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Image Retrieval over Networks : Active

Learning using Ant Algorithm
David Picard*, Matthieu Cord, and Arnaud Revel

Abstract

In this article, we present a framework for distributed content based image retrieval with online

learning based on ant-like mobile agents. Mobile agents crawl the network to find images matching

a given example query. The images retrieved are shown to the user who labels them, following the

classical relevant feedback scheme. The labels are used both to improve the similarity measure used for

the retrieval and to learn paths leading to sites containingrelevant images. The relevant paths are learned

in an ethologically inspired way. We made experiments on thetrecvid 2005 keyframe dataset showing

that learning both the similarity function and the localization of the relevant images leads to a significant

improvement. We also present an extension with the re-use oflearned paths for later sessions leading to

a further improvement.

I. INTRODUCTION.

With the generalization of networking devices and the expansion of interconnections, information has

been spread over many sources. The Internet, p2p networks, professional or even personal intranets

provide huge volumes of information. To tackle the search into these collections, search engines have

been developed in order to find the best localizations of datas matching a query. They became efficient,

user-friendly and very popular. They are even more relevantin dynamic networks like p2p, where the

user is unable to crawl the network by hand. In that sense, thework on search engines is highly valuable

for today’s applications [1].

As far as data mining in multimedia documents (image, audio,video, ...) is concerned, web search

engines usually give poor results. Most of them use the contextual web page, or the meta information
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attached to the multimedia objects. The text used for the indexing process is often far from the semantic

meaning that the user usually attaches to the content of the document. Hence, the results of web search

engines are far from expected regarding the semantics of thedocuments. Content Based Image Retrieval

(CBIR) has been recently proposed in order to give an answer to this problem [2]. The main idea is to build

a representation of the image based on its content, and then to find a relation between this representation

and the semantic we associate to the image. Machine learningtechniques have been successfully adapted

to this framework. The best improvement was done with the introduction of relevance feedback [3], [4]

into the process.

The processing cost introduced by these techniques makes them difficult to use with large amounts

of images such as what we can find on the Internet. Moreover, classical CBIR tools are designed for a

unique collection. In this paper, we adapt machine learningtechniques such as active learning in order

to deal with image retrieval distributed over a network. We propose to learn both the path leading to the

collection containg the relevant images and the similaritybetween images. We introduce a scheme that

efficiently implements this two-step learning combinationby using an ant-like behavior algorithm. The

resulting system will constitute a smart solution for distributed CBIR.

In the next section, bibliographical context is discussed,and our methodological and technological

choices of mobile agents are motivated (Sect. III). Then, wedetail the ant-like reinforcement learning

algorithm used by the agents in section IV. The section V contains the description of our distributed

interactive learning strategy. Finally, we present and discuss the experiments and results we obtained

using our system on the trecvid2005 keyframe dataset1.

II. D ISTRIBUTED CONTENT BASED RETRIEVAL

A. Content Based Image Retrieval

The main idea of content based image retrieval (CBIR) is to retrieve within large collections images

matching a given query thanks to their visual content analysis. Visual features, such as color, texture

or shape, are extracted from the images and indexed. These features can be global or extracted from

regions or points of interest [5], [6] and then compiled intoa index or signature. A basic way to perform

retrieval consists in computing a similarity function for comparing the query index to one of the images

in the collection [7]. Such systems give unsatisfying results due to the well known semantic gap [8].

To fill the gap, the similarity function may be updated on-line, using an interaction with the user called

1see http://www-nlpir.nist.gov/projects/tv2005/
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“relevance feedback”. In this process, some images are proposed to the user for labeling. These labels

(usually relevant or irrelevant) are used to update the similarity function.

In this context, machine learning techniques such as Bayes classification [9] or support vector machines

[10] have been recently introduced to build the similarity function from a set of labeled samples. To boost

this online learning, active learning strategies have beenproposed: the goal is to select the examples to

be labeled that will enhance the most the similarity function [11]. At the end of the interactive session,

a ranking of all images given their similarity is shown to theuser. Most of these techniques come from

the text categorization community [12] and were adapted to image classification.

There are lots of CBIR systems, and an overview can be found in[13].

