N

N
N

HAL

open science

Context-Dependent Kernels for Object Classification
Hichem Sahbi, Jean-Yves Audibert, Renaud Keriven

» To cite this version:

Hichem Sahbi, Jean-Yves Audibert, Renaud Keriven. Context-Dependent Kernels for Object Classifi-
cation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (4), pp.699 - 708.

10.1109/TPAMI.2010.198 . hal-00654341

HAL Id: hal-00654341
https://enpc.hal.science/hal-00654341

Submitted on 21 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://enpc.hal.science/hal-00654341
https://hal.archives-ouvertes.fr

JOURNAL OF IATEX CLASS FILES, VOL. ?, NO. ?, ??

Context-Dependent Kernels for Object
Classification

Hichem Sahbi, Jean-Yves Audibert and Renaud Keriven

Abstract—Kernels are functions designed in order to capture resemblance between data and they are used in a wide range of machine
learning techniques including support vector machines (SVMs). In their standard version, commonly used kernels such as the Gaussian
one, show reasonably good performance in many classification and recognition tasks in computer vision, bio-informatics and text
processing. In the particular task of object recognition, the main deficiency of standard kernels, such as the convolution one, resides in
the lack in capturing the right geometric structure of objects while also being invariant.

We focus in this paper on object recognition using a new type of kernel referred to as “context-dependent”. Objects, seen as
constellations of interest points are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality
of feature matching, (2) a neighborhood criterion which captures the object geometry and (3) a regularization term. We will show that
the fixed-point of this energy is a context-dependent kernel (CDK) which is also positive definite. Experiments conducted on object
recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with context-free kernels (CFK).

Index Terms—Kernel Design, Statistical Machine Learning, Support Vector Machines, Context-Free Kernels, Context-Dependent
Kernels, Object Recognition.
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INTRODUCTION

NITIALLY introduced in [5], kernel methods including
Isupport vector machines (SVMs) show a particular
interest as they are performant and theoretically well
grounded [26]. These methods rely on the hypothesis
of the existence of (explicit or implicit) functions which
map training and test data from input spaces into
high dimensional Hilbert spaces (see for instance [29]).
Kernels are symmetric, continuous, bi-variate similarity
functions which take high values when input data
share similar structures or appearances and should be
as invariant as possible to the linear and non-linear
transformations. For instance, in object recognition,
a kernel should take a high value only when two
objects (such as faces) belong to the same class or have
the same identity and regardless their pose. A wide
range of vision applications are tackled using kernel
methods including optical character recognition [20],
pose estimation [22], image retrieval [33] and the most
studied object recognition problem [19], [2], [12]. In
almost all the proposed solutions, authors use and
combine, via algebraic operations, standard kernels
such as the linear, the polynomial and the Gaussian
[11]. These kernels also referred to as holistic are defined
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on fixed length and ordered data [8], i.e., into Euclidean
spaces including color, shape and texture spaces [32].
Even though proved to be relatively performant, holistic
kernels lack a priori knowledge about the application
tasks and the expected properties of invariance (such as
linear and non-linear transformations.)

A second generation of kernels, referred to as local,
has recently emerged as an alternative to holistic ones.
Local kernels are defined on structured data [10],
i.e.,, which cannot be represented in fixed length and
ordered spaces, such as interest points, regions, graphs,
trees, etc. Both holistic and local kernels should satisfy
certain properties among them the positive definiteness,
and preferred kernels should have low complexity for
evaluation, flexibility in order to handle variable-length
data and also invariance. Holistic kernels have the
advantage of being simple to evaluate, discriminating
but less flexible than local ones. While the design
of kernels gathering flexibility, invariance and low
complexity is a challenging task; the proof of their
positive definiteness (PD) is sometimes harder [9]. PD
may ensure, according to Vapnik’s SVM theory [34],
optimal theoretical generalization performance and also
the uniqueness of the SVM solution [5].

Considering a database of objects (images), each one
represented by a vector set, for instance a constellation
of interest points [25], [18], extracted using any suitable
corner detector [13]. Two families of local kernels can
be found in the literature, in order to handle this type
of data; those based on statistical “length and order
insensitive” measures such as the Kullback Leibler
divergence, and those which require a preliminary step
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of alignment. In the first family of local kernels, the
authors in [16], [21] estimate for each object (set of
vectors) a probability distribution and compute the
kernel between two objects (two distributions) using
the “Kullback Leibler divergence” in [21] and the
“Bhattacharyya affinity” in [16]. Only the kernel in [16]
satisfies the PD condition and both kernels were applied
for image recognition tasks. In [36], the authors discuss
a new type of kernel referred to as “principal angles”
which is PD. Its definition is based on the computation of
the principal angles between two linear subspaces under
an orthogonality constraint. The authors demonstrate
the effectiveness of their method on visual recognition
tasks including classification of motion trajectory and
face recognition. An extension to subsets of varying
cardinality is proposed in [28]. The main drawback, of
this first family of local kernel, resides in the strong
assumptions about the used probabilistic functions in
order to model the distributions of the sets of vectors,
as these assumptions may not hold true in practice.

