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Abstract: We investigate theoretically and experimentally the parameters
governing the accuracy of correction in modal sensorless adaptive optics
for microscopy. On the example of two-photon fluorescence imaging, we
show that using a suitable number of measurements, precise correction
can be obtained for up to 2 radians rms aberrations without optimising
the aberration modes used for correction. We also investigate the number
of photons required for accurate correction when signal acquisition is
shot-noise limited. We show that only 104 to 105 photons are required for
complete correction so that the correction process can be implemented
with limited extra-illumination and associated photoperturbation. Finally,
we provide guidelines for implementing an optimal correction algorithm
depending on the experimental conditions.

© 2012 Optical Society of America

OCIS codes: (180.4315) Nonlinear microscopy; (110.1080) Active or adaptive optics;
(170.3880) Medical and biomedical imaging; (180.6900) Three-dimensional microscopy.
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1. Introduction

Adaptive optics (AO) is an effective method to restore the quality of images recorded within
aberrating samples. It aims at compensating for optical aberrations introduced by the imaging
system and the sample, by use of an active element such as a deformable mirror or a spatial
light modulator. In particular, AO has proven valuable to improve the signal and the resolution
in non linear microscopy of complex samples. In these point-scanning microscopies, only the
distortion of the excitation wavefront affects the image quality. Several methods can be used to
measure this distortion and compensate for it [1–6]. The accuracy of the correction achieved
with these techniques, however, has so far hardly been discussed in the literature.

In this article, we aim at characterising the parameters governing the accuracy of correction
in sensorless, modal adaptive optics. This correction method, originally developed by Booth et
al. [1], is based on the optimisation of a metric related to the quality of the images using a modal
decomposition of aberrations and a model of the influence of aberrations on the variation of this
metric. One advantage of this approach is that it is easily integrated in an existing microscope
as it only requires the addition of a deformable mirror. Furthermore it is based on a limited
number of measurements and provides fast correction compatible with in vivo imaging [7].

Here we investigate the parameters governing the accuracy of correction for both large and
moderate amounts of initial aberrations. We present results on two-photon excited fluorescence
(2PEF) microscopy and we derive guidelines for choosing an optimal correction algorithm.
Since the optimisation method is similar for other non linear signals, extension to other tech-
niques such as third-harmonic generation (THG) is straightforward.

2. Principle of model-based modal aberration correction

In modal AO, the phase aberration at the entrance pupil of theobjective is represented as a
linear combination of phase distribution functions, or aberration modes (e.g. Zernike modes,
see appendix A). First, these modes are combined with tip, tilt and defocus to ensure that they
do not induce any lateral or axial shift of the images (see appendix B for more details). The
principle of correction is then to optimise the correction of N aberration modes by maximising
an image quality metric M, e.g. the average intensity of the image. The metric is chosen so as
to reach a maximum in the absence of aberration, and to exhibit no secondary maxima.

The principle of the optimisation algorithm is the following. For each aberration mode in
turn, P images are recorded with different known amplitudesof aberration (bias) applied in the
probed mode using a wavefront-shaping device such as a deformable mirror (Fig. 1(a)), and the
values M are subsequently calculated from the images (Fig. 1(b), left; blue and green dots). The
location of the maximum for M, corresponding to the best correction in the considered mode,
is then inferred using the measured values and a model for themetric curve as a function of
aberrations (purple dots). Finally, the correction is simultaneously applied in each of the modes
using the same wavefront-shaping device (orange dot). Since the measurement for a bias set to
zero (blue dot) is used for each of the modes, the total numberof measurements is (P-1)N+1. In
the following, this type of algorithm will be referred to as “2N+1 algorithm” (for P=3), “4N+1
algorithm” (for P=5),“8N+1 algorithm” (for P=9), etc.

Alternatively, the correction can be applied sequentiallyin one mode before the measure-
ments for the next mode are performed (Fig. 1(b), right). In this case for the same value of P
the number of measurements is slightly greater (P×N) as the measurement at zero bias must be
repeated for each mode. In the following, this type of algorithm will be called “3N algorithm”
(for P=3), “5N algorithm” (for P=5),“9N algorithm” (for P=9), etc.

