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Accuracy of correction in modal
sensorless adaptive optics

Aur élie Facomprez, Emmanuel Beaurepaire, and Delphine &arre*

Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, 91128
Palaiseau, France

* del phine.debar re@pol ytechnique.edu

Abstract: We investigate theoretically and experimentally the paat@ns
governing the accuracy of correction in modal sensorlesptad optics
for microscopy. On the example of two-photon fluorescencagimg, we
show that using a suitable number of measurements, preoisecton
can be obtained for up to 2 radians rms aberrations withotitniging
the aberration modes used for correction. We also invdstitjge number
of photons required for accurate correction when signaluasdipn is
shot-noise limited. We show that only 46 1 photons are required for
complete correction so that the correction process can Ipdemented
with limited extra-illumination and associated photopésgation. Finally,
we provide guidelines for implementing an optimal correctalgorithm
depending on the experimental conditions.

© 2012 Optical Society of America

OCIS codes: (180.4315) Nonlinear microscopy; (110.1080) Active or @@ optics;
(170.3880) Medical and biomedical imaging; (180.6900)eEadimensional microscopy.
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1. Introduction

Adaptive optics (AO) is an effective method to restore thaliqy of images recorded within
aberrating samples. It aims at compensating for opticalratens introduced by the imaging
system and the sample, by use of an active element such asrandéfe mirror or a spatial
light modulator. In particular, AO has proven valuable tgpnave the signal and the resolution
in non linear microscopy of complex samples. In these ps@atAaning microscopies, only the
distortion of the excitation wavefront affects the imagelify. Several methods can be used to
measure this distortion and compensate for it [1-6]. Theiaay of the correction achieved
with these techniques, however, has so far hardly beensisdun the literature.

In this article, we aim at characterising the parametergguomg the accuracy of correction
in sensorless, modal adaptive optics. This correction atktbriginally developed by Booth et
al. [1], is based on the optimisation of a metric related toghality of the images using a modal
decomposition of aberrations and a model of the influenceeifrations on the variation of this
metric. One advantage of this approach is that it is easiggimted in an existing microscope
as it only requires the addition of a deformable mirror. Rarinore it is based on a limited
number of measurements and provides fast correction caoigeiith in vivo imaging [7].

Here we investigate the parameters governing the accufamyriection for both large and
moderate amounts of initial aberrations. We present resultwo-photon excited fluorescence
(2PEF) microscopy and we derive guidelines for choosing ptimal correction algorithm.
Since the optimisation method is similar for other non lingignals, extension to other tech-
nigues such as third-harmonic generation (THG) is stréagivard.

2. Principle of model-based modal aberration correction

In modal AO, the phase aberration at the entrance pupil obbjective is represented as a
linear combination of phase distribution functions, or rahgon modes (e.g. Zernike modes,
see appendix A). First, these modes are combined with ltigrtd defocus to ensure that they
do not induce any lateral or axial shift of the images (seeeadix B for more details). The
principle of correction is then to optimise the correctidiNoaberration modes by maximising
an image quality metric M, e.g. the average intensity of thage. The metric is chosen so as
to reach a maximum in the absence of aberration, and to éxiulsecondary maxima.

The principle of the optimisation algorithm is the followinFor each aberration mode in
turn, P images are recorded with different known amplituafeberration (bias) applied in the
probed mode using a wavefront-shaping device such as andalide mirror (Fig. 1(a)), and the
values M are subsequently calculated from the images (B, l&ft; blue and green dots). The
location of the maximum for M, corresponding to the bestection in the considered mode,
is then inferred using the measured values and a model fan#tdc curve as a function of
aberrations (purple dots). Finally, the correction is dtameously applied in each of the modes
using the same wavefront-shaping device (orange dot)eSiremeasurement for a bias set to
zero (blue dot) is used for each of the modes, the total nuofbeeasurements is (P-1)N+1. In
the following, this type of algorithm will be referred to a8N+1 algorithm” (for P=3), “4N+1
algorithm” (for P=5),“8N+1 algorithm” (for P=9), etc.

Alternatively, the correction can be applied sequentiailpne mode before the measure-
ments for the next mode are performed (Fig. 1(b), right) hie tase for the same value of P
the number of measurements is slightly greaterffpas the measurement at zero bias must be
repeated for each mode. In the following, this type of aliyni will be called “3N algorithm”
(for P=3), “5N algorithm” (for P=5),“9N algorithm” (for P=P etc.

