write the relation (2.6.8) for the particular interface xj :
(2.6.9) Wl = Wleft = Wn

j−1/2 , Wr = Wright = Wn
j+1/2 .

We first decompose the vector W on the eigenvectors of matrix A as in (2.5.11) :

(2.6.10)
(
Wn

j+1/2

)
k

=
∑i=3

i=1 ϕ
n
i, j+1/2 Rk i , k = 1, 2, 3 , j = 1, · · · , J−1 ,

then we introduce the component number k of the flux f
n+1/2
j , i.e. (f

n+1/2
j )k

= Φk(W
n
j−1/2, W

n
j+1/2) at the interface xj :

(2.6.11)
(
f
n+1/2
j

)
k
= λ1 ϕ

n
1, j+1/2Rk 1 +λ2 ϕ

n
2, j−1/2Rk 2 +λ3 ϕ

n
3, j−1/2Rk 3 .

• We detail in this sub-section the determination of the numerical flux
f
n+1/2
0 at the boundary x = 0. We first recall that the continuous boundary
conditions at this point take the form given in (2.5.20) (2.5.21). The idea is to try

to apply the upwind scheme (2.6.11) at the particular vertex j=0 : f
n+1/2
0 =

λ1 ϕ
n
1, 1/2 r1 + +λ2 ϕ

n
2,−1/2 r2 + λ3 ϕ

n
3,−1/2 r3 and then to replace the charac-

teristic values ϕn
2,−1/2 and ϕn

3,−1/2 (that are not defined on the mesh) by their

values evaluated after a rough discretization of relations (2.5.20) and (2.5.21) :

ϕn
2,−1/2 = β

n+1/2
0 + + pn+1/2 ϕn

1, 1/2 , ϕn
3,−1/2 = γ

n+1/2
0 + qn+1/2 ϕn

1, 1/2 .

We obtain in consequence the following expression for the boundary flux at
x=0 :

(2.6.12) f
n+1/2
0 =

{
λ1 ϕ

n
1, 1/2 r1 + λ2

(
β
n+1/2
0 + pn+1/2 ϕn

1, 1/2

)
r2 +

+λ3
(
γ
n+1/2
0 + qn+1/2 ϕn

1, 1/2

)
r3

or in an equivalent way :

(2.6.13) f
n+1/2
0 =

{
ϕn
1, 1/2

(
λ1 r1 + λ2 p

n+1/2 r2 + λ3 q
n+1/2 r3

)
+

+ λ2 β
n+1/2
0 r2 + λ3 γ

n+1/2
0 r3 .

• The determination of the boundary flux f
n+1/2
J can be conducted

in the same way. Starting from the expression of the upwind scheme (2.6.11)

when j = J , i.e. formally f
n+1/2
J = λ1 ϕ

n
1, J+1/2 r1 + λ2 ϕ

n
2, J−1/2 r2 +
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λ3 ϕ
n
3, J−1/2 r3 , we replace the first characteristic variable that appears ex-

ternal of the domain by its value given by the boundary condition (2.5.23) :

ϕn
1, J+1/2 = α

n+1/2
L + θn+1/2 ϕn

2, J−1/2 + +σn+1/2 ϕn
3, J−1/2 . We deduce :

(2.6.14) f
n+1/2
J =

{
λ1
(
α
n+1/2
L + θn+1/2 ϕn

2, J−1/2 + σn+1/2 ϕn
3, J−1/2

)
r1

+ λ2 ϕ
n
2, J−1/2 r2 + λ3 ϕ

n
3, J−1/2 r3

or in an equivalent manner :

(2.6.15) f
n+1/2
J =

{
λ1 α

n+1/2
L r1 + ϕn

2, J−1/2

(
λ1 θ

n+1/2 r1 + λ2 r2
)
+

+ ϕn
3, J−1/2

(
λ1 σ

n+1/2 r1 + λ3 r3
)
.

2.7 First order upwind-centered finite volumes
• We consider now a general system of conservation laws

(2.7.1)
∂W

∂t
+

∂

∂x
F (W ) = 0

with an unknown vector W (•, •) that belongs to linear space IRm :
(2.7.2) [0, L]× [0, +∞[ ∋ (x, t) 7−→W (x, t) ∈ IRm

and a linear flux function F (•)
(2.7.3) F (W ) = A •W
associated with a diagonalizable matrix A with eigenvalues λj and eigenvectors
rj
(2.7.4) A • rj = λj rj , j = 1, 2, · · · , m .
Introducing the m×m matrix R as in relation (2.5.5) and the diagonal matrix
Λ of eigenvalues as in relation (2.5.7), we have :
(2.7.5) A •R = R •Λ .

• We propose here to determine a first order upwind flux Φ(Wl, Wr) be-
tween the two states Wleft =Wl and Wright =Wr that generalizes the relation
(2.6.7) when we have not done any hypothesis of the type (2.5.16) concerning
the sign of the eigenvalues λj . We decompose any state W on the basis of space
IRm characterized by the eigenvectors rj :

(2.7.6) W =
∑j=m

j=1 ϕj rj , Wl =
∑j=m

j=1 ϕj, l rj , Wr =
∑j=m

j=1 ϕj, r rj ,
and due to the structure introduced at Proposition 2.6, we obtain an advection
equation for the jo characteristic variable ϕj :

(2.7.7)
∂ϕj

∂t
+ λj

∂ϕj

∂x
= 0 , j = 1, 2, · · · , m .

Therefore it is natural to introduce the components ψj(Wl, Wr) of the numer-
ical flux on the basis of the eigenvectors :

(2.7.8) Φ(Wl, Wr) =
∑j=3

j=1 ψj(Wl, Wr) rj
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and the first order upwind finite volume scheme is defined by the way we eval-
uate the coefficient ψj(Wl, Wr) with the upwind scheme associated with the
advection equation (2.7.7) :

(2.7.9) ψj(Wl, Wr) =

{
λj ϕj, l if λj > 0
λj ϕj, r if λj < 0 .

• For any real number µ , we introduce the positive part µ+ and the
negative part µ− by the relations

(2.7.10) µ+ =

{
µ if µ ≥ 0
0 if µ ≤ 0

, µ− =

{
0 if µ ≥ 0
µ if µ ≤ 0 .

We remark that we have
(2.7.11) µ ≡ µ+ + µ− , ∀µ ∈ IR
(2.7.12) |µ | ≡ µ+ − µ− , ∀µ ∈ IR .
We introduce also the absolute value | Λ | of the diagonal matrix Λ by the
condition :
(2.7.13) |Λ | ≡ |diag

(
λ1, · · · , λm

)
| = diag

(
|λ1 |, · · · , |λm |

)

and due to the relation (2.7.5), the absolute value | A | of the matrix A is
defined by :
(2.7.14) |A | = R • |Λ | •R−1 .

Proposition 2.7. Three expressions of the upwind first order scheme.
Let Φ(Wl, Wr) the upwind flux defined by the relations (2.7.8) and (2.7.9).
Then we have the three equivalent expressions :

(2.7.15) Φ(Wl, Wr) = F (Wl) +
∑j=m

j=1 λ−j
(
ϕj, r − ϕj, l

)
rj

(2.7.16) Φ(Wl, Wr) = F (Wr) − ∑j=m
j=1 λ+j

(
ϕj, r − ϕj, l

)
rj

(2.7.17) Φ(Wl, Wr) = 1
2

(
F (Wl) + F (Wr)

)
− 1

2 |A | • (Wr − Wl

)
.

• We write the relation (2.7.9) under the form :
(2.7.18) ψj(Wl, Wr) = λ+j ϕj, l + λ−j ϕj, r

and we have :
Φ(Wl, Wr) =

∑j=m
j=1

(
λ+j ϕj, l + λ−j ϕj, r

)
rj

=
∑j=m

j=1

(
(λj − λ−j ) ϕj, l + λ−j ϕj, r

)
rj due to (2.7.11)

=
∑j=m

j=1 λj ϕj, l rj +
∑j=m

j=1 λ−j
(
ϕj, r − ϕj, l

)
rj

and the relation (2.7.15) is established. In an analogous way, we have :

Φ(Wl, Wr) =
∑j=m

j=1

(
λ+j ϕj, l + λ−j ϕj, r

)
rj

=
∑j=m

j=1

(
λ+j ϕj, l + (λj − λ+j ) ϕj, r

)
rj due to (2.7.11)

Φ(Wl, Wr) =
∑j=m

j=1 λj ϕj, r rj − ∑j=m
j=1 λ+j

(
ϕj, r − ϕj, l

)
rj

and the relation (2.7.16) holds. We remark that
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|A | • (Wr −Wl) = R • |Λ | •R−1
•R • (ϕr −ϕl) due to (2.7.14) and (2.5.12)

= R • |Λ | • (ϕr − ϕl)

=
∑k=m

k=1

∑j=m
j=1 Rk j |λj | (ϕj, r − ϕj, l) ek then

(2.7.19) |A | • (Wr −Wl) =
∑j=m

j=1 |λj | (ϕj, r − ϕj, l) rj .