In order to achieve efficient correction when sequentially optimising the modes, the different
aberration modes should have independent influence on the metric, so that aberration in one
mode does not influence the correction in others. For small amounts of aberrations, the metric
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Fig. 1. Principle of model-based modal aberration correction. (a), experimental setup. A
titanium-sapphire laser (Ti:S) is used for excitation. Thebeam is reflected on a deformable
mirror (DM) and focussed using a 20x, 1.05NA, water immersion, coverslip-corrected
Olympus objective (obj). The blue, green and red generated 2PEF signals are separated with
dichroic beamsplitters (DBS) and emissions filters (EF) andcollected on photon-counting
photomultiplier tubes (PMT). (b), principle of the algorithms used for correction. The met-
ric M is plotted as a function of the amount of aberrations in two modes (here coma and
spherical aberration). Left, 2N+1 algorithm: starting from the initial aberration (blue dot),
measurements (blue and green) are performed with two biasesapplied in each of these two
modes, and the location of the maximum of M is subsequently calculated (purple and or-
ange). Right, 3N algorithm: optimisation is performed in mode 11, and then in mode 5,
starting from the new position (purple dot). The final position is marked in red. (c), exam-
ple of inaccurate correction in the presence of crosstalk. Left, no crosstalk; centre, linear
crosstalk; right, nonlinear crosstalk. The blue dot is the starting point, the orange dot is the
outcome of the 2N+1 algorithm, the red dot that of the 3N algorithm.

M can be expressed as a function of aberrations as [4,8]:

M(a) = M0−aTAa, (1)

wherea is the vector of coefficients of aberration in different modes, and the matrixA describes
the influence of each aberration mode on the value of M. The diagonal elements ofA are the
mode eigenvalues and the non-diagonal elements are the crosstalks between different modes.
Under this assumption, the crosstalks are independent of the amount of aberration, and can
thus be suppressed using an appropriate linear transformation of the initial mode basis. This
transformation can be determined theoretically or experimentally (see [8] for more details), and
its use is essential to the quality of the correction when theinitial crosstalks are significant. This
is the case in particular when the symmetry of the modes does not match that of the imaging
process. An example is the case of Zernike modes in structured-illumination microscopy with
a one-dimensional grid pattern [8]. Another example is the case where the eigenmodes of the
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correction device are used [7]. In these particular examples, the measured crosstalks were up
to 100% of the eigenvalues, so that accurate correction could not be achieved even after several
iterations of the correction algorithm without linear combination of the modes.

On the other hand, complete suppression of the crosstalks requires careful calibration of
the experimental setup so that in many cases residual crosstalk may remain. Additionally, we
observed experimentally higher order nonlinear terms in the case of large amounts of aberration,
which cannot be cancelled out with a linear transformation of the set of aberration modes. It
is therefore relevant to investigate the accuracy of correction achieved in presence of residual
crosstalk for various amount of initial aberration and correction algorithms.

In this article, we studied experimentally the accuracy of correction in 2PEF microscopy for
various correction algorithms and parameters. The experimental setup is presented on Fig. 1(a).
Here we used the intensity (mean pixel value) of the images, which has been shown theoreti-
cally and experimentally to be a suitable quality metric for2PEF microscopy [4], and a set of 11
low-order Zernike modes excluding tip, tilt and defocus (z=5 to 15, see Appendices A and B).
The command voltages sent to the deformable mirror to produce these modes were determined
as described elsewhere [9]. When the two-photon intensity of the images is used as metric M,
some of these modes exhibit moderate crosstalks of 10 to 15% [10]. Additional higher order
variations of the metric also arise for certain modes for larger amplitude of aberrations. For
comparison, we also used modes for which the linear crosstalk had been removed.

3. Influence of residual linear crosstalk

Fig. 2. Comparison of the accuracy of correction of a 2N+1 algorithm using 11 Zernike
modes (black dots) and combinations of the same modes with noresidual linear crosstalk
(red dots). A smaller final aberration corresponds to a more accurate correction. The error
bars show the standard deviation for the 100 trials. The dotted orange line corresponds to
a Strehl ratio of 0.9, set here as the limit for diffraction-limited focussing. The dash-dotted
orange line represents a final aberration equal to the initial aberration : below this line, the
quality of focussing is improved after correction.