In order to achieve efficient correction when sequentigimising the modes, the different
aberration modes should have independent influence on tlricyrs® that aberration in one
mode does not influence the correction in others. For smalluauts of aberrations, the metric
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Fig. 1. Principle of model-based modal aberration coroect{a), experimental setup. A
titanium-sapphire laser (Ti:S) is used for excitation. Beam is reflected on a deformable
mirror (DM) and focussed using a 20x, 1.05NA, water immersicoverslip-corrected
Olympus objective (obj). The blue, green and red generd®&dfZignals are separated with
dichroic beamsplitters (DBS) and emissions filters (EF) emitected on photon-counting
photomultiplier tubes (PMT). (b), principle of the algdmihs used for correction. The met-
ric M is plotted as a function of the amount of aberrationswo modes (here coma and
spherical aberration). Left, 2N+1 algorithm: startingrfréhe initial aberration (blue dot),
measurements (blue and green) are performed with two béggdied in each of these two
modes, and the location of the maximum of M is subsequentbutzted (purple and or-
ange). Right, 3N algorithm: optimisation is performed indadll, and then in mode 5,
starting from the new position (purple dot). The final pagitis marked in red. (c), exam-
ple of inaccurate correction in the presence of crosstadit, Ino crosstalk; centre, linear
crosstalk; right, nonlinear crosstalk. The blue dot is tlagtmg point, the orange dot is the
outcome of the 2N+1 algorithm, the red dot that of the 3N atgor.

M can be expressed as a function of aberrations as [4, 8]:
M(a) = Mo —a'Aa, (1)

wherea s the vector of coefficients of aberration in different medend the matriA describes
the influence of each aberration mode on the value of M. Thgodial elements oA are the
mode eigenvalues and the non-diagonal elements are th&talkssbetween different modes.
Under this assumption, the crosstalks are independentec&niount of aberration, and can
thus be suppressed using an appropriate linear transfiomnmait the initial mode basis. This
transformation can be determined theoretically or expenially (see [8] for more details), and
its use is essential to the quality of the correction whernrthial crosstalks are significant. This
is the case in particular when the symmetry of the modes doesatch that of the imaging
process. An example is the case of Zernike modes in strutilivenination microscopy with

a one-dimensional grid pattern [8]. Another example is thigeowvhere the eigenmodes of the
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correction device are used [7]. In these particular examphe measured crosstalks were up
to 100% of the eigenvalues, so that accurate correctiordemilbe achieved even after several
iterations of the correction algorithm without linear camdtion of the modes.

On the other hand, complete suppression of the crosstatksres careful calibration of
the experimental setup so that in many cases residual allossaly remain. Additionally, we
observed experimentally higher order nonlinear termserctise of large amounts of aberration,
which cannot be cancelled out with a linear transformatibthe set of aberration modes. It
is therefore relevant to investigate the accuracy of ctioe@chieved in presence of residual
crosstalk for various amount of initial aberration and eotion algorithms.

In this article, we studied experimentally the accuracyafection in 2PEF microscopy for
various correction algorithms and parameters. The exetiahsetup is presented on Fig. 1(a).
Here we used the intensity (mean pixel value) of the imagégiwhas been shown theoreti-
cally and experimentally to be a suitable quality metricZBEF microscopy [4], and a set of 11
low-order Zernike modes excluding tip, tilt and defocusgze 15, see Appendices A and B).
The command voltages sent to the deformable mirror to pmthese modes were determined
as described elsewhere [9]. When the two-photon intensitiyeoimages is used as metric M,
some of these modes exhibit moderate crosstalks of 10 to 18%Additional higher order
variations of the metric also arise for certain modes fogéaramplitude of aberrations. For
comparison, we also used modes for which the linear cré<Sséal been removed.

3. Influence of residual linear crosstalk

Final aberration (rad)

00 02 04 06 08 10 12 14
Initial aberration (rad)

Fig. 2. Comparison of the accuracy of correction of a 2N+Dbatgm using 11 Zernike
modes (black dots) and combinations of the same modes witasidual linear crosstalk
(red dots). A smaller final aberration corresponds to a mocerate correction. The error
bars show the standard deviation for the 100 trials. Theedaitange line corresponds to
a Strehl ratio of 0.9, set here as the limit for diffractiamited focussing. The dash-dotted
orange line represents a final aberration equal to theliaib@rration : below this line, the
quality of focussing is improved after correction.

