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Abstract

We study a class of optimal control problems with state constraint, where the state
equation is a differential equation with delays in the control variable. This class of problems
arises in some economic applications, in particular in optimal advertising problems. The
optimal control problem is embedded in a suitable Hilbert space and the associated Hamilton-
Jacobi-Bellman (HJB) equation is considered in this space. It is proved that the value
function is continuous with respect to a weak norm and that it solves in the viscosity sense
the associated HJB equation. The main result is the proof of a directional C1 regularity
for the value function. This result represents the starting point to define a feedback map in
classical sense going towards a verification theorem and the construction of optimal feedback
controls for the problem.

Keywords: Hamilton-Jacobi-Bellman equation, optimal control, delay equations, viscosity so-
lutions, regularity.

A.M.S. Subject Classification: 34K35, 49L25, 49K25.

1 Introduction

This paper is devoted to study a class of state constrained optimal control problems with dis-
tributed delay in the control variable and the associated Hamilton-Jacobi-Bellman (HJB) equa-
tion. The main result is the proof of a C1 directional regularity for the value function associated
to the control problem, which is the starting point to prove a smooth verification theorem.

∗This research has been partially supported by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la
Probabilità e le loro Applicazioni, Italy). The authors thank Fausto Gozzi for his valuable suggestions, in particular
about the choice of the Hilbert space where to set the problem; Luca Grosset and Bertrand Villeneuve for their
valuable comments about the applications.
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The study of control problems with delays is motivated by economic (see, e.g., [1, 2, 3, 12,
29, 23, 32, 33, 39, 42]) and engineering applications (see, e.g., [35]). Concerning the economic
applications, which are the main motivation of our study, we observe that there is a wide variety
of models with memory structures considered by the economic literature. We refer, for instance,
to models where the memory structure arises in the state variable, as growth models with time-
to-build in production (see [1, 2, 3]); to models where the memory structure arises in the control
variable, as vintage capital models (see [12, 23]); advertising models (see [29, 32, 33, 39, 42]);
growth models with time-to-build in investment (see [36, 43]).

From a mathematical point of view, our aim is to study the optimal control of the delay
differential equation {

y′(t) = ay(t) + b0u(t) +
∫ 0
−r b1(ξ)u(t+ ξ)dξ;

y(0) = y0; u(s) = δ(s), s ∈ [−r, 0);

subject to the state constraint y(·) > 0 and to the control constraint u(·) ∈ U ⊂ R. We remark
that the case of state constraint y(·) ≥ 0 can be treated with similar arguments. The objective
is to maximize a functional of the form∫ +∞

0
e−ρt

(
g0(y(t)) − h0(u(t))

)
dt,

where ρ > 0 is a discount factor and g0 : R+ → R, h0 : U → R are measurable functions1. Our
ultimate goal is to get the synthesis of optimal controls for this problem, i.e. to produce optimal
feedback controls by means of the dynamic programming approach.

The presence of the delay in the state equation (1) renders not possible to apply the dynamic
programming techniques to the problem in its current form. A general way to tackle control
problems with delay consists in representing the controlled system in a suitable infinite dimen-
sional space (see [11, Part II, Ch. 1] for a general theory). In this way the delay is absorbed
in the infinite dimensional state, but, on the other hand, the price to pay is that the resulting
system is infinite dimensional and so is the value function V . Then the core of the problem
becomes the study of the associated infinite dimensional HJB equation for V : the optimal feed-
back controls will be given in terms of the first space derivatives of V through the so-called
verification theorem.

Sometimes explicit solutions to the (infinite dimensional) HJB equation are available (see
[3, 23, 28] and Section 8). In this case the optimal feedback controls are explicitly given and
the verification theorem is easy to prove. However in most cases the explicit solutions are not
available and then one has to try to prove some regularity result for the solutions of the HJB
equation in order to be able to define formally optimal feedback controls and check its optimality
through the verification theorem. This is due to the fact that, to obtain an optimal control in
feedback form, one needs the existence of an appropriately defined gradient of the solution. It is
possible to prove verification theorems and representation of optimal feedbacks in the framework
of viscosity solutions, even if the gradient is not defined in classical sense (see e.g. [9, 45] in
finite dimension and [24, 37] in infinite dimension), but this is usually not satisfactory in applied
problems since the closed loop equation becomes very hard to treat in such cases. The C1

regularity of solutions to HJB equations is particularly important in infinite dimension, since
in this case verification theorems in the framework of viscosity solutions contained in the above

1In economic applications typically they are respectively a utility and a cost function.
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references are rather weak. For this reason, the main goal of the present paper is to prove a C1

regularity result for the value function V of our problem.
To the best of our knowledge, C1 regularity for first order HJB equation was proved first

by Barbu and Da Prato [4] using methods of convex regularization and then developed by
various authors (see e.g. [5, 6, 7, 19, 20, 25, 30, 31]) in the case without state constraints
and without applications to problems with delay. In the papers [15, 16, 26] a class of optimal
control problems with state constraints is treated using again methods of convex regularization,
but the C1 regularity is not proved. To our knowledge, the only paper proving a C1 type
regularity result for the solutions to HJB equations arising in optimal control problems with
delay and state constraints is [27]. There a method introduced in finite dimension by Cannarsa
and Soner [17] (see also [9]) and based on the concept of viscosity solution has been generalized
in infinite dimension to get an ad hoc directional regularity result for viscosity solutions of the
HJB equation.

In our paper we want to exploit further the method of [17] to get a C1 type regularity
result for our problem. The main difference of our paper with respect to [27] is that therein
the delay is in the state variable, while here the delay is in the control variable. The case
of problems with delay in the control variable is harder to treat. First of all, if we tried a
standard infinite dimensional representation as in the case of state delay problems, we would
get a boundary control problem in infinite dimension (see [34]). However, this first difficulty can
be overcome when the original state equation is linear using a suitable transformation leading
to the construction of the so called structural state (see [44]) and this is why, differently from
[27], here we only treat the case of a linear state equation. But once we have done that, if
we try to follow the approach of [27] to prove a C1 regularity result for the value function, it
turns out that much more care is needed in the choice of the space where to perform the infinite
dimensional representation. While in [27] the product space R × L2 is used to represent the
delay system, we need here to use the more regular product space R ×W 1,2 for reasons that
are explained in the crucial Remark 5.5. We observe that the theory of the infinite dimensional
representation of delay systems has been developed mainly in spaces of continuous function or
in product spaces of type R×L2 (see the above mentioned reference [11]). Therefore we restate
the infinite dimensional representation in R ×W 1,2 and carefully adapt the regularity method
of [27] in such context. So we get the desired C1 type regularity result (Theorem 6.11), which
exactly as in [27] just allows to define an optimal feedback map in classical sense (see Corollary
6.13 and (60)). So, it is the starting point to construct optimal feedbacks for the problem as in
[28].

The paper is structured as follows. In Section 2 we just give the definition of some spaces and
state some notations. In Section 3 we give a precise formulation of the optimal control problem.
In Section 4 we rephrase the problem in infinite dimension and state the equivalence with the
original one (Theorem 4.5). In Section 5 we prove that the value function is continuous in the
interior of its domain with respect to a weak norm (Proposition 5.9). In Section 6 we show that
the value function solves in the viscosity sense the associated HJB equation (Theorem 6.9) and
then we provide the main result, i.e. we prove that it has continuous classical derivative along a
suitable direction in the space R×W 1,2 (Theorem 6.11). In Section 7 we show how our setting
may cover advertising models2. In Section 8, we provide an example (not known in literature)
with explicit solution to the HJB equation in the linear-quadratic case.

2It is worth to stress that, even if we focus to the application to optimal advertising problems, the same
approach can be applied to other contexts such as vintage capital models (see [12, 23]) or growth models with
time-to-build in investment (see [36, 43]).
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2 Spaces and notations

Throughout paper we use the Lebesgue space

L2
r := L2([−r, 0];R),

endowed with inner product

〈f, g〉L2
r

:=

∫ 0

−r
f(ξ)g(ξ)dξ,

which renders it a Hilbert space. Also we use the Sobolev spaces

W k,2
r := W k,2([−r, 0]; R), k = 1, 2, . . .

endowed with inner products

〈f, g〉
Wk,2
r

:=
k∑
i=0

∫ 0

−r
f (i)(ξ)g(i)(ξ)dξ, k = 1, 2, . . . ,

which render them Hilbert spaces. The well-known Sobolev inclusions imply that

W k,2
r ↪→ Ck−1([−r, 0];R), k = 1, 2, . . .

with continuous embedding. Throughout the paper we will confuse the elements of W k,2
r , which

are classes of equivalence of functions, with their (unique) representatives in Ck−1([−r, 0];R),
which are pointwise well defined functions. Given that, we define the spaces

W k,2
r,0 := {f ∈W k,2

r | f (i)(−r) = 0, ∀i = 0, 1, ..., k − 1} ⊂W k,2
r , k = 1, 2, . . .

We notice that in our definition of W k,2
r,0 the boundary condition is only required at −r. The

spaces W k,2
r,0 are Hilbert spaces as closed subsets of the Hilbert spaces W k,2

r . However, on these
spaces we can also consider the inner products

〈f, g〉
Wk,2
r,0

:=

∫ 0

−r
f (k)(ξ)g(k)(ξ)dξ, k = 1, 2, . . .

It is easy to see that, due to the boundary condition in the definition of the subspaces W k,2
r,0 ,

the inner products 〈·, ·〉
Wk,2
r,0

are equivalent to the original inner products 〈·, ·〉
Wk,2
r

on W k,2
r,0 , in

the sense that they induce equivalent norms. For this reason, dealing with topological concepts,
we will consider the simpler inner products (2) on the spaces W k,2

r,0 .

Also we consider the space
X := R× L2

r .

This is a Hilbert space when endowed with the inner product

〈η, ζ〉 := η0ζ0 + 〈η1, ζ1〉L2
r
,

where η = (η0, η1(·)) is the generic element of X. The norm on this space is defined as

‖η‖2X = |η0|2 + ‖η1‖2L2
r
.
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Finally we consider the space H ⊂ X defined as

H := R × W 1,2
r,0 .

This is a Hilbert space when endowed with the inner product

〈η, ζ〉 := η0ζ0 + 〈η1, ζ1〉W 1,2
r,0
.

which induces the norm

‖η‖2 = |η0|2 +

∫ 0

−r
|η′1(ξ)|2dξ.

This is the Hilbert space where our infinite dimensional system will be embedded.