In the second family of local kernels, the one in [35]
(called the “max”) considers the similarity, between two
vector sets, as the sum of their highest matching scores
and unlike discussed in [35] this kernel is actually not
PD [1]. In [19], the authors introduced the “circular-
shift” kernel defined as a weighted combination of PD
kernels using an exponent. The latter is chosen in order
to give more prominence to the largest terms so the
resulting similarity approximates the “max” and also
satisfies the PD condition. The authors combined interest
points and their relative angles in order to make their
kernel rotation invariant and they show its performance
for the particular task of object recognition. In [6], the
authors introduced the “intermediate” matching kernel,
for object recognition, which uses virtual interest points
in order to approximate the “max” while satisfying the
PD condition. Recently, [12] introduced the “pyramid-
match” kernel, for object recognition and document
analysis, which maps interest points using a multi-
resolution histogram representation and computes the
similarity using a weighted histogram intersection. The
authors showed that their kernel is PD and can be
computed linearly with respect to the number of interest
points. Other matching kernels include the “dynamic
time warping” kernel which provides, in [1], an effective
matching strategy for handwritten character recognition,
nevertheless the PD condition is not guaranteed.

1.1 Motivation

The success of the second family of local kernels strongly
depends on the quality of interest point alignments
mainly when images contain repeatable and redundant
structures. Regardless the PD condition, a naive matching
kernel, i.e., which given two objects, looks for all pairs

\
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Fig. 1. Considering the two (nested) subsets of interest
points shown in row 1 (denoted S,, S, and their indices 7, =
{1,...,n}, Zy ={1,...,m}).

The first and the third rows: show matching pairs defined as
{(27,2]), o = argmax,q k(z},z7),z] € Sp,z] € Sq}, where k
denotes either a context-free kernel, actually the Gaussian (left)
or our CDK (right). The 3D RGB attributes of interest points in
S, correspond to random perturbations (additive uniform noise)
of the 3D RGB attributes of S,,.

The second and the fourth rows: show the values of
k(x},x%),i € I,, j € Z, using a context-free kernel (left) and
our CDK (right). Colors are used only for ease of visualization
and the x-y axis labels respectively correspond to the indices in
I, and Z,. We clearly see, through the right-hand sides of rows
2 and 4, that the highest values of k correspond to the correct
matches.

of interest point similarities, using a context'-free kernel
(such as the Gaussian), and sums the largest similari-
ties, might result into many false matches. Fig. (1, left)
illustrates the deficiency of context-free kernels when
estimating the matching and also similarity between two
groups of interest points. The Gaussian kernel is used
in order to evaluate this similarity matrix, between all
the pairs of interest points, each one represented by
its 3D RGB color attributes. Any slight perturbation of
the values of these attributes will result into unstable
matching results if no context is taken into account
(see Fig. 1). The same argument is supported in [25],

1. Given a set of interest points X, the context of z € X is defined as the set
of points spatially close to « and with some particular geometrical constraints
(see section 2.2 and also [24] for a detailed and a formal definition of the context.)
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[4], [30], for the general problem of visual matching,
about the strong spatial and geometric correlation and
distortion between interest points in the image space.
This limitation also appears in closely related areas, in
machine learning, such as text analysis, and particularly
string alignment. A simple example, of aligning two
strings (“Sir” and “Hi Sir”), using a simple similarity
measure 1;. _.,) between any two characters ¢; and
c2, shows that without any extra information about the
context (i.e., the sub-string) surrounding each character
in (“Sir” and “Hi Sir”), the alignment process results
into false matches (see also [24]). Hence, it is necessary
to consider the context as a part of the alignment process
when designing kernels. Our postulate states that one
does not need perfect matching in order to improve
the performance of kernels, but better alignment should
produce better kernels.

1.2 Contribution

In this paper, we introduce a new kernel, called “context-
dependent” (CDK) and defined as the fixed-point of
an energy function which balances a “fidelity” term, a
“context” criterion and an “entropy” term. The fidelity
term is inversely proportional to the expectation of
the Euclidean distance between the most likely aligned
interest points while the context criterion measures
the spatial coherence of the alignments, i.e., how good
two interest points, with exactly the same context,
match. Given a pair of interest points (f,, f,) with a
high alignment score (defined by kernel value), the
context criterion is proportional to the alignment scores
of all the pairs close to (fy, f,) but with a given spatial
configuration. The “entropy” term considers that without
any a priori knowledge about the alignment scores
between pairs of interest points, the joint probability
distribution related to these scores should be as flat as
possible so this term acts as a regularizer.

The general form of CDK captures the similarity between
any two interest points by incorporating their context,
ie., the similarity of the interest points with exactly the
same spatial configuration with respect to (fp, f;). Our
proposed kernel belongs to the same family as the
“dynamic time warping (DTW)” kernel [1]. The latter is
based on the Viterbi alignment distance, between two
sequences of vectors, that allows forward steps of size
one in one of the two sequences or both of them; this
is commonly known as the “ordering constraint”. We
consider instead a “context constraint” (also referred
to as “neighborhood constraint”) which states that
two points match if they have similar features? and if
their neighbors, with exactly the same spatial geometric
configuration, match too. This also appears in other well
studied kernels such as Fisher [15], which implements
the conditional dependency between data using the

2. In practice, we define features as coefficients of SIFT [18], shape context [3]
or self similarity [30].

Markov assumption. CDK implements such dependency
while also being the fixed-point and the (sub)optimal
solution of an energy function closely related to the goal
of our application. This goal is to gather the properties
of flexibility and discrimination by allowing each
interest point to consider its context in the matching
process. Moreover, the proposed alignment method
(and hence our kernel design) is model-free, ie., it
is not based on any a priori alignment model such
as homography which might not capture the actual
inter-object transformations; for instance when objects
deform. Even though we investigated CDKs in the
particular task of object recognition, we can easily
extend it to handle closely related areas in machine
learning such as text alignment for document retrieval
[23], machine translation [31] and bioinformatics [27].