The accuracy of correction was measured as follow: a fixedpetl rosemary stem slice
exhibiting almost no photobleaching was used as a test safjpst, aberrations in all modes
were corrected as precisely as possible with severalib@sabf the 5N correction algorithm. In
the following, we always restricted ourselves to a fractibthe field of view sufficiently small
to ensure that initial aberrations were homogeneous, saé¢kalual local aberrations would
not influence our results. As a second step, we used the DMtrtodince a known amount
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of aberration randomly distributed amongst the 11 studiedles, subsequently referred to
as initial aberration. Finally, assuming this initial atagion to be unknown, we chose one
of the possible algorithms (2N+1, 3N, 4N+1, etc.) to blindigasure and correct for it. The

final (residual) aberration was then calculated as therdiffee between the initial (introduced)

aberration and the blindly measured aberration. This m®owe@s iterated 100 times for each set
of parameters. The amplitude of aberration is always irditan terms of the root mean square
(rms) value of the phase profile, in radians, so that it cpoeds to the geometric sum of the

aberration coefficients in each mode, and that the correlpgistrehl ratio can be inferred as

exp[—rmg].

Let us first consider the case of small amounts of aberrafign® 0.5 rad rms). As expected,
after one pass of the 2N+1 algorithm, the correction is lessipe when the crosstalk is not
suppressed than in the case of independent modes (Fig. &difference is small, however,
due to the modest values of the crosstalks involved heréh&umore, the residual error also
increases with the initial amount of aberration in the calSerthogonal modes. For larger
amounts of aberrations, no difference is even observeddegtihe two sets of modes. This
is due in part to the presence of higher order crosstalk t€Figs 1(c), right) that cannot be
suppressed by linear combination of the modes. In the fatigywwe will thus concentrate our
analysis on the use of Zernike modes to assess the accusa@athbe achieved in this case.

4. Influence of the measurement bias in a 3-measurements sche

(a) (b)
2.00 2.00
1.00 1.00
=) =)
< <
£ 0.50 £ 050
f=] =]
£ g
g g o ;
5 020 5020 i 0.
o £ /
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s = - -
0.05 005} _
: 5
; 20,
0.02 0.02 ’f =
00 020406081012 14 00 020406081012 14 L S B R R

Initial aberration (rad) Initial aberration (rad) Aberration (rad)

Fig. 3. Influence of the bias on the correction accuracy.nfggn, and (b), maximum value
of the residual error over 100 trials for the 2N+1 algorithnda bias set to 0.5 (green),
1 (blue), 1.5 (red) and 2 radians (black). The dotted oraimgedorresponds to a Strehl
ratio of 0.9 and the dash-dotted orange line representslafiearation equal to the initial
aberration. (c), illustration of the position of the 3 maa&snents on the experimental metric
curve for mode 11 (spherical aberration) in the absenceitidliaberrations.

On top of the presence of crosstalk between the modes, arsigindficant source of error is
that the correction relies on the estimation of the locadifihe peak of the metric using a finite
number of measurements and a model for the curve of the nastadunction of aberrations.

In the case of 2PEF image intensity (amongst others), M @shébquadratic dependence
on small amplitudes of aberration (see equation 1). Foelaagplitudes, it is usually difficult
to derive an analytical expression, so that the shape ofutheds determined experimentally.
Depending on the type of microscopy and the chosen metig sttape may vary: for exam-
ple, a Gaussian shape was found for image sharpness in TH@swapy [7]. Here, we found
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on a variety of sample, including livBrosophila embryos and fresh mouse brain tissue, that
the shape of the curve was well described by the square ramtLofentzian curve (see e.g.
Fig. 3(c)), a shape which we used throughout this paper. Wedphowever, that using a Gaus-
sian or Lorentzian fit did not significantly affect the acayaf correction. In any case, the
results presented here can be straightforwardly exterudi tcase where another such simple
function is used to fit the variations of M as a function of abgons.

In such case, the variation of M with the amplitude of abérais fitted using three free
parameters per mode : the width, centre and amplitude ofuhecAs a result, a minimum of
three measurements per modes are required to locate thenmmaxior M. In the 2N+1 algo-
rithm, the number of measurements for correction is thusmiged, but the fitted values for
the parameters are strongly affected by variations on arlyeomeasurements: in presence of
noise in the signal, the calculated value for the centreegaaind significant aberration estima-
tion error may arise, depending on the initial aberratioth an the measurement bias. This is
illustrated on Fig. 3, where the amplitude of the bias isecfrom 0.5 to 2 radians.