B. CBIR in distributed collections

The major part of the CBIR computation is dedicated to the processing of all the feature vectors in

order to produce the final ranking. Then, the fact that imagesare distributed over many sources should be

more an advantage than a drawback since the processing of every image could be naturally paralleled. To

our knowledge, there are only few researches on distributedimage retrieval (despite being noted as further

improvement to CBIR in [13]). In a context such as the Internet, the common idea is to keep up-to-date

an index of the feature vectors. The indexes are stored on a few well identified machines hosting a CBIR

search tool. These servers are entry points for the distributed CBIR system. The distributed CBIR system

propagates the queries to the entry points and efficiently merges their results (see [14]). In peer-to-peer

networks, it is not possible to identify entry points anymore. Instead, each peer must index its own

images and queries must be propagated from one peer to another. In DISCOVIR [15], King proposes an

algorithm for selecting links between peers based on the content of their shared images. The queries are

more likely to be propagated to peers which are known to host similar images. With this method, they

achieve to improve the retrieval and reduce the network load.

In the systems presented above, interaction and active learning are not taken into account. Thus, the

question about efficiently performing active learning in a distributed context is still open.

C. Mobile agents

Among the strategies allowing to perform the needed parallelization of feature vector processing, we

have chosen to use mobile agents. A mobile agent is an autonomous computer software with the ability

to migrate from one computer to another and to continue its execution there. While mobile agents have

motivated many researches in the late 90’s, it seems that they did not made their way in the information
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retrieval community. However, they have shown good performances in the case of information retrieval

with mobile devices where the network capabilities are unreliable in nature [16]. There are good reasons

for using mobile agents in the distributed CBIR context, such as the reduction of the network load (the

processing code of the agent being very small in comparison to the feature vector indexes) and the

massive parallelization of the computation. Some of these advantages are described in [17].

The resulting scenario of CBIR using mobile agents is to launch several mobile agents with a copy of

the query. They crawl the network in search of image collections. When an agent gets to a site, a dialog

with a local agent is established. The local agent indexes the images and performs the processing [18].

D. Ant-like agents

In addition to the computational interest of mobile agents,we suggest that they can also participate to

the learning process. Software agents following ant-like behaviors have been used, for instance, in several

domains including network routing, traveling salesman problem or quadratic assignment problem [19]

following the model of the ethologist J. L. Deneubourg [20].In the case of distributed retrieval, ant-agents

crawl the network to find the relevant documents. They move from one peer to another and mark the

visited hosts (by changing a numerical value locally storedon these hosts, calledmarker). These markers

can be viewed as a collective memory of paths leading to the relevant sites. This behavior-based mapping

of the network is well adapted to inconsistent networks suchas peer-to-peer networks, since the marked

paths evolve with the global trend of the agent movements [21], [22]. In our distributed CBIR context,

we have to do several travels between the user’s computer andthe information sources. Ant-algorithm

seems to be a good solution for learning the relevant paths through the dynamics of active learning.

III. A RCHITECTURE OF OUR SYSTEM

Fig. 1 describes our system. The user starts his query by giving an example or a set of examples to an

interface (1). We build a similarity function based on theseexamples (2). Mobile agents are then launched

with a copy of this similarity function (3). Every host of thenetwork contains an agent platform in order

to be able to receive and execute incoming mobile agents. These agents travel through the network

according to movement rules described in the next section (4). These rules allow our system to learn the

paths leading to relevant images.

On each platform, an agent indexing the local images is run. The visual feature vectors used consist

of color and texture distributions. The colors are obtainedfrom the quantization into 32 bins of theLab

color space, while the textures are obtained from the quantization into 32 bins of the output of 12 Gabor
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Fig. 1. Functional description of our system showing the user in interaction with the relevance feedback loop (launching of

agents, retrieval, display and labeling).

filters. The quantization is performed on a set of common images. Both color and texture distributions are

normalized over all images regarding each bin. The resulting image descriptions are vectors concatenating

the color and texture distributions, mapping the images to afeature space of dimension 64. The incoming

mobile agent sends the similarity function to the index agent which returns the most informative images

regarding active learning.