Given a database of images, each one seen as a con-
stellation of interest points. We use convolution kernels
[14] in order to build Gram matrices, consisting of all the
possible cross similarities of images in the database. A
convolution kernel, as will be reminded in Section (2.1),
is the sum of all possible cross similarities each one
computed using a minor kernel; actually CDK. Notice
that this work is the continuation of [24] with several
updates:

o The definition of the context is updated using
finer statistics about the co-occurrences of interest
points at different orientations and locations (see
Section 2.2).

o The theoretical results about the positive definite-
ness and the convergence to the fixed point are
updated and now our framework provides better
and loose constraints about the setting of the context
weight parameter defined in Section 2.4.

e And, as will be shown in proposition 2, a Gram
matrix built using CDK, on any finite set with no
duplicate data, will be full rank so invertible.

In case of SVM the last property guarantees, for any
training set whatever its labeling, the existence of a
separating classifier. This property is very desired and
shows the discrimination power of CDK even though
it is known that this will make the underlying VC
dimension [34] infinite. Nevertheless, this dimension is
bounded by the size of the training set as SVMs find
the solution in the span of training data so theoretical
generalization bounds [34] are in practice not loose.

Notice that the setting of CDK is transductive, i.e.,
the training and also the whole testing data should
be available in order to train and apply SVM. For
some applications this might limit the usability of CDK
mainly for sequential testing (i.e., when test data comes
sequentially in time), but it can still be used for many
batch testing applications as shown in experiments.

We consider the following organization of the paper;
we first introduce in Section 2, our energy function
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which makes it possible to design our context-dependent
kernel and we show that this kernel is positive definite
so we can use it for support vector machine training
and other kernel methods. In Section 3 we show the
application of this kernel in object recognition. We dis-
cuss in Section 4 the advantages and weaknesses of
this kernel. We conclude in Section 5 and provide other
future research directions.

2 CONTEXT IN KERNEL DESIGN

Let S, = {af,...,28} be the list of interest points of
object p (the value of n may vary with the object p).
The set X of all possible interest points is the union
over all possible object p of S,: X = U,S,. We consider
k: X xX — R as a kernel which, given two interest
points (x7,zf), provides a similarity measure between
them. This will be designed as shown in Section (2.3).
Our goal is to use k in order to build a kernel K between
the list of interest points S, and S, characterizing the
objects p and g¢.

2.1 Convolution Kernels

Definition 1 (Subset Kernels): let X be an input space,
and consider S,,S, C X as two finite subsets of X. We
define the subset kernel K, also referred to as the convo-
lution kernel, between S, = {z}}}_; and S, = {2z},
as K(Sp,Sg) =320 >0k (xf,x?).

Here k may be any symmetric and continuous function
on X x X, so K will also be continuous and symmetric,
and if k is positive definite then K will also be positive
definite [14]. Since K is defined as the sum of all the cross
similarities between all the possible sample pairs taken
from S, x §,, its evaluation does not require any (hard)
alignment between these pairs. Nevertheless, the value
of k (z7,z?) should ideally be high only if #} actually
matches :cg- (see Fig. 1, rows 2, 4, right), so k needs to
be appropriately designed while also guaranteeing the
positive definiteness.

2.2 Context

Formally, an interest point x is defined as = =
(Vy(z), 0 (x),o(z),w(x)) where the symbol ¥, (z) € R?
stands for the 2D coordinates of x while ¢s(z) € R?
corresponds to the feature of « (for instance the 128 coef-
ficients of the SIFT; [18]). We have an extra information
about the orientation of x (denoted v,(x) € [—m,+7])
which is provided by the SIFT gradient. Finally, we use
w(z) to denote the object from which the interest point
comes from, so that two interest points with the same
location, feature and orientation are considered different
when they are not in the same image (since we want to
take into account the context of the interest point in the
image it belongs to).

Let d(z,2') = ||[¢f(x) — ¢s(z')|2 measure the dissim-
ilarity between two interest point features, || - ||2 is the

Fig. 2. This figure shows a collection of SIFT interest points
(with their locations, orientations and scales) (left) and the
partitioning of the context (also referred to as neighborhood) of
an interest point into different sectors for orientations and bands
for locations (right).

“entrywise” Lo-norm (i.e., the sum of the square values
of vector coefficients). Introduce the context of x

NP (z) = {2’ w(z') = w(z),2’ # x s.t. (1) and (2) hold},

with
-1
<l — vk < e @
and
b1 <angl ' <0 2
N, ™ < angle(vo(@), ¥y(2) — ¥y (2) < - (2)

Here ¢, is the radius of a neighborhood disk surrounding
rzand 8 =1,...,N,, p=1,..., N, correspond to indices of
different parts of that disk (see Fig. 2). In practice, N, and
N, correspond to 8 sectors and 8 bands. Notice that the
definition of the neighborhood in this paper is different
from the one proposed in [24], as the latter provides only
a set of neighbors N (z) around z which are not seg-
mented into different parts. In [24], N'(z) = Uy 2N (z),
and the new definition of neighborhoods {N?%*(x)}s ,
reflects the co-occurrence of different interest points with
particular spatial geometric constraints (see again Fig. 2).