Although for small aberrations, the best accuracy is agdevith a small bias (0.5 radians),
the correction quickly deteriorates when the initial abgon reaches 0.5 radians. Indeed, one
can intuitively conceive that the error resulting from a #rflactuation becomes more sig-
nificant when the centre is outside or near the border of thge@ncompassed by the three
measurements. Conversely, using larger biases allowsatorg for slightly greater amounts
of aberrations. The range does not improve much, howeveause the influence of noise also
depends on the local slope of the curve at the chosen bias: ugireg a 2 rad bias, for example,
the two side points are located in a portion of the curve wihiegeslope is much smaller than
with a bias of 0.5 or 1 rad, so that a small fluctuation in onée$e two measured values results
in a larger error in the determination of the location of tlealpof the curve.

Ideally, when using only three measurements, the bias dhiberefore be chosen to be
roughly equal to the half-width of the curve of M as a functwhaberration whenever this
width is approximately known. In order to improve the aceyraf correction, the number of
measurements per mode should instead be increased.

5. Influence of the number of measurements per mode

Indeed, accuracy is greatly improved when increasing tielaun of measurements from=P3

per modes to P- 5 (Fig. 4), since noise in one of the measurements has a liespact on
the localisation of the maximum of the metric M. A slight foetr improvement is obtained for
P=9, but at the expense of a doubling of the number of measursn&ince we aim at limiting
exposure, P= 5 appears an optimal compromise between limited exposuteecfample and
stability of the correction algorithm. This result can béesded to more complex curve shapes
with more free parameters by accordingly increasing thebmrrof measurements P.

Still, the range over which the final error is below 0.325 aadi (corresponding to a Strehl
ratio of 0.9) is only about 0.6-0.7 radians, due to residuasstalks. In order to improve the
range of correction, a sequential algorithm can be used siled on Fig. 1(b), right: it is
easily understandable that the effect of crosstalks igatitid in this case, as demonstrated on
Fig. 5 for P= 5. In the case of a 5N algorithm, aberrations up to 1 rad rmseazmccurately
corrected, at the expense of a relatively low (N-1) incredgbe number of measurements.

If an even greater dynamic is required, several iteratidrth@ algorithm can be used, as
illustrated on Fig. 5 for the 4N+1 and the 5N algorithms : watiterations, up to 1.6 radians
of aberrations can be efficiently corrected for (if the waeestult in 100 trials is considered). It
should be noted that such a large amount of aberrationsal/rancountered in practice and
corresponds to a highly distorted image. Such aberratianshe found when imaging deep
within a sample, but in this case intermediate correcticars loe performed at intermediate
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Final aberration (rad)

1.0 1.5 20
Initial aberration (rad)

Fig. 4. Accuracy of correction as a function of the number @&asurements P. Black,
P = 3 (2N+1 algorithm); red, P- 5 (4N+1 algorithm); orange, 2 9 (8N+1 algorithm).
The change in bias between two measurements is 0.5 rad,tdbehatal probed range is
respectively+ 0.5, 1 and 2 rad. Mean values over 100 trials are plotted a5 dot the
coloured areas span from the minimum to the maximum valuee Bbtted line: Strehl
ratio of 0.9; blue dash-dotted line: first diagonaK x).

depths within the sample, so that more moderate amountseofadlons are corrected incre-
mentally as one focusses deeper. Nevertheless, it is gtitegeo see that even for very large
amounts of aberrations, correction can be achieved effigiemen without fully optimising the
correction modes.

6. Signal level and accuracy of correction

In the case of such large aberration amplitudes, a significgreater number of measurements
is required than in the previously demonstrated 2N+1 allgori4]: this number can reach up
to 15N measurements for 3 iterations of the 5N algorithnt, 465 measurements if N=11
as in the experiments shown here. Although this is still welbw the numbers encountered
with a random search optimisation algorithm [11], this issacern for applications in biolog-
ical imaging: photobleaching and photoperturbation lithé& number of exposures that can be
used, and the acquisition time needed for such a large anodwatta is also limiting. In or-
der to mitigate this effect, we investigated the signal legquired for accurate correction by
modelling the effect of photon noise on the correction aacwr