In our context, the pool of unlabeled documents is split intoseveral sets, stored on the different hosts

of the network. How can we find the examples that will enhance the most the similarity function in this

context? We divide the selection into two stages: first, we design a strategy to select relevant collections

and then we choose the local examples to be labeled. The collection selection stage involves an ant-like

algorithm ruling the agent movements in order to retrieve images from well-chosen collections. Agents

increase and decrease the level of markers of each host they visit: hosts containing a lot of relevant
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images will have a high level of marker, whereas hosts with norelevant images will have a low level

of markers (as described in section IV). The local selectionstage is done by an active learning strategy

adapted to the mobile agents context and based on uncertainty sampling, as described in section V. A

scenario of this distributed active learning process is shown on Fig. 2.

As soon as they receive the answer of the index agent, the mobile agents return to the user’s computer

(5) and the results are displayed on the interface (6). The user can label these results (1: relevant, −1:

irrelevant), and the similarity function is updated consequently (7a)as well as the good paths of the

network (7b). As the similarity function we use is based on SVM analysis [23], the update only consists

in adding the results and their labels to the training set andto train a new SVM. Mobile agents are then

relaunched with the improved similarity function. The interactive loop consists in several launching of

mobile agents and labeling of the results (8). At the end of the interaction, mobile agents are launched for

a very last time in order to retrieve the best results from each host (9). The number of retrieved images

is proportional to the level of the markers leading to this host. In combination with the ant-algorithm,

this assures that most of the best retrieved images are provided by relevant hosts.

IV. A NT-LIKE ALGORITHM

Agents move following an ant-inspired algorithm as described in [24], [25]. We improved the classical

reinforcement rules by adding a semantic-oriented reinforcement taking into account the interaction with

the user.

A. Algorithm description

Let c be the host currently executing the agent andS the set of possible destinations fromc. Each

hosti of S contains a markerphi which is used by the agent to determine the next move. Just like ants

with pheromones, the higher the level of markerphi the higher the probabilityPi to move to the hosti:

Pi =
phi

∑

k∈S

phk

(1)

While homing with retrieved images, agents increase the level of the marker on the visited hosts, given

the following rule:

∆phi

∆t
= +β · a(t) (2)
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with a(t) (agent reinforcement) being 1 when the agent has found a collection and 0 else, andt

increasing if and only if the marker of the concerned host is changed. Therefore,t is a time only related

to the concerned host. The system reinforces paths leading to informative hosts, since this increase of

markers will also increase the probability of these hosts tobe visited later.

While searching for images, agents decrease the level of themarker of the destination, with the

following rule:

∆phi

∆t
= −α · phi(t) (3)

This allows to forget the non informative paths. Compared toreal ants, this rule models the evaporation

of pheromones.

B. Our implementation

As a marker is only updated when an agent moves towards the host holding it, an increase of timet

represents a travel of an agent along a specific path. Thus, the time t is local to a host of the network,

depending on how many agents are moving through it. If no agent moves along a path, the local time is

frozen and markers do not evolve anymore. On the contrary, ifa lot of agents move along another path,

the related time flies very fast and markers are updated very quickly. One of the main consequence is

that there is no correlation between the dynamics of the times of two hosts that are not bound to each

other. The system does not forget a path just because no agenttravels through it. One main advantage of

a local time is that the system does not need to synchronize all the hosts of the network with an universal

clock. Each host has its internal clock based on the frequency of agent visits.

Each time the user labels an image, the levels of markers on the path taken to retrieve this image are

also increased as follows:

∆phi

∆t
= +γ · u(t) (4)

Whereu(t) is the reinforcement signal given by the user (user reinforcement): 1 if the label is positive,

0 otherwise. Thanks to this rule, the paths leading to hosts containing images the user is looking for are

reinforced. The global equation may be written as follows:

∆phi

∆t
= −α · phi(t) + β · a(t) + γ · u(t) (5)

When the variations ofphi tend to zero, the estimation̂phi of the marker’s level is:
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p̂hi =
β · â + γ · û

α
(6)

With â and û being the estimation ofa and u respectively. In that case, the level of markers tends

to zero if the host does not lead to a collection, and is not null on the contrary. The highest level is

obtained for a host with high values ofû (which impliesâ = 1), that is on a path leading to a collection

containing a lot of relevant images.