2.3 Context-Dependent Kernel Design

For a finite collection of objects having each a finite
number of interest points, the set X is finite. Pro-
vided that we put some (arbitrary) order on X, we
can view a kernel £ on X as a matrix K in which
the “(x,2")—element” is the similarity between z and
z't Ky o = k(z,2'). Let Py, be the intrinsic adjacency
matrices respectively defined as Py .. = go,p(z,2'),
where g is a decreasing function of any (pseudo) distance
involving (x, '), not necessarily symmetric. In practice, we
consider gy ,(z,7") = T{zepnor(e))- Let Dy o = d(z,2').
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We propose to use the kernel on X defined by solving
min Tr(KD) + 6Tr(K log K)

—« ZTr(K Py, K' Py ,)

0,p
K=>0
K[ =1

Here o, 8 > 0 and the operations log (natural) and > are
applied individually to every entry of the matrix (for in-
stance, log K is the matrix with (log K), ,» = log k(z, z')),
I - |1 is the “entrywise” Lqi-norm (i.e., the sum of the
absolute values of the matrix coefficients) and Tr denotes
matrix trace. The first term, in the above constrained
minimization problem, measures the quality of matching
two features ¢ /(x), ¥s(z'). In the case of SIFT, this is
considered as the distance, d(z, z’), between the 128 SIFT
coefficients of x and z’. A high value of d(z,2") should
result into a small value of k(z,z’) and vice-versa.

The second term is a regularization criterion which
considers that without any a priori knowledge about
the aligned interest points, the probability distribution
{k(z,2")} should be flat so the negative of the entropy
is minimized. This term also helps defining a direct an-
alytic solution of the constrained minimization problem
(3). The third term is a neighborhood criterion which
considers that a high value of k(z,z’) should imply
high kernel values in the neighborhoods A*(z) and
N?¢(z"). This criterion also makes it possible to consider
the spatial configuration of the neighborhood of each
interest point in the matching process.

We formulate the minimization problem by adding an
equality constraint and bounds which ensure a normal-
ization of the kernel values and allow to see {k(z,z’)}
as a probability distribution on & x X.

®)

2.4 Solution

Proposition 1: Let u denote the matrix of ones and
introduce

-
¢ =5 2 IIPo,uPy, + P uPy,
0.p

[o oh]

where || - ||« is the “entrywise” Lo,-norm. Provided that
the following two inequalities hold

Cexp(¢) <1 4)
[ exp(=D/B)[l1 > 2 5)

the optimization problem (3) admits a unique solution
K, which is the limit of the context-dependent kernels

K _ GEED)
[GEKED)],
with
G(K) zexp{ - E-‘FQZ(PQI)KPIQ +P/9 KPy )}
g B o ” o’ wrfr

(6)

and
KO _ exp(—D/B)
| exp(=D/B)ll1

Besides the kernels K*) satisfy the convergence prop-
erty:

K — Kl < L'[K© — K]|;. 7)
with L = {exp(().

By taking not too large [, one can ensure that (5)
holds. Then by taking small enough «, Inequality (4)
can also be satisfied. Note that @ = 0 corresponds to a
kernel which is not context-dependent: the similarities
between neighbors are not taken into account to assess
the similarity between two interest points. Besides our
choice of K is exactly the optimum (and fixed point)
for « = 0.

In comparison to [24], to have partitioned the neigh-
borhood into several cells corresponding to different
degrees of proximity (as shown in Fig. 2) has lead to
significant improvements of our experimental results
(see also Table. 3). On the one hand, the constraint (4)
becomes easier to satisfy, for larger a with partitioned
neighborhood, compared to [24]. On the other hand,
when the context is split into different parts, we end
up with a context term (right-hand side term inside
the exponential function in Eq. 6), which grows slowly
compared to the one presented in our previous work [24]
and grows only if similar spatial configurations of interest
points have high kernel values. Therefore, numerically,
the evaluation of that term is still tractable for large
values of o which apparently produces a more positively
influencing (and precise) context-dependent term, i.e.,
last term in (3) (see also Table. 1, bottom and Fig. 4).

Proof:

Introduce the function defined on the set of matrices

K satisfying the constraints in (3)

F:K—Tr(KD) + 8 Tr(K log K)

—a Y Tr(K Py, K Ply,).
0,p

The function is defined by continuity at matrices K for
which there exists (z,z') such that K, ,» = 0. This is
possible since Tr(K log K') = > Ko log (Ko o)
and since the function ¢ — tlogt basically defined on
the positive real numbers can be continuously extended
at t = 0 by setting 0log(0) = 0.

Since the function ¢ — ¢logt has a derivative going to
—oo when t goes to zero, none of the K, . are equal to 0
at the minimum. Since the constraint K > 0 is not active
on a minimum, the minima of F' are obtained when the
gradient of F' is parallel to the gradient of the active
constraint ., K, . = 1, i.e. when there exists \' € R
such that for any ,2’ € X,

oF
Y
0K, o ’
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hence when

D+ B(u+logK) —a Z (Po,,KP) ,+P) KPy,) = Nu,

0,p

where we recall that u denotes the matrix of ones. So the
minimum satisfies necessarily the fixed point relation

_GK)

IGE)]:’
with (8)

G(K) :eXp{ -5+3 Z

0,p

K_

where the function exp is applied individually to every
entry of the matrix. We will now prove the unicity of the
solution of this fixed point equation (8).