We add the previous results (2.7.15) with (2.5.16), and we divide by two. We
obtain :
Φ(Wl, Wr) = 1

2

(
F (Wl) + F (Wr)

)
− 1

2

∑j=m
j=1

(
λ+j − λ−j

) (
ϕj, r − ϕj, l

)
rj

= 1
2

(
F (Wl) + F (Wr)

)
− 1

2

∑j=m
j=1 |λj |

(
ϕj, r − ϕj, l

)
rj due to (2.7.12)

= 1
2

(
F (Wl) + F (Wr)

)
− 1

2 |A | • (Wr − Wl)
due to the relation (2.7.19). Then the relation (2.7.17) is established and the
proposition 2.7 is proven.

3) Gas dynamics with the Roe method.
3.1 Nonlinear acoustics in one space dimension.
• We propose here to describe quickly a physical problem that comes
from the theoretical modelling of trombone, detailed for instance in the work
of Hirschberg et al [HGMW96] or in our study [MD99] with R. Msallam. In a
first approximation, the duct of a trombone is a long cylinder with a constant
section and the acoustic waves propagate only in the longitudinal direction. We
can use a one-dimensional description of the geometry (see Figure 3.1) and in
what follows, the trombone is modelled by a real space variable x that ranges
from x=0 at the input to x=L at the output.

• At the input x=0, a given non-stationary pressure wave t 7−→ Π(t) is
emitted ; this wave is a perturbation of the ambiant pressure p0 of the air :
(3.1.1) |Π(t)− p0 | << p0 , t > 0 .
At the output x = L, the waves go outside without any reflection due to the
presence of a pavilion and the boundary condition is a “free output” and a non-
reflecting boundary condition has to be used. At the initial time t=0, we
can consider that the air satisfies the usual conditions of pressure p(x, 0) ≡ p0 ,
temperature T (x, 0) ≡ T0 and density ρ(x, 0) ≡ ρ0. We study in this section a
finite volume method able to treat nonlinearities in the acoustic modelling and
based on the characteristic decompositions developed in the previous section.
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Input 
pressure
Π(t)

nonreflecting
free
output

x = 0 x = L

Figure 3.1. Long unidimensional pipe for the modelling of a trombone.

3.2 Linearization of the gas dynamics equations.
• We study a perfect gas subjected to a motion with variable velocity in
space and time. We have noticed that the primitive unknowns of this problem are
the scalar fields that characterize the thermodynamics of the gas, i.e. density ρ,
internal energy e, temperature T, and pressure p. In what follows, we suppose
that the gas is a polytropic perfect gas ; it has constant specific heats at constant
volume Cv and at constant pressure Cp. These two quantities do not depend
on any thermodynamic variable like temperature or pressure ; we denote by γ
their ratio :

(3.2.1) γ =
Cp

Cv
(= constant) .

We suppose that the gas satisfies the law of perfect gas that can be written with
the following form :
(3.2.2) p = (γ − 1) ρ e .
As usual, internal energy and temperature are linked together by the Joule-
Thomson relation :
(3.2.3) e = Cv T .

• In the formalism proposed by Euler during the 18th century, the motion
is described with the help of an unknown vector field u which is a function of
space x and time t :
(3.2.4) u = u(x, t) .
In the following, we will suppose that space x has only one dimemsion (x ∈
IR). We have four unknown functions (density, velocity, pressure and internal
energy) linked together by the state law (3.2.2). In consequence, we need three
complementary equations in order to define a unique solution of the problem.
The general laws of Physics assume that mass, momentum and total energy are
conserved quantities, at least in the context of classical physics associated to
the paradigm of invariance for the Galileo group of space-time transformations
(see e.g. Landau and Lifchitz [LL54]). When we write the conservation of mass,
momentum and energy inside an infinitesimal volume dx advected with celerity
u(x, t), which is exactly the mean velocity of particules that compose the gas,
it is classical [LL54] to write the fundamental conservation laws of Physics with
the help of divergence operators :
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(3.2.5)
∂ρ

∂t
+

∂

∂x

(
ρu
)

= 0

(3.2.6)
∂

∂t

(
ρu
)

+
∂

∂x

(
ρu2 + p

)
= 0

(3.2.7)
∂

∂t

(1
2
ρu2 + ρ e

)
+

∂

∂x

( (1
2
ρu2 +

p

γ − 1

)
u + pu

)
= 0 .

• We introduce the specific total energy E by unity of volume
(3.2.8) E = 1

2u
2 + e ,

the sound celerity c following the classical expression :

(3.2.9) c =

√
γ p

ρ
,

and total enthalpy H defined according to
(3.2.10) H ≡ E + p

ρ = 1
2u

2 + 1
γ−1 c

2 .

The vector W is therefore composed by the “conservative variables” or more
precisely by the “conserved variables” :

(3.2.11) W =
(
ρ , ρ u , ρE

)t ≡
(
ρ , q , ǫ

)t
.

The conservation laws (3.2.5)-(3.2.7) take the following general form of a system
of conservation laws :

(3.2.12)
∂W

∂t
+

∂

∂x
F (W ) = 0

where the flux vector W 7−→ F (W ) satisfies the following algebraic expression :

(3.2.13) F (W ) =
(
ρu , ρ u2 + p , ρ uH

)t
that can be explicited as a true function of state vector W, on one hand with
the pressure law P (W ) computed with (3.2.2), (3.2.8) and (3.2.11) :

(3.2.14) P (W ) = (γ−1)

(
ǫ− q2

2 ρ

)

and on the other hand with an explicit use of the conserved variables ρ, q and
ǫ. We obtain :

(3.2.15) F (W ) =
(
q ,

q2

ρ
+ P (W ) ,

q ǫ

ρ
+ P (W )

q

ρ

)
.

Proposition 3.1. Jacobian matrix of gas dynamics.
• The Jacobian matrix dF (W ) of the flux function W 7−→ F (W ) for the
Euler equations of the gas dynamics admits the following expression :

(3.2.16) dF (W ) =




0 1 0
(γ−1)H − u2 − c2 (3− γ)u γ − 1
(γ−2)uH − u c2 H − (γ−1)u2 γu


 .

• The matrix dF (W ) is diagonalizable ; the eigenvalues λj(W ) satisfy the
relations
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(3.2.17) λ1(W ) ≡ u− c < λ2(W ) ≡ u < λ3(W ) ≡ u+ c .
and the associated eigenvectors rj(W ) are proportional to the following ones :

(3.2.18) r1(W ) =




1
u− c
H − u c


 , r2(W ) =




1
u

1
2u

2


 , r3(W ) =




1
u+ c
H + u c


 .

• We first differentiate the pressure law W 7−→ P (W ) given in (3.2.14) :

(3.2.19)
∂P

∂ρ
=

γ−1

2
u2 = (γ−1)H−c2 , ∂P

∂q
= −(γ−1)u , ∂P

∂ǫ
= (γ−1)

and the second row of the matrix (3.2.16) is a direct consequence of the relations
∂

∂ρ

(q2
ρ

)
= −u2 and

∂

∂q

(q2
ρ

)
= 2u .

• The calculus of the third row of matrix in (3.2.16) demands first evalu-
ation of the gradient of ρuE = u ǫ relatively to the state W. We get

(3.2.20)
∂

∂ρ

(q ǫ
ρ

)
= −uE , ∂

∂q

(q ǫ
ρ

)
= E ,

∂

∂ǫ

(q ǫ
ρ

)
= u .

We have also ∂
∂W (P u) = ∂P

∂W u + p ∂
∂W

(
q
ρ

)
then we deduce from (3.2.19)

and the following expressions for the gradient of velocity ∂
∂ρ

(
q
ρ

)
= −u

ρ and

∂
∂q

(
q
ρ

)
= 1

ρ :

(3.2.21)





∂

∂ρ

(P q
ρ

)
=

γ−1

2
u3 − u p

ρ
,

∂

∂q

(P q
ρ

)
= −(γ−1)u2 +

p

ρ
,

∂

∂ǫ

(P q
ρ

)
= (γ−1)u .

We add the relations (3.2.20) and (3.2.21) ; then the third row of matrix (3.2.16)
admits the following expression :

(
γ−1
2 u3 − uH , H − (γ−1)u2 , γ u

)
and

this result is exactly the third row of the right hand side of (3.2.16) when we
take into account the relation (3.2.10) between H, u2 and c2. The relations
(3.2.17) and (3.2.18) are elementary to satisfy ; they express simply the three
relations :
(3.2.22) dF (W ) • rj(W ) = λj(W ) rj(W ) , j = 1, 2, 3
and Proposition 3.1 is established.