3 The optimal control problem

In this section we give the precise formulation of the optimal control problem that we are going
to study.

Given y0 ∈ (0,+∞) and δ ∈ L2
r , we consider the optimal control of the following differential

equation with delay in the control variabley
′(t) = ay(t) + b0u(t) +

∫ 0

−r
b1(ξ)u(t+ ξ)dξ;

y(0) = y0; u(s) = δ(s), s ∈ [−r, 0);

(1)

with state constraint y(·) > 0 and control constraint u(·) ∈ U ⊂ R. The value y0 ∈ (0,+∞) in
the state equation (1) represents the initial state of the system, while the function δ represents
the past of the control, which is considered as given.

Concerning the control set U we assume the following, that will be a standing assumption
throughout the paper.

Hypothesis 3.1. U = [0, ū], where ū ∈ [0,+∞]. When ū = +∞, the set U is intended as
U = [0,+∞).

Concerning the parameters appearing in (1) we assume the following assumptions that will be
standing throughout the paper as well.

Hypothesis 3.2.

(i) a, b0 ∈ R;

(ii) b1 ∈ W 1,2
r,0 , and b1 6= 0.

The fact that b1 6= 0 means that the delay really appears in the state equation.

Given u(·) ∈ L2
loc([0,+∞);R), there exists a unique locally absolutely continuous solution

y : [0,+∞]→ R of (1), provided explicitly by the variation of constants formula

y(t) = y0e
at +

∫ t

0
ea(t−s)f(s)ds, (2)
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where

f(s) = b0u(s) +

∫ 0

−r
b1(ξ)u(s+ ξ)dξ; u(s) = δ(s), s ∈ [−r, 0].

We notice that f is well defined, as b1 is bounded and u(·) ∈ L2
loc([0,+∞),R). We denote by

y(t; y0, δ(·), u(·)) the solution to (2) with initial datum (y0, δ(·)) and under the control u(·) ∈
L2
loc([0,+∞);R). We notice that y(t; y0, δ(·), u(·)) solves the delay differential equation (1) only

for almost every t ≥ 0.

We define the class of the admissible controls for the problem with state constraint y(·) > 0 as

U(y0, δ(·)) := {u(·) ∈ L2
loc([0,+∞);U) | y(·, y0, δ;u(·)) > 0}.

Setting y(t) := y(t; y0, δ(·), u(·)), we define the objective functional

J0(y0, δ(·);u(·)) =

∫ +∞

0
e−ρt

(
g0(y(t)) − h0(u(t))

)
dt, (3)

where ρ > 0 and g0 : [0,+∞) → R, h0 : U → R are measurable functions satisfying the
following, that will be standing assumptions throughout the paper.

Hypothesis 3.3.

(i) g0 ∈ C([0,+∞);R), it is concave, nondecreasing and bounded from above. Without loss of
generality we assume that g(0) = 0 and set

ḡ0 := lim
y→+∞

g0(y). (4)

(ii) h0 ∈ C(U)∩C1(U◦), where U◦ denotes the interior part of U . Moreover it is nondecreas-
ing, convex and not constant. Without loss of generality we assume h0(0) = 0.

The optimization problem consists in the maximization of the objective functional J0 over the
set of all admissible strategies U(y0, δ(·)), i.e.

max
u(·)∈U(y0,δ(·))

J0(y0, δ(·);u(·)). (5)

Remark 3.4.

(i) The assumption that g0 is bounded from above (Hypothesis 3.3-(i)) is quite unpleasant,
if we think about the applications. However we stress that this assumption is taken here
just for convenience and can be replaced with a suitable assumption on the growth of g0,
relating it to the requirement of a large enough discount factor ρ.

(ii) We consider a delay r belonging to (−∞, 0]. However one can obtain the same results even
allowing r = −∞, suitably redefining the boundary conditions as limits. In the definition
of the Sobolev spaces W k,2

−∞,0, the boundary conditions required become

W k,2
−∞,0 :=

{
f ∈ W k,2 | lim

r→−∞
f (i)(r) = 0, ∀i = 0, 1, ..., k − 1

}
⊂W k,2

−∞.
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4 Representation in infinite dimension

In this section we restate the delay differential equation (1) as an abstract evolution equation
in a suitable infinite dimensional space. The infinite dimensional setting is represented by the
Hilbert space H = R×W 1,2

r,0 . The following argument is just a suitable rewriting in R×W 1,2
r,0 of

the method illustrated in [11] in the framework of the product space R× L2. We will use some
basic concepts from the Semigroups Theory, for which we refer to [22].

Let A be the unbounded linear operator

A : D(A) ⊂ H → H, (η0, η1(·)) 7→ (aη0 + η1(0),−η′1(·)), (6)

where a is the constant appearing in (1), defined on

D(A) = R×W 2,2
r,0 .

It is possible to show by direct computations that A is a (densely defined) closed operator
and generates a C0-semigroup (SA(t))t≥0 in H. However, we provide the proof of that in the
Appendix by using some known facts from the Semigroups Theory. The explicit expression of
SA(t) is (see the Appendix)

SA(t)η =

(
η0e

at +

∫ 0

(−t)∨(−r)
η1(ξ)ea(ξ+t)dξ, η1(· − t)1[−r,0](· − t)

)
, η = (η0, η1(·)) ∈ H. (7)

By [37, Ch. 2, Prop. 4.7], there exist M > 0, ω ∈ R such that

‖SA(t)‖ ≤ Meωt, t ≥ 0.

More precisely (see the Appendix) we have

‖SA(t)‖ ≤ (2 + r3)
1
2 eat, t ≥ 0. (8)

In the space H we set b := (b0, b1(·)) and define the bounded linear operator

B : U → H, u 7→ bu.

Often we will identify the operator B with b.

Given u(·) ∈ L2
loc([0,+∞),R), η ∈ H, we can consider the abstract equation in H{

Y ′(t) = AY (t) + Bu(t),

Y (0) = η.
(9)

We will use two concepts of solution to (9), that in our case coincide each other. For details
we refer to [37, Ch. 2, Sec. 5]. In the definitions below the integral in dt is intended as Bochner
integral in the Hilbert space H.

Definition 4.1.

(i) We call mild solution of (9) the function Y ∈ C([0,+∞), H) defined as

Y (t) = SA(t)η +

∫ t

0
SA(t− τ)Bu(τ)dτ, t ≥ 0. (10)
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(ii) We call weak solution of (9) a function Y ∈ C([0,+∞), H) such that, for any φ ∈ D(A∗),

〈Y (t), φ〉 = 〈η, φ〉+

∫ t

0
〈Y (τ), A∗φ〉dτ +

∫ t

0
〈Bu(τ), φ〉dτ, ∀t ≥ 0.

From now on we denote by Y (·; η, u(·)) the mild solution of (9). We notice that the definition
of mild solution is the infinite dimensional version of the variation of constants formula. By a
well-known result (see [37, Ch. 2, Prop. 5.2]), the mild solution is also the (unique) weak solution.

4.1 Equivalence with the original problem

In order to state equivalence between the DDE (1) and the abstract evolution equation (9),
we need to link the canonical R-valued integration with the W 1,2

r,0 -valued integration. This is
provided by the following lemma whose proof is standard. We omit it for brevity.

Lemma 4.2. Let 0 ≤ a < b and f ∈ L2
(

[a, b];W 1,2
0

)
. Then(∫ b

a
f(t)dt

)
(ξ) =

∫ b

a
f(t)(ξ)dt, ∀ξ ∈ [−r, 0],

where the integral in dt in the left handside is intended as Bochner integral in the space W 1,2
0 .

We need to study the adjoint operator A∗ in order to use the concept of weak solution of (9).

Proposition 4.3. We have

D(A∗) =
{
φ = (φ0, φ1(·)) ∈ H | φ1 ∈W 2,2

r , φ′1(0) = 0
}

and
A∗φ =

(
aφ0, ξ 7→ φ′1(ξ) + φ0(ξ + r)− φ′1(−r)

)
, φ ∈ D(A∗). (11)

Proof. Let
D :=

{
φ = (φ0, φ1(·)) ∈ H | φ1 ∈W 2,2

r , φ′1(0) = 0
}
.

First of all we notice that, defining A∗φ on D as in (11), we have A∗φ ∈ H. Now notice that

ψ′1(−r) = 0, ψ1(0) =

∫ 0

−r
ψ′1(ξ)dξ, ∀ψ ∈ D(A). (12)

Therefore, taking into account (12), we have for every ψ ∈ D(A) and every φ ∈ D

〈Aψ, φ〉 = aψ0φ0 + ψ1(0)φ0 −
∫ 0

−r
ψ′′1(ξ)φ′1(ξ)dξ

= aψ0φ0 +

(∫ 0

−r
ψ′1(ξ)dξ

)
φ0 − ψ′1(0)φ′1(0) + ψ′1(−r)φ′1(−r) +

∫ 0

−r
ψ′1(ξ)φ′′1(ξ)dξ

= aψ0φ0 +

∫ 0

−r
ψ′1(ξ)

(
φ0 + φ′′1(ξ)

)
dξ = 〈ψ,A∗φ〉

(13)

where {
(A∗φ)0 = aφ0,

(A∗φ)1(ξ) =
∫ ξ
−r(φ0 + φ′′1(ξ))dξ = φ0 · (ξ + r) + φ′1(ξ)− φ′1(−r).
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The equality above shows that D ⊂ D(A∗) and that A∗ acts as claimed in (11) on the elements
of D.

Now we have to show that D = D(A∗). For sake of brevity here we only sketch the proof
of this fact3, as a complete proof would require a study of the adjoint semigroup SA∗(t) in the
space H. We observe that D is dense in H. Moreover an explicit computation of the adjoint
semigroup would show that SA∗(t)D ⊂ D for any t ≥ 0. Hence, by [18, Th. 1.9, p. 8], D is dense
in D (A∗) endowed with the graph norm. Finally, using (11) it is easy to show that D is closed
in the graph norm of A∗ and therefore D (A∗) = D. �

Let v ∈ L2
r and consider the function

(v ∗ b1)(ξ) =

∫ ξ

−r
b1(τ)v(τ − ξ)dτ, ξ ∈ [−r, 0].

First of all we notice that (v ∗ b1)(−r) = 0. Extend b1 to a W 1,2
r (R) function on R equal to 0

in (−∞,−r) (recall that b1(−r) = 0) and extend v to an L2(R;R) function simply defining it
equal to 0 out of [−r, 0]. Then the function above can be rewritten as

(v ∗ b1)(ξ) =

∫
R
b1(τ)v(τ − ξ)1(−∞,0](τ − ξ)dτ, ξ ∈ [−r, 0].

