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Image Retrieval over Networks : Active

Learning using Ant Algorithm

David Picard*, Matthieu Cord, and Arnaud Revel

Abstract

In this article, we present a framework for distributed @mtbased image retrieval with online
learning based on ant-like mobile agents. Mobile agentw/ctiae network to find images matching
a given example query. The images retrieved are shown to $iee who labels them, following the
classical relevant feedback scheme. The labels are usaddahprove the similarity measure used for
the retrieval and to learn paths leading to sites containdtgyant images. The relevant paths are learned
in an ethologically inspired way. We made experiments ontthevid 2005 keyframe dataset showing
that learning both the similarity function and the locatiaa of the relevant images leads to a significant
improvement. We also present an extension with the re-useaofied paths for later sessions leading to

a further improvement.

I. INTRODUCTION.

With the generalization of networking devices and the espanof interconnections, information has
been spread over many sources. The Internet, p2p networ&fespional or even personal intranets
provide huge volumes of information. To tackle the seardb imese collections, search engines have
been developed in order to find the best localizations ofdatatching a query. They became efficient,
user-friendly and very popular. They are even more releuwardynamic networks like p2p, where the
user is unable to crawl the network by hand. In that senseytrk on search engines is highly valuable
for today’s applications [1].

As far as data mining in multimedia documents (image, audideo, ...) is concerned, web search

engines usually give poor results. Most of them use the atudéweb page, or the meta information
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attached to the multimedia objects. The text used for theximd) process is often far from the semantic
meaning that the user usually attaches to the content ofdbendent. Hence, the results of web search
engines are far from expected regarding the semantics addbaments. Content Based Image Retrieval
(CBIR) has been recently proposed in order to give an answtbig problem [2]. The main idea is to build

a representation of the image based on its content, and dhi@mdta relation between this representation
and the semantic we associate to the image. Machine leaethgiques have been successfully adapted
to this framework. The best improvement was done with thedhiction of relevance feedback [3], [4]
into the process.

The processing cost introduced by these techniques makes difficult to use with large amounts
of images such as what we can find on the Internet. Moreovassidal CBIR tools are designed for a
unique collection. In this paper, we adapt machine leart@uliniques such as active learning in order
to deal with image retrieval distributed over a network. Wepmse to learn both the path leading to the
collection containg the relevant images and the simildmggween images. We introduce a scheme that
efficiently implements this two-step learning combinatlon using an ant-like behavior algorithm. The
resulting system will constitute a smart solution for dmited CBIR.

In the next section, bibliographical context is discussamut] our methodological and technological
choices of mobile agents are motivated (Sect. Ill). Then,detil the ant-like reinforcement learning
algorithm used by the agents in section IV. The section V &iostthe description of our distributed
interactive learning strategy. Finally, we present andtulis the experiments and results we obtained

using our system on the trecvid2005 keyframe dataset

[I. DISTRIBUTED CONTENT BASED RETRIEVAL
A. Content Based Image Retrieval

The main idea of content based image retrieval (CBIR) is tdesee within large collections images
matching a given query thanks to their visual content amglydsual features, such as color, texture
or shape, are extracted from the images and indexed. Thaserde can be global or extracted from
regions or points of interest [5], [6] and then compiled iatindex or signature. A basic way to perform
retrieval consists in computing a similarity function fasroparing the query index to one of the images
in the collection [7]. Such systems give unsatisfying resdlue to the well known semantic gap [8].

To fill the gap, the similarity function may be updated orelirusing an interaction with the user called
Isee http://www-nlpir.nist.gov/projects/tv2005/
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“relevance feedback”. In this process, some images areoprmpto the user for labeling. These labels
(usuallyrelevant or irrelevant) are used to update the similarity function.

In this context, machine learning techniques such as Bdgssification [9] or support vector machines
[10] have been recently introduced to build the similaritypdtion from a set of labeled samples. To boost
this online learning, active learning strategies have h@meposed: the goal is to select the examples to
be labeled that will enhance the most the similarity functidl]. At the end of the interactive session,
a ranking of all images given their similarity is shown to theer. Most of these techniques come from
the text categorization community [12] and were adaptedragie classification.