• We keep into memory the following expression of the Jacobian matrix
dF (W ) :

(3.2.23) dF (W ) =




0 1 0
γ−3
2 u2 (3− γ)u γ − 1

γ−1
2 u3 − uH H − (γ−1)u2 γu




that needs only the datum of velocity u and total enthalpy H of the state W.
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3.3 Roe matrix.
• We consider two states Wleft ≡ Wl and Wright ≡ Wr relatively to the
gas dynamics, i.e. they both belong to space IR3 and have an expression of
the form (3.2.11). By definition, a Roe matrix A(Wl, Wr) between these two
states is a 3 by 3 matrix that satisfy the three following properties :
(3.3.1) A(Wl, Wr) is a diagonalizable matrix on the field IR of real numbers
(3.3.2) A(W, W ) = dF (W )
(3.3.3) F (Wr)− F (Wl) = A(Wl, Wr) • (Wr −Wl) .
In his original article, P. Roe [Roe81] has proposed a very simple algebraic way
to construct a Roe matrix for the dynamics of polytropic gas. We propose it in
the following Proposition.

Proposition 3.2. Algebraic construction of a Roe matrix [Roe81].
Let Wl and Wr be two states for gas dynamics, defined by their densities ρl
and ρr, their velocities ul and ur and their total enthalpies Hl and Hr. We
introduce an intermediate state W ∗(Wl, Wr) by its density ρ∗, its velocity
u∗ and its total enthalpy H∗ according to the following relations :
(3.3.4) ρ∗ =

√
ρl ρr

(3.3.5) u∗ =

√
ρl ul +

√
ρr ur√

ρl +
√
ρr

(3.3.6) H∗ =

√
ρlHl +

√
ρrHr√

ρl +
√
ρr

.

Then the matrix A(Wl, Wr) defined as the Jacobian matrix of the flux for the
intermediate state W ∗(Wl, Wr), i.e.
(3.3.7) A(Wl, Wr) = dF

(
W ∗(Wl, Wr)

)

is a Roe matrix.

• Due to the expression (3.2.23) of the Jacobian matrix of gas dynamics,
we remark that the formula (3.3.4) giving the density ρ∗ is not necessary for the
determination of the matrix dF (W ∗(Wl, Wr)) and an entire family of states
W ∗(Wl, Wr) define a Roe matrix according to the relations (3.3.5), (3.3.6) and
(3.3.7). Nevertheless, we keep this definition of density ρ∗ by convenience and
simplicity for future algebraic expressions. The proof of Proposition 3.2 needs
some algebraic developments. We begin by the following technical lemma.

Proposition 3.3.
Under the hypotheses of Proposition 3.2, we have the following relations :
(3.3.8) (u∗)2 (ρr − ρl) − 2u∗ (ρr ur − ρl ul) + (ρr u

2
r − ρl u

2
l ) = 0

(3.3.9)

{
−u∗H∗ (ρr − ρl) + H∗ (ρr ur − ρl ul) + u∗ (ρrHr − ρlHl) =

= ρr urHr − ρl ulHl .
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• We first evaluate the left hand side of relation (3.3.8) :
(u∗)2 (ρr − ρl) − 2u∗ (ρr ur − ρl ul) + (ρr u

2
r − ρl u

2
l ) =

= u∗(
√
ρr−

√
ρl) (

√
ρr ur+

√
ρl ul)− 2u∗(ρr ur−ρl ul) + (ρr u

2
r−ρl u2l )

= u∗
(√
ρl (

√
ρl +

√
ρr)ul −

√
ρr (

√
ρl +

√
ρr)ur

)
+ (ρr u

2
r − ρl u

2
l )

= (
√
ρl ul +

√
ρr ur) (

√
ρl ul −

√
ρr ur) + (ρr u

2
r − ρl u

2
l )

= 0 and the relation (3.3.8) is established.

• We work on the left hand side of (3.3.9) as follows :
−u∗H∗ (ρr − ρl) + H∗ (ρr ur − ρl ul) + u∗ (ρrHr − ρlHl) =
= −u∗(√ρr −

√
ρl) (

√
ρlHl+

√
ρrHr) + H∗ (ρr ur −ρl ul) + u∗ (ρrHr −ρlHl)

=
√
ρl ρr u

∗ (Hr −Hl) + H∗ (ρr ur − ρl ul)

=

√
ρl
√
ρr (

√
ρl ul +

√
ρr ur) (−Hl +Hr) + (−ρl ul + ρr ur) (

√
ρlHl +

√
ρrHr)√

ρl +
√
ρr

=
1√

ρl +
√
ρr

[
−ρl (

√
ρl +

√
ρr)ulHl + ρr (

√
ρl +

√
ρr)urHr

]

= ρr urHr − ρl ulHl

and the proposition 3.3 is established.

• The proof of Proposition 3.2 consists in satisfying the three hypothe-
ses that define a Roe matrix. First, due to the fact that the relation (3.3.7)
defines the matrix A(Wl, Wr) as a Jacobian of some state, this matrix is diag-
onalizable with real elements due to the result of Proposition 3.1 and the first
property (3.3.1) is satisfied. The second property (3.3.2) is a simple consequence
of the fact that if Wl = Wr = W, then we have from the relations (3.3.4) to
(3.3.6) : W ∗(Wl, Wr) = W and the property results from (3.3.7).

• The third property (3.3.3) needs more work. We remark that the first
row of this matricial relation is clear. For the second row, we have :
Second row of matrix A(Wl, Wr) • (Wr −Wl) =

=
γ−3

2
(u∗)2 (ρr − ρl) + (3−γ)u∗ (ρr ur − ρl ul) + (γ−1) (ρr Er − ρlEl)

=
γ−3

2

[
(u∗)2 (ρr −ρl) − 2u∗ (ρr ur −ρl ul)

]
+
γ−1

2
(ρr u

2
r −ρl u2l ) + (pr − pl)

= (ρr u
2
r − ρl u

2
l ) + (pr − pl) due to (3.3.8)

= second row of the flux difference F (Wr)− F (Wl) .

• We have also, in consequence of (3.2.23),
Third row of matrix A(Wl, Wr) • (Wr −Wl) =

= u∗
(γ−1

2
(u∗)2 −H∗

)
(ρr − ρl) + (H∗ − (γ−1) (u∗)2) (ρr ur − ρl ul)+

+ γ u∗ (ρr Er − ρlEl)

=
γ−1

2
u∗
[
(u∗)2 (ρr − ρl) − 2u∗ (ρr ur − ρl ul)

]
+
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+
[
−H∗ u∗ (ρr − ρl) + H∗ (ρr ur − ρl ul)

]
+ γ u∗ (ρr Er − ρlEl)

=
γ−1

2
u∗
[
(u∗)2 (ρr − ρl) − 2u∗ (ρr ur − ρl ul)

]
− u∗ (ρrHr − ρlHl)+

+ (ρr urHr−ρl ulHl) + γ u∗ (ρr Er−ρl El) due to (3.3.9)

=
γ−1

2
u∗
[
(u∗)2 (ρr − ρl) − 2u∗ (ρr ur − ρl ul) + ρr u

2
r − ρl u

2
l

]
+

+u∗ (−γ ρr er + γ ρl el + γ ρr er − γ ρl el) + ρr urHr − ρl ulHl

= ρr urHr−ρl ulHl due to (3.3.8)
= third row of the flux difference F (Wr)− F (Wl)
in the view of relation (3.2.13). The proposition 3.2 is established.

3.4 Roe flux.
• The principal interest of the Roe matrix is to be able to use all what has
been developed for linear hyperbolic systems in Section 2. In particular, the
following linear hyperbolic system defined with a given Roe matrix A(Wl, Wr)

(3.4.1)
∂W

∂t
+ A(Wl, Wr) •

∂W

∂x
= 0

can be treated with the upwind scheme defined at proposition 2.7. We obtain
by doing this the following

Proposition 3.4. Three formulae for a flux.
• Let Wl and Wr be two fluid states and W ∗ the intermediate state
defined by the relations (3.3.4) to (3.3.6). The sound celerity c∗ of state W ∗

is defined with the help of relation (3.2.10), i.e.

(3.4.2) c∗ =

√
(γ−1)

(
H∗ − (u∗)2

2

)
,

and the eigenvalues λ∗j of the Roe matrix A(Wl, Wr) ≡ dF (W ∗(Wl, Wr))
are given by a relation analogous to (3.2.17).
(3.4.3) λ∗1 ≡ u∗ − c∗ < λ∗2 ≡ u∗ < λ∗3 ≡ u∗ + c∗ .
The associated eigenvectors r∗j ≡ rj(W

∗) are proportional to the following
ones :

(3.4.4) r∗1 =




1
u∗ − c∗

H∗ − u∗ c∗


 , r∗2 =




1
u∗

1
2 (u

∗)2


 , r∗3 =




1
u∗ + c∗

H∗ + u∗ c∗


 .

• We introduce the decomposition of vector Wr −Wl in the basis r∗j :

(3.4.5) Wr −Wl =
∑j=3

j=1 αj r
∗
j .