Lemma 1: Let B be the set of matrices with nonneg-
ative entries and of unit L;-norm, ie, B = {K : K >
0,||K| = 1}. If we have [|exp(—D/B)[|; > 2, then the
function ¢ : B — B defined as ¥(K) = G(K)/||G(X)|1
is L-Lipschitzian, with L = { exp(¢), where we recall the
definition ¢ = 3 3, , [|[Po,,uPy , + Pj juPy .

As a consequence of this lemma, as soon as we have
L = Cexp(¢) < 1, the fixed point equation (8) admits a
unique solution K, and Inequality (7) holds.

Proof of Lemma 1: Let us start by the following prop-
erty of L,-projection on the Li-sphere S = {y : ||y||» = 1}
in some Euclidean space: for any nonzero vector x

e/l = lly = min ly — z[]s.

This holds since the above minimum is reached for the
vectors y in the intersection of S and an appropriate
parallelepiped with axis parallel to the coordinate axis,
and which admits z as a vertex and contains z/||z||; (for
instance, when ||z||; > 1, it is the parallelepiped whose
diagonal is [0; z]).

Let K; and K5 be two matrices in B. Introduce G, =
G(K1) and G2 = G(K3). We have

lv(Ka) — (K1)||1
a H||G2||1 |G1||1 1
< e e
||G2||1 |G1||1 1 ||G1H1 |G1H1 1
) G, n Gy
= min —
K:|K| =1 HGlHl 1 HG1||1 Gl ]
G G
< H n > 1
||G1||1 ||G1||1 1 Gl I
= G2 — G1l:
||G 1
< G2 — Gqll1, )

where the last inequality uses the assumption of the
lemma. To upper bound the last difference, we use Tay-
lor’s formula. Consider y,y’ in X. Let AG = |Gy — G|
and AK = |K2 - Kl} be the matrices defined by

,+ Py KPg ) }

[

A }$ x = HG2]CC,;E’
K,

G
Ja,2r |- We have
BOIGK)ly.y
o OKg u
Z P9 p x y P9 p}m ! + [PO p]y :E[PG p]y ! )[G(K)}%y/
0,p

_[Gl]w,w’

[AK]w,m’ = HKQ]IJ/—

Therefore we have

P1ac),

Q|

< Y

P

b AKPg, + Py AKPG ] (G

>

which implies
e - il

= 5 Z AG]y .y
< ZTr

< Z IPo,,uPy , + Pj uPg,plo [ AK]1]| G (K)o
0.p

0. ,AKPg u+ Py ,AKP; u)[|G(K)|s

Now we trivially have

&3 (PP, + P uPs,) b
0.p

0= Gl < exp {

hence we obtain
[G2 — Gill1 < ([[AK][1 exp(C).
Plugging this inequality into (9), we get
1(Kz2) — (Kq)l[r < Cexp(¢)[| Kz — K1

2.5 Positive Definiteness

A kernel £ : X x X — R is positive (semi-)definite
on X, if and only if the underlying Gram matrix K
is positive (semi-)definite. In other words, it is positive
definite if and only if we have V'KV > 0 for any vector
V € RY — {0}. When we just have V'KV > 0 for any
vector V€ RY — {0}, we just say that it is positive
semi-definite. A positive definite kernel guarantees the
existence of a Reproducing Kernel Hilbert Space (RKHS)
such that k(z,z') = (¢(z), p(z')), where ¢ is an explicit
or implicit mapping function from X to the RKHS, and
(-,-) is the dot kernel in the RKHS.

Proposition 2: The context-dependent kernels on X" de-
fined in Proposition (1) by the matrices K and K*), ¢ > 0,
are positive definite.

Proof: Let us prove that if K is positive semi-definite
then G(K) is positive definite. We start by noticing that
for a positive definite matrix K and for any matrix P,
the matrix PKP’ is positive semi-definite since we have

V'PKP'V = (P'V)YK(P'V) > 0.
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So the matrix A = §3°,  (Po,KP, , + P; KPy,)
is positive semi-definite. As a consequence, from [29,
Proposition 3.12 p.42], the matrix ZZ | 2 isalso positive
semi-definite, where A’ is the matrix such that [AY, 0 =
(Az ) (that is, we consider the entrywise product and
not the matrix product). We get that exp(—D / 6) Zz 1 Z, ,
and consequently B = exp(—D/g) 352, 4-, are also
positive semi-definite. Since we have

G(K) = exp(-=D/f) + B,

with B positive semi-definite and exp(—D/S) positive
definite (since it is a Gaussian kernel), we have thus
proved that G(K) is positive definite.

We now proceed by induction to prove that the func-
tions K(*) are positive definite. The function K(% is taken
as positive definite. Since K*) is equal to G(K*~V) up
to a positive multiplicative factor, we have by induction
that K(® is a positive definite kernel. Since K is the
limit of K*), we obtain that K is positive semi-definite.
From this and the fixed point equation satisfied by K,
we obtain that K is positive definite.

3 EXPERIMENTS
3.1 Databases and Settings

In order to show the extra-value of CDK with respect to
other kernels, we evaluate the performances of support
vector classifiers on different databases ranging from
simple ones such as the Olivetti to more challenging
such as the SmithSonian and the extremely challenging
ImageClef@ICPR Photo Annotation database®. The latter
contains 18, 000 pictures split into 53 categories; a subset
of 8,000 images was used for training and testing as
ground truth is publicly available for this subset only.
The SmithSonian database contains 35 leaf species, each
one represented by 4 — 100 examples, resulting into
1,525 images while the Olivetti set is a face database
of 40 persons each one contains 10 instances. We also
experimented CDK on the standard MNIST database
containing 10 digits, each one represented by ~ 7,000
examples (see Fig. 3).