There are lots of CBIR systems, and an overview can be fourjti3h

B. CBIR in distributed collections

The major part of the CBIR computation is dedicated to thecgssing of all the feature vectors in
order to produce the final ranking. Then, the fact that imagedistributed over many sources should be
more an advantage than a drawback since the processinggfimage could be naturally paralleled. To
our knowledge, there are only few researches on distribintege retrieval (despite being noted as further
improvement to CBIR in [13]). In a context such as the Intertiee common idea is to keep up-to-date
an index of the feature vectors. The indexes are stored ow avédl identified machines hosting a CBIR
search tool. These servers are entry points for the dis&tbCBIR system. The distributed CBIR system
propagates the queries to the entry points and efficientlsgesetheir results (see [14]). In peer-to-peer
networks, it is not possible to identify entry points anyewoinstead, each peer must index its own
images and queries must be propagated from one peer to anotitdSCOVIR [15], King proposes an
algorithm for selecting links between peers based on théeobdf their shared images. The queries are
more likely to be propagated to peers which are known to hiogsilas images. With this method, they
achieve to improve the retrieval and reduce the network.load

In the systems presented above, interaction and activeihgaare not taken into account. Thus, the

question about efficiently performing active learning inistabuted context is still open.

C. Mobile agents

Among the strategies allowing to perform the needed pdizdigon of feature vector processing, we
have chosen to use mobile agents. A mobile agent is an autarsooomputer software with the ability
to migrate from one computer to another and to continue iecetion there. While mobile agents have

motivated many researches in the late 90’s, it seems thatdidenot made their way in the information
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retrieval community. However, they have shown good perforoes in the case of information retrieval
with mobile devices where the network capabilities are limloée in nature [16]. There are good reasons
for using mobile agents in the distributed CBIR context,isas the reduction of the network load (the
processing code of the agent being very small in comparisothe feature vector indexes) and the
massive parallelization of the computation. Some of thebamtages are described in [17].

The resulting scenario of CBIR using mobile agents is to ¢huseveral mobile agents with a copy of
the query. They crawl the network in search of image colexti When an agent gets to a site, a dialog

with a local agent is established. The local agent indexesntiages and performs the processing [18].

D. Ant-like agents

In addition to the computational interest of mobile agents,suggest that they can also patrticipate to
the learning process. Software agents following ant-likbdviors have been used, for instance, in several
domains including network routing, traveling salesmanbpgo or quadratic assignment problem [19]
following the model of the ethologist J. L. Deneubourg [28]the case of distributed retrieval, ant-agents
crawl the network to find the relevant documents. They mowenfone peer to another and mark the
visited hosts (by changing a numerical value locally staredhese hosts, calledarker). These markers
can be viewed as a collective memory of paths leading to tleeast sites. This behavior-based mapping
of the network is well adapted to inconsistent networks saslpeer-to-peer networks, since the marked
paths evolve with the global trend of the agent movement} [22]. In our distributed CBIR context,
we have to do several travels between the user's computethenghformation sources. Ant-algorithm

seems to be a good solution for learning the relevant patiasigin the dynamics of active learning.

I11. ARCHITECTURE OF OUR SYSTEM

Fig. 1 describes our system. The user starts his query bpganh example or a set of examples to an
interface (1). We build a similarity function based on thegamples (2). Mobile agents are then launched
with a copy of this similarity function (3). Every host of tmetwork contains an agent platform in order
to be able to receive and execute incoming mobile agentsseThgents travel through the network
according to movement rules described in the next sectipnTf@ese rules allow our system to learn the
paths leading to relevant images.