The three following relations define a unique numerical flux Φ(Wl, Wr) named
the Roe flux between the two states Wl and Wr :
(3.4.6) Φ(Wl, Wr) = F (Wl) +

∑j=3
j=1 (λ

∗
j )

− αj r
∗
j

(3.4.7) Φ(Wl, Wr) = F (Wr) − ∑j=3
j=1 (λ

∗
j )

+ αj r
∗
j
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(3.4.8) Φ(Wl, Wr) = 1
2

(
F (Wl) + F (Wr)

)
− 1

2 |A(Wl, Wr) | • (Wr −Wl

)
.

• The first non-obvious point is to verify that the relation (3.4.2) defines
a real number c∗. We have

H∗ − (u∗)2

2
=

√
ρlHl +

√
ρrHr√

ρl +
√
ρr

− 1

2

( √
ρl ul +

√
ρr ur√

ρl +
√
ρr

)2
=

=
1

(
√
ρl +

√
ρr)2

[
(
√
ρl+

√
ρr)
(√

ρl
(1
2
u2l +

1

γ−1
c2l
)
+

√
ρr
(1
2
u2r+

1

γ−1
c2r
) )

− 1

2

(
ρl u

2
l + 2 ρ∗ ul ur + ρr u

2
r

) ]

=
1

(
√
ρl +

√
ρr)2

[ 1
2

(
ρ∗ u2l − 2 ρ∗ ul ur + ρ∗ u2r

)
+

ρl + ρ∗

γ−1
c2l +

ρ∗ + ρr
γ−1

c2r

]

=
1

(
√
ρl +

√
ρr)2

[ 1
2
ρ∗ (ur − ul)

2 +
ρl + ρ∗

γ−1
c2l +

ρ∗ + ρr
γ−1

c2r

]
> 0

and

(3.4.9) c∗ =

√
γ−1
2 ρ∗ (ur − ul)2 + (ρl + ρ∗) c2l + (ρ∗ + ρr) c2r

√
ρl +

√
ρr

.

• We make the difference between the right hand sides of (3.4.6) and (3.4.7).
We get :

F (Wr)− F (Wl) − ∑j=3
j=1

(
(λ∗j )

+ + (λ∗j )
−
)
αj r

∗
j =

= A(Wl, Wr) • (Wr −Wl) − ∑j=3
j=1 λ

∗
j αj r

∗
j due to (3.3.3) and (2.7.11)

= A(Wl, Wr) •
(∑j=3

j=1 αj r
∗
j

)
− ∑j=3

j=1 λ
∗
j αj r

∗
j due to (3.4.5)

= 0 because A(Wl, Wr) • r
∗
j = λ∗j r

∗
j for each integer j.

The proof of relation (3.4.8) is obtained by taking the half sum of (3.4.6) and
(3.4.7). It is analogous to the one done for Proposition 2.7. The proof of Propo-
sition 3.4 is completed.

• We make explicit the parameters αj introduced in relation (3.4.5)
in order to be complete for the implementation of the above formulae on a
computer.

Proposition 3.5. New acoustic impedance.
With the notations introduced at Proposition 3.4, and denoting by pl and pr
the respective pressures of states Wl and Wr, we have the following relations for
the scalar components αj of the state difference Wr −Wl in relation (3.4.5) :

(3.4.10) α1 =
1

2 (c∗)2
[
(pr − ρ∗ c∗ ur) − (pl − ρ∗ c∗ ul)

]

(3.4.11) α2 = − 1

(c∗)2
[
(pr − (c∗)2 ρr) − (pl − (c∗)2 ρl)

]
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(3.4.12) α3 =
1

2 (c∗)2
[
(pr + ρ∗ c∗ ur) − (pl + ρ∗ c∗ ul)

]

with acoustic impedance ρ∗ c∗ that is nomore the one ρ0 c0 of a reference
state as in traditional acoustics but an impedance associated with the Roe in-
termediate state W ∗(Wl, Wr) of relations (3.3.4) to (3.3.6).

• We have just to explicit the three components of the relation (3.4.5). It
comes :


ρr − ρl

ρr ur − ρl ul
ρr Er − ρlEl


 =




α1 + α2 + α3

α1 (u
∗ − c∗) + α2 u

∗ + α3 (u
∗ + c∗)

α1 (H
∗ − u∗ c∗) + α2

(u∗)2

2 + α3 (H
∗ + u∗ c∗)




(3.4.13) α1 + α2 + α3 = ρr − ρl ,
and we deduce after multiplying the equation (3.4.13) by −u∗ and adding to
the second equation of the above matrix equality :
c∗ (α3 − α1) = ρr ur − ρl ul − u∗ (ρr − ρl)

= ρr ur − ρl ul − (
√
ρr −

√
ρl) (

√
ρl ul +

√
ρr ur) ,

then
(3.4.14) c∗ (−α1 + α3) = ρ∗ (ur − ul) .

• We deduce from the third equation of relation (3.4.5) :
(c∗)2

γ−1
(α1 + α3) = ρr Er − ρlEl −

1

2
(u∗)2 (ρr − ρl) − u∗ c∗ (α3 − α1)

=
1

γ−1
(pr −pl) +

1

2
(ρr u

2
r −ρl u2l ) +

1

2
(u∗)2 (ρr −ρl) − u∗ (ρr ur −ρl ul)

=
1

γ−1
(pr − pl) due to (3.3.8). Then we have :

(3.4.15) (c∗)2 (α1 + α3) = pr − pl .

• The solution of the 2 by 2 linear system with unknowns α1 and α3

defined by the relations (3.4.14) and (3.4.15) directly gives the relations (3.4.10)
and (3.4.12). The expression (3.4.11) of variable α2 is a direct consequence of
the relations (3.4.10), (3.4.12) and (3.4.13) and Proposition 3.5 is proven.

Proposition 3.6. An algorithm for the Roe flux.
Let Wl and Wr be two compressible fluid states. The computation of the
Roe flux Φ(Wl, Wr) of relations (3.4.6)-(3.4.8) between these two states is
summarized by the following points :
• Evaluation of density ρ∗, velocity u∗ and total enthalpy H∗ of the
intermediate state W ∗ with the relations (3.3.4) to (3.3.6),
• Determination of the sound celerity c∗ of the intermediate state W ∗ from
the previous data with the relation (3.4.2),
• Eigenvectors r∗j of the Roe matrix with the relations (3.4.4),
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• Computation of the characteristic variables αj in (3.4.5) for the difference
Wr −Wl with the relations (3.4.10) to (3.4.12),
• Final computation of the Roe flux Φ(Wl, Wr) with the minimum of work :
(3.4.16) Φ(Wl, Wr) = F (Wl) if u∗ − c∗ ≥ 0
(3.4.17) Φ(Wl, Wr) = F (Wl) + (u∗− c∗) α1 r

∗
1 if u∗− c∗ ≤ 0 < u∗

(3.4.18) Φ(Wl, Wr) = F (Wr) − (u∗+c∗) α3 r
∗
3 if u∗ ≤ 0 < u∗+c∗

(3.4.19) Φ(Wl, Wr) = F (Wr) if u∗ + c∗ ≤ 0 .

• The proof of the relations (3.4.16)-(3.4.19) is obtained by starting from
the expression of the Roe flux given in (3.4.6). We know that λ1 = u∗ − c∗,
λ2 = u∗, λ3 = u∗ + c∗. If u∗ − c∗ ≥ 0, then u∗ ≥ 0 and u∗ + c∗ ≥ 0, so the
relation (3.4.6) reduces to (3.4.16) because, due to (2.7.10), µ− = 0 if µ is a
positive real number. If u∗−c∗ ≤ 0 < u∗ < u∗+c∗, the term containing (λ∗1)

−

is the only one that contributes in relation (3.4.6) and the relation (3.4.17) is a
direct consequence of this remark. If u∗ − c∗ < u∗ ≤ 0 < u∗ + c∗, the term
that contains (λ∗3)

+ is the only nonzero element among the three inside the
relation (3.4.7) and we deduce the relation (3.4.18) from this property. When
u∗ − c∗ < u∗ < u∗ + c∗ ≤ 0, the term F (Wr) is the only to subsist inside the
relation (3.4.7) and the relation (3.4.19) is established. We remark also that the
algebraic expression (3.4.11) for α2 is not necessary for the implementation of
the algorithm.

3.5 Entropy correction.
• The Roe flux replaces the nonlinear waves of the gas dynamics, i.e.
the rarefactions and the shock waves by linear waves that are the contact
discontinuities. If sufficiently weak shock waves occur for a given discontinuity
between two states Wleft and Wright, the Roe flux presented above is a good
approximation, but if a rarefaction containing a sonic point is present among
the nonlinear waves that solves the discontinuity problem between Wleft and
Wright, it has been early remarked that for this very particular situation, the
Roe flux does not satisfy the entropy condition (see e.g. Godlewski and Raviart
[GR96]).