Interest points are extracted from all these databases and
encoded using different features. For a matter of compar-
ison, we tested SIFT [18], self similarity [30] and shape
context [3]. SIFT descriptor contains 128 dimensions
while both self similarity and shape context contain, in
our case, 64 coefficients taken from 8 orientations and 8
scales®. All the local feature vectors (SIFT, self similarity
and shape context) are normalized to 1.

Given a picture, the goal is to predict which concepts
(object classes) are present into that picture. This task
is commonly known as concept recognition. For this
purpose, we trained ”one-versus-all” SVM classifiers

3. http:/ /www.imageclef.org/2010/ICPR/PhotoAnnotation/

4. All these local descriptors were extracted using standard libraries in
www.robots.ox.ac.uk/~vgg/software/SelfSimilarity /,
www.eecs.berkeley.edu/Research/Projects /CS/vision/shape/sc_digits.html
and www.cs.ubc.ca/~lowe/keypoints/

Fig. 3. This figure shows samples of training and test images
taken respectively from the Olivetti face database, the Smithso-
nian leaf set, MNIST digit database and ImageClef@ICPR set.

for each concept; we use four random folds (80% of a
database) for SVM training and the remaining fold for
testing. We repeat this training process through different
folds, for each concept, and we take the average error of
the underlying SVM classifiers. This makes classification
results less sensitive to sampling.

Performances are reported using the average hold out
equal error rate (EER) on the test folds. EER is the
balanced generalization error which equally weights er-
rors in the positive and the negative sets, for a given
concept. A smaller EER implies better performance. Note
that this measure is evaluated, on the four databases,
using a standard script provided by the ImageClef@ICPR
evaluation campaign.

3.2 Generalization and Comparison

We evaluate K (see Section 2.1) and hence
K®, ¢t € Nt using five power assist settings:
(i) linear Kioi, = (Y¢(z),¢f(a")), (i) polynomial
K", = ((r@),¢s@)) + 1)% (i) Gaussian
K(zoi, = exp(—d(z,2")/f3), (iv) Chi-square Kmm’ =
1 - 72% (denoted Chi-Sq) and (v)

Histogram intersection Km i, = >, min(¢s(x);, Yr(z’);)
(denoted HI). Our goal is to show the improvement
brought when using K®, ¢t € N¥, so we tested
it against the standard context-free kernels (i.e.,
K®, t = 0). For this purpose, we trained the “one-
versus-all” SVM classifiers for each class in SmithSonian,
MNIST, Olivetti and ImageClef@ICPR sets using the
subset kernel K(S,,S,) D wes, €S, K;t)x, Again,
performances are reported, on different test sets, using
the hold-out equal error rate.
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[ Sets [ Olivetti [ MNIST [ SmithSon [ TmageClef | K©) H Linear ‘ Poly ‘ Gauss ‘ Chi-Sq ‘ HI
log o8 (EER+sd) (EER+sd) (EER+sd) (EER+sd) Databases + Local
-2 1.56+1.40 | 3.08+£1.52 | 3.594+1.99 | 33.1+8.35 Features +Kernels || (EER) | (EER) | (EER) | (EER) | (EER)
-1 1.374+1.28 | 1.40+1.24 | 3.39+2.12 | 27.0+8.64 MNIST
0 227+£1.75 | 1521£244 | 7481£2.99 | 36.6+8.62 SIFT [18] + CFK || 5.20% | 5.15% | 4.58% | 3.96% | 2.75%
+1 28.7+4.24 | 37.6+3.07 | 25.7+421 | 3834885 SIFT [18] + CDK || 4.97% | 4.68% | 4.15% | 2.98% | 2.69%
[ Sets [[ Oliveti [ MNIST [ SmithSon [ ImageClef | SSim [30] + CFK || 4.91% | 2.42% | 2.69% | 1.40% | 1.40%
Tog o (EER+sd) (EER+sd) (EER+sd) (EER+sd) SSim [30] + CDK || 3.86% | 1.87% | 1.64% | 1.17% | 1.17%
—4 1.374+1.28 | 1.404+1.24 | 3.394+2.12 | 27.0+8.64 SCont [3] + CFK || 8.77% | 8.65% | 7.60% | 4.80% | 4.74%
-3 1374129 | 1.404+1.24 | 3.394+2.12 | 27.1+8.64 SCont [3] + CDK || 3.77% | 2.63% | 2.57% | 2.81% | 2.34%
-2 0914033 | 1.17+£1.25 | 1.40+£0.88 | 25.4+8.77 Olivetti
—1 0.85+0.10 | 1.17+1.25 | 0.88+0.80 | 23.3 £8.24 SIFT [18] + CFK 1.70% | 1.83% | 1.63% 1.39% 1.37%
0 1.03 +£0.90 2.20 + 2.46 1.85+1.96 26.9 + 8.59 SIFT [18] + CDK 0.85% | 0.85% | 0.85% | 0.85% | 0.85%
NC NC NC NC SSim [30] + CFK || 2.28% | 2.48% | 2.28% | 1.72% | 1.68%
SSim [30] + CDK || 0.88% | 0.85% | 0.85% | 0.85% | 0.85%
SCont [3] + CFK || 6.00% | 2.52% | 2.46% | 1.65% | 1.73%
SCont [3] + CDK || 2.05% | 1.20% | 1.15% | 1.09% | 1.67%
SmithSonian
SIFT [18] + CFK 9.96% | 5.63% | 4.31% | 3.08% | 3.39%
SIFT [18] + CDK || 1.16% | 1.06% | 1.01% | 0.88% | 0.88%
TABLE 1 SSim [30] + CFK || 14.8% | 12.8% | 7.67% | 3.33% | 3.96%
. ; SSim [30] + CDK || 5.20% | 5.10% | 4.09% | 1.67% | 2.64%
The tablg in the top shows the error rate of the Gaussian term SCont [3] + CFK 876% | 321% | 311% | 6.28% | 2.51%
in CDK (i.e., exp(—D/p3)) with respect to the scale parameter SCont [3] + CDK || 3.19% | 1.73% | 1.08% | 1.03% | 1.70%
3. The table in bottom shows the error rate of CDK as a Im[ag*]eCIef . . . . .
; . . : . . SIFT [18] + CFK 332% | 31.1% | 30.2% | 27.2% | 27.0%
decre.a.s.|n9 fulnctlon of a. Hlstogram intersection kernel is used SIFT [18] + CDK || 28.3% | 25.9% | 25.4% | 24.2% | 23.3%
for initialization and g = 0.1. Notice that when log,, o = —4 SSim [30] + CFK 32.1% | 31.2% | 30.6% | 29.5% | 29.1%
(i.e., @ — 0), results correspond to the context free kernel, and SSSClm [3[(;]] + E?E gz% ;Z-g? g;;? g;-g? gg-i?
. . . ont + A% 27 27 27 470
when log,, a = 0 (i.e., « = 1), the EER increases since the SCont [3] + CDK 349% | 33.6% | 33.0% | 30.4% | 30.5%
convergence of CDK to a fixed point is not guaranteed (NC
stands for not convergent). TABLE 2