C. Re-use of marker - long term learning

We have also implemented a very simple way to keep in memory the previously learned collection

selection. In this case, we do not reset the markers at the beginning of each new search session. The

markers evolve from a query to another leading to a reinforcement of the collections which gave the

greatest number of positive images over all the sessions. Ifa collection contains too few positive images

and is exhausted before the end of the current session, its markers will be very small for the next search.

Thus, only collections with large sets of positive images will be reinforced with this strategy. However,

these small veins of positives images are not lost: they may be rediscovered by an agent at any time,

due to the stochastic behavior of our system.

V. D ISTRIBUTED ACTIVE LEARNING

A. Local images selection

Each time an agent gets to a site containing a collection, it has to choose some examples to add to

the training set. Given a set of images{xk} and their corresponding labels{yk}, let us denote a training

functionτ giving the labely to the imagex. The aim of active learning is to choose the unlabeled image

x that will enhance the most the relevance function when addedto the previous set{xk}. The labelτ(x)

is correspondingly added to the previous labeling set{yk}. We use uncertainty-based sampling, which is

the most used active strategy in image retrieval [26]. This strategy aims at selecting an unlabeled image

that the training functionτ is most uncertain about. The first solution is to compute a probabilistic output

for each image, and select the unlabeled images with the probabilities of being relevant closest to0.5

[27]. Similar strategies have been also proposed with SVM classifier [28], where the similarity function

is the distance to the hyperplane, and the most uncertain documents have an output close to0.

As many agents reach the same host with the same relevance function, the active strategy should not

answer in a deterministic way, otherwise all these mobile agents will get the same answers, and thus act
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as one single agent. We recently proposed an active learningscheme [29] to boost the retrieval in one

single collection. We propose here to extend our active learning framework in order to handle datamining

over a network. We rank images given their distance to the boundary. We divide the selection ofI images

into I selections of a single image. Each of these selections are done over a set of images with ranking

between1 andn using an uniform distribution. The selected image is then removed from the set. To fix

the width of the set ton for the i-est selection, we add the image rankedn + i− 1 to the selection pool.

Let us denotep = 1
n

the probability of an imagex in the set at roundi of being selected, andq = 1− p.

Pi(x) the probability for the imagex with rank rx to be exactly selected at roundi follows a specific

geometric distribution depending on the round where it happened:

Pi(x) =







































p

i−1
∏

j=1

q , 1 ≤ rx ≤ n

p

i−rx+n−1
∏

j=1

q , n + 1 < rx < n + i

0 , n + i ≤ rx

(7)

Pi(x) =



















pq(i−1) , 1 ≤ rx ≤ n

pq(i−rx+n−1) , n + 1 < rx < n + i

0 , n + i ≤ rx

(8)

The probability of an image being selected afterI rounds is the sum of the probabilities of being selected

at each round from the round where it has entered the set:

P (x) =



































I
∑

i=1

pq(i−1) , 1 ≤ rx ≤ n

I
∑

i=rx−n+1

pq(i−rx+n−1) , n < rx < n + I

0 , n + I ≤ rx

(9)

Which can be rewritten using the geometric series of parameter q as :

P (x) =



















1 − qI , 1 ≤ rx ≤ n

1 − q(I−rx+n) , n < rx < n + I

0 , n + I ≤ rx

(10)

The probabilityP follows an uniform distribution for images with ranking between1 andn. For images

with ranking betweenn and n + I, it decreases exponentially with parameterq = 1 − 1
n

. It is null

otherwise. This selection strategy combines the uncertainty based sampling with a diversity introduced
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by the distributionP . It is also very fast to compute (one ranking of all images plus I random sampling

following a uniform distribution) using the following algorithm:
1) Rank all images given their distance to the hyperplane

2) Add then first to an empty pool

3) for i from 1 to I do

Randomly select an image from the pool using uniform distribution

Remove it from the pool

Add the imagen + i to the pool

4) done

B. Collection selection

In our context, the relevant category is very little in frontof the available data. Thus, a relevant image

might often be considered as more informative than an irrelevant one. We consider a good collection

selection strategy the one that selects the collections containing mainly relevant images. Our collections

selection strategy is performed by the ant algorithm. At thevery beginning, all collections have an equal

chance of being visited by an agent (all markers are set to 1).After a few rounds, thanks to the user’s

reinforcementu(t) (Cf. Section IV), the highest probability of selecting images will be obtained for the

collection that returned the largest set of positively labeled images.