• A popular response has been proposed by Harten [Ha83] with a tuning
parameter that plays in fact the role of an artificial viscosity and P. Roe himself
[Roe85] has proposed a nonparameterized entropy correction for his flux. With
G. Mehlman, we have treated the same subject by the introduction of hyperbolic
nonlinear models with nonconvex flux functions and have proved a discrete en-
tropy inequality if sufficiently weak nonlinear waves are present in the problem
[DM96]. We detail here the modification of the algorithm that we have proposed
and tested numerically for various gas dynamics problems.
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• We introduce as above two states Wl ≡ W 0 and Wr ≡ W 3 and the
Roe matrix A(Wl, Wr) described in the preceding sub-sections. We have in
particular the relation

(3.5.1) Wr −Wl ≡ W 3 −W 0 =
∑j=3

j=1 αj r
∗
j

and we do not make the confusion between the eigenvalues λj(W
0) of the left

state, λj(W
3) of the right state, and λ∗j of the Roe matrix. We introduce the

following two intermediate states W 1 and W 2 according to
(3.5.2) W 1 = W 0+α1 r

∗
1 , W 2 = W 0+α1 r

∗
1 + α2 r

∗
2 = W 3−α3 r

∗
3

and illustrated on Figure 3.2. Note that λj(W
k) is well defined for j = 1, 2, 3

and k = 0, 1, 2, 3 : it is the j0 eigenvalue of the k0 intermediate state W k.
We define now the set S of sonic indices by the condition that the sign of the
j0 eigenvalue is increasing from negative to positive values accross some j-wave :
(3.5.3) S =

{
j ∈ {1, 2, , 3}, λj(W

j−1) < 0 < λj(W
j)
}
.

The modification of the Roe flux is active only for the sonic indices and we
introduce a polynomial pj of degree 3 by the classical Hermite interpolation
conditions

(3.5.4)

{
pj(0) = 0 , p′j(0) = λj(W

j−1) ,

pj(αj) = λ∗j αj , p′j(αj) = λj(W
j) ,

j ∈ S

that defines explicitely the polynomial pj(•) by the algebraic relation

(3.5.5)





pj(ξ) =
λj(W

j) + λj(W
j−1)− 2λ∗j

(αj)2
ξ3 +

+
3λ∗j − 2λj(W

j−1)− λj(W
j)

αj
ξ2 + λj(W

j−1) ξ .

t

x

W      = Wright
3

W    = W
0

left

λ1
* λ2

*

λ3
*

W
2

W
1

0

Figure 3.2. Intermediate states for the entropy correction
of the Roe upwind scheme.

• With the hypothesis that j ∈ S, it is not difficult to see [DM96] that
the polynomial pj(•) has a unique minimum inside the interval (0, αj). The
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argument ξ∗j of this point of minimum is given according to :

(3.5.6) ξ∗j =
−λj(W j−1) αj( (

3λ∗j − 2λj(W
j−1)− λj(W

j)
)
+

+

√(
3λ∗j − λj(W j)− λj(W j−1)

)2 − λj(W j−1)λj(W j)

) .

Since pj(ξ
∗
j) is the unique minimum of the polynomial pj(•) on the inter-

val (0, αj), we have
pj(ξ

∗

j)

αj
≤ 0 and

pj(ξ
∗

j)

αj
≤ λ∗j . Then the modified flux

Φmodif(Wl, Wr) is defined from the Roe flux Φ(Wl, Wr) by the relation

(3.5.7) Φmodif(Wl, Wr) = Φ(Wl, Wr)+
∑

j∈S

max

(
pj
(
ξ∗j
)

αj
,
pj
(
ξ∗j
)

αj
−λ∗j

)
αj r

∗
j

that makes the added numerical viscosity explicit.

3.6 Nonlinear flux boundary conditions.
• At the two extremities x=0 and x=L of the pipe, we have to express
on one hand the datum of a given nonstationary pressure Π(t) at x=0 and
on the other hand a free output of the waves at x=L.

• For the numerical boundary condition for pressure, we follow a general
approach founded on the so-called partial Riemann problem [Du01] that
generalizes to nonlinear hyperbolic systems the reflection operator of relation
(2.5.22). For a given discrete time tn = n∆t, and a given state Wn

1/2 ≡Wr in

the first cell of the unidimensional mesh, we construct a boundary state Wn
0 ≡

Wl that satisfies the boundary constraint
(3.6.1) p(Wn

0 ) = Πn+1/2 , n ≥ 0 ,
and moreover, we impose that the state Wn

1/2 present in the first cell is issued

from the boundary state Wn
0 with an ingoing 3-wave, i.e. we impose the

relation
(3.6.2) Wn

1/2 −Wn
0 = α3 r

∗
3

as illustrated on Figure 3.3. This problem has a unique solution, as claims the

Proposition 3.7. Pressure flux boundary condition with Roe matrix.
We consider a left boundary condition associated with a pressure Π and a right
datum defined by state Wr. Then there exists a unique left state Wl that
satisfies the pressure condition
(3.6.3) p(Wl) = Π
and such that when we construct the Roe intermediate state W ∗ according to
the relations (3.3.4) to (3.3.6), the difference Wr −Wl has only one component
over the third eigenvector of the Roe matrix dF (W ∗), i.e. the relation (3.4.5)
can been written under the form
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(3.6.4) Wr −Wl = α3 r
∗
3 .

The density ρl and the velocity ul of the left state Wl are given according to
the relations

(3.6.5) ρl =
(γ+1)Π + (γ−1) pr
(γ−1)Π + (γ+1) pr

ρr

(3.6.6) ul = ur + (Π− pr)

√
2

ρr
(
(γ−1)Π + (γ+1) pr

) .

t

x

W1/2
n

u*

u + c*      *

0

u − c*      *

W     = ?
0
n

Pressure 
n+1/2Π

Figure 3.3. Nonlinear boundary condition for given pressure at x = 0
with the Roe upwind scheme.

• The proof of Proposition 3.7 is a consequence precisely of the preced-
ing subsections about the Roe flux. We first remark that the relations (3.4.5) and
(3.6.4) are absolutly identical. Then we deduce that necessarily α1 = α2 = 0
and according to the relations (3.4.11) and (3.4.12), we get
(3.6.7) Π− ρ∗ c∗ ul = pr − ρ∗ c∗ ur
(3.6.8) Π− (c∗)2 ρl = pr − (c∗)2 ρr .

We deduce simply ur−ul =
pr −Π

ρ∗ c∗
=

c∗ (ρr − ρl)

ρ∗
and due to the relation

(3.4.9), we get :

(c∗)2 =
1

(
√
ρr +

√
ρl)2

[ γ−1

2
ρ∗
(c∗ (ρr − ρl)

ρ∗

)2
+ γ

( ρl + ρ∗

ρl
Π+

ρ∗ + ρr
ρr

pr

) ]
.

Then after multiplication by (ρr − ρl), we obtain with the help of (3.6.8) :

0 = (pr − Π) − γ−1

2
(pr −Π)

(
√
ρr −√

ρl)
2

ρ∗

− γ
√
ρr −√

ρl√
ρr +

√
ρl

( ρl + ρ∗

ρl
Π +

ρ∗ + ρr
ρr

pr

)
= γ (pr −Π)

− γ−1

2
(pr −Π)

( √
ρr√
ρl

+

√
ρl√
ρr

)
− γ

( √
ρr√
ρl

− 1

)
Π − γ

(
1−

√
ρl√
ρr

)
pr .
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We multiply the previous equality by
√

ρl

ρr
and we get :

−γ−1

2
(pr − Π) ( 1 +

ρl
ρr

) − γΠ + γ
ρl
ρr
pr = 0 ,

id est
[
−γ−1

2
(pr −Π) + γ pr

] ρl
ρr

= γΠ +
γ−1

2
(pr − Π)

and the relation (3.6.5) is established.

• We deduce from the previous relation :

ρ∗ =

√
(γ+1)Π + (γ−1) pr
(γ−1)Π + (γ+1) pr

ρr , ρr − ρl =
2 (pr − Π)

(γ−1)Π + (γ+1) pr
ρr

and due to the relation (3.6.8) :

(c∗)2 =
(γ−1)Π + (γ+1) pr

2 ρr
, ρ∗ c∗ =

√
(γ−1)Π + (γ+1) pr

2

√
ρr

and the relation (3.6.6) is an easy consequence of the last equality joined with
(3.6.7). The proposition 3.7 is established.

• The determination of a nonlinear nonreflecting boundary condition
at x=L is still an open mathematical problem. We recommand for deriving a
flux boundary condition for such a situation to impose that no wave are present
at the interaction for the last interface j=J. We just write

(3.6.9) f
n+1/2
J = F (Wn

J−1/2) , n ≥ 0
which is equivalent of introducing a right boundary state Wn

J according to the
simple relation Wn

J = Wn
J−1/2 and then making these two states interacting

with the Roe flux : f
n+1/2
J = Φ(Wn

J−1/2, W
n
J ). This last definition is equivalent

to the one proposed in (3.6.9) due to the property (3.3.2) of the Roe matrix.