Fig. 4. This figure shows an example of the evolution of
matching results for different and increasing values of « (resp,
from top-left to bottom-right, 0, 0.1, 2.5 and 3). We clearly see
that when « increases the matching results are better. We set
B =0.1and ¢ = 1 iteration only.

The setting of S is performed by maximizing the per-
formance of the Gaussian term exp(—D/f) in CDK. For
different databases, we found that the best performances
are achieved for 3 = 0.1 (see Table. 1, top) and this also
guarantees condition (5) in practice. The influence (and
the performance) of the context term in K(*) increases as
« increases (see Table. 1, bottom and Fig. 4), nevertheless
and as shown earlier, the convergence of K*) to a fixed
point is guaranteed only if Eq. (4) is satisfied. Intuitively,
the parameter a should then be relatively high while
also satisfying condition (4). Larger values of « do not
guarantee convergence of CDK and the classification
performance may not converge to the best ones (see
Table. 1, bottom, last row).

Table. (2), shows EERs of different combinations of
local features including SIFT, self similarity (denoted
”SSim”) and shape context (denoted “SCont”) with dif-
ferent context-free kernels (Linear, Gaussian, etc.) and

This figure shows the EER on MNIST, Smithsonian, Olivetti and
ImageClef@ICPR sets, using different local features and kernel
settings. SSim, SCont stand respectively for self similarity and
shape context local features. In all these experiments, we set
B=a=0.1.

the underlying context-dependent ones. These experi-
ments are shown for different databases and they clearly
and consistently illustrate the out-performance of CDKs
with respect to CFKs for almost all the features and the
test sets, with only few iterations (¢t < 3 in practice). Fig. 5
shows these EER class by class on the ImageClef@ICPR
dataset; in almost all the classes, CDK decreases errors.
Table. 3 shows also a comparison of our CDK with other
kernels including baseline ones (Gaussian, histogram in-
tersection, etc.), the kernel in [7], pyramid match kernel®
[12] and our previous version of CDK [24].

4 DISCUSSION

Invariance. The adjacency matrices Py ,, in K(*), provide
the intrinsic properties and also characterize the geom-
etry of objects {S,} in X. It is easy to see that Py, is
translation and rotation invariant and can also be made
scale invariant when ¢, (see Eq. 1) is adapted to the
scales of 14(S,). It follows that the context term of our
kernel is invariant to any 2D similarity transformation.
Notice, also, that the Gaussian term of K® may involve
similarity invariant features ¢4 (.) (such as SIFT features),
so K is similarity invariant.

5. http:/ /people.csail. mit.edu/jjl /libpmk/
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Database Olivetti | MNIST | SmithSon | ImageClef
Method (EER) (EER) (EER) (EER)
Baselines (CFK)
Gauss 1.63% | 2.69% 4.31% 30.2%
Chi-Sq 1.39% | 1.40% 3.08% 27.2%
HI 1.37% | 1.40% 3.39% 27.0%
CDK in [24]
KO « Gauss | 1.17% | 2.75% 1.16% 28.0%
K© ¢« Chi-Sq | 1.09% | 1.35% 1.18% 27.1%
KO «+ HI 1.04% 1.26% 0.90% 25.3%
CDK (current)
KO « Gauss | 0.85% | 1.64% 1.01% 25.4%
K « Chi-Sq | 0.85% | 1.17% | 0.88% 24.2%
KO « HI 0.85% | 1.17% 0.88% 23.3%
Local Kernel
of [7] 1.66% | 1.46% 2.96% 27.3%
Pyramid Match 1.20% 1.29% 2.78% 25.8%
of [12]
TABLE 3

This table shows a comparison of the current CDK with the
previous one, in [24] (using unpartitioned context), and also
with respect to the local kernel introduced in [7] and the pyramid
match kernel [12]. For all the CDKs, - and 3 are set to 0.1.