On each platform, an agent indexing the local images is rine Visual feature vectors used consist
of color and texture distributions. The colors are obtaifreth the quantization into 32 bins of tHeab

color space, while the textures are obtained from the guaitidin into 32 bins of the output of 12 Gabor

December 20, 2007 DRAFT



mobile agent launching

1 2 8

similarity

| 3

similarity lgarning
- / \ P
labeling of .
ath learnin \
<1—>» returned P g » / \
images 7b / \ /

\ L / \

final network

results Il [ 5

query
by - -] - >
example

mobile agent returning

relevance feedback loop

Fig. 1. Functional description of our system showing ther isénteraction with the relevance feedback loop (launghai

agents, retrieval, display and labeling).

filters. The quantization is performed on a set of common isa@oth color and texture distributions are
normalized over all images regarding each bin. The regpitimge descriptions are vectors concatenating
the color and texture distributions, mapping the imagesfea#ure space of dimension 64. The incoming
mobile agent sends the similarity function to the index agenich returns the most informative images
regarding active learning.

In our context, the pool of unlabeled documents is split Begeral sets, stored on the different hosts
of the network. How can we find the examples that will enhaheenhost the similarity function in this
context? We divide the selection into two stages: first, weigiea strategy to select relevant collections
and then we choose the local examples to be labeled. Thetiofieselection stage involves an ant-like
algorithm ruling the agent movements in order to retrievages from well-chosen collections. Agents

increase and decrease the level of markers of each host ihity hosts containing a lot of relevant
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images will have a high level of marker, whereas hosts withralevant images will have a low level
of markers (as described in section IV). The local selecstage is done by an active learning strategy
adapted to the mobile agents context and based on uncersanipling, as described in section V. A
scenario of this distributed active learning process isashon Fig. 2.

As soon as they receive the answer of the index agent, thelenaipnts return to the user’s computer
(5) and the results are displayed on the interface (6). Tlee can label these results: (relevant, —1:
irrelevant), and the similarity function is updated consequently (@s)well as the good paths of the
network (7b). As the similarity function we use is based onVBahalysis [23], the update only consists
in adding the results and their labels to the training settarttain a new SVM. Mobile agents are then
relaunched with the improved similarity function. The iratetive loop consists in several launching of
mobile agents and labeling of the results (8). At the end efitkeraction, mobile agents are launched for
a very last time in order to retrieve the best results fromheaast (9). The number of retrieved images
is proportional to the level of the markers leading to thisthdn combination with the ant-algorithm,

this assures that most of the best retrieved images areda\iy relevant hosts.

IV. ANT-LIKE ALGORITHM

Agents move following an ant-inspired algorithm as desatiin [24], [25]. We improved the classical
reinforcement rules by adding a semantic-oriented reggorent taking into account the interaction with

the user.

A. Algorithm description

Let ¢ be the host currently executing the agent ahdhe set of possible destinations fram Each
hosti of S contains a markeph; which is used by the agent to determine the next move. Juestliks
with pheromones, the higher the level of markés the higher the probability?; to move to the host:

p— Lhi 1)

> phu

kes
While homing with retrieved images, agents increase thellef/the marker on the visited hosts, given

the following rule:

+3 - a(t) 2)
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with a(t) (agent reinforcement) being 1 when the agent has found a collection and O else,tand
increasing if and only if the marker of the concerned hosthanged. Thereforé, is a time only related
to the concerned host. The system reinforces paths leadimgfdrmative hosts, since this increase of
markers will also increase the probability of these hostbdovisited later.

While searching for images, agents decrease the level ofirtkker of the destination, with the

following rule:

Aph;

= —a - phy(t) 3)

This allows to forget the non informative paths. Compareckttd ants, this rule models the evaporation

of pheromones.

B. Our implementation

As a marker is only updated when an agent moves towards thehbtiing it, an increase of time
represents a travel of an agent along a specific path. Thadjrtte ¢ is local to a host of the network,
depending on how many agents are moving through it. If no tagewves along a path, the local time is
frozen and markers do not evolve anymore. On the contragy,lét of agents move along another path,
the related time flies very fast and markers are updated veigkly. One of the main consequence is
that there is no correlation between the dynamics of thediofetwo hosts that are not bound to each
other. The system does not forget a path just because no &gegis through it. One main advantage of
a local time is that the system does not need to synchronizieeahosts of the network with an universal
clock. Each host has its internal clock based on the frequehagent visits.