In case of a collection with only few positive images, this strategy will at first reinforce the selection

on this collection. But as soon as the vein is exhausted, no more positive labels will reinforce the marker,

and the probability will decrease quickly. This shows how the strategy adapts through the dynamics of

active learning.

VI. EXPERIMENTS.

A. Experiment setup

While we have only made simulations of the network on the COREL dataset in [30], we did a real

implementation of our system for the experiments presentedhereby. To test our system in quasi “realistic”

conditions, we performed the experiments on the intranet ofour lab. In a previous work it has been tested

that, given the path reinforcement strategy, no matter the complexity of the network is, it is reduced, after

learning, to a simple connexion graph with only informativepaths remaining (in accordance with [24]).

Indeed, as our algorithm reinforces the shortest path to theinformation sites, it can then be considered

only a small number of directions (some of which leading to relevant images), no matter how many
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computers are in these directions. We made our experiments with four directions, each one consisting of

a single computer. For the data, we used the set of keyframes of the trecvid′05 competition for a total of

about 75000 images. We used as ground truth the high level features given by CMU. We divided these

images into four collections, each hosted by a bi-opteron 275 with 8 GB of RAM. These hosts were the

possible destinations for our mobile agents. The links between the hosts of the network were 100Mbps,

and therefore the time taken by the agents to migrate was negligible.

For the agent framework, theJade2 platform was used. AsJade had little support for agent mobility

between several platforms, we implemented our own mobilityservice using Java serialization and ACL

messaging. As the agent code was common to all platforms, theserialization of an agent resulted in a

string containing only its internal fields. The size of the messages containing a serialized agent was about

10kB. The size of the similarity function depended on the number of examples in the training set, and

varied from less than1kB to 30kB. This made the serialized agents as light as a typical web page with

few images, such as the page containing the results of a google search.

B. Network learning

The main assumption for learning paths to relevant images together with the relevance function is that

the images belonging to the concept are well localized on thenetwork. In other words, there are hosts

that contain a lot of relevant images and hosts that do not contain any or few relevant images. To simulate

this, we hosted in a first case all the relevant images on the first destination, while the other computers

did not contain any relevant image. We called this setupstrong localization. In a second case, we put

only 80% of the relevant images on the first host, the remaining being equally distributed on the other

hosts, in order to simulate what we called aweak localized setup. In order to deal with a realistic retrieval

where the relevant images are hidden in a mass of irrelevant images, we added to each host about 15000

irrelevant images randomly selected. 100 search sessions were made for each category, and for each new

query, the markers were reset. Due to the ant-algorithm, we expected at the end of the retrieval session

the levels of marker being high on the first host compared to the other ones. Fig. 3 shows the level of

markers for each host for the case where relevant image are localized at100% on the first destination.

As we can see, we were able to learn the good path, with relative success from a category to another.

Actually, as the learning process depends on the user’s reinforcementû, it is directly linked with the

number of relevant images found during the interaction, which is very dependent on the category.

2http://jade.tilab.com
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For the weak localization, Fig. 4 shows that learning the relevant path is also a success even if there

are some non-zero value ofû for the other hosts. Nevertheless, this is less pronounced than for the strong

localization setup.

C. Similarity learning

In order to evaluate the influence of path learning on category learning, we also ran experiments of our

active learning strategy as described in section V-A on a single bi-opteron 275 containing the whole image

collection. Due to the lack of parallelization, this setup took a much longer time than our mobile-agents

system. This setup will be referred ascentralized setup in the following. Fig. 5 shows therecall@500

(number of relevant images retrieved for 500 total images retrieved) per setup for each category. In order

to compute the recall, the number of the best images retrieved from each host were proportional to the

level of marker. For instance, if the levels were{0.80, 0.10, 0.05, 0.05}, we retrieved{400, 50, 25, 25}

images from each host respectively. In the case of thecentralized setup, the recall was made among the

500 best images of the whole collection.