The accuracy of correction was measured as follow: a fixed, stained rosemary stem slice
exhibiting almost no photobleaching was used as a test sample. First, aberrations in all modes
were corrected as precisely as possible with several iterations of the 5N correction algorithm. In
the following, we always restricted ourselves to a fractionof the field of view sufficiently small
to ensure that initial aberrations were homogeneous, so that residual local aberrations would
not influence our results. As a second step, we used the DM to introduce a known amount
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of aberration randomly distributed amongst the 11 studied modes, subsequently referred to
as initial aberration. Finally, assuming this initial aberration to be unknown, we chose one
of the possible algorithms (2N+1, 3N, 4N+1, etc.) to blindlymeasure and correct for it. The
final (residual) aberration was then calculated as the difference between the initial (introduced)
aberration and the blindly measured aberration. This process was iterated 100 times for each set
of parameters. The amplitude of aberration is always indicated in terms of the root mean square
(rms) value of the phase profile, in radians, so that it corresponds to the geometric sum of the
aberration coefficients in each mode, and that the corresponding Strehl ratio can be inferred as
exp

[

−rms2
]

.
Let us first consider the case of small amounts of aberrations(up to 0.5 rad rms). As expected,

after one pass of the 2N+1 algorithm, the correction is less precise when the crosstalk is not
suppressed than in the case of independent modes (Fig. 2). The difference is small, however,
due to the modest values of the crosstalks involved here. Furthermore, the residual error also
increases with the initial amount of aberration in the case of orthogonal modes. For larger
amounts of aberrations, no difference is even observed between the two sets of modes. This
is due in part to the presence of higher order crosstalk terms(Fig. 1(c), right) that cannot be
suppressed by linear combination of the modes. In the following, we will thus concentrate our
analysis on the use of Zernike modes to assess the accuracy that can be achieved in this case.

4. Influence of the measurement bias in a 3-measurements scheme

Fig. 3. Influence of the bias on the correction accuracy. (a),mean, and (b), maximum value
of the residual error over 100 trials for the 2N+1 algorithm and a bias set to 0.5 (green),
1 (blue), 1.5 (red) and 2 radians (black). The dotted orange line corresponds to a Strehl
ratio of 0.9 and the dash-dotted orange line represents a final aberration equal to the initial
aberration. (c), illustration of the position of the 3 measurements on the experimental metric
curve for mode 11 (spherical aberration) in the absence of initial aberrations.

On top of the presence of crosstalk between the modes, another significant source of error is
that the correction relies on the estimation of the locationof the peak of the metric using a finite
number of measurements and a model for the curve of the metricas a function of aberrations.

In the case of 2PEF image intensity (amongst others), M exhibits a quadratic dependence
on small amplitudes of aberration (see equation 1). For larger amplitudes, it is usually difficult
to derive an analytical expression, so that the shape of the curve is determined experimentally.
Depending on the type of microscopy and the chosen metric, this shape may vary: for exam-
ple, a Gaussian shape was found for image sharpness in THG microscopy [7]. Here, we found
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on a variety of sample, including liveDrosophila embryos and fresh mouse brain tissue, that
the shape of the curve was well described by the square root ofa Lorentzian curve (see e.g.
Fig. 3(c)), a shape which we used throughout this paper. We found, however, that using a Gaus-
sian or Lorentzian fit did not significantly affect the accuracy of correction. In any case, the
results presented here can be straightforwardly extended to the case where another such simple
function is used to fit the variations of M as a function of aberrations.

In such case, the variation of M with the amplitude of aberration is fitted using three free
parameters per mode : the width, centre and amplitude of the curve. As a result, a minimum of
three measurements per modes are required to locate the maximum for M. In the 2N+1 algo-
rithm, the number of measurements for correction is thus minimised, but the fitted values for
the parameters are strongly affected by variations on any ofthe measurements: in presence of
noise in the signal, the calculated value for the centre varies and significant aberration estima-
tion error may arise, depending on the initial aberration and on the measurement bias. This is
illustrated on Fig. 3, where the amplitude of the bias is varied from 0.5 to 2 radians.

Although for small aberrations, the best accuracy is achieved with a small bias (0.5 radians),
the correction quickly deteriorates when the initial aberration reaches 0.5 radians. Indeed, one
can intuitively conceive that the error resulting from a small fluctuation becomes more sig-
nificant when the centre is outside or near the border of the range encompassed by the three
measurements. Conversely, using larger biases allows correcting for slightly greater amounts
of aberrations. The range does not improve much, however, because the influence of noise also
depends on the local slope of the curve at the chosen bias: when using a 2 rad bias, for example,
the two side points are located in a portion of the curve wherethe slope is much smaller than
with a bias of 0.5 or 1 rad, so that a small fluctuation in one of these two measured values results
in a larger error in the determination of the location of the peak of the curve.

Ideally, when using only three measurements, the bias should therefore be chosen to be
roughly equal to the half-width of the curve of M as a functionof aberration whenever this
width is approximately known. In order to improve the accuracy of correction, the number of
measurements per mode should instead be increased.