Let us consider that for each moid¢he theoretical curvé(a; ) for M perfectly fits the noise-
less experimental data, and that the only sources of ingicgcin the measurements are the
shot noise in the signal and the dark noise from the detedfdte fit parameters (amplitude,
width, centre and if required offset due to the dark noise)earfectly known, the residual error

between the fitting curve and the measurement poipdse = z'j::l(f(a; =bj)— mgi))2 (with

a the amplitude of aberration in modandm!” the jth measurementin mod@erformed with
biasbj), is given by the sum of the square of the noise in each memsunte Assuming that the
dark noise also exhibits a Poissonian distribution, therdyecomes :

&Enoise = Neot + P B, (2)
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Fig. 5. Comparison of residual error for the 4N+1 (a) and 5\a({gorithms using 1 (black),
2 (purple) or 3 (blue) iterations. The dots are the mean galmer 100 trials and the
coloured areas span from the minimum to the maximum valugeBorange curve: Strehl
ratio of 0.9; orange dash-dotted line: first diagonak(x), above which no improvement is
expected when using several iterations of the same carreakjorithm.

whereN; is the total number of photons in the P measurements of one imaehdB is
the average value of the dark noise. Let us now assume thatitheo noise in any of the P
measured values. For each madehe total squared difference between these values and the
fitting function f is given by :

, P

|07WB C,q _b ml Z IOa\NaBaC7bj)_f('OCaWCaBCaCCabj))Z (3)
wherelg,w,B,c are respectively the estimated amplitude, width, offset e@ntre of the

curve, andoc, W, Be, Cc are their true values. If the parameters are set to theiecbwualues,

this error is zero. If now a small errdc is introduced ore, the error becomes :

HM'U

0f aIOm

e(dc):z <[0|0 ac T aw

where the partial derivatives df are all taken atgc, we, Be,c. and al;"cm, 01‘;‘2"“, aﬁ—BC'" are the
partial derivative of the fitted values &f,w, B as a function of the value set forWhen a least
square fit is performed; is the quantity that is minimised and thus yields the rediéuar
whenc is evaluated with an error afc. It is therefore reasonable to assume that the eicon

the value ofc. due to the presence of noise is obtained by setidg) = &nise, SO that :

dc:./w (5)
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Since this is valid for the N modes and assuming that the N®e@ independent (which is
true if the crosstalks are negligible because several iligoiiterations are used or the initial
aberration is small), the total correction error is obteibg multiplying this value by/N.

To test this model, we again performed correction of knowmants of aberrations in 11
Zernike modes, using a 9N algorithm, this time while varyiihg number of photons used for
each aberration mode. Here a fixed error should be added tottherrorE determined above
to account for imprecise knowledge of the initial abernatio

e=vin e P g (6)

i T I T T T TTTT 1 I L T 1T ']
0.50 ‘\ i
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. o ) i I ]
\ . .
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]
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1000 10* 105
Number of photons /mode/iteration

Fig. 6. Accuracy of correction as a function of the numbertadtpns Niot, used for correc-

tion. Red dots, zero initial aberrations; blue circles,d iratial aberrations corrected with
3 rounds of the 9N algorithm. The error bars correspond tarthgimum and minimum

values measured over 100 trials. Black solid line, thecattiurve from equation 6. Dotted
orange curve: Strehl ratio of 0.9. Inset, experimental emlaf metric M for astigmatism
(z=5) for all P values of biases (dots) and correspondingetiod the functionf.