Since v1(−∞,0] ∈ L2(R;R) and b1 ∈W 1,2(R;R), [13, Lemma 8.4] yields v ∗ b1 ∈W 1,2
r,0 and

(v ∗ b1)′(ξ) =

∫ ξ

−r
b′1(τ)v(τ − ξ)dτ. (14)

Consider still v extended to 0 out of [−r, 0] and set vξ(τ) := v(τ − ξ), τ ∈ [−r, 0] for ξ ∈ [−r, 0].
Of course vξ ∈ L2

r and ‖vξ‖L2
r
≤ ‖v‖L2

r
for every ξ ∈ [−r, 0]. Then, due to (14) and by Holder’s

inequality we have

‖v ∗ b1‖2W 1,2
r,0

=

∫ 0

−r

∣∣∣∣∫ ξ

−r
b′1(τ)v(τ − ξ)dτ

∣∣∣∣2 dξ =

∫ 0

−r

∣∣∣∣∫ ξ

−r
b′1(τ)vξ(τ)dτ

∣∣∣∣2 dξ
≤
∫ 0

−r

(∫ 0

−r
|b′1(τ)vξ(τ)|dτ

)2

dξ ≤
∫ 0

−r

(
‖b′1‖2L2

r
‖vξ‖2L2

r

)
dξ ≤ r‖b′1‖2L2

r
‖v‖2L2

r
. (15)

Let us introduce the continuous linear map M :

M : R × L2([−r, 0];R) −→ H

(z, v) 7−→ (z, v ∗ b1) =
(
z,
∫ ·
−r b1(τ)v(τ − ·)dτ

)
.

(16)

Due to (15), M is bounded. Call
M := Im(M).

Remark 4.4. Of course M is a linear subspace of H. It should be possible using [10] that is
not closed. �

3To this regard we observe that we will use in the following only the fact D ⊂ D(A∗) and that (11) holds true on
the elements of D, which has been proven rigorously. More precisely we will use the fact that (1, 0) ∈ D ⊂ D(A∗)
in the proof of Theorem 4.5.
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Theorem 4.5. Let y0 ∈ R, δ ∈ L2
r, u(·) ∈ L2

loc([0,+∞),R). Set

η := M(y0, δ(·)) ∈M; Y (t) := Y (t; η, u(·)), t ≥ 0. (17)

Then
Y (t) = M(Y0(t), u(t+ ·)), ∀t ≥ 0. (18)

Moreover, let y(·) := y(·; y0, δ, u(·)) be the unique solution to (1). Then

y(t) = Y0(t), ∀t ≥ 0. (19)

Proof. Let Y be the mild solution defined by (10) with initial condition η given by (17).
On the second component it reads

Y1(t) = T (t)η1 +

∫ t

0
[T (t− s)b1]u(s)ds

= 1[−r,0](· − t)η1(· − t) +

∫ t

0
1[−r,0](· − t+ s)b1(· − t+ s)u(s)ds

(20)

where (T (t))t≥0 is the semigroup of truncated right shifts on W 1,2
0 that is

[T (t)φ](ξ) = 1[−r,0](ξ − t)φ(ξ − t), ξ ∈ [−r, 0].

We recall that by hypothesis η = M(y0, δ(·)), so we write the second component of the initial
datum

η1(ξ) =

∫ ξ

−r
b1(α)δ(α− ξ)dα.

Then, by (20) and due to Lemma 4.2, the second component evaluated at ξ is

Y1(t)(ξ) = 1[−r,0](ξ− t)
∫ ξ−t

−r
b1(α)u(α−ξ+ t)dα +

∫ t

0
1[−r,0](ξ− t+s)b1(ξ− t+s)u(s)ds. (21)

Taking into account that 0 ≤ s ≤ t, we have ξ− t ≤ ξ− t+ s ≤ ξ, so that, setting α = ξ− t+ s
in the second part of the right handside of (21), it becomes

Y1(t)(ξ) = 1[−r,0](ξ − t)
∫ ξ−t

−r
b1(α)u(α− ξ + t)dα +

∫ ξ

ξ−t
1[−r,0](α)b1(α)u(α− ξ + t)dα

=

∫ (ξ−t)∨(−r)

−r
b1(α)u(α− ξ + t)dα +

∫ ξ

(ξ−t)∨(−r)
b1(α)u(α− ξ + t)dα.

=

∫ ξ

−r
b1(α)u(α+ t− ξ)dα.

(22)

Therefore, due to (16), the identity (18) is proved.

Let us show now (19). Setting ξ = 0 in (22) we get

Y1(t)(0) =

∫ 0

−r
b1(α)u(t+ α)dα. (23)

Now we use the fact that Y (·) is also a weak solution of (9). From Proposition 4.3 we know that

(1, 0) ∈ D(A∗), A∗(1, 0) = (a, ξ 7→ ξ + r) . (24)
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Therefore taking into account (24) and (23) and Definition 4.1-(ii), we have for almost every
t ≥ 0

Y ′0(t) =
d

dt
〈Y (t), (1, 0)〉 = 〈Y (t), A∗(1, 0)〉+ 〈Bu(t), (1, 0)〉

= aY0(t) +

∫ 0

−r
Y1(t)′(ξ)dξ + b0u(t)

= aY0(t) + Y1(t)(0)− Y1(t)(−r) + b0u(t)

= aY0(t) +

∫ 0

−r
b1(ξ)u(t+ ξ)dξ + b0u(t).

Therefore Y0(t) solves (1) with initial data (y0, δ(·)), so it must coincide with y(t). �

We can use the above result to reformulate the optimization problem (3) in the space
H. Let

H+ := (0,+∞)×W 1,2
r,0 .

Let η ∈ H and define the (possibly empty) set

U(η) := {u(·) ∈ L2
loc([0,+∞);U) | Y0(t; η, u(·)) > 0, ∀ t ≥ 0}

= {u(·) ∈ L2
loc([0,+∞);U) | Y (t; η, u(·)) ∈ H+, ∀ t ≥ 0}.

Given u(·) ∈ U(η) define

J(η;u(·)) =

∫ +∞

0
e−ρt

(
g(Y (t; η, u(·))) − h0(u(t))

)
dt. (25)

where
g : H+ −→ R, g(η) := g0(η0). (26)

Due to (19), if η = M(y0, δ(·)) then

U(η) = U(y0, δ(·))

and
J(η;u(·)) = J0(y0, δ(·);u(·)),

where J0 is the objective functional defined in (3). Therefore, we have reduced the original
problem (5) to

max
u(·)∈U(y0,δ(·))

J(η;u(·)), η = M(y0, δ(·)) ∈ M.

Although we are interested to solve the problem for initial data η ∈ M, as these are the initial
data coming from the real original problem, we enlarge the problem to data η ∈ H and consider
the functional (25) defined also for these data. So the problem is

max
u(·)∈U(η)

J(η;u(·)), η ∈ H. (27)
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5 The value function in the Hilbert space

In this section we study some qualitative properties of the value function V associated to the
optimization problem (27) in the space H. For η ∈ H the value function of our problem is the
function

V : H −→ R, V (η) := sup
u(·)∈U(η)

J(η, u(·))

with the convention
sup ∅ = −∞.

We notice that V is bounded from above due to the Hypotheses 3.3. More precisely

V (η) ≤
∫ +∞

0
e−ρtḡ0dt =

1

ρ
ḡ0, ∀ η ∈ D(V ).

The domain of the value function V is defined as

D(V ) := {η ∈ H | V (η) > −∞}.

Of course
D(V ) ⊂ {η ∈ H | U(η) 6= ∅}.

Before to proceed, we introduce a weaker norm in H, which is the natural one to deal with the
unbounded linear term in the study of the HJB equation.

5.1 The norm ‖ · ‖−1

We are going to define a norm weaker than ‖ · ‖ we will deal with. To this aim, we introduce
the following assumption, that will be a standing assumption in the rest of the paper and will
not be repeated.

Hypothesis 5.1. a 6= 0.

Remark 5.2. First of all we notice that Hypothesis 5.1 is not very restrictive for the appli-
cations, as the coefficient a in the model often represents a depreciation factor (so a < 0) or
a growth rate (so a > 0). However, the case a = 0 can be treated translating the problem as
follows. Take a = 0. The state equation in infinite dimension is (9) with

A : (φ0, φ1(·)) 7→
(
φ1(0),−φ′1(·)

)
.

We can rewrite it as
Y ′(t) = ÃY (t)− P0Y (t) + Bu(t),

where
P0 : H 7→ H, P0φ = (φ0, 0); Ã = A+ P0.

Then everything we will do can be suitably replaced dealing with this translated equation. �
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Just for convenience from now on we assume that Hypothesis 5.1 holds (Remark 5.2 shows that
it is not strictly necessary). Due to Hypothesis 5.1, the inverse operator of A is well defined.
This is a bounded operator H → D(A) whose explicit expression is

A−1 : (H, ‖ · ‖) −→ (D(A), ‖ · ‖),

η 7−→

(
η0 +

∫ 0
−r η1(s)ds

−a
,−
∫ ξ

−r
η1(s)ds

)
.

We define in H the norm ‖ · ‖−1 as

‖η‖−1 := ‖A−1η‖,

so

‖η‖2−1 =

∣∣∣∣∣η0 +
∫ 0
−r η1(s)ds

a

∣∣∣∣∣
2

+

∫ 0

−r
|η1(s)|2ds. (28)

Lemma 5.3. The norms ‖ · ‖−1 and ‖ · ‖X are equivalent in H.