Performance. The out-performance of our kernel comes
essentially from the inclusion of the context; in almost
all cases, one iteration was sufficient in order to improve
the performance of the Gaussian, histogram intersection
and Chi-square kernels, and few iterations (< 3) for the
other kernels (linear and polynomial). On the one hand,
this corroborates the fact that the Gaussian, histogram
intersection and Chi-square kernels provide state of the
art performances, and on the other hand, their perfor-
mances can be consistently improved by including the
geometry and the context of objects.

Runtime. One limitation of our previous CDK [24]
resides in its evaluation complexity. Assuming K1
known for a given pair z, 2/, the worst complexity
is O (max(N?,s)), where s is the dimension of v (x)
and N = max, g, #{N*(2)}. It is clear enough that
when N < s7, the complexity of evaluating CDK is
strictly equivalent to that of usual kernels such as the
linear. Nevertheless, the worst case (N > s%) makes
CDK evaluation prohibitive and this is mainly due to
the context term of KS)I,. A simple preprocessing step
of feature clustering makes it possible to replace each
feature by its closest cluster center among C possible
candidates (Here C is fixed and small while N varies and
large). Instead of summing N 2 terms in CDK, we sum
only C? terms (C < N) and this makes CDK training
much faster. In practice, it takes about 5 hours to evaluate
CDK on the 8,000 pictures from the ImageClef@ICPR
set, instead of three days without clustering. This fea-
ture clustering does not only speed up CDK evaluation
but also makes features “coarse” and more suitable for
generic databases.

Relation to diffusion maps. One may show that CDK

a1
o

N w N
Q Q S

Equal Error Rate (EER) per class
[2=Y
o

o

I 6 11 16 21 26 31 36 41 46 51
Classes

Fig. 5. This figure shows the EER of CDK class by class
on the ImageClef@ICPR dataset (« = g8 = 0.1 and his-
togram intersection is used for initialization). The results of
the other participants (excluding our CDK results) may be
found in http://www.imageclef.org/2010/ICPR/PhotoAnnotationEERResults. In
the x-labels, classes were sorted according to the under-
lying CDK EER (from the simplest to the hardest one).
This order corresponds to "Desert”, "River”, "Sea”, "Beach-
Holidays”, “Mountains”, "Sunset-Sunrise”, "Snow”, “Lake”,
"Motion-Blur”, “Landscape-Nature”, "Water”, "Clouds”, “Au-
tumn”, "Small-Group”, "Partylife”, "Flowers”, "Overexposed”,
"Portrait”, "Sky”, “Out-of-focus”, ”Night”’, "Winter”, “Family-
Friends”, "Macro”, "Trees”, "Partly-Blurred”, "Food”, "Spring”,
"Still-Life”, "Citylife”, “Outdoor”, “Animals”, "Single-Person”,
"Underexposed”, "Fancy”, "Big-Group”, "Building-Sights”, "No-
Blur”, "Indoor”, "No-Visual-Time”, "Plants”, "Day”, "No-Visual-
Place”, "Canvas”, "No-Visual-Season”, "Sports”, "No-Persons”,
"Neutral-lllumination”, "Sunny”, "Summer”, "Vehicle”, "Aesthetic-
Impression” and "Overall-Quality”.

captures topology of context through diffusion maps
[17]. Without loss of generality, let's assume Py, in-
dependent of 6, p and let's denote it simply as P.
Considering 8 > 2« and using the first order Taylor
expansion one may approximate the kernel K(*) by

B

Let G be the graph defined by the adjacency matrix P
and let the entry P;; = Pi(j|¢) denote the probability of
a 1-step random walk from a node (an interest point)
27 to #} in G. The idea behind diffusion maps [17], is to
represent higher order walks by taking powers of P, i.e.,
P = pt=UP. Here P is the k-step random walk
transition matrix which models a Markovian process;
the k-step transition likelihood is the sum over all the
possible k-1 steps linking =} to % (Pz(.j) = P(jli) =
> v—q Pe—1(£]) Py (j]¢)). In this definition, k acts as a scale
factor that increases the local influence of the context
when designing CDK. For a given t, the right-hand side
term of (10) is the "t-step” similarity between contexts
of interest points, inside a manifold (with a topology

t—1 1 9 k 9 t
_Z(O‘> pDPE) 4 (a) POKOPWY . (10)
gl B
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defined by diffusion maps [17]) while the left-hand side
term takes into account the visual similarity between
interest points in their feature spaces (such as the SIFT).
Put differently, when CDK converges, it models visual
similarity of interest points and topology of their context.

5 CONCLUSION

We introduced in this paper a new type of kernels
referred to as context-dependent. Its strength resides
in the improvement of the alignments between interest
points which is considered as a preliminary step in
order to increase the robustness and the precision of
object recognition. We have also shown that our kernel
is positive definite and applicable to SVM learning. This
is achieved for object classification problems and has
better performance compared to SVMs with context-free
kernels.

The proposed approach, even though presented for
kernel design, might be straightforwardly extended to
graph matching. Indeed, one may define graph adja-
cency matrices and use exactly the same energy as (3)
in order to derive similarity between nodes belonging
to two different graphs. Obviously, matches correspond
to pairs which maximize the CDK values. The approach
may also be extended to other pattern analysis problems
such as bioinformatics, speech, text, machine translation,
etc.
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