Each time the user labels an image, the levels of markers epdth taken to retrieve this image are

also increased as follows:

Aph;
At

Whereu(t) is the reinforcement signal given by the useset reinforcement): 1 if the label is positive,

=+ u(t) (4)
0 otherwise. Thanks to this rule, the paths leading to hastsaining images the user is looking for are
reinforced. The global equation may be written as follows:

Aph;
At

= —a-phi(t)+ B-a(t) +~v-u(t) (5)
When the variations oph; tend to zero, the estimatiqfhi of the marker’s level is:
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- Bra4y-d
phy = == (6)

With & and @ being the estimation of andu respectively. In that case, the level of markers tends
to zero if the host does not lead to a collection, and is nok omlthe contrary. The highest level is
obtained for a host with high values af(which impliesa = 1), that is on a path leading to a collection

containing a lot of relevant images.

C. Re-use of marker - long term learning

We have also implemented a very simple way to keep in memaryptiviously learned collection
selection. In this case, we do not reset the markers at thimfiag of each new search session. The
markers evolve from a query to another leading to a reinfoket of the collections which gave the
greatest number of positive images over all the sessiorssctllection contains too few positive images
and is exhausted before the end of the current session, iteersawill be very small for the next search.
Thus, only collections with large sets of positive image#l & reinforced with this strategy. However,
these small veins of positives images are not lost: they neayeliscovered by an agent at any time,

due to the stochastic behavior of our system.

V. DISTRIBUTED ACTIVE LEARNING
A. Local images selection

Each time an agent gets to a site containing a collectionasttb choose some examples to add to
the training set. Given a set of imaggs; } and their corresponding labefs/« }, let us denote a training
function r giving the labely to the imagex. The aim of active learning is to choose the unlabeled image
x that will enhance the most the relevance function when adilélae previous sefxy }. The labelr(x)
is correspondingly added to the previous labeling{set}. We use uncertainty-based sampling, which is
the most used active strategy in image retrieval [26]. Thistegy aims at selecting an unlabeled image
that the training function is most uncertain about. The first solution is to compute &@bdistic output
for each image, and select the unlabeled images with theapilities of being relevant closest t5
[27]. Similar strategies have been also proposed with SVasifier [28], where the similarity function
is the distance to the hyperplane, and the most uncertainndects have an output close (o

As many agents reach the same host with the same relevanciiofyrthe active strategy should not

answer in a deterministic way, otherwise all these mobilenggwill get the same answers, and thus act
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as one single agent. We recently proposed an active leastihgme [29] to boost the retrieval in one
single collection. We propose here to extend our activeniagrframework in order to handle datamining
over a network. We rank images given their distance to thenbary. We divide the selection dfimages
into I selections of a single image. Each of these selections are deer a set of images with ranking
betweenl andn using an uniform distribution. The selected image is thenaeed from the set. To fix
the width of the set ta for the i-est selection, we add the image ranked i — 1 to the selection pool.
Let us denotey = % the probability of an image in the set at round of being selected, angd= 1 — p.
P;(x) the probability for the imagex with rank v« to be exactly selected at rouridollows a specific

geometric distribution depending on the round where it lesyeol:

i—1
r][q , 1<re<n
j=1
P _ i—rx+n—1 7
(%) P H qg , nH+l<ry<n+i (7)
j=1
0 , n+1<rg
pgt=Y , 1<x<n
Pi(x) =4 pgt=mt=D " pnpl<re<nti (8)
0 , n+1<rg

The probability of an image being selected affeounds is the sum of the probabilities of being selected

at each round from the round where it has entered the set:

I
> pgY , 1<m<n
=1

P(x) = S opg ) o <n T 9)
i=ry—n+1
0 , o n4+ 1 <ry

Which can be rewritten using the geometric series of parameas :

1_q1 71§Txgn
Px)=1Q 1—qgU=r=tn) < <n+1 (10)
0 n+I<rg

The probability P follows an uniform distribution for images with ranking beten1 andn. For images
with ranking betweem andn + I, it decreases exponentially with parameger= 1 — % It is null

otherwise. This selection strategy combines the unceytdiased sampling with a diversity introduced
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by the distributionP. It is also very fast to compute (one ranking of all imagessgluandom sampling

following a uniform distribution) using the following alg¢hm:
1) Rank all images given their distance to the hyperplane

2) Add then first to an empty pool

3) forifrom1tol do
Randomly select an image from the pool using uniform digtidn
Remove it from the pool
Add the imagen + i to the pool

4) done

B. Collection selection

In our context, the relevant category is very little in fraftthe available data. Thus, a relevant image
might often be considered as more informative than an ieele one. We consider a good collection
selection strategy the one that selects the collectionsadong mainly relevant images. Our collections
selection strategy is performed by the ant algorithm. Atwley beginning, all collections have an equal
chance of being visited by an agent (all markers are set té\ft¢r a few rounds, thanks to the user’s
reinforcementu(t) (Cf. Section IV), the highest probability of selecting inesgwill be obtained for the
collection that returned the largest set of positively lademages.

In case of a collection with only few positive images, thisatggy will at first reinforce the selection
on this collection. But as soon as the vein is exhausted, me pasitive labels will reinforce the marker,
and the probability will decrease quickly. This shows how #irategy adapts through the dynamics of

active learning.

VI. EXPERIMENTS.
A. Experiment setup

While we have only made simulations of the network on the COREtaset in [30], we did a real
implementation of our system for the experiments presemégeby. To test our system in quasi “realistic”
conditions, we performed the experiments on the intraneuofiab. In a previous work it has been tested
that, given the path reinforcement strategy, no matter tmaptexity of the network is, it is reduced, after
learning, to a simple connexion graph with only informatpaths remaining (in accordance with [24]).
Indeed, as our algorithm reinforces the shortest path tdrtftemation sites, it can then be considered

only a small number of directions (some of which leading tevant images), no matter how many
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computers are in these directions. We made our experimdttisfour directions, each one consisting of
a single computer. For the data, we used the set of keyfrafbe orecvid’ 05 competition for a total of
about 75000 images. We used as ground truth the high levelré=agiven by CMU. We divided these
images into four collections, each hosted by a bi-opterdh \&ith 8 GB of RAM. These hosts were the
possible destinations for our mobile agents. The links betwthe hosts of the network were 100Mbps,
and therefore the time taken by the agents to migrate wasgitegl

For the agent framework, théade? platform was used. Adade had little support for agent mobility
between several platforms, we implemented our own mobdidyice using Java serialization and ACL
messaging. As the agent code was common to all platformssedtialization of an agent resulted in a
string containing only its internal fields. The size of thess&ges containing a serialized agent was about
10kB. The size of the similarity function depended on the numbegxamples in the training set, and
varied from less thardkB to 30kB. This made the serialized agents as light as a typical wek paitp

few images, such as the page containing the results of a g@egirch.

B. Network learning

The main assumption for learning paths to relevant imaggstber with the relevance function is that
the images belonging to the concept are well localized omttevork. In other words, there are hosts
that contain a lot of relevant images and hosts that do naa@oany or few relevant images. To simulate
this, we hosted in a first case all the relevant images on thed@stination, while the other computers
did not contain any relevant image. We called this sedinpng localization. In a second case, we put
only 80% of the relevant images on the first host, the remaining beqgaky distributed on the other
hosts, in order to simulate what we calleeveak localized setup. In order to deal with a realistic retrieval
where the relevant images are hidden in a mass of irrelemaegés, we added to each host about 15000
irrelevant images randomly selected. 100 search sessieresmwade for each category, and for each new
guery, the markers were reset. Due to the ant-algorithm, xpeaed at the end of the retrieval session
the levels of marker being high on the first host compared ¢oadtiner ones. Fig. 3 shows the level of
markers for each host for the case where relevant image aadized at100% on the first destination.
As we can see, we were able to learn the good path, with relaticcess from a category to another.
Actually, as the learning process depends on the user'$oreementa, it is directly linked with the

number of relevant images found during the interaction,clvhis very dependent on the category.