Proof. Let η = (η0, η1) ∈ H. Taking into account (28) and by Hölder’s inequality, we have

‖η‖2X = |η0|2 +

∫ 0

−r
|η1(ξ)|2dξ

=

∣∣∣∣η0 +

∫ 0

−r
η1(ξ)dξ −

∫ 0

−r
η1(ξ)dξ

∣∣∣∣2 +

∫ 0

−r
|η1(ξ)|2dξ

≤ 2

∣∣∣∣η0 +

∫ 0

−r
η1(ξ)dξ

∣∣∣∣2 + 2

∣∣∣∣∫ 0

−r
η1(ξ)dξ

∣∣∣∣2 +

∫ 0

−r
|η1(ξ)|2dξ

≤ 2

∣∣∣∣η0 +

∫ 0

−r
η1(ξ)dξ

∣∣∣∣2 + 2

(∫ 0

−r
|η1(ξ)|dξ

)2

+

∫ 0

−r
|η1(ξ)|2dξ

≤ 2a2

∣∣∣∣∣η0 +
∫ 0
−r η1(ξ)dξ

a

∣∣∣∣∣
2

+ 2r2

∫ 0

−r
|η1(ξ)|2dξ +

∫ 0

−r
|η1(ξ)|2dξ

≤ C‖η‖2−1,

where C = max{2a2, 2r2 + 1}.
On the other hand, still using (28) and Hölder’s inequality, we have

‖η‖2−1 =

∣∣∣∣∣η0 +
∫ 0
−r η1(s)ds

a

∣∣∣∣∣
2

+

∫ 0

−r
|η1(s)|2ds ≤ 2

a2
|η0|2 +

∫ 0

−r
|η1(s)|2ds ≤ C ′‖η‖2X ,

where C ′ = max

{
2

a2
, 1

}
. So the claim is proved. �

From Lemma 5.3 we get the following

Corollary 5.4. There exists a constant Ca,r > 0 such that

|η0| ≤ Ca,r‖η‖−1, ∀η ∈ H. (29)
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Remark 5.5. Corollary 5.4 represents a crucial issue and motivates our choice of working in
the product space R×W 1,2

r,0 in place of the more usual product space R×L2
r. Indeed, embedding

the problem in R × L2
r and defining everything in the same way in this bigger space, we would

not be able to have an estimate of type (29) controlling |η0| by ‖η‖−1. But this estimate is
necessary to prove the continuity of the value function with respect to ‖ · ‖−1, since in this way
g is continuous in (H+, ‖ · ‖−1). On the other hand, the continuity of V with respect to ‖ · ‖−1

is necessary to have a suitable property for the superdifferential of V (see Proposition 5.14),
allowing to handle the unbounded linear term in the HJB equation.

We show with an example that an estimate like (29) cannot be obtained in the R×L2
r setting.

Consider in R× L2
r the sequence

ηn = (ηn0 , η
n
1 (·)), ηn0 := 1, ηn1 (·) = −n1[−1/n,0](·), n ≥ 1.

Let r > 1/n. In this setting, we have

‖ηn‖2−1 =

∣∣∣∣∣ηn0 +
∫ 0
−r η

n
1 (s)ds

a

∣∣∣∣∣
2

+

∫ 0

−r

∣∣∣∣−∫ ξ

−r
ηn1 (s)ds

∣∣∣∣2 dξ = 0 +

∫ 0

− 1
n

∣∣∣∣∣
∫ ξ

− 1
n

nds

∣∣∣∣∣
2

dξ

=

∫ 0

− 1
n

n2

(
ξ +

1

n

)2

dξ =
1

3n
−→ 0.

Therefore, we have |ηn0 | = 1 and ‖ηn‖−1 → 0. This shows that an estimate like (29) does not
hold in this setting. �

5.2 Concavity and ‖ · ‖−1-continuity of the value function

We are going to prove that V is concave and continuous with respect to ‖ · ‖−1. First of all,
recall that we have defined

H+ := (0,+∞)×W 1,2
r,0 .

We introduce also the spaces

G := {η ∈ H+ | 0 ∈ U(η)} ,

F :=

{
η ∈ H+

∣∣∣ η0 +

∫ 0

−ξ
η1(s)easds > 0, ∀ ξ ∈ [−r, 0]

}
,

H++ := (0,+∞)× {η1(·) ∈ W 1,2
r,0 | η1(·) ≥ 0, ∀ ξ ∈ [−r, 0]}.

Proposition 5.6.

(i) H++ ⊂ F = G ⊂ D(V ) ⊂ H+ and V (η) ≥ 0 for every η ∈ F = G.

(ii) F is open with respect to ‖ · ‖−1.

Proof. (i) The inclusions
H++ ⊂ F ⊂ H+
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are obvious. Let η ∈ F and set Y (·) := Y (·; η, 0). Due to Definition 4.1-(i) and to the definition
of the set F , we have

Y0(t) = [SA(t)η]0 = η0e
at +

∫ 0

(−t)∨(−r)
ea(t+ξ)η1(ξ)dξ,

= eat

(
η0 +

∫ 0

(−t)∨(−r)
eaξη1(ξ)dξ

)
> 0, ∀ t ≥ 0

so this claim is proved. This shows that F = G. Now let η ∈ G. Since g is nondecreasing and
g(0) = 0, h0(0) = 0, we have

V (η) ≥ J(η, 0) =

∫ +∞

0
e−ρt (g(Y (t; η, 0))− h0(0)) dt ≥

∫ +∞

0
e−ρt (g(0)− h0(0)) dt = 0.

As a byproduct this shows that V (η) ≥ 0 on G and that G ⊂ D(V ), so the proof of item (i) is
complete.

(ii) Let η̄ ∈ F . We have to prove that

∃ ε such that B‖·‖−1
(η̄, ε) ⊂ F . (30)

Due to Lemma 5.3, (30) is equivalent to

∃ ε such that B‖·‖X (η̄, ε) ⊂ F . (31)

Let ε > 0 and η ∈ B‖·‖X (η̄, ε). Then we have
|η0 − η̄0| < ε

1
2 ,

‖η1 − η̄1‖L2
r
< ε

1
2 .

Therefore ∣∣∣∣(η0 +

∫ 0

−ξ
easη1(s)ds

)
−
(
η̄0 +

∫ 0

−ξ
easη̄1(s)ds

)∣∣∣∣
≤ |η0 − η̄0| +

∣∣∣∣∫ 0

−ξ
eas (η1(s)− η̄1(s)) ds

∣∣∣∣
≤ |η0 − η̄0| + r1/2e|a|r‖η1 − η̄‖L2 < ε

1
2 + r1/2e|a|rε1/2.

(32)

where the second inequality follows from Holder’s inequality. Then (31) straightly follows from
(32) taking a sufficiently small ε > 0, so that the proof is complete. �

Definition 5.7. Let η ∈ D(V ), ε > 0. An admissible control uε(·) ∈ U(η) is said ε-optimal for
the initial state η if J(η;uε(·)) > V (η)− ε.

Proposition 5.8. The set D(V ) is convex and the value function V is concave on D(V ).

Proof. Let η, η̄ ∈ D(V ) and set, for λ ∈ [0, 1], ηλ := λη + (1 − λ)η̄. For ε > 0, let
uε(·) ∈ U(η) and ūε(·) ∈ U(η̄) be two controls ε-optimal for the initial states η, η̄ respectively.
Set

y(·) := y(·; η, uε(·)), ȳ(·) := ȳ(·; η̄, ūε(·)), uλ(·) := λuε(·) + (1− λ)ūε(·).
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Finally set yλ(·) := λy(·) + (1− λ)ȳ(·). The function h0 is convex so one has

h0(uλ(t)) ≤ λh0(uε(t)) + (1− λ)h0(ūε(t)), t ≥ 0.

Moreover, by linearity of the state equation, we have

Y (t; ηλ, uλ(·)) = λY (y; η, uε(·)) + (1− λ)Y (t; η̄, ūε(·)).

Hence, by concavity of g we have

g(Y (t; ηλ, uλ(·))) ≥ λg(Y (t; η, uε(·))) + (1− λ)g(Y (t; η̄, ūε(·))), t ≥ 0.

So, we have

V (ηλ) ≥ J(ηλ, u
λ(·)) =

∫ +∞

0
e−ρt

(
g(Y (t; ηλ, uλ))− h0(uλ(t))

)
dt

≥
∫ +∞

0
e−ρt (λg(Y (t; η, uε)) + (1− λ)g(Y (t; η̄, ūε))− λh0(uε(t))− (1− λ)h0(ūε(t))) dt

= λJ(η, uε) + (1− λ)J(η̄, ūε) > λV (η) + (1− λ)V (η̄)− ε

Since ε is arbitrary, this shows both the claims. �

Corollary 5.9. The value function V is continuous with respect to ‖ · ‖−1 in F .

Proof. The function V is concave and bounded from below in the ‖ · ‖−1 open set F .
Therefore the claim follows by a result of Convex Analysis (see e.g. [21, Ch. 1, Cor. 2.4]). �

Remark 5.10. F is open also with respect to ‖ · ‖. �

5.3 Monotonicity of the value function

Let us introduce the following partial order relation in H. Given η, ζ ∈ H, we say

η ≥ ζ ⇐⇒ η0 ≥ ζ0; η1(ξ) ≥ ζ1(ξ), ∀ ξ ∈ [−r, 0]. (33)

Analogously, denoting by m the Lebesgue measure in [−r, 0], we say that

η > ζ ⇐⇒ η ≥ ζ and η0 > ζ0 or m{η1(ξ) > ζ1(ξ)} > 0, ∀ ξ ∈ [−r, 0]. (34)

Proposition 5.11. The value function V is nondecreasing with respect to the order relation
defined above. Moreover, for all η ∈ D(V ), h > 0 (in the sense of (34)), we have

lim
s→+∞

V (η + sh) =
1

ρ
ḡ0. (35)

Proof. It is straightforward to check from (7) that SA(t) is positive preserving, which means
that

η ≥ 0 =⇒ SA(t)η ≥ 0.

Let η, ζ ∈ D(V ) with η ≥ ζ. Let u(·) ∈ U(η) and consider Y (·; η, u(·)). We have

Y (·; η, u(·))− Y (·; ζ, u(·)) = SA(t) (η − ζ) ≥ 0. (36)
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Therefore
Y0(t; η, u(·)) ≥ Y0(t; ζ, u(·)).

This shows that u(·) ∈ U(η). Hypothesis 5.12 implies that g is nondecreasing with respect to
the order relation defined above. Set

β(t) :=

∫ t

0
SA(t− τ)Bu(τ)dτ.

Then, also taking into account (36),

J(η;u(·))− J(ζ;u(·))

=

∫ +∞

0
e−ρt (g(Y (t; η, u(·)) − g(Y (t; ζ, u(·)))) dt

=

∫ +∞

0
e−ρt (g(SA(t)(η) + β(t)) − g(SA(t)(ζ) + β(t))) dt.

So also V (η) ≥ V (ζ) and the first part of the claim is proved.
Let us show the second part. Since h(0) = 0, we have

V (η + sh) ≥ J(η + sh; 0) =

∫ +∞

0
e−ρtg (SA(t)(η + sh)) dt =

∫ +∞

0
e−ρtg0 ([SA(t)(η + sh)]0) dt.