5. Influence of the number of measurements per mode

Indeed, accuracy is greatly improved when increasing the number of measurements from P= 3
per modes to P= 5 (Fig. 4), since noise in one of the measurements has a lesserimpact on
the localisation of the maximum of the metric M. A slight further improvement is obtained for
P= 9, but at the expense of a doubling of the number of measurements. Since we aim at limiting
exposure, P= 5 appears an optimal compromise between limited exposure ofthe sample and
stability of the correction algorithm. This result can be extended to more complex curve shapes
with more free parameters by accordingly increasing the number of measurements P.

Still, the range over which the final error is below 0.325 radians (corresponding to a Strehl
ratio of 0.9) is only about 0.6-0.7 radians, due to residual crosstalks. In order to improve the
range of correction, a sequential algorithm can be used as described on Fig. 1(b), right: it is
easily understandable that the effect of crosstalks is mitigated in this case, as demonstrated on
Fig. 5 for P= 5. In the case of a 5N algorithm, aberrations up to 1 rad rms canbe accurately
corrected, at the expense of a relatively low (N-1) increaseof the number of measurements.

If an even greater dynamic is required, several iterations of the algorithm can be used, as
illustrated on Fig. 5 for the 4N+1 and the 5N algorithms : with3 iterations, up to 1.6 radians
of aberrations can be efficiently corrected for (if the worstresult in 100 trials is considered). It
should be noted that such a large amount of aberrations is rarely encountered in practice and
corresponds to a highly distorted image. Such aberrations may be found when imaging deep
within a sample, but in this case intermediate corrections can be performed at intermediate
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Fig. 4. Accuracy of correction as a function of the number of measurements P. Black,
P= 3 (2N+1 algorithm); red, P= 5 (4N+1 algorithm); orange, P= 9 (8N+1 algorithm).
The change in bias between two measurements is 0.5 rad, so that the total probed range is
respectively± 0.5, 1 and 2 rad. Mean values over 100 trials are plotted as dots, and the
coloured areas span from the minimum to the maximum value. Blue dotted line: Strehl
ratio of 0.9; blue dash-dotted line: first diagonal (y = x).

depths within the sample, so that more moderate amounts of aberrations are corrected incre-
mentally as one focusses deeper. Nevertheless, it is interesting to see that even for very large
amounts of aberrations, correction can be achieved efficiently even without fully optimising the
correction modes.

6. Signal level and accuracy of correction

In the case of such large aberration amplitudes, a significantly greater number of measurements
is required than in the previously demonstrated 2N+1 algorithm [4]: this number can reach up
to 15N measurements for 3 iterations of the 5N algorithm, that is 165 measurements if N=11
as in the experiments shown here. Although this is still wellbelow the numbers encountered
with a random search optimisation algorithm [11], this is a concern for applications in biolog-
ical imaging: photobleaching and photoperturbation limitthe number of exposures that can be
used, and the acquisition time needed for such a large amountof data is also limiting. In or-
der to mitigate this effect, we investigated the signal level required for accurate correction by
modelling the effect of photon noise on the correction accuracy.

Let us consider that for each modei, the theoretical curvef (ai) for M perfectly fits the noise-
less experimental data, and that the only sources of imprecision in the measurements are the
shot noise in the signal and the dark noise from the detectors. If the fit parameters (amplitude,
width, centre and if required offset due to the dark noise) are perfectly known, the residual error

between the fitting curve and the measurement points,εnoise = ∑P
j=1( f (ai = b j)−m(i)

j )2 (with

ai the amplitude of aberration in modei andm(i)
j the jth measurement in modei performed with

biasb j), is given by the sum of the square of the noise in each measurement. Assuming that the
dark noise also exhibits a Poissonian distribution, the error becomes :

εnoise = Ntot +PB, (2)
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Fig. 5. Comparison of residual error for the 4N+1 (a) and 5N (b) algorithms using 1 (black),
2 (purple) or 3 (blue) iterations. The dots are the mean values over 100 trials and the
coloured areas span from the minimum to the maximum value. Dotted orange curve: Strehl
ratio of 0.9; orange dash-dotted line: first diagonal (y = x), above which no improvement is
expected when using several iterations of the same correction algorithm.

whereNtot is the total number of photons in the P measurements of one mode i, andB is
the average value of the dark noise. Let us now assume that there is no noise in any of the P
measured values. For each modei, the total squared difference between these values and the
fitting function f is given by :

ε =
P

∑
j=1

( f (I0,w,B,c,ai = b j)−m(i)
j )2 =

P

∑
j=1

( f (I0,w,B,c,b j)− f (I0c,wc,Bc,cc,b j))
2 (3)

where I0,w,B,c are respectively the estimated amplitude, width, offset and centre of the
curve, andI0c,wc,Bc,cc are their true values. If the parameters are set to their correct values,
this error is zero. If now a small errordc is introduced onc, the error becomes :