The results are displayed on Fig. 6. The black curve is therétieal curve from equation
6, whereF has been calculated from the measured shape of the curve sfavfunction of
aberrations and the values of the biases (Fig. 6, insetk Daise levelB was determined by
acquiring an image with equivalent size and pixel dwell timebsence of sample, ark}
was estimated by considering the best accuracy achievéainel forNy; = 6 x 10°: since
the initial correction was performed using this valuelfg; and set as zero, and assuming that
the initial error and the subsequent measure are indepertdevalue obtained at this point is
V/2Ey, so thatEg = 0.0148. The theoretical curve is thus plotted with all pararstixed and
remarkably fits the experimental data.
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This demonstrates that the correction accuracy is ultipétaited by the number of pho-
tons used for correction. This is an important point, as ihpes estimating beforehand what
accuracy can be achieved, or alternatively what level obswpe is necessary to achieve a
given accuracy. Here it can be seen that only about 2000 pbqter mode and per iteration
are necessary to reach a Strehl ratio of 0.9, so that evereinabe of 3 iterations, the total
number of detected photons required for 11 modes is abéut 60*. This is illustrated on
Fig. 7 on a lily pollen grain imaged with 3-colour 2PEF. Hebbeth system aberrations and
sample-induced distortion (mostly due to the index misiméstetween the sample embedding
medium and the objective immersion medium) are correcthd.t®tal corrected aberration in
(b) is 0.96 rad rms, and correction is performed using 2tiena of the 5N algorithm. Here the
total number of photons used for correction wa8:310°, about 9 times the minimum value
determined above. This value was obtained at the maximuedspfeour scanner and using the
minimum power that could be set for the excitation sourceedzected, the correction results
in a significant improvement in brightness and resolutiothefimage.
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Fig. 7. (a) Lily pollen grain image before (top) and after {fban) aberration correction.
The 2PEF signal was excited at 820nm and detected on 3 PMTsdiffierent emission
filters (410-490nm, 500-550nm and 600-700nm). The 3 siga@secombined here using
respectively blue, green and red to obtain a false colour R@Be. (b), zoom on the white
rectangle in (a). The pixel dwell time was Z$in both cases and the same colour scale
was used for both images. (c), intensity profiles for thedto@ours in the corrected (plain
lines) and the uncorrected (dotted lines) images, alongldek line plotted in (b).

7. Discussion

The results presented in this article provide guidelinesifi@osing the optimal correction algo-
rithm in sensorless AO, and for predicting the correctiocuaacy. The choice can be adapted
as a function of the sample and the conditions of correctionexample, if the correction
needs to be updated as a function of time or depth, it is egdebtt the variations from one
correction to the next should be limited. In this case, oagtion of the 2N+1 algorithm is
usually sufficient to provide accurate correction with mal illumination of the sample. If
moderate amounts of aberration are present (0.5 to 1 rad om$)}the aberration amplitudes
are unknown, the 5N algorithm provides a better estimatcan be used for up to 2 rad initial
aberration provided that 2 or 3 iterations are used. Thisesadjusted on a case by case basis,
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e.g. if the estimated aberration at the first round exceedd tms.

The accuracy of correction can be further improved in casemfori knowledge of aberra-
tions. For example, if it is known that most aberrations aserithuted amongst a small number
of modes, greater accuracy is achieved if these modes amectedt before measuring aberra-
tions in the remaining modes. This might occur, for examipleglatively homogeneous sam-
ples with a refractive index different from that of the immien medium of the objective, in
which case spherical aberration might predominate ovear@herrations. Such customisation
of the correction scheme is easily implemented on a case s®/ lwasis by simply reordering
the aberration modes used by the algorithm.

We also demonstrated that accurate correction can be ach@en using a set of modes
with residual crosstalks for the chosen metric. This is @fcfical importance, first because it
simplifies the initial calibration process of the adaptivienmscope: once the wavefront shaping
device (deformable mirror or spatial light modulator) haeib calibrated to produce a chosen
set of modes (Zernike modes, mirror eigenmodes, etc.) otlwhp, tilt and defocus have
been excluded, this set can be used without further praugssi correct for aberrations in
the appropriate modal scheme. This also implies that theection process can accommodate
for distortions such as caused by a compact XY scanner in thestope: indeed in such
a scanner, the scanning mirrors are not perfectly conjdgaith the entrance pupil of the
microscope, inducing a small movement of the image of theamin that plane (if the scanner
is, as here, positioned in between the deformable mirroth@abjective) or a movement of
the excitation intensity profile on the deformable mirrdrtfie scanner is placed before the
deformable mirror). In both cases, the crosstalks betwhemtodes might as a result vary
with the scan angle, so that they can only be cancelled in d saggon of the field of view.
Accommodating for such distortion therefore permits wogkivith a fixed scheme over the
whole field of view of the objective. Finally, using a scherakatively insensitive to crosstalks
implies that the same set of modes can be used if the mett@isyed or another control signal
is used, for example if a non fluorescent sample is imagedtanthird-harmonic generation
(THG) signal is used to correct for aberrations [7].

We point out here that our results permit correcting for edt@ns with good accuracy, but
under the assumption that these aberrations are spatitipgieneous. In case they vary within
the field of view, a smaller region must be selected for cdimacso that they can be measured
locally. If the whole field of view is imaged during correatica mean aberration over the whole
image is calculated, with potentially significant residdatortion remaining locally.