By (7) we have
lim
s↑+∞

[SA(t)(η + sh)]0 = +∞, ∀ t ≥ 0.

So, since g0 is nondecreasing, by monotone convergence we get

lim
s→+∞

V (η + sh) =

∫ +∞

0
e−ρtḡ0dt =

1

ρ
ḡ0,

the claim. �

Hypothesis 5.12. g0 is strictly increasing.

Proposition 5.13. Let Hypothesis 5.12 hold. We have the following statements:

(i) V (η) <
1

ρ
ḡ0 for every η ∈ D(V ).

(ii) For every η ∈ D(V ) and h ∈ H with h > 0 in the sense of (34), the function

[0,+∞)→ R, s 7→ V (η + sh) (37)

is strictly increasing.

Proof. (i) Let u(·) ∈ U(η). Set C := (2 + r3)
1
2 . By (8) we have

‖Y (t)‖ ≤ Ceat‖η‖ +

∫ t

0
Cea(t−τ)‖b‖|u(τ)|dτ ≤ Ceat

(
‖η‖+ ‖b‖

∫ t

0
|u(τ)|dτ

)
. (38)

With regard to the structure of U, we distinguish the two cases ū < +∞, ū = +∞.
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Case ū < +∞. In this case (38) yields

|Y0(t)| ≤ ‖Y (t)‖ ≤ Ceωt
(
‖η‖+

1

a
‖b‖ūt

)
, ∀ t ≥ 0. (39)

Let δ be such that

g0

(
Ceω

(
‖η‖+

1

a
‖b‖ū

))
= ḡ0 − δ. (40)

Since g0 is strictly increasing we have δ > 0. Then, for every u(·) ∈ U(η), we have thanks to
(39) and (40) and since h0 ≥ 0

J(η;u(·)) =

∫ +∞

0
e−ρt (g(Y (t))− h0(u(t))) dt ≤

∫ +∞

0
e−ρtg(Y0(t))dt

≤
∫ 1

0
e−ρtg0

(
Ceω

(
‖η‖+

1

a
‖b‖ū

))
dt+

∫ +∞

1
e−ρtḡ0dt

≤ 1

ρ
(ḡ0 − δ)

(
1− e−ρ

)
+

1

ρ
e−ρḡ0.

Taking the supremum over u(·) ∈ U(η), in the inequality above we get

V (η) = sup
u(·)∈U(η)

J(η;u(·)) ≤ 1

ρ
(ḡ0 − δ)

(
1− e−ρ

)
+

1

ρ
e−ρḡ0 <

1

ρ
ḡ0,

getting the claim in this case.
Case ū = ∞. By Hypothesis 3.3-(ii) there exist C0, C1 constant such that

h0(u) ≥ C0u− C1, ∀u ∈ U. (41)

Given (38) we want to find an upper bound for |Y0(t)| as (39), in order to argue as before and
get the claim. In this case, since ū = +∞, we do not have directly this upper bound over
all u(·) ∈ U(η), but only on good controls (ε-optimal, which still suffices). Let ε > 0 and let
u(·) ∈ U(η) be an ε-optimal control for η. Then by (41)

V (η)− ε < J(η;u(·)) =

∫ +∞

0
e−ρt (g(Y (t))− h0(u(t))) dt

≤
∫ +∞

0
e−ρt (g(Y (t))− C0u(t) + C1) dt.

So we have

C0

∫ 1

0
e−ρt|u(t)|dt ≤ C0

∫ +∞

0
e−ρt|u(t)|dt <

∫ +∞

0
e−ρt (g(Y (t)) + C1) dt− V (η) + ε

≤
∫ +∞

0
e−ρt (ḡ0 + C1) dt− V (η) + ε =

1

ρ
(ḡ0 + C1)− V (η) + ε < M.

This means that there exists some M ′ > 0 such that∫ 1

0
|u(t)|dt ≤ M ′, ∀u(·) ∈ U(η) ε− optimal.
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Therefore an upper bound as (39) holds true for t ∈ [0, 1] for the controls u(·) ∈ U(η) which are
ε-optimal. This allows to conclude as before.

(ii) By Propositions 5.8 and 5.11, we know that the real function (37) is concave and nonde-
creasing. Then, assuming by contradiction that it is not strictly increasing, it must exist s̄ ≥ 0
such that V (η + s̄h) is constant on the half line [s̄; +∞). This fact would contradict claim (i)
and (35), so we conclude. �

5.4 Superdifferential of concave ‖ · ‖−1-continuous function

Motivated by Proposition 5.8 and Corollary 5.9, in this subsection we focus on the properties
of the superdifferential of concave and ‖ · ‖−1-continuous functions. This will be useful to prove
the regularity result in the next section. We recall first some definitions and basic results from
non-smooth analysis concerning the generalized differentials. For the details we refer to [40].

Let v be a concave continuous function defined on some open set A of H. Given η ∈ A the
superdifferential of v at η is the convex and closed set

D+v(η) = {p ∈ H | v(ζ)− v(η) ≤ 〈ζ − η, p〉, ∀ ζ ∈ A} .

The set of the reachable gradients at η ∈ A is defined as

D∗v(η) := {p ∈ H | ∃ (ηn) ⊂ A, ηn → η, such that ∃∇v(ηn) and∇v(ηn) ⇀ p} .

As known (see [40, Ch. 1, Prop. 1.11]) D+v(η) is a closed convex not empty subset of H. Moreover
the set-valued map A −→ P(H), η 7→ D+v(η) is locally bounded (see [40, Ch. 1, Prop. 1.11]).
Also we have the representation (see [14, Cor. 4.7])

D+v(η) = co(D∗v(η)), η ∈ A. (42)

Given p, h ∈ H, with ‖h‖ = 1, we denote

ph := 〈p, h〉.

We introduce the directional superdifferential of v at η along the direction h

D+
h v(η) := {α ∈ R | v(η + γh)− v(η) ≤ γα, ∀ γ ∈ R} .

This set is a nonempty closed and bounded interval [a, c] ⊂ R. More precisely, since v(η) is
concave, we have

a = v+
h (η), c = v−h (η),

where v+
h (η), v−h (η) denote respectively the right and the left derivatives of the real function

s 7→ v(η + sh) at s = 0. By definition of D+v(η), the projection of D+v(η) on b must be
contained in D+

h v(η), that is

D+
h v(η) ⊃

{
ph | p ∈ D+v(η)

}
. (43)

On the other hand, Proposition 2.24 in [40, Ch. 1] states that

a = inf{〈p, h〉 | p ∈ D+v(η)} c = sup{〈q, h〉, | q ∈ D+v(η)},

and the sup and inf above are attained. This means that there exist p, q ∈ D+v(η) such that

a = 〈p, h〉, c = 〈q, h〉.

Since D+v(η) is convex, we see that also the converse inclusion of (43) is true. Therefore

D+
h v(η) =

{
ph | p ∈ D+v(η)

}
. (44)
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Proposition 5.14. Let v : F −→ R be a concave function continuous with respect to ‖ · ‖−1

and let η ∈ F , p ∈ D∗v(η). Then

(i) p ∈ D(A∗);

(ii) there exists a sequence ηn → η such that for each n ∈ N there exists ∇v(ηn) and ∇v(ηn) ∈
D(A∗);

(iii) ∇v(ηn) ⇀ p and A∗∇v(ηn) ⇀ A∗p.

Proof. See [27, Prop. 3.12-(4)] and [28, Rem. 2.11]. �

6 Dynamic Programming and HJB equation

We are ready to approach the problem by the Dynamic Programming. From now on, just for
convenience, we assume without loss of generality that ‖b‖ = 1.

Theorem 6.1 (Dynamic Programming Principle). For any η ∈ D(V ) and for any τ ≥ 0,

V (η) = sup
u(·)∈U(η)

[∫ τ

0
e−ρt (g (Y (t; η, u(·))) − h0(u(t))) dt+ e−ρτV (Y (τ ; η, u(·)))

]
.

Proof. See e.g. [37, Th. 1.1, Ch. 6]. �

The differential version of the Dynamic Programming Principle is the HJB equation.
We consider this equation in the set F . It is

ρv(η) = 〈Aη,∇v(η)〉 + g(η) + sup
u∈U
{〈Bu,∇v(η)〉 − h0(u)} , η ∈ F . (45)

We introduce the following Inada’s type assumption on h0.

Hypothesis 6.2. limu↓ 0 h
′
0(u) = 0, limu↑ ū h

′
0(u) = +∞.

Defining the Legendre transform of h0

H(p0) := sup
u∈U
{up0 − h0(u)}, (46)

due to Hypothesis 6.2, it is easily checked that{
H(p0) = 0, if p0 ≤ 0,

H(p0) > 0, if p0 > 0.

Since
sup
u∈U
{〈Bu, p〉 − h0(u)} = sup

u∈U
{〈u,B∗p〉 − h0(u)} ,

taking into account that B∗p = 〈b, p〉, (45) can be rewritten as

ρv(η) = 〈η,A∗∇v(η)〉 + g(η) + H(〈∇v(η), b〉), η ∈ F . (47)

We note that the nonlinear term in (47) can be defined without requiring the full regularity of
v, but only the C1-smoothness of v with respect to the direction b. Indeed, denoting coherently
with (44) by vb the directional derivative of v with respect to b, we can intend the nonlinear
term in (47) as H(vb(η)). So we can write (47) as

ρv(η) = 〈η,A∗∇v(η)〉 + g(η) + H(vb(η)), η ∈ F . (48)
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Proposition 6.3. Let Hypothesis 6.2 hold true. Then the function H is finite and strictly convex
in (0,+∞).

Proof. Let Ũ := [−ū, ū]. If ū = +∞, the set Ũ is intended as R. Let

h̃0(u) :=

{
h0(u) ifu ∈ [0, ū],
h0(−u) ifu ∈ [−ū, 0].

The Legendre transform of h̃0 is

H̃(p0) := sup
u∈Ũ
{up− h̃0(u)}.

Due to Hypothesis 3.3-(ii) and to [41, Cor. 26.4.1], H̃(p) is finite and strictly convex in R. In
order to get the claim, we need just to prove that that for p0 > 0 we have H̃(p0) = H(p0).
Indeed if p0 > 0

H̃(p0) = sup
u∈Ũ
{up0 − h̃0(u)} = sup

u∈U
{up0 − h̃0(u)} = sup

u∈U
{up0 − h0(u)} = H(p0),

where the second equality follows from Hypothesis 6.2. �

6.1 The HJB equation: viscosity solutions

In this subsection we are going to prove that the value function V is a viscosity solution of the
HJB equation (48). To this aim, we need to define a suitable set of regular test functions. This
is the set

T :=
{
ϕ ∈ C1(H) | ∇ϕ(·) ∈ D(A∗), A∗∇ϕ : H → H is continuous

}
.