ε(dc) =
P

∑
j=1

([

∂ f
∂ I0

∂ I0m

∂c
+

∂ f
∂w

∂wm

∂c
+

∂ f
∂B

∂Bm

∂c
+

∂ f
∂c

]

dc

)2

= Fdc2 (4)

where the partial derivatives off are all taken atI0c,wc,Bc,cc and ∂ I0m
∂c ,

∂wm
∂c ,

∂Bm
∂c are the

partial derivative of the fitted values ofI0,w,B as a function of the value set forc. When a least
square fit is performed,ε is the quantity that is minimised and thus yields the residual error
whenc is evaluated with an error ofdc. It is therefore reasonable to assume that the errordc on
the value ofcc due to the presence of noise is obtained by settingε(dc) = εnoise, so that :

dc =

√

Ntot +PB
F

(5)
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Since this is valid for the N modes and assuming that the N errors are independent (which is
true if the crosstalks are negligible because several algorithm iterations are used or the initial
aberration is small), the total correction error is obtained by multiplying this value by

√
N.

To test this model, we again performed correction of known amounts of aberrations in 11
Zernike modes, using a 9N algorithm, this time while varyingthe number of photons used for
each aberration mode. Here a fixed error should be added to thetotal errorE determined above
to account for imprecise knowledge of the initial aberration :

E =
√

11

√

Ntot +9B
F

+E0 (6)

Fig. 6. Accuracy of correction as a function of the number of photons,Ntot , used for correc-
tion. Red dots, zero initial aberrations; blue circles, 1 rad initial aberrations corrected with
3 rounds of the 9N algorithm. The error bars correspond to themaximum and minimum
values measured over 100 trials. Black solid line, theoretical curve from equation 6. Dotted
orange curve: Strehl ratio of 0.9. Inset, experimental values of metric M for astigmatism
(z=5) for all P values of biases (dots) and corresponding model for the functionf .

The results are displayed on Fig. 6. The black curve is the theoretical curve from equation
6, whereF has been calculated from the measured shape of the curve of M as a function of
aberrations and the values of the biases (Fig. 6, inset). Dark noise levelB was determined by
acquiring an image with equivalent size and pixel dwell timein absence of sample, andE0

was estimated by considering the best accuracy achieved, obtained forNtot = 6×105: since
the initial correction was performed using this value forNtot and set as zero, and assuming that
the initial error and the subsequent measure are independent, the value obtained at this point is√

2E0, so thatE0 = 0.0148. The theoretical curve is thus plotted with all parameters fixed and
remarkably fits the experimental data.
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This demonstrates that the correction accuracy is ultimately limited by the number of pho-
tons used for correction. This is an important point, as it permits estimating beforehand what
accuracy can be achieved, or alternatively what level of exposure is necessary to achieve a
given accuracy. Here it can be seen that only about 2000 photons per mode and per iteration
are necessary to reach a Strehl ratio of 0.9, so that even in the case of 3 iterations, the total
number of detected photons required for 11 modes is about 6.6× 104. This is illustrated on
Fig. 7 on a lily pollen grain imaged with 3-colour 2PEF. Here,both system aberrations and
sample-induced distortion (mostly due to the index mismatch between the sample embedding
medium and the objective immersion medium) are corrected. The total corrected aberration in
(b) is 0.96 rad rms, and correction is performed using 2 iterations of the 5N algorithm. Here the
total number of photons used for correction was 3.9×105, about 9 times the minimum value
determined above. This value was obtained at the maximum speed of our scanner and using the
minimum power that could be set for the excitation source. Asexpected, the correction results
in a significant improvement in brightness and resolution ofthe image.

Fig. 7. (a) Lily pollen grain image before (top) and after (bottom) aberration correction.
The 2PEF signal was excited at 820nm and detected on 3 PMTs with different emission
filters (410-490nm, 500-550nm and 600-700nm). The 3 signalsare recombined here using
respectively blue, green and red to obtain a false colour RGBimage. (b), zoom on the white
rectangle in (a). The pixel dwell time was 7.5µs in both cases and the same colour scale
was used for both images. (c), intensity profiles for the three colours in the corrected (plain
lines) and the uncorrected (dotted lines) images, along theblack line plotted in (b).