Importantly, our results also show that for moderate an®uahtberration, the accuracy of
correction is ultimately limited by the number of photonshe images used for correction, and
that accurate correction can be achieved with modest sigwk. Since improving the Strehl
ratio above 0.9 has little effect on the resulting imagestal residual aberration of 0.2-0.3 is
acceptable, so that in the conditions tested here a valuelpfabout 2000 photons per mode
provides good correction accuracy. This value depentsditt the number of measurement per
mode P, but rather, through the paramétgisee equation 4), on the modulation depth of the
metric curve that is probed during these P measurementstessii we note that using a signal
that varies faster with the amount of aberrations such as TH®@ould further decrease the
number of photons necessary for correction.

We emphasise that our model for correction accuracy as difumnef the signal level does
not rely on any specific property of the sample, the microsaapthe imaging technique: the
only assumption that was used is that image intensity is asedmetric, but the model can be
straightforwardly extended to the case where, e.g., imhggsaess is used, with very similar
results. The properties of the sample only play a role inwateng the parametdf, which
depends on the shape of the curve of M as a function of abamgafi his shape in turn depends
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mostly on two factors: first, the structure of the sample aheiles how strongly the signal is
affected by aberrations. For example, in two-photon mimopy, it has been shown analytically
and experimentally that the signal from point objects in aiiage is more affected than that
of a bulk sample [4]. As a result, the brightness of a sparsgkawill be more affected by
aberrations than that of a relatively homogeneous samipies avill be greater for the former
and smaller for the latter. This leads to the intuitive retuht a stronger signal is needed to
correct for aberrations when this signal is weakly serssitivaberrations.

Secondly, the shape of the curve of M as a function of abensaiis also affected by aberra-
tions in other modes: if the focal spot is strongly distorgchigh order aberration modes, as
is the case when imaging deep within highly scattering sanguie particular aberration mode
has a lesser effect on an already degraded focussing. Inabés the width of the curve of M
as a function of aberration is increased, so thaecreases.

Practically, if the exposure of the sample is critical anddseto be optimised; (and hence
the optimal exposure during correction) can be calibragfdrie imaging using a similar sam-
ple: for example, it can be expected that when imaging at angdepth in a given region of
fresh mouse brain tissue, the shape of the curve for M will beenor less identical from one
sample to the next. It can thus be measured as a functiorgofdepth, excitation wavelength
(which might affect aberrations in high order modes) or imsi@ medium so that the optimal
exposure is known once and for all for the subsequent studiesse exposure is less critical,
a conservative value of 10-20 times the threshold obtaieed should compensate for a pos-
sible drop in modulation of the curve for M in most samplese Tésults presented here can in
summary be easily used for optimising the correction pre@aeany kind of sample.

In this study, we focussed on the widely used 2PEF microsddyused image intensity
(mean pixel value) as a metric, because it has been proveretizally and experimentally
to yield an accurate estimation of aberrations in 2PEF rsaopy. In this case and with the
sample studied here, it appears that correction of up to abadation can be performed with
as little as 2< 10* photons for 11 aberration modes. As a comparison, ax5822 image
with a moderate average intensity of 15 photon counts pel pxresponds to about-410°
detected photons. Even if the number of measurements igisant, the exposure required for
correction is therefore limited and compatible with bidtzd imaging. This number of photons
required for correction grows linearly with the number ofreated modes: here we used only
11 low order Zernike modes that could be accurately prodbgeaur deformable mirror, but
correction of higher order modes might be beneficial in dertases. It is beyond the scope of
this paper to determine the number of modes that should kfaseorrection in biological
samples, and this question should be addressed in furtidiest