4) Second order and two space dimensions.
4.1 Towards second order accuracy.
• The finite volume method described in the previous sections is a natural
method for the discretization of systems of m conservation laws. It conducts
to an explicit scheme in time : the evaluation of the field Wn+1 at time step
(n+1)∆t needs only the knowledge of the field Wn

j+1/2 for j = 0, · · · , J−1

at the preceding time step n∆t. This evaluation needs a certain number of
auxiliary computations without the resolution of any linear system involving the
new field. The method is parameterized by the choice of a numerical flux and a
great flexibility can be adopted at this level. We have proposed two fluxes for
nonlinear problems related to nonlinear acoustics and gas dynamics, the Roe flux
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Φ(•, •) of relations (3.4.6)-(3.4.8) that conduct to a discrete scheme according
to the relation
(4.1.1) f

n+1/2
j = Φ(Wn

j−1/2, W
n
j+1/2) ,

and the modified Roe flux Φmodif(•, •) of relation (3.6.7) that enforces the
entropy condition. This explicit version of the finite volume method is submitted
to a stability condition that can be written as a first approximation for linear
cases as :

(4.1.2) c0
∆t

∆x
≤ 1 .

• Nevertheless, the above finite volume method is only first order accu-
rate. If we insert an exact solution W (x, t) of the conservation law

(4.1.3)
∂W

∂t
+

∂

∂x
F (W ) = 0

inside the formal expression of the flux (4.1.1), it is easy to see that the finite

difference 1
∆x (f

n+1/2
j+1 − f

n+1/2
j ) is first order accurate :

(4.1.4)
1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
=

(
∂F (W )

∂x

)n+1/2

j+1/2

+ O
(
∆t+∆x

)
.

In a similar way, the use of an explicit scheme in time conducts to

(4.1.5)
1

∆t
(Wn+1

j+1/2 −Wn
j+1/2) +

1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
= 0

and maintains this first order accuracy for the finite volume scheme.

• We develop in this section the fact that it is possible to improve the
method, i.e. to define a method with a relation of the type (4.1.5), and that
conduct to a troncation error of second order :

(4.1.6)





1

∆t
(Wn+1

j+1/2 −Wn
j+1/2) +

1

∆x

(
f
n+1/2
j+1 − f

n+1/2
j

)
=

=

(
∂W

∂t
+

∂

∂x
F (W )

)n+1/2

j+1/2

+ O
(
∆t2 +∆x2

)
.

The price to pay is to develop flux formulae much more complicated than the
simple relation (4.1.1). When the second order precision (4.1.6) is achieved with
a stable scheme, the precision is sufficient to develop predictive computations in
acoustics and aerodynamics, whereas that is not the case with the initial scheme
(4.1.1) (4.1.5).

4.2 The method of lines.
• The simplest way to extend the first order finite volume scheme is first to
develop a new vision of the method with emphasis more on abstraction. We have
presented a method founded on the integration of the conservation law (4.1.3)
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inside the space-time domain V
n+1/2
j+1/2 = ]xj , xj+1[× ]tn, tn+1[ as suggested in

(2.1.6). With the method of lines, we just integrate the conservation (4.1.3)
in space in each control volume Kj+1/2 = ]xj , xj+1[. It is straightforward to
introduce the mean value Wj+1/2(t) in this finite element :

(4.2.1) Wj+1/2(t) =
1

| Kj+1/2 |

∫ xj+1

xj
W (x, t) dx ;

then we integrate the conservation law (4.1.3) in space in the cell Kj+1/2 and

taking into account the relation d
dtWj+1/2(t) = 1

∆x

∫ xj+1
xj

∂W
∂t (x, t) dx, we get

simply

(4.2.2)
d

dt
Wj+1/2(t) +

1

∆x

[
fj+1(t) − fj(t)

]
= 0

with
(4.2.3) fj(t) = F

(
W (xj , t)

)
.

• As usual with the finite volume method, a numerical scheme can be
obtained from the relations (4.2.2) (4.2.3) by replacing the relation (4.2.3) by
some explicit function over the set of all discrete variables introduced for the
relation (4.2.1). To fix the ideas, we introduce a dynamic state vector Z(t)
composed by all the dynamic variables on the finite mesh :
(4.2.4) Z(t) =

(
W1/2(t), · · · , Wj+1/2(t), · · · , WJ−1/2(t)

)
∈ (IRm)J .

The discretization in space is achieved if we are able to determine the numerical
flux fj(t) with the help of both the dynamic state vector Z(•) and the bound-
ary conditions, that is the input pressure Π(t) in the example considered in
the last section. As in relation (2.1.12), we introduce a local numerical flux
function Ψj(•, •) relative to the vertex xj :
(4.2.5) fj(t) = Ψj

(
Π(t), Z(t)

)
.

We replace the relation (4.2.3) by the numerical approximation (4.2.5) inside
the equation (4.2.2) of dynamic evolution of the state variable Wj+1/2(•). We
obtain the following ordinary differential equation

(4.2.6)
d

dt
Wj+1/2(t) +

1

∆x

[
Ψj+1

(
Π(t), Z(t)

)
− Ψj

(
Π(t), Z(t)

) ]
= 0 .

• The method of lines is a semi-discrete version of the finite volume
method. It is obtained by integration in space of the conservation law without
integration in time. The result is not a numerical scheme but just an ordinary
differential equation for the dynamic state vector Z(•) described component by
component with the equation (4.2.6). The method is parameterized by the local
numerical flux functions Ψj

(
•, •) and take the general form of a dynamical

system parameterized by the pressure function t 7−→ Π(t) :

(4.2.7)
d

dt
Z(t) = G(Z, t) .
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The discrete dynamic function (IRm)J × [0, +∞[ ∋ (Z, t) 7→ G(Z, t) ∈
(IRm)J is a vector valued expression with J components :
(4.2.8) G(Z, t) =

(
G1/2(Z, t), · · · , Gj+1/2(Z, t), · · · , GJ−1/2(Z, t)

)
∈ (IRm)J

and it is defined from the (J+1) local numerical fluxes (Ψj)j=0, ···, J with the
very simple algebra relative to the finite volume method :

(4.2.9) Gj+1/2(Z, t) = − 1

∆x

(
Ψj+1(Π(t), Z)−Ψj(Π(t), Z)

)
, 0 ≤ j ≤ J−1 .

Proposition 4.1. Explicit Euler scheme.
With the choice of the first order scheme in space, that is
(4.2.10) Ψj

(
Πn, Zn

)
= Φ(Wn

j−1/2, W
n
j+1/2) if j = 1, · · · , J−1,

and the first order explicit forward Euler scheme for the ordinary differential
equation (4.2.7), id est

(4.2.11)
1

∆t
(Zn+1 − Zn) = G(Zn, tn) ,

we recover the previous first order finite volume scheme

(4.2.12)





1

∆t

(
Wn+1

j+1/2 −Wn
j+1/2

)
+

1

∆x

(
Φ
(
Wn

j+1/2, W
n
j+3/2

)

− Φ
(
Wn

j−1/2, W
n
j+1/2

))
= 0 for j = 1, · · · , J−2.

• We write the relation (4.2.10) for the particular control volume Kj+1/2

and we get : Wn+1
j+1/2 = Wn

j+1/2 + ∆t G(zn, tn) due to (4.2.11), then

Wn+1
j+1/2 = Wn

j+1/2 − 1

∆x

(
Ψj+1(Π

n, Zn) − Ψj(Π
n, Zn)

)
due to (4.2.9)

= Wn
j+1/2 − 1

∆x

(
Φ(Wn

j+1/2, W
n
j+3/2)−Φ(Wn

j−1/2, W
n
j+1/2)

)
c.f. (4.2.10)

and the relation (4.2.12) is established.

4.3 The method of Van Leer.
• We turn now to the construction of a second order accurate version of the
finite volume method as proposed initially with the “Multidimensional Upwind-
centered Scheme for Conservation Laws” of B. Van Leer [VL79]. The fundamen-
tal idea of this scheme is the reconstruction of a function IR ∋ x 7−→W (x) ∈ IR
from his mean values Wj+1/2 in each cell Kj+1/2 . The reconstructed function
is regular inside each control volume Kj+1/2 and is discontinuous at the in-
terfaces xl between two control volumes. The application to the finite volume
method replaces the scheme (4.1.1) by the same Roe flux interaction Φ(•, •)
considered for the two extrapolated data W−

j and W+
j on each side of the

boundary :
(4.3.1) fj = Φ(W−

j , W
+
j ) .
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W(x, t  )n

x

x
j+1
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j

xj−1

W
j+1/2

Wj−1/2

Wj
−

W
j
+

Figure 4.1. First order and second order interpolation at the interface xj .