7. Discussion

The results presented in this article provide guidelines for choosing the optimal correction algo-
rithm in sensorless AO, and for predicting the correction accuracy. The choice can be adapted
as a function of the sample and the conditions of correction:for example, if the correction
needs to be updated as a function of time or depth, it is expected that the variations from one
correction to the next should be limited. In this case, one iteration of the 2N+1 algorithm is
usually sufficient to provide accurate correction with minimal illumination of the sample. If
moderate amounts of aberration are present (0.5 to 1 rad rms), or if the aberration amplitudes
are unknown, the 5N algorithm provides a better estimate, and can be used for up to 2 rad initial
aberration provided that 2 or 3 iterations are used. This canbe adjusted on a case by case basis,
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e.g. if the estimated aberration at the first round exceeds 1 rad rms.
The accuracy of correction can be further improved in case ofa priori knowledge of aberra-

tions. For example, if it is known that most aberrations are distributed amongst a small number
of modes, greater accuracy is achieved if these modes are corrected before measuring aberra-
tions in the remaining modes. This might occur, for example,in relatively homogeneous sam-
ples with a refractive index different from that of the immersion medium of the objective, in
which case spherical aberration might predominate over other aberrations. Such customisation
of the correction scheme is easily implemented on a case by case basis by simply reordering
the aberration modes used by the algorithm.

We also demonstrated that accurate correction can be achieved even using a set of modes
with residual crosstalks for the chosen metric. This is of practical importance, first because it
simplifies the initial calibration process of the adaptive microscope: once the wavefront shaping
device (deformable mirror or spatial light modulator) has been calibrated to produce a chosen
set of modes (Zernike modes, mirror eigenmodes, etc.) of which tip, tilt and defocus have
been excluded, this set can be used without further processing to correct for aberrations in
the appropriate modal scheme. This also implies that the correction process can accommodate
for distortions such as caused by a compact XY scanner in the microscope: indeed in such
a scanner, the scanning mirrors are not perfectly conjugated with the entrance pupil of the
microscope, inducing a small movement of the image of the mirror in that plane (if the scanner
is, as here, positioned in between the deformable mirror andthe objective) or a movement of
the excitation intensity profile on the deformable mirror (if the scanner is placed before the
deformable mirror). In both cases, the crosstalks between the modes might as a result vary
with the scan angle, so that they can only be cancelled in a small region of the field of view.
Accommodating for such distortion therefore permits working with a fixed scheme over the
whole field of view of the objective. Finally, using a scheme relatively insensitive to crosstalks
implies that the same set of modes can be used if the metric is changed or another control signal
is used, for example if a non fluorescent sample is imaged and the third-harmonic generation
(THG) signal is used to correct for aberrations [7].

We point out here that our results permit correcting for aberrations with good accuracy, but
under the assumption that these aberrations are spatially homogeneous. In case they vary within
the field of view, a smaller region must be selected for correction so that they can be measured
locally. If the whole field of view is imaged during correction, a mean aberration over the whole
image is calculated, with potentially significant residualdistortion remaining locally.

Importantly, our results also show that for moderate amounts of aberration, the accuracy of
correction is ultimately limited by the number of photons inthe images used for correction, and
that accurate correction can be achieved with modest signallevels. Since improving the Strehl
ratio above 0.9 has little effect on the resulting images, a total residual aberration of 0.2-0.3 is
acceptable, so that in the conditions tested here a value of only about 2000 photons per mode
provides good correction accuracy. This value depends little on the number of measurement per
mode P, but rather, through the parameterF (see equation 4), on the modulation depth of the
metric curve that is probed during these P measurements. As aresult we note that using a signal
that varies faster with the amount of aberrations such as THG[7] would further decrease the
number of photons necessary for correction.

We emphasise that our model for correction accuracy as a function of the signal level does
not rely on any specific property of the sample, the microscope or the imaging technique: the
only assumption that was used is that image intensity is usedas a metric, but the model can be
straightforwardly extended to the case where, e.g., image sharpness is used, with very similar
results. The properties of the sample only play a role in calculating the parameterF , which
depends on the shape of the curve of M as a function of aberrations. This shape in turn depends

#158770 - $15.00 USD Received 23 Nov 2011; revised 2 Jan 2012; accepted 10 Jan 2012; published 20 Jan 2012
(C) 2012 OSA 30 January 2012 / Vol. 20,  No. 3 / OPTICS EXPRESS  2608



mostly on two factors: first, the structure of the sample determines how strongly the signal is
affected by aberrations. For example, in two-photon microscopy, it has been shown analytically
and experimentally that the signal from point objects in a 2Dimage is more affected than that
of a bulk sample [4]. As a result, the brightness of a sparse sample will be more affected by
aberrations than that of a relatively homogeneous sample, and F will be greater for the former
and smaller for the latter. This leads to the intuitive result that a stronger signal is needed to
correct for aberrations when this signal is weakly sensitive to aberrations.