2http://jade.tilab.com
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For the weak localization, Fig. 4 shows that learning thevaht path is also a success even if there
are some non-zero value affor the other hosts. Nevertheless, this is less pronourieadfor the strong

localization setup.

C. Smilarity learning

In order to evaluate the influence of path learning on catefgarning, we also ran experiments of our
active learning strategy as described in section V-A on glsihi-opteron 275 containing the whole image
collection. Due to the lack of parallelization, this setopk a much longer time than our mobile-agents
system. This setup will be referred aentralized setup in the following. Fig. 5 shows theecall @500
(number of relevant images retrieved for 500 total imagésene=d) per setup for each category. In order
to compute the recall, the number of the best images rettiénen each host were proportional to the
level of marker. For instance, if the levels wef®.80,0.10,0.05,0.05}, we retrieved{400, 50, 25, 25}
images from each host respectively. In the case ofcdmiralized setup, the recall was made among the
500 best images of the whole collection.

We can see that the distributed system outperforms thealizeil one in all cases, but especially for
difficult categories (low recall values, for instangead’ or 'urban’). The standard deviations for these
varied from1% for difficult categories (less that0% in recall) to abouts% for easy categories (more

than 20%).

D. Re-use of markers

As explained in Section IV-C, We ran the same experimentsawit resetting the markers level at the
beginning of a search. For each category, the initializatth the markers was made only once for the
first query. Fig. 6 shows the levels (mean over the sessidnsiatkers for each category. The levels of
paths leading to the irrelevant hosts are negligible, winidans that almost all agents move towards the
first host (but not all due to the algorithm non-determinism)

The recall @500 of the Fig. 7 shows that this setup is a further improvemeat.dasy categories (for
instance’charts’ or 'maps’), the gain is up to about00%. For difficult categories’(oad’), the gain
can be as high as abol000%. As this strategy focuses even more on adding relevant imég¢he
training set (by keeping in memory their localization oveamy sessions), this can explain the boost
obtained with difficult queries. This is shown on Fig. 8, wdéne number of positive labels per session
per category is clearly higher than for the other setupsnefvéhe standard deviation is high (about 10

labels).
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These experiments validated our path learning algorithmshgwing that the path leading to the
relevant host has the highest level of marker. We then ptedenesults showing that taking in account
the localization of the relevant images in the learning pescleads to an improvement &% in mean.
Moreover, in a setup where the markers were not initializetth@ beginning of each new search but kept

for the next session, our system had an improvement of abi@i% in mean.

VIlI. CONCLUSION.

In this article, we presented a new active learning strafegysearching images over networks. We
introduced a new reinforcement based learning scheme &onileg the localization of relevant images.
We carried out a smart cooperation between these two sigatéga global architecture based on mobile
agents with an ant-like behavior. We made a working impleat@n of our system and tested it on a
real network using thérecvid keyframe dataset. It shows that our system is definitivelyngrovement
to distributed CBIR.

We are now working on an extension of our system for managifigrent markers, each one related
to a specific concept. Concurrent queries of different cpteavill involve different markers. With an
efficient management of many concept-dependant markerdyelieve the improvement shown in the

re-use of markers setup can be widely used.

REFERENCES

[1] J. Cho and S. Roy, “Impact of search engines on page pogilan WWWW '04: Proceedings of the 13th international
conference on World Wide Web. New York, NY, USA: ACM, 2004, pp. 20-29.