We can see that the distributed system outperforms the centralized one in all cases, but especially for

difficult categories (low recall values, for instance’road’ or ’urban’). The standard deviations for these

varied from1% for difficult categories (less than10% in recall) to about5% for easy categories (more

than20%).

D. Re-use of markers

As explained in Section IV-C, We ran the same experiments without resetting the markers level at the

beginning of a search. For each category, the initialization of the markers was made only once for the

first query. Fig. 6 shows the levels (mean over the sessions) of markers for each category. The levels of

paths leading to the irrelevant hosts are negligible, whichmeans that almost all agents move towards the

first host (but not all due to the algorithm non-determinism).

The recall@500 of the Fig. 7 shows that this setup is a further improvement. For easy categories (for

instance’charts’ or ’maps’), the gain is up to about100%. For difficult categories (’road’), the gain

can be as high as about1000%. As this strategy focuses even more on adding relevant images to the

training set (by keeping in memory their localization over many sessions), this can explain the boost

obtained with difficult queries. This is shown on Fig. 8, where the number of positive labels per session

per category is clearly higher than for the other setups, even if the standard deviation is high (about 10

labels).
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These experiments validated our path learning algorithm byshowing that the path leading to the

relevant host has the highest level of marker. We then presented results showing that taking in account

the localization of the relevant images in the learning process leads to an improvement of75% in mean.

Moreover, in a setup where the markers were not initialized at the beginning of each new search but kept

for the next session, our system had an improvement of about155% in mean.

VII. CONCLUSION.

In this article, we presented a new active learning strategyfor searching images over networks. We

introduced a new reinforcement based learning scheme for learning the localization of relevant images.

We carried out a smart cooperation between these two strategies in a global architecture based on mobile

agents with an ant-like behavior. We made a working implementation of our system and tested it on a

real network using thetrecvid keyframe dataset. It shows that our system is definitively animprovement

to distributed CBIR.

We are now working on an extension of our system for managing different markers, each one related

to a specific concept. Concurrent queries of different concepts will involve different markers. With an

efficient management of many concept-dependant markers, webelieve the improvement shown in the

re-use of markers setup can be widely used.
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(a) The first round of active learning will select two images

to be labeled. The most uncertain (closest to the boundary)

from each collection is chosen since we don’t have any

information about the images each collection contains.

(b) As there are more positive labels onA than onB, the

next active learning round will select the two most uncertain

images only onA.

(c) The online collection selection leads quickly to an efficient

classification by improving (uncertainty based) the classifica-

tion only where there are relevant images.

(d) If there is no DB selection algorithm, the two selected

examples (one from each DB) would lead to a less efficient

classification.

Fig. 2. Example of distributed active learning with two collectionsA (bright green color) andB (dark red color).A contains

many relevant objects, whereasB has very few. Plain symbols denote labeled images, whereas hollow symbols denote unlabeled

images. The initial query contains two relevant images (circles) and two irrelevant images (triangles) equally chosenfrom A

andB. The collection selection algorithm will chooseA since the active learning returns more positive labels onA.
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Fig. 3. Relative proportions of markers on the four hosts percategory. A bar at70% means that an agent has a probability of

70% to go to this host. The destination containing the relevant images (namerelevant host) has always the highest probability

of being visited.
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Fig. 4. Relative proportions of markers on the four hosts percategory for theweak localization setup. The host containing

most of the relevant images has always the highest probability of being visited, despite it is less pronounced than for the strong

localization setup.
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Fig. 5. Recall@500 for the centralized setup and the distributed setups with both strong and weak localization. Our distributed

implementation outperforms the centralized setup, even incase of weak localization.
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Fig. 6. Relative proportions of markers on the four hosts percategory for there-use of markers setup. The levels of irrelevant

hosts are negligible.
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Fig. 7. Recall@500 per category comparing thecentralized setup, the distributed setup and there-use of markers setup. The

recall is at least50% better than the distributed setup, and at least100% better than the centralized setup.
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Fig. 8. Mean number of positives labels obtained in a session. The re-use of markers setup obtained more positives labels

during the interaction than the centralized and the distributed setup.
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