Let us define, for u ≥ 0, the differential operator Lu on T by

[Luϕ](η) := −ρϕ(η) + 〈η,A∗∇ϕ(η)〉+ u〈∇ϕ(η), b〉.

The proof of the following chain’s rule can be found in [37, Ch. 2, Prop. 5.5].

Lemma 6.4. Let η ∈ H, ϕ ∈ T , u(·) ∈ L2
loc([0,+∞);R) and set Y (t) := Y (t; η, u(·)). Then

the following chain’s rule holds:

e−ρtϕ(Y (t))− ϕ(η) =

∫ t

0
e−ρs[Lu(s)ϕ](Y (s))ds, ∀ t ≥ 0. �

Definition 6.5.

(i) A continuous function v : F → R is called a viscosity subsolution of (48) if, for each
couple (ηM , ϕ) ∈ F × T such that v − ϕ has a local maximum at ηM , we have

ρv(ηM ) ≤ 〈ηM , A∗∇ϕ(ηM )〉 + g(ηM ) + H (ϕb(ηM )) .

(ii) A continuous function v : F → R is called a viscosity supersolution of (48) if, for each
couple (ηm, ϕ) ∈ F × T such that v − ϕ has a local minimum at ηm, we have

ρv(ηm) ≥ 〈ηm, A∗∇ϕ(ηm)〉 + g(ηm) + H (ϕb(ηM )) .
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(iii) A continuous function v : F → R is called a viscosity solution of (48) if it is both a
viscosity sub and supersolution of (48).

We introduce the following assumption on U .

Hypothesis 6.6. Either (i) ū < +∞ or

(ii) ū = +∞ and ∃ α > 0 such that lim inf
u→+∞

h0(u)

u1+α
> 0. (49)

Remark 6.7. We notice that Hypothesis 6.6-(ii) is just slightly stronger than the assumption
limu→+∞ h

′
0(u) = +∞ in Hypothesis 6.2.

Lemma 6.8. Let Hypotheses 6.6 hold. Then, for every η ∈ F , ε > 0, there exists Mε such that∫ +∞

0
e−ρt|u(t)|1+αdt ≤ Mε ∀uε(·) ∈ U(η) ε− optimal for η,

where α is the constant appearing in (49).

Proof. If Hypothesis 6.6-(i) holds, the proof is trivial. So, let Hypothesis 6.6-(ii) hold true.
By such assumption, there exist constants M0,M1 > 0 such that

h0(u) ≥ M0u
1+α(t)−M1.

Let uε(·) ∈ U(η) an ε-optimal control for η. Then

V (η)− ε < J(η;uε(·)) =

∫ +∞

0
e−ρt (g(Y (t))− h0(u(t))) dt

≤
∫ +∞

0
e−ρt

(
g(Y (t))−M0|u(t)|1+α +M1

)
dt.

(50)

From (50) we get

M0

∫ +∞

0
e−ρt|u(t)|1+αdt ≤

∫ +∞

0
e−ρt (g(Y (t)) +M1) dt− V (η) + ε

≤
∫ +∞

0
e−ρt (ḡ0 +M1) dt− V (η) + ε <

ḡ0 +M1

ρ
− V (η) + ε =: Mε.

So the claim is proved. �

Theorem 6.9. Let Hypotheses 6.6 hold. The value function V is a viscosity solution of (48)
on F .

Proof. Subsolution property. Let (ηM , ϕ) ∈ F × T be such that V − ϕ has a local max-
imum at ηM . Without loss of generality we can suppose V (ηM ) = ϕ(ηM ). Let us suppose, by
contradiction, that there exists ν > 0 such that

2ν ≤ ρV (ηM )− (〈ηM , A∗∇ϕ(ηM )〉+ g(ηM ) +H (ϕb(ηM ))) .

Let us define the function

ϕ̃(η) := V (ηM ) + 〈∇ϕ(ηM ), η − ηM 〉, η ∈ H. (51)
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We have
∇ϕ̃(η) = ∇ϕ(ηM ), ∀ η ∈ H.

Thus ϕ̃ ∈ T and we have as well

2ν ≤ ρV (ηM )− (〈ηM , A∗∇ϕ̃(ηM )〉+ g(η) +H (ϕ̃b(ηM ))) .

Now, we know that V is a concave function and that V −ϕ has a local maximum at ηM , so that

V (η) ≤ V (ηM ) + 〈∇ϕ(ηM ), η − ηM 〉. (52)

Thus, by (51) and (52)

ϕ̃(ηM ) = V (ηM ) ϕ̃(η) ≥ V (η), ∀ η ∈ F . (53)

Let Bε := B(H,‖·‖)(ηM , ε). Due to the properties of the functions belonging to T , we can find
ε > 0 such that

ν ≤ ρV (η)− (〈η,A∗∇ϕ̃(η)〉+ g(η) +H (ϕ̃b(ηM ))) , ∀η ∈ Bε.

Take a sequence δn > 0 such that δn → 0. For each n ∈ N, take a δn-optimal control
un(·) ∈ U(η) and set Y n(·) := Y (·; ηM , un(·)). Define

tn := inf {t ≥ 0 | ‖Y n(t)− ηM‖ = ε} ∧ 1

with the agreement that inf ∅ = +∞. Of course tn is well defined and belongs to (0, 1]. Moreover,
by continuity of t 7→ Y n(t), we have Y n(t) ∈ Bε, for t ∈ [0, tn). By definition of δn-optimal
control, we have as consequence of the Dynamic Programming Principle

δn ≥ −
∫ tn

0
e−ρt [g(Y n(t))− h0(un(t))] dt−

(
e−ρtnV (Y (tn))− V (ηM )

)
. (54)

Therefore, by (53) and (54),

δn ≥ −
∫ tn

0
[g(Y n(t))− h0(un(t))] dt−

(
e−ρtn (ϕ̃(Y n(tn)))− ϕ̃(ηM )

)
=

∫ tn

0
e−ρt

[
g(Y n(t))− h0(un(t)) + [Lun(t)ϕ̃](Y n(t))

]
dt

≥ −
∫ tn

0
e−ρt [g(Y n(t))− ρϕ̃(Y n(t)) + 〈A∗∇ϕ̃(Y n(t)), Y n(t)〉+H(ϕ̃b(Y

n(t)))] dt ≥ tnν.

Therefore, since δn → 0 we also have tn → 0. We claim that tn → 0 implies

‖Y n(tn)− ηM‖ −→ 0. (55)

This would be a contradiction of the definition of tn, concluding the proof. Let us prove (55).
Using the definition of mild solution (4.1) of Y n(tn), we have

‖Y n(tn)− ηM‖ =

∥∥∥∥SA(tn)ηM +

∫ tn

0
SA(tn − τ)Bun(τ)dτ − ηM

∥∥∥∥
≤ ‖(SA(tn)− I) ηM‖+

∥∥∥∥∫ tn

0
SA(tn − τ)Bun(τ)dτ

∥∥∥∥
≤ ‖(SA(tn)− I) ηM‖+

∫ tn

0
‖SA(tn − τ)‖L(H)‖B‖|un(τ)|dτ.
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By the estimate (8) of the SA(·), to prove that the right side of above inequality converges to 0,
it suffices to prove that ∫ tn

0
|un(s)|ds→ 0. (56)

We have to distinguish the two case. If Hypothesis 6.6-(i) holds true, since tn → 0 we have
directly (56). If Hypothesis 6.6-(ii) holds true, set β > 1 and 1/β+1/α = 1. Then α = β/(β−1)
and by Hölder’s inequality∫ tn

0
|un(s)|ds ≤

(∫ tn

0
|un(τ)|βdτ

) 1
β

t
β−1
β

n .

Since by Lemma 6.8 we know that
(∫ tn

0 |un(τ)|βdτ
) 1
β

is bounded and since tn → 0, we have

again (56). So the proof of this part is complete.

Supersolution property. The proof that V is a viscosity supersolution is more standard. We
refer to [37, Ch. 6, Th. 3.2]. �

6.2 Smoothness of viscosity solutions

In this subsection we are going to show our main result that is the proof of a C1 directional
regularity result for viscosity solutions to the HJB (45). In particular, this result applies to the
value function when b > 0 (in the sense of (34)) and all the hypotheses collected so far hold
true.

Lemma 6.10. Let v : F −→ R be a concave ‖·‖−1-continuous function and suppose that η ∈ F
is a differentiability point for v and that ∇v(η) = ξ. Then

1. There exists a ϕ ∈ T such that v − ϕ has a local maximum at η and ∇ϕ(η) = ξ.

2. There exists a ϕ ∈ T such that v − ϕ has a local minimum at η and ∇ϕ(η) = ξ.

Proof. See [27, Lemma 4.5]. �

Theorem 6.11. Let v be a concave ‖ · ‖−1-continuous viscosity solution of (48) on F , which
is strictly increasing along the direction b. Then v is differentiable along b at each η ∈ F ,
vb(η) ∈ (0,+∞) and the function η 7→ vb(η) is continuous in F .

Proof. Let η ∈ F and p, q ∈ D∗v(η). Due to Proposition 5.14, there exist sequences
(ηn), (η̃n) ⊂ F such that:

• ηn → η, η̃n → η;

• ∇v(ηn) and ∇v(η̃n) exist for all n ∈ N and ∇v(ηn) ⇀ p, ∇v(η̃n) ⇀ q;

• A∗∇v(ηn) ⇀ A∗p and A∗∇v(η̃n) ⇀ A∗q.

Recall that, given η ∈ H, we have defined

ηb := 〈η, b〉.

Due to Lemma 6.10 and Theorem 6.9 we can write, for each n ∈ N,

ρv(ηn) = 〈ηn, A∗∇v(ηn)〉 + g(ηn) + H(vb(ηn))
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ρv(η̃n) = 〈ηn, A∗∇v(η̃n)〉 + g(η̃n) + H(vb(η̃n)).