[2] R. Veltkamp, “Content-based image retrieval system:ufvey,” University of Utrecht, Tech. Rep., 2002.

[3] M. Wood, N. Campbell, and B. Thomas, “lterative refinemday relevance feedback in content-based digital image
retrieval,” in ACM Multimedia 98, Bristol, UK, September 1998, pp. 13-20.

[4] T. Huang and X. Zhou, “Image retrieval with relevance dback: From heuristic weight adjustment to optimal leagnin
methods,” inInternational Conference in Image Processing (ICIP’01), vol. 3, Thessaloniki, Greece, October 2001, pp.
2-5.

[5] C. Carson, M. Thomas, S. Belongie, J. Hellerstein, anilidlik, “Blobworld: A system for region-based image indegin
and retrieval,” inThird Int. Conf. on Visual Information Systems, June 1999.

[6] D. Lowe, “Distinctive image features from scale-invamt keypoints,” inlnternational Journal of Computer Vision, vol. 20,
2003, pp. 91-110.

[7] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasmab. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The
QBIC project: Querying images by content, using color, uext and shape,” itorage and Retrieval for Image and Video
Databases (SPIE), February 1993, pp. 173-187.

[8] S. Santini, A. Gupta, and R. Jain, “Emergent semanticsuth interaction in image databaseH?EE Transactions on
Knowledge and Data Engineering, vol. 13, no. 3, pp. 337-351, 2001.

December 20, 2007 DRAFT



14

[9] N. Vasconcelos, “Bayesian models for visual informatioetrieval,” Ph.D. dissertation, Massachusetts Ingtitof
Technology, 2000.

[10] O. Chapelle, P. Haffner, and V. Vapnik, “Svms for hismg based image classificatiodEEE Transactions on Neural
Networks, vol. 9, 1999.

[11] S. Tong and D. Koller, “Support vector machine activarténg with applications to text classificatioddurnal of Machine
Learning Research, vol. 2, pp. 45-66, 2001.

[12] F. Sebastiani, “Machine learning in automated texegatization,”ACM Comput. Surv., vol. 34, no. 1, pp. 1-47, 2002.

[13] A. Smeulders, M. Worring, S. Santini, A. Gupta, and RnJ&Content-based image retrieval at the end of the earfrgé
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, December 2000.

[14] S. Berretti, A. D. Bimbo, and P. Pala, “Merging results fistributed content based image retrievalllitimedia Tools
Appl., vol. 24, no. 3, pp. 215-232, 2004.

[15] I. King, C. H. Ng, and K. C. Sia, “Distributed contentdaal visual information retrieval system on peer-to-peéwaeks,”
ACM Trans. Inf. Syst., vol. 22, no. 3, pp. 477-501, 2004.

[16] Y. Jiao and A. R. Hurson, “Performance analysis of mekifents in mobile distributed information retrieval systea
guantitative case studyJournal of Interconnection Networks, vol. 5, no. 3, pp. 351-372, 2004.

[17] D. B. Lange and M. Oshima, “Seven good reasons for madagjents,”Commun. ACM, vol. 42, no. 3, pp. 88—89, 1999.

[18] V. Roth, U. Pinsdorf, and J. Peters, “A distributed @nmitbased search engine based on mobile code3A@ '05:
Proceedings of the 2005 ACM symposium on Applied computing. New York, NY, USA: ACM Press, 2005, pp. 66—73.

[19] E. Bonabeau, M. Dorigo, and G. Theraulaz, “The sociakat paradigm for optimization and controNature, vol. 406,
pp. 39-42, 2000.

[20] J. Deneubourg, S. Goss, N.Franks, A. Sendova-Frank®e®ain, and L. Chrétien, “The dynamics of collective sagt
Robot-like ants and ant-like robots,” irom Animals to Animats. Proc. First Int. Conference on Smulation of Adaptive
Behavior, J.-A. Meyer and S. Wilson, Eds., Paris, France, 1990, pf-—363.