W(x, t  )n

x

W
j
−

AAA
AAA

W
j−1/2

W
j−3/2

W
j+1/2

W
j+3/2

W
j
+

AAA
AAA

x
j

Figure 4.2. Construction of the nonlinear interpolated
values W−

j and W+
j with the Van Leer method.

• The simplest case is illustrated on Figure 4.1. It imposes simply the
reconstructed function W (x) to be constant in each interval :
(4.3.2) W (x) ≡ Wj+1/2 , xj < x < xj+1 .
The two limit values on each side of the interface xj are the following ones :
W−

j = Wj−1/2 , W+
j = Wj+1/2 and the explicit version of this finite volume

scheme is the standard first order numerical flux (4.1.1) as seen at Proposition
4.1. In the context of the method of lines, we obtain :
(4.3.3) fj = Φ(Wj−1/2, Wj+1/2) .
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• The second order accurate Muscl method consists first in restricting the
methodology to a scalar field W (•) and to construct an affine function in each
interval Kj+1/2 instead of a constant function as in (4.3.2). We set

(4.3.4) W (x) ≡ Wj+1/2 + pj+1/2

(
x− xj+1/2

)
, xj < x < xj+1 .

The simplest choice for a slope is the one of the centered scheme :

(4.3.5) pj+1/2 =
1

∆x
(Wj+3/2 −Wj−1/2) ,

and due to (4.3.4) and (4.3.5), the extrapolated values W−
j and W+

j on each
side of the interface located at the position xj are the following ones :

(4.3.6) W−
j = Wj−1/2 +

1

4
(Wj+1/2 −Wj−3/2)

(4.3.7) W+
j = Wj+1/2 − 1

4
(Wj+3/2 −Wj−1/2) .

• The choice of a numerical flux given according to the relations

(4.3.8) fj = Φ
(
Wj−1/2 +

1

4
(Wj+1/2−Wj−3/2) , Wj+1/2 −

1

4
(Wj+3/2−Wj−1/2)

)

lead to an unstable scheme when we consider the particular case of the advec-
tion equation with the first order explicit scheme in time.

Proposition 4.2. Linear Muscl scheme is unstable.
We apply the linear Muscl approach for the advection equation. Then the nu-
merical scheme obtained by association of (4.3.8) and the upwind scheme (2.1.19)
conducts to the following explicit first order scheme :

(4.3.9)





Wn+1
j+1/2 − Wn

j+1/2 +
a∆t

∆x

( (
Wn

j+1/2 +
1

4
(Wn

j+3/2 −Wn
j−1/2

)

−
(
Wn

j−1/2 +
1

4
(Wn

j+1/2 −Wn
j−3/2

) )
= 0 .

This scheme is unstable for each ∆t > 0.

• Due to the expression (2.1.19) of the upwind scheme, the discrete first
order in time advection equation can be written :

Wn+1
j+1/2 − Wn

j+1/2 +
a∆t

∆x

(
W−, n

j+1 −W−, n
j

)
= 0

and the expression (4.3.9) is a consequence of the left extrapolation (4.3.6). For
the study of stability, we introduce a profile of the type Wn

j+1/2 = e(i k (j+1/2)∆x)

with a wave number k. The scheme (4.3.9) can be written as

Wn+1
j+1/2 = g

(
k∆x,

a∆t

∆x

)
Wn

j+1/2

with an amplification coefficient g(ξ, σ) (ξ = k∆t, σ = a∆t
∆x ) given simply by

the expression

g(ξ, σ) = 1 − σ
(
1− e−i ξ

)
− σ

4

(
ei ξ − 1− e−i ξ + e−2 i ξ

)
, then
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g(ξ, σ) = 1 − σ ( 1−cos ξ ) − σ

4
(−1+cos 2ξ ) − i σ

(
sin ξ +

1

2
sin ξ− 1

4
sin 2ξ

)

= 1 − σ
(
1− cos ξ +

1

4
( 2 cos2 ξ−2 )

)
− i σ

(3
2
sin ξ − 1

2
sin ξ cos ξ

)
,

(4.3.10) g(ξ, σ) = 1 − σ

2
( 1− cos ξ )2 − i

σ

2
sin ξ ( 3− cos ξ ) .

For ξ arbitrarily small, we deduce from (4.3.10) : |g(ξ, σ) |2 = 1 + σ2 ξ2 +
O
(
ξ4
)
which establishes the instability for all σ 6= 0.

• The above remark motivates the introduction of so-called slope lim-
iters, intensively studied during the period 1980-90 after the pioneering work
of Van Leer [VL77]. The idea is to search an interpolation W−

j of the field

W (•) at the left of the point xj from the neighbouring mean values Wj−3/2,
Wj−1/2 and Wj+1/2 and by left-right invariance of the procedure, to con-

struct an interpolated value W+
j from the first right neighbours Wj−1/2,

Wj+1/2 and Wj+3/2 as suggested on Figure 4.2. We replace the relations
(4.3.6) and (4.3.7) by a nonlinear interpolation parameterized by a slope
limiter IR ∋ r 7−→ ϕ(r) ∈ IR :

(4.3.11) W−
j = Wj−1/2 +

1

2
ϕ

(
Wj−1/2 −Wj−3/2

Wj+1/2 −Wj−1/2

) (
Wj+1/2 −Wj−1/2

)

(4.3.12) W+
j = Wj+1/2 − 1

2
ϕ

(
Wj+3/2 −Wj+1/2

Wj+1/2 −Wj−1/2

) (
Wj+1/2 −Wj−1/2

)
.

We remark that the relations (4.3.6) and (4.3.7) are a particular case of the gen-
eral nonlinear relations (4.3.11) and (4.3.12) with the particular choice ϕ(r) =
1
2 (1 + r) . The limiter function satisfies very often the functional relation

(4.3.13) ϕ(r) ≡ r ϕ
(1
r

)
, r > 0 .

Among all the possible choices, we have adopted for fluid mechanics [DM92] the
so-called STS-limiter defined by the relations

(4.3.14) ϕSTS(r) =





0 , r ≤ 0
3

2
r , 0 ≤ r ≤ 1

2
1 + r

2
,

1

2
≤ r ≤ 2

3

2
, r ≥ 2 ,

and illustrated on Figure 4.3.
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ϕ(r)

2

0

1

3 r21/2

k = 1, "Towards 4"

k = 3/4, STS

k = 1/2, min-mod3/4

3/2

1

Figure 4.3. Examples of limiter functions that can be easily extended
to unstructured meshes.

4.4 Second order accurate finite volume method for fluid problems.

• We detail in this section a generalization for unstructured meshes of
the Muscl scheme proposed by Van Leer [VL79]. At one space dimension on a
uniform mesh, it is classical to consider a scalar field z among the primitive
variables, id est

(4.4.1) z ∈ { ρ , u , v , p } (primitive variables)

and instead of computing the interface flux with relation (4.1.1), to first construct
two interface states W−

S and W+
S on each side of the interface S. Then the

flux is evaluated by the decomposition of the discontinuity :

(4.4.2) fS = Φ
(
W−

S , W+
S

)
, S ∈

{
x1, · · · , xJ−1

}
.

This nonlinear interpolation is done with a slope limiter ϕ(•) that operates
on each variable proposed in (4.4.1) and we have typically when a left-right
invariance is assumed [Du91] :

(4.4.3) z−S = zj−1/2 +
1

2
ϕ

(
zj−1/2 − zj−3/2

zj+1/2 − zj−1/2

)(
zj+1/2−zj−1/2

)
, S = xj

(4.4.4) z+S = zj+1/2 − 1

2
ϕ

(
zj+3/2 − zj+1/2

zj+1/2 − zj−1/2

)(
zj+1/2−zj−1/2

)
, S = xj .
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Figure 4.4. Structured Cartesian mesh.
The control volumes are exactly the elements of mesh T .
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Figure 4.5. Unstructured mesh composed by triangular elements.
The control volumes are exactly the elements of the mesh.

• We focus now on the use of unstructured meshes for the extension to
second order accuracy of the finite volume method. As in the one-dimensional
case, the domain of study is decomposed into finite elements (or control volumes)
K ∈ ET than can be structured in a Cartesian way (Figure 4.4) or with a cellular
complex as in Figure 4.5. In both cases, the intersection of two finite elements
define an interface f ∈FT . We denote by nf the normal at the interface f that
separates a left control volume Kl(f) and a right control volume Kr(f). The
ordinary differential equation (4.2.6) is replaced by a multidimensional version :

(4.4.5) |K | dWK

dt
+

∑

f⊂∂K

|f | Φ
(
WK , nf , WKr(f)

)
= 0 , K ∈ ET .
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For internal interfaces, the function Φ
(
• , nf , •) is equal e.g. to the Roe flux

between states WKl(f) and WKr(f) in the one-dimensional direction along nor-
mal nf in order to take into account the invariance by rotation of the equations
of gas dynamics (see [GR96]).