Secondly, the shape of the curve of M as a function of aberrations is also affected by aberra-
tions in other modes: if the focal spot is strongly distortedby high order aberration modes, as
is the case when imaging deep within highly scattering sample, one particular aberration mode
has a lesser effect on an already degraded focussing. In thiscase, the width of the curve of M
as a function of aberration is increased, so thatF decreases.

Practically, if the exposure of the sample is critical and needs to be optimised,F (and hence
the optimal exposure during correction) can be calibrated before imaging using a similar sam-
ple: for example, it can be expected that when imaging at a given depth in a given region of
fresh mouse brain tissue, the shape of the curve for M will be more or less identical from one
sample to the next. It can thus be measured as a function of, e.g., depth, excitation wavelength
(which might affect aberrations in high order modes) or immersion medium so that the optimal
exposure is known once and for all for the subsequent studies. In case exposure is less critical,
a conservative value of 10-20 times the threshold obtained here should compensate for a pos-
sible drop in modulation of the curve for M in most samples. The results presented here can in
summary be easily used for optimising the correction process in any kind of sample.

In this study, we focussed on the widely used 2PEF microscopy. We used image intensity
(mean pixel value) as a metric, because it has been proven theoretically and experimentally
to yield an accurate estimation of aberrations in 2PEF microscopy. In this case and with the
sample studied here, it appears that correction of up to 1 radaberration can be performed with
as little as 2× 104 photons for 11 aberration modes. As a comparison, a 512× 512 image
with a moderate average intensity of 15 photon counts per pixel corresponds to about 4×106

detected photons. Even if the number of measurements is significant, the exposure required for
correction is therefore limited and compatible with biological imaging. This number of photons
required for correction grows linearly with the number of corrected modes: here we used only
11 low order Zernike modes that could be accurately producedby our deformable mirror, but
correction of higher order modes might be beneficial in certain cases. It is beyond the scope of
this paper to determine the number of modes that should be used for correction in biological
samples, and this question should be addressed in further studies.

Another important parameter forin vivo imaging is the time required to perform the cor-
rection. Thank to the simplicity of our correction algorithm, the processing time is very small
compared to the acquisition time of the data. In our setup, this time was in most cases not lim-
ited by the signal intensity, but rather by the speed of our deformable mirror and galvanometer
mirrors. The minimum time necessary for each measurement ofthe metric M was around 60
ms, so that the total time for correction ranged from 1.3 s (2N+1 algorithm, 23 measurements)
to 3.3 s (5N algorithm, 55 measurements). In order to keep thenumber of photons to a low level
at this acquisition time, the excitation power was decreased by an amount calculated from the
initial image intensity. Once correction was achieved, greater sampling and pixel dwell time
were used to increase image quality, so that the acquisitiontime for the corrected image was
usually a few seconds. Although the time required for correction in our setup is still significant,
the resulting delay is nevertheless compatible with numerous studies of biological samples, e.g.
study of slow developmental processes or of the 3D morphology of tissues, or static aberration
correction for the study of a rapid process such as neuronal activity.
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Furthermore, it should be noted that contrary to the signal level, this temporal limitation is
only due here to the response time of our apparatus, and couldstraightforwardly be reduced by
using faster scanning and deformable mirrors. Instead, thespeed limit for the correction can be
calculated as the time required to acquire enough photons without saturation of the detectors.
Since in nonlinear microscopy the signal is usually createdby ultrashort pulses, the saturation
when using photon-counting detectors is reached when more than one photon reaches the de-
tector per excitation pulse. This typically becomes statistically significant above one photon
detected every 5 pulses: for a typical 80MHz source, the maximum detected photon rate is thus
1.6×107 photons/s. As a result, the minimal time required for correction could in principle
be decreased to 1.4ms for the 2N+1 algorithm or 3.6ms for the 5N algorithm, enabling fast
aberration correction during live imaging.

8. Conclusion

In conclusion, we have shown here that modal sensorless AO can provide reliable estimation
and correction of aberrations at speed and exposure compatible with biological imaging. We
have investigated the parameters governing the accuracy ofthe correction scheme, and deter-
mined optimised settings for good accuracy and minimal exposure of the sample. This work
provides practical guidelines for setting up or optimisingAO systems on new or existing mi-
croscopes, which are briefly summarised below:

• Modal sensorless aberration correction can be implemented using any convenient set of N
modes, provided that the crosstalk between the modes for thechosen metric is moderate,
i.e. the error induced in mode A by aberrations in mode B does not exceed 10-20% of the
amplitude of aberration in mode B.