[21] A. Revel, “Web-agents inspired by ethology: a populatdf “ant™like agents to help finding user-oriented infation.”
in IEEE WIC'2003 : International Conference on Web Intelligence., IEEE. Halifax, Canada: IEEE Computer Society,
October 2003, pp. 482-485.

[22] ——, “From robots to web-agents: Building cognitive seére agents for web-information retrieval by taking imagion
from experience in robotics,” inACM International conference on Web Intelligence, Université Technologique de
Compiegne, Compiegne, France, Septembre 2005.

[23] C. Cortes and V. Vapnik, “Support-vector networkbfachine Learning, vol. 20, no. 3, pp. 273-297, 1995.

[24] M.Dorigo, V. Maniezzo, and A. Colorni, “The ant syster@ptimization by a colony of cooperating agent$EEE
Transactions on Systems, Man, and Cybernetics-Part B, vol. 1, no. 26, pp. 29-41, 1996.

[25] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiratfon optimization from social insect behavioulNature, vol. 406,
pp. 39-42, 6 July 2000.

[26] S. Tong and E. Chang, “Support vector machine activenlag for image retrieval,” inACM Multimedia, 2001.

[27] D. Lewis and J. Catlett, “Heterogenous uncertainty glimy for supervised learning,” innternational Confenrence on
Machine Learning, 1994.

[28] J. Park, “On-line learning by active sampling usinghogonal decision support vectors,” IEEE Neural Networks for
Sgnal Processing, 2000.

December 20, 2007 DRAFT



15

[29] M. Cord, P.-H. Gosselin, and S. Philipp-Foliguet, “Gtastic exploration and active learning for image rettigvamage
and Vision Computing, vol. 25, pp. 14-23, 2007.

[30] D. Picard, M. Cord, and A. Revel, “Chir in distributed tdbases using a multi-agent system,”|EEE International
Conference on Image Processing (ICIP’06), Atlanta, GA, USA, October 2006.

December 20, 2007 DRAFT



16

(a) The first round of active learning will select two imag@® As there are more positive labels oh than on B, the
to be labeled. The most uncertain (closest to the boundaey} active learning round will select the two most uncertai
from each collection is chosen since we don't have angges only onA.

information about the images each collection contains.

A A

(c) The online collection selection leads quickly to an éffit (d) If there is no DB selection algorithm, the two selected
classification by improving (uncertainty based) the clisasi examples (one from each DB) would lead to a less efficient

tion only where there are relevant images. classification.

Fig. 2. Example of distributed active learning with two eailionsA (bright green color) andB (dark red color).A contains
many relevant objects, whereashas very few. Plain symbols denote labeled images, whe@imshsymbols denote unlabeled
images. The initial query contains two relevant imagescle#) and two irrelevant images (triangles) equally chosem A

and B. The collection selection algorithm will choosk since the active learning returns more positive labelsdon
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Fig. 3. Relative proportions of markers on the four hostsgaegory. A bar af0% means that an agent has a probability of
70% to go to this host. The destination containing the relevardges (nameelevant host) has always the highest probability

of being visited.
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Fig. 4. Relative proportions of markers on the four hosts geegory for theweak localization setup. The host containing
most of the relevant images has always the highest probabflibeing visited, despite it is less pronounced than fersthong
localization setup.
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Fig. 5. Recall@500 for the centralized setup and the distributed setups with bvong and weak localization. Our distributed

implementation outperforms the centralized setup, everase of weak localization.
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Fig. 6. Relative proportions of markers on the four hostsqaegory for there-use of markers setup. The levels of irrelevant

hosts are negligible.
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Fig. 7. Recall@500 per category comparing thentralized setup, the distributed setup and tteeuse of markers setup. The
recall is at leasb0% better than the distributed setup, and at l€ld¥1% better than the centralized setup.
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Fig. 8. Mean number of positives labels obtained in a sesdibe re-use of markers setup obtained more positives labels

during the interaction than the centralized and the disted setup.
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