• We consider now a finite element K internal to the domain. The exten-
sion to second order accuracy of the finite volume scheme consists in replacing
the arguments WKl(f) and WKr(f) in relation (4.4.5) by nonlinear extrapola-
tions WKl(f), f and WKr(f), f on each side of the boundary of state data and
evaluated as described in what follows. We first introduce the set N (K) of
neighbouring cells of given finite element K ∈ ET , as illustrated on Figure 4.6 :
(4.4.6) N (K) =

{
L ∈ ET , ∃ f ∈ FT , f ⊂ ∂K ∩ ∂L

}
.

For L ∈ N (K), we suppose by convention that the normal nf to the face
f ⊂ ∂K ∩ ∂L is external to the element K id est Kr(f) = K, Kl(f) = L.
We introduce also the point yK, f on the interface f ⊂ ∂K that links the
barycenters xK and xKr(f) :

(4.4.7)

{
yK, f ≡ (1− θK, f )xK + θK, f xKr(f) , yK, f ∈ f ,

f ⊂ ∂K , K finite element internal to mesh T .
Then, following Pollet [Po88], for z equal to one scalar variable of the family :
(4.4.8) z ∈ { ρ , ρ u , ρ v , p }
we evaluate a mean value zK, f on the interface f :
(4.4.9) zK, f = (1− θK, f ) zK + θK, f zKr(f)

and the gradient ∇z(K) of field z(•) in volume K with a Green formula :

(4.4.10) ∇z(K) =
1

| K |

∫

∂K

z ndγ =
1

| K |
∑

f⊂∂K

|f | zK, f nf , K ∈ ET .

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
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K

f

K  (f)r

Figure 4.6. Cellular complex mesh with triangles and quadrangles.
Three neighbouring cells are necessary to determine the gradient

in triangle K and to limit eventually its variation.
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• An ideal extrapolation of field z(•) at the interface f would be :
(4.4.11) zK, f = zK + ∇z(K) •

(
yK, f − xK

)

but the corresponding scheme is unstable as explicited at Proposition 4.2. When
the variation ∇z(K) •

(
yK, f − xK

)
is very important, it has to be “limited”

as first suggested by Van Leer [VL77]. For doing this in a very general way, we
introduce the minimum mK(z) and the maximum MK(z) of field z(•) in the
neighbouring cells :

(4.4.12) mK(z) = min
{
zL , L ∈ N (K)

}

(4.4.13) MK(z) = max
{
zL , L ∈ N (K)

}
.

If the value zK is extremum among the neighbouring ones, i.e. if zK ≤ mK(z) ,
or zK ≥ MK(z), we impose that the interpolated value zK, f is equal to the
cell value zK :
(4.4.14) zK, f = zK if zK ≤ mK(z) or zK ≥ MK(z) , f ⊂ ∂K .

When on the contrary zK lies inside the interval [mK(z), MK(z)], we impose
that the variation zK, f − zK is limited by some coefficient k (0 ≤ k ≤ 1)
multiplied by the variations zK −mK(z) and MK(z) − zK . We introduce a
nonlinear extrapolation of the field z(•) between center xK and boundary face
yK, f (f ⊂ ∂K) :

(4.4.15) zK, f = zK + αK(z)∇z(K) •
(
yK, f − xK

)
, f ⊂ ∂K

with a limiting coefficient αK(z) satisfying the following conditions :

(4.4.16)

{
0 ≤ αK(z) ≤ 1 , z(•) scalar field defined in (4.4.8), K ∈ ET
k (zK −mK(z)) ≤ αK(z)∇z(K) •

(
yK, f − xK

)
≤ k (MK(z)− zK)

∀ f ⊂ ∂K , K ∈ ET .
Then αK(z) is chosen as large as possible and less than or equal to 1 in order
to satisfy the constraints (4.4.16) :

(4.4.17) αK(z) = min

[
1 , k

min
(
MK(z)− zK , zK −mK(z)

)

max
{
| ∇z(K) • (yK, f − xK) | , f ⊂ ∂K

}
]
.

• In the one dimensional case with a regular mesh, it is an exercice to
re-write the extrapolation (4.4.15) under the usual form (4.4.3) in the context
of finite differences. In this particular case, some limiter functions r 7−→ ϕk(r)
associated with particular parameters k are shown on Figure 4.3. For k = 1,
we recover the initial limiter proposed by Van Leer in the fourth paper of the
family “Towards the ultimate finite difference scheme...” [VL77] ; for this reason,
we have named it the “Towards 4” limiter (see Figure 4.3). When k = 1

2 we
obtain the “min-mod” limiter proposed by Harten [Ha83]. The intermediate
value k = 3

4 is a good compromise between the “nearly unstable” choice k = 1
and the “too compressive” min-mod choice. We have named it STS (see also
(4.3.14)) and it has been chosen for our Euler computations in [DM92].
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Figure 4.7. Slope limitation at a fluid boundary.
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Figure 4.8. Slope limitation at a solid boundary.

• We explain now the way the preceding scheme is adapted near the bound-
ary. We first consider a fluid boundary. When K is a finite element with some
face g ⊂ ∂K lying on the boundary, we still define the set N (K) of neigh-
bouring cells by the relation (4.4.6) as shown on Figure 4.7. The number of
neighbouring cells is just less important in this case. Then points yK, f are
introduced by relation (4.4.7) if face f does not lie on the boundary and by
taking the barycenter of face g if it is lying on the boundary. The only differ-
ence is the way the values zK, g are extrapolated for the face g that is on the
boundary ; we set

(4.4.18)

{
zK, g = zK , g ⊂ ∂K ,

g face lying on the boundary of the domain.
When values zK, f are determined for all the faces f ⊂ ∂K, the gradient
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∇z(K), the minimal mK(z) and maximal MK(z) values among the neigh-
bouring cells are still determined with the relations (4.4.10), (4.4.12) and (4.4.13)
respectively. The constraints (4.4.16) remain unchanged except that no limita-
tion process is due to the faces lying on the boundary. In a precise way, we
set :

(4.4.19)





αK(z) =

min

[
1,

k min
(
MK(z)− zK , zK −mK(z)

)

max
{
|∇z(K)•(yK, f − xK) |, f ⊂ ∂K, Kr(f) ∈ N (K)

}
]
.

Then the interpolated values zK, f for all the faces f ⊂ ∂K are again predicted
with the help of relation (4.4.15).
• For a rigid wall, the limitation process is a little modified, as presented
at Figure 4.8. We first introduce the limit face g inside the set of neighbouring
cells :

(4.4.20) N (K) =

{
L∈ET , ∃f⊂∂K ∩ ∂L

}
∪{

g∈FT , g ⊂ ∂K, g on the boundary
}
.

For the face(s) g ⊂ ∂K lying on the solid boundary, we determine preliminary
values zK, g by taking in consideration at this level the impenetrability bound-
ary condition u •ng = 0. We introduce the two components nx

g and ny
g of

the normal ng at the boundary and we set, in coherence with variables (4.4.8) :

(4.4.21)





ρK, g = ρK
ρK, g uK, g = ρK

(
uK − (uK •ng)n

x
g

)

ρK, g vK, g = ρK
(
vK − (uK •ng)n

y
g

)

pK, g = pK .
We consider also these values for the limitation algorithm. We define “external
values” zL for L=g and face g lying on the boundary as equal to the ones
defined in relation (4.4.21) :
(4.4.22) zg ≡ zK, g , z(•) field defined in (4.4.21), g ⊂ ∂K on the boundary.
Then the extrapolation algorithm that conducts to relation (4.4.15) for extrap-
olated values zK, f is used as in the internal case.

4.5 Explicit Runge-Kutta integration with respect to time.
• When all values zK, f are known for all control volumes K ∈ ET , all
faces f⊂K and all fields z(•) defined at relation (4.4.8), extrapolated states
WK, f are naturally defined by going back to the conservative variables. Then
we introduce these states as arguments of the flux function Φ

(
• , nf , •) and

obtain by this way a new system of ordinary differential equations :

(4.5.1) |K | dWK

dt
+

∑

f⊂∂K

|f | Φ
(
WK, f , nf , WKr(f), f

)
= 0 , K ∈ ET .
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• The numerical integration of such kind of system is done with a Runge-
Kutta scheme as presented in [CDV92]. We have used with success in [DM92] the
Heun scheme of second order accuracy for discrete integration of (4.5.1) between
time steps n∆t and (n+1)∆t :

(4.5.2)
|K |
∆t

(
W̃K−Wn

K

)
+
∑

f⊂∂K

|f | Φ
(
Wn

K, f , nf , W
n
Kr(f), f

)
= 0 , K ∈ ET

(4.5.3)
|K |
∆t

( ˜̃
WK−W̃K

)
+
∑

f⊂∂K

|f | Φ
(
W̃K, f , nf , W̃Kr(f), f

)
= 0 , K ∈ ET

(4.5.4) Wn+1
K =

1

2

( ˜̃
WK + Wn

K

)
, K ∈ ET .
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