So, letting n→∞ we get

〈η,A∗p〉 + g(η) + H(pb) = ρv(η) = 〈η,A∗q〉 + g(η) + H(qb). (57)

On the other hand λp+ (1− λ)q ∈ D+v(η) for any λ ∈ (0, 1), so that we have the subsolution
inequality

ρv(η) ≤ 〈η,A∗[λp+ (1− λ)q]〉 + g(η) + H(λpb + (1− λ)qb), ∀λ ∈ (0, 1). (58)

Combining (57) and (58) we get

H(λpb + (1− λ)qb) ≥ λH(pb) + (1− λ)H(qb). (59)

Notice that, since p, q ∈ D∗v(η), we have also p, q ∈ D+v(η). Since v is strictly increasing along
b we must have pb, qb ∈ (0,+∞). Since H is strictly convex on (0,+∞), (59) yields pb = qb. Due
to (44) we have that pb, qb ∈ D+

b v(η). With this argument we have shown that the projection of
D∗v(η) onto b is a singleton. Due to (42), this implies that also the projection of D+v(η) onto
b is a singleton. Due to (44) we have that D+

b v(η) is a singleton too. Since v is concave, this is
enough to conclude that it is differentiable along the direction b at η and vb(η) ∈ (0,+∞).

Now we prove the second claim of the Theorem, that is that the map η 7→ vb(η) is continuous
in F . To this aim we take η ∈ F and a sequence (ηn) ⊂ F such that ηn → η. We have to
prove that vb(η

n) → vb(η). Being v concave, by definition of superdifferential (44) for every
n ∈ N, there exists pn ∈ D+v(ηn) such that 〈pn, b〉 = vb(ηn) ∈ D+

b (ηn). Since v is concave,
it is also locally Lipschitz continuous, so that the super-differential is a locally bounded multi-
function (see [40, Ch. 1, Prop. 2.5]). Therefore, from each subsequence (pnk) we can extract a
sub-subsequence (pnkh ) such that

pnkh −→ p ∈ F

for some limit point p. Due to concavity of v, this limit point must belong to D+v(η). We have
shown in the first part of the proof that the projection of D+v(η) onto b is the singleton vb(η),
so that it must be

〈p, b〉 = vb(η).

With this argument we have shown that, from each subsequence (vb(η
nk)) , we can extract a

sub-subsequence (vb(η
nkh )) such that

vb(η
nkh ) = 〈pnkh , b〉 → 〈p, b〉 = vb(η).

The claim follows by the usual argument on subsequences. �

Remark 6.12. Notice that in the assumption of Theorem 6.11 we do not require that v is the
value function, but only that it is a concave ‖ · ‖−1-continuous viscosity solution of (48) strictly
increasing along b.

Corollary 6.13. Let b > 0 (in the sense of (34)) and Hypotheses 5.12, 6.2, 6.6 hold. Then
V is differentiable along b at any point η ∈ F , Vb(η) ∈ (0,+∞) and the function η 7→ Vb(η) is
continuous in F .
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Proof. Due to Proposition 5.8 the function V is concave in F and due to Corollary 5.9
it is ‖ · ‖−1-continuous therein. Moreover, since b > 0, due to Proposition 5.13, it is strictly
increasing along b . Finally, by Theorem 6.9 it is a viscosity solution of the HJB equation (48).
Therefore Theorem 6.11 applies to V and we have the claim. �

Corollary 6.13 allows to define a feedback map in classical form when the assumptions
of this corollary are fulfilled. Indeed we can define the map

P(η) := argmaxu∈U {uVb(η)− h0(u)} , η ∈ F . (60)

Existence, uniqueness and continuity in F of the argmax follow from (46). With this map at
hand, we can try to study the associated closed loop equation and prove a Verification Theorem
stating the optimality of feedback controls, as it is done in [28]. The main problem is represented
by the study of the closed loop equation, which, differently form [27], has to be approached
directly in infinite dimension. These topics are the object of further research.

7 Application to optimal advertising

In this section we show how our setting covers a model for optimal advertising considered in
the classical economic literature. The first model for the optimal advertising problem goes back
to Nerlove and Arrow [38], which has paved the way for the development of a number of more
complex models on the subject4. Here we describe the model proposed by Pawels in [39], which
fits our setting.

In this model a monopolistic firm is considered. The rate of sales of this firm at time t,
indicated by q(t), is given by

q(t) = f(p(t),K(t)), (61)

where p(·) is the price at time t of the commodity produced and sold by the monopolist; K(t)
is the monopolist’s stock of goodwill at time t; f is a demand function, concave and increasing
on K, convex and decreasing on p. The rate of advertising expenditure at time t is denoted by
s(t)5. This expenditure is transformed by a production function of goodwill G: in the absence
of any time lags, the value of G(s(t)) gives the gross increase in the stock of goodwill resulting
from a rate of advertising s(t). It is assumed that

G(0) = 0, G′ > 0, G′′ < 0. (62)

However time lags due to the memory of the past advertising are considered in the model and
the resulting state equation is{

K̇(t) = −δK(t) +
∫ t
−∞w(t− σ)G(s(σ))dσ,

K(0) = K0, s(σ) = s0(σ), σ ∈ (−∞, 0),
(63)

where δ > 0 is a forgetting factor and w : [0,+∞) → R+ is a function weighting of the past of
the control with the property that ∫ t

−∞
w(t− σ)dσ = 1. (64)

4We refer to [29], a survey on this subject that also explains the importance of the introduction of memory
effects in the state equation.

5Goodwill can be interpreted as “image” in the consumer’s mind, with this image being revived through
advertising or, more in general, through an expenditure improving this image (for example, we can suppose that
also the expenditure is in R&D to innovate brings an increase of the consumer’s belief).
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Total costs at time t are C(q(t)) + s(t), where C represents the cost function of production and
is assumed to be increasing and convex. Finally the total revenue at time t is

R(p(t),K(t)) = p(t)f(p(t),K(t))− C (f(p(t),K(t))) . (65)

The optimal control problem consists in maximize, over the controls s(·), p(·) : [0,+∞) → R,
the present value of future profits:∫ +∞

0
e−ρt (R(p(t),K(t))− s(t)) dt. (66)

The problem is studied in [39] by means of a Maximum Principle, using the theoretical back-
ground provided by [42]. We stress that no constraints on the state and the control variables
are imposed in [39], while our approach, as we have shown, allows to treat the constrained case.

First of all, we notice that the optimization with respect to p(t) can be performed pointwise
inside the integral (66), as this variable does not appear in the state equation (64). Indeed the
optimality condition for p(t) is

∂R

∂p
(p(t),K(t)) = 0,

i.e.

p(t) =

[
∂R

∂p
(·,K(t))

]−1

(0).

If we suppose that f is separable in p,K, i.e. in the form f(p,K) = α(p)β(K) and that C is
linear, i.e. in the form C(q) = γq, γ > 0, then the optimum p(t) is constant. More precisely,
supposing suitable assumptions6 on α, it is the unique solution p̄ > γ to the equation

(p− γ)α′(p) + α(p) = 0.

Suppose that this is the case and that w ≡ 0 on (r,+∞) for some r > 0. Then the model above
is covered by our setting through suitable transformations as follows. Setting b1(ξ) := w(−ξ),
ξ ∈ [−r, 0], and u(σ) := G(s(σ)), the state equation becomes like ours

K̇(t) = −δK(t) +

∫ 0

−r
b1(ξ)u(t+ ξ)dξ, (67)

and the space of control becomes U := [0, G(+∞)]. On the other hand, with these transforma-
tions, the functional (66) becomes∫ +∞

0
e−ρt

(
R(p̄,K(t)) − G−1(u(t))

)
dt. (68)

Therefore, setting h0 := G−1 and g0(·) := R(p̄, ·), the functional (68) looks like (3)7. Now we
can apply Theorem 6.11: the value function V of this transformed problem is smooth along the

6For instance, we may take as in the example of [39], α(p) = Ap−η, A > 0, η > 1.
7Hypotehsis 3.3-(ii) is fulfilled by h0 = G−1 due to (62). Instead, Hypotheses 3.3-(i), 6.2 and 6.6 on g0, h0 will

correspond to suitable ones on β,G:

• Hypothesis 3.3-(i) corresponds just to require β fulfilling Hypothesis 3.3-(i);

• Hypothesis 6.2 becomes G′(0) = +∞, G′(+∞) = 0;

• Hypothesis 6.6 becomes either (i) G(+∞) < +∞ or (ii) ∃ α > 0 such that lim sup
ζ→+∞

G(ζ)

ζ
1

1+α

= 0.
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direction b = (0, b1) in the space H. Therefore, formally the optimal feedback control for the
original problem (66) is

s∗(t) = G−1 (P(Y ∗(t))) ,

where P is the feedback map of the transformed problem defined in (60) and Y ∗(t) is the solution
of the infinite dimensional closed loop equation{

Y ′(t) = AY (t) + BP(Y (t)),

Y (0) = η =
(
K0,

∫ ·
−r b1(τ)G(s0(τ − ·))dτ

)
.

(69)

As observed at the end of the previous section, the problem is now to study the closed loop
equation (69) (existence and uniqueness), the admissibility of the associated trajectory and
prove by verification that the solution found really defines an optimal control for the problem.
If this is true, then the optimal control can be expressed in closed loop form by

s(t) = G−1

(
P
(
K(t),

∫ ·
−r
b1(ξ)s(t+ τ − ·)dτ

))
.

8 Explicit solution in a special case

In this section we provide the explicit solution to the HJB equation (48) in a special case.
Consider the case

U = [0,+∞); g(y0) = γy0, γ > 0; h0(u) = δu2, δ > 0.

We notice that this case is actually out of our assumptions, as the function g0 above is not
bounded from above as required in Hypothesis 3.3. Nevertheless, as observed in Remark 3.4-
(ii), the assumption of boundedness from above of g0 can be replaced by a suitable assumption
on ρ. Indeed the right assumption in this case is that the discount factor ρ is able to kill the
uncontrolled part of the growth rate of y(·), i.e. it amounts to require ρ > a.

The Legendre transform of h is

h∗(p) := sup
u≥ 0
{pu− h0(u)} = sup

u≥ 0
{pu− δu2} =

p2

4δ
.

where the maximum above is obtained at u∗(p) =
p

2δ
. Assuming as in Section 6 that ‖b‖ = 1,

the HJB equation is

ρv(η) = 〈η,A∗∇v(η)〉 + γy0 +
1

4δ
vb(η)2, η ∈ F . (70)

We look for a solution in the affine form

v(y) = 〈y, α〉 + β, α ∈ D(A∗), β ∈ R. (71)

Plugging (71) into (70) we see that it must be

ρ (〈y, α〉 + β) = 〈y,A∗α〉+ γy0 +
1

4δ
|〈b, α〉|2. (72)
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This means that we have to solve the following system{
ρα = A∗α + (γ, 0), α ∈ D(A∗),

ρβ =
1

4δ
|〈b, α〉|2, β ∈ R.