• If the aberration amplitude is small (0-0.5 rad rms), one iteration of the 2N+1algorithm is
sufficient to correct for it. If the amplitude is moderate (0.5-1 rad rms) the 5N algorithm
yields accurate results. For greater amplitudes, several iterations may be used.

• When P=3 measurements per modes are used, the bias should beset as roughly equal to
the width of the M curve. When P is greater than 3, the probed range can be accordingly
extended to ensure stability of the algorithm over a greateraberration range.

• If more than 3 free parameters per mode are used to fit the curve of M as a function
of aberration amplitude, the number of measurement per mode, P, should be increased
accordingly to ensure good correction accuracy.

• Accuracy can be further increased using a priori knowledgeof the aberrations, e.g. by
changing the order in which the modes are corrected (modes with large amounts of aber-
ration being corrected first).

• Sampling and illumination can be reduced during correction to minimise exposure. A
conservative value of 2− 5× 104 photons per mode and per algorithm iteration can be
used for accurate correction when phototoxicity or photobleaching are not critical.

• If exposure is critical, illumination can be optimised using a priori knowledge of the
shape of the curve of metric M as a function of aberrations, which can be measured on a
similar sample for calibration.

• Correction should be performed on a region of the field of view over which aberrations
are roughly homogeneous, else the correction accuracy may be degraded by residual
aberration remaining locally.
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Appendix A: Zernike modes and numbering scheme used in this work

Table 1 shows the 15 Zernike modes that were used in this paper.

Table 1. Zernike modes 1 to 15 and numbering scheme. The modesare expressed over the
unit disk as functions ofr andθ with 0< r < 1 and 0< θ < 2π.

Index, z Zernike mode Name
1 1 Piston
2 2rcosθ Tip
3 2rsinθ Tilt
4

√
3(2r2−1) Defocus

5
√

6r2 cos2θ Astigmatism, 1st order
6

√
6r2 sin2θ Astigmatism, 1st order

7 2
√

2(3r3−2r)cosθ Coma
8 2

√
2(3r3−2r)sinθ Coma

9 2
√

2r3cos3θ Trefoil
10 2

√
2r3sin3θ Trefoil

11
√

5(6r4−6r2+1) Spherical aberration
12

√
10(4r4−3r2)cos2θ Astigmatism, 2nd order

13
√

10(4r4−3r2)sin2θ Astigmatism, 2nd order
14

√
10r4cos4θ tetrafoil

15
√

10r4sin4θ tetrafoil

Appendix B: Experimental removal of residual tip, tilt and d efocus from the modes used
for correction

When correcting for aberrations it is of utmost importance that the imaged area is not shifted
in space during the process, either laterally (by tip and tilt) or axially (by defocus). Movements
induced by the modes are therefore corrected by adding the appropriate amounts of tip, tilt and
defocus to each of thei modes. This is performed experimentally so as to take into account
the exact intensity profile of the excitation beam which strongly influences the shift induced by
each mode. Our approach is similar to the method described in[12].

The process is illustrated on Fig. 8 on the example of astigmatism: the shift of the images
is first measured in two-dimensions by correlating images obtained with different amounts of
aberration applied, in each modei as well as for tip, tilt and defocus. The amount of tip and
tilt to add to modei is then calculated as the opposite of the ratio between the displacement for
modei and that for tip or tilt, respectively. This is also applied to defocus so that subsequent
correction for the axial shift does not reintroduce lateralshift.

As a second step, the z-profile of the 2PEF signal from a thin sample (such as a layer of
100 nm diameter fluorescent beads) is acquired for various amount of aberration applied for all
modesi and defocus in turn. Following the same principle as for the lateral shift, the axial shift
for each modei is then removed by adding the appropriate amount of defocus.
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Fig. 8. Illustration of the experimental removal of residual tip and tilt on the case of astig-
matism (z=6). (a), images are acquired with and without aberration applied, and the cross-
correlation plane is calculated. The displacement of the correlation peak with respect to
the center of the plane is then calculated as a function of theamount of aberration, and the
slope is extracted along the two lateral directions. The process is repeated for tip and tilt (b
and c), and the appropriate amount of tip and tilt to add to astigmatism is calculated as the
ratio of the previously measured slopes.
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