(73)

We recall that the operator A∗ is

A∗α =
(
aα0, ξ 7→ α′1(ξ) + α0 · (ξ + r)− α′1(−r)

)
, α ∈ D(A∗),

and
D(A∗) =

{
α = (α0, α1(·)) ∈ H | α1 ∈W 2,2

r , α′1(0) = 0
}
.

Thus (73) can be written as

ρα0 = aα0 + γ, β =
|〈b, α〉|2

4δρ
, (74)

{
ρα1(ξ) = α′1(ξ) + α0 · (ξ + r)− α′1(−r)
α1(−r) = 0, α′1(0) = 0.

(75)

By (74) it follows

α0 =
γ

(ρ− a)
. (76)

To find a solution to (75), consider the equation
ρα1(ξ) = α′1(ξ) + α0 · (ξ + r) − σ,

α(−r) = 0.
(77)

This equation has solution α1(ξ;σ) for all σ ∈ R given by

α1(ξ;σ) = −
∫ ξ

−r
eρ(ξ−s) (σ + α0 · (s+ r)) ds

=
σ

ρ

(
1− eρ(ξ+r)

)
+
α0

ρ
(ξ + r) +

α0

ρ2

(
1− eρ(ξ+r)

)
.

(78)

We note that, for any given σ ∈ R, we have

α′1(−r;σ) =
σ

ρ
(−ρ) +

α0

ρ
− α0

ρ
= −σ,

so that the equation {
ρα1(ξ) = α′1(ξ) + α0 · (ξ + r)− α′1(−r)
α1(−r) = 0, α′1(0) = 0,

admits a family of solutions α1(·;α′1(−r)). We have the freedom to choose α′1(−r) to match the
last condition of (75), imposing α′1(0;α′1(−r)) = 0. From (78) we get the equation

−α′1(−r)eρr +
α0

ρ
− α0

ρ
eρr = 0,

so that
α′1(−r) =

α0

ρ

(
e−ρr − 1

)
. (79)
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Finally, by (78) and (79) the solution of (77) is

α1(ξ) =
α0

ρ2

(
e−ρr − eρξ

)
+
α0

ρ
(ξ + r). (80)

By (76) and (80), we have that

α = (α0, α1(ξ)) =

(
γ

ρ− a
,
α0

ρ2

(
e−ρr − eρξ

)
+
α0

ρ
(ξ + r)

)
, (81)

and we can get the expression of β by (74) and (81). Taking into account α and β, due to (71)
we have

vb(η) = 〈b, α〉.

By (60), the feedback map associated to this solution is the constant map

G(η) =
〈b, α〉

2δ
. (82)

The state equation associated to the constant control
〈b, α〉

2δ
isY ′(t) = AY (t) +B

〈b, α〉
2δ

,

Y (0) = η,
(83)

which admits the unique mild solution

Y ∗(t) = SA(t)η +

∫ t

0
SA(t− τ)B

〈b, α〉
2δ

dτ.

On the first component the expression above yields

Y ∗0 (t) = eat

(
η0 +

∫ 0

(−t)∨(−r)
η1(ξ)eaξdξ

)
+
〈b, α〉

2δ

∫ t

0

(
ea(t−τ)b0 +

∫ 0

(−t)∨(−r)
ea(t+ξ−τ)b1(ξ)dξ

)
dτ.

The admissibility of this trajectory is related to the sign of 〈b, α〉. Actually we have

〈b, α〉 = b0α0 +

∫ 0

−r
b′1(ξ)α′1(ξ)dξ = b0

γ

ρ− a
+

∫ 0

−r
b′1(ξ)

(
−α0

ρ
eρξ +

α0

ρ

)
dξ

= b0
γ

ρ− a
− α0

ρ

(
b1(0)− ρ

∫ 0

−r
b1(ξ)eρξdξ

)
+
α0

ρ
b1(0)

= b0
γ

ρ− a
+

γ

ρ− a

∫ 0

−r
b1(ξ)eρξdξ =

γ

ρ− a
b0 +

∫ 0

−r
b1(ξ)eρξdξ.

(84)

If b ≥ 0 (in the sense of (33)), we have 〈b, α〉 ≥ 0. Therefore, since η ∈ F , if b ≥ 0 we have
Y ∗0 (t) ≥ 0 for every t ≥ 0. So, by standard arguments we can prove the following verification
theorem.

Theorem 8.1. Let η ∈ F and let b ≥ 0 (in the sense of (33)). Then v(η) = V (η) and the
constant control

c∗(t) =
〈b, α〉

2δ

is the unique optimal control starting from η.

30



Appendix: the semigroup SA in the space H

Hereafter, given f ∈ L2, with a slight abuse of notation we shall intend it extended on [−r,+∞)
setting f ≡ 0 on (0,+∞). Consider the space X = R× L2 endowed with the inner product

〈·, ·〉X = 〈·, ·〉R + 〈·, ·〉L2 ,

which makes it a Hilbert space. On this space we consider the unbounded linear operator

Ā∗ : D(Ā∗) ⊂ X −→ X, (η0, η1(·)) 7−→ (aη0, η
′
1(·)), (85)

defined on the domain

D(Ā∗) =
{
η = (η0, η1(·)) | η1 ∈W 1,2, η1(0) = η0

}
.

It is well known (see [22]) that Ā∗ is a closed operator which generates a C0-semigroup (SĀ∗(t))t≥0

on X. More precisely the explicit expression of SĀ∗(t) acting on ψ = (ψ0, ψ1(·)) ∈ X is

SĀ∗(t)ψ =
(
eatψ0,1[−r,0](t+ ξ)ψ1(t+ ξ) + 1[0,+∞)(t+ ξ)ea(t+ξ)ψ0

∣∣
ξ∈[−r,0]

)
. (86)

On the other hand it is possible to show (see e.g. [27]) that Ā∗ is the adjoint in X of

Ā : D(Ā) ⊂ X −→ X
(η0, η1(·)) 7−→ (aη0 + η1(0),−η′1(·)), (87)

where
D(Ā) = R×W 1,2

0 = H.

It follows (see [22]) that Ā generates on X the C0-semigroup (SĀ(t))t≥0 where

SĀ(t) = SĀ∗(t)
∗, ∀t ≥ 0

and the adjoint is taken in X. We can compute the explicit expression of the semigroup SĀ(t)
through the relation

〈SĀ(t)φ, ψ〉 = 〈φ, SĀ∗(t)ψ〉, ∀φ = (φ0, φ1(·)) ∈ X, ∀ψ = (ψ0, ψ1(·)) ∈ X.

By (86), we calculate

〈S̄Ā(t)φ, ψ〉 = φ0e
atψ0 +

∫ (−t)∨(−r)

−r
φ1(ξ)ψ1(t+ ξ)dξ

+

∫ 0

−(t)∨(−r)
φ1(ξ)ψ0e

a(t+ξ)dξ = φ0e
atψ0 +

∫ 0

(−r+t)∧0
φ1(ξ − t)ψ1(ξ)dξ

+

∫ 0

(−t)∨(−r)
φ1(ξ)ea(ξ+t)ψ0dξ.

(88)

So we can write the explicit form of the semigroup S̄(t) as

SĀ(t)φ =

(
φ0e

at +

∫ 0

(−t)∨(−r)
φ1(ξ)ea(ξ+t)dξ, T (t)φ1

)
, φ = (φ0, φ1(·)) ∈ X, (89)
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where (T (t))t≥ 0 is the semigroup of truncated right shifts on L2 defined as

[T (t)f ](ξ) =

{
f(ξ − t), −r ≤ ξ − t,
0, otherwise,

(90)

for f ∈ L2. So, we may rewrite the above expression as

SĀ(t)φ =

(
φ0e

at +

∫ 0

(−t)∨(−r)
φ1(ξ)ea(ξ+t)dξ, φ1(· − t)1[−r,0](· − t)

)
, (φ0, φ1(·)) ∈ X. (91)

Equation (91) yields the explicit expression of the semigroup (S̄(t))t≥ 0.

We have defined the semigroup SĀ(t) and its infinitesimal generator (Ā,D(Ā)) in the
space X. Therefore, by well-known results (see [22, chapter II, pag 124]), we get that Ā|D(Ā2)

is the generator of a C0-semigroup on (D(Ā), ‖ · ‖D(Ā)), which is nothing but the restriction of
SĀ to this subspace. Now we notice that

D(Ā) = H, ‖ · ‖D(Ā) ∼ ‖ · ‖, D(Ā2) = W 2,2
0 = D(A), Ā|

W 2,2
0

= A,

where A is the operator defined in (6). Hence, we conclude that A generates a C0-semigroup
on H, whose expression is the same given in (89). We denote such semigroup by SA. We recall
(see e.g. [37, Ch. 2, Prop. 4.7]) that if S(t) is a C0 semigroup on a Banach space H, then there
exist constants M ≥ 1 and ω ∈ R, such that

‖S(t)‖ ≤ Meωt, t ≥ 0. (92)

In this case, using Holder’s inequality and taking into account that φ1(−r) = 0 we compute for
every t ≥ 0∣∣∣∣∣φ0e

at +

∫ 0

(−t)∨(−r)
φ1(ξ)ea(ξ+t)dξ

∣∣∣∣∣
2

≤ 2e2at|φ0|2 + 2e2at

(∫ 0

−r
|φ1(ξ)|dξ

)2

≤ 2e−at|φ0|2 + 2e2atr

(∫ 0

−r
|φ1(ξ)|2dξ

)
≤ 2e2at|φ0|2 + 2e2atr

(∫ 0

−r

∣∣∣∣∫ ξ

−r
φ′1(s)ds

∣∣∣∣2 dξ
)

≤ 2e2at|φ0|2 + 2e2atr

(∫ 0

−r
(r + ξ)

(∫ ξ

−r
|φ′1(s)|2ds

)
dξ

)
≤ 2e2at|φ0|2 + e2atr3‖φ1‖2W 1,2

r,0

.

Moreover
‖T (t)‖L(W 1,2

r,0 )
≤ 1, ∀t ∈ [0, r]; ‖T (t)‖L(W 1,2

r,0 )
= 0, ∀t > r.

The computations above show that

‖etA‖L(H) ≤ (2 + r3)1/2eat, ∀t ≥ 0. (93)

So, setting
ω = a, M = (2 + r3)1/2, (94)

(92) is verified.
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