Another important parameter fon vivo imaging is the time required to perform the cor-
rection. Thank to the simplicity of our correction algoniththe processing time is very small
compared to the acquisition time of the data. In our setup titme was in most cases not lim-
ited by the signal intensity, but rather by the speed of ofwmeable mirror and galvanometer
mirrors. The minimum time necessary for each measuremethieafnetric M was around 60
ms, so that the total time for correction ranged from 1.3 st{2Blgorithm, 23 measurements)
to 3.3 s (5N algorithm, 55 measurements). In order to keepuh&ber of photons to a low level
at this acquisition time, the excitation power was decrédsean amount calculated from the
initial image intensity. Once correction was achievedatge sampling and pixel dwell time
were used to increase image quality, so that the acquiditios for the corrected image was
usually a few seconds. Although the time required for cdioadn our setup is still significant,
the resulting delay is nevertheless compatible with nunrestudies of biological samples, e.g.
study of slow developmental processes or of the 3D morplyadbtjssues, or static aberration
correction for the study of a rapid process such as neuratigitg.
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Furthermore, it should be noted that contrary to the signadl| this temporal limitation is
only due here to the response time of our apparatus, and stalghtforwardly be reduced by
using faster scanning and deformable mirrors. Insteadsgbed limit for the correction can be
calculated as the time required to acquire enough photath®uti saturation of the detectors.
Since in nonlinear microscopy the signal is usually createdltrashort pulses, the saturation
when using photon-counting detectors is reached when rharedne photon reaches the de-
tector per excitation pulse. This typically becomes diatifly significant above one photon
detected every 5 pulses: for a typical B0MHz source, the maxi detected photon rate is thus
1.6 x 10’ photons/s. As a result, the minimal time required for cdioeccould in principle
be decreased to 1.4ms for the 2N+1 algorithm or 3.6ms for bhel§orithm, enabling fast
aberration correction during live imaging.

8. Conclusion

In conclusion, we have shown here that modal sensorless AQ@mavide reliable estimation
and correction of aberrations at speed and exposure cdifgaitith biological imaging. We
have investigated the parameters governing the accuratyeaforrection scheme, and deter-
mined optimised settings for good accuracy and minimal sxpoof the sample. This work
provides practical guidelines for setting up or optimisg@ systems on new or existing mi-
croscopes, which are briefly summarised below:

< Modal sensorless aberration correction can be implendersieag any convenient set of N
modes, provided that the crosstalk between the modes fahibsen metric is moderate,
i.e. the error induced in mode A by aberrations in mode B doésxceed 10-20% of the
amplitude of aberration in mode B.

« Ifthe aberration amplitude is small (0-0.5 rad rms), oredtion of the 2N+1algorithm is
sufficient to correct for it. If the amplitude is moderate5({@ rad rms) the 5N algorithm
yields accurate results. For greater amplitudes, seuverations may be used.

* When P=3 measurements per modes are used, the bias shadtdseroughly equal to
the width of the M curve. When P is greater than 3, the probege&an be accordingly
extended to ensure stability of the algorithm over a greatterration range.

« If more than 3 free parameters per mode are used to fit theeafri as a function
of aberration amplitude, the number of measurement per n®dehould be increased
accordingly to ensure good correction accuracy.

» Accuracy can be further increased using a priori knowleafgéne aberrations, e.g. by
changing the order in which the modes are corrected (modbdavge amounts of aber-
ration being corrected first).

» Sampling and illumination can be reduced during correctm minimise exposure. A
conservative value of 2 5 x 10* photons per mode and per algorithm iteration can be
used for accurate correction when phototoxicity or phaabhing are not critical.

« If exposure is critical, illumination can be optimised ngia priori knowledge of the
shape of the curve of metric M as a function of aberrations¢ckvban be measured on a
similar sample for calibration.

« Correction should be performed on a region of the field ofwiwer which aberrations
are roughly homogeneous, else the correction accuracy majefraded by residual
aberration remaining locally.
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Appendix A: Zernike modes and numbering scheme used in this ark

Table 1 shows the 15 Zernike modes that were used in this paper

Table 1. Zernike modes 1 to 15 and numbering scheme. The nandexpressed over the
unit disk as functions aof and6 with 0 <r < 1 and 0< 6 < 2.

Index, z Zernike mode Name
1 1 Piston
2 2r cosB Tip
3 2rsinf Tilt
4 V3(2r2—1) Defocus
5 V6r2cos® Astigmatism, 1st order
6 V6r?sin20 Astigmatism, 1st order
7 2/2(3r3—2r)cosd  Coma
8 2/2(3r3-2r)sinf  Coma
9 2v/2r3cos P Trefoil
10 2y/2r3sin39 Trefoil
11 VB(6r* —6r+1)  Spherical aberration
12 V/10(4r* —3r?)cos®  Astigmatism, 2nd order

13 V/10(4r* —3r?)sin29  Astigmatism, 2nd order
14 V10r*cos P tetrafoil
15 V/10r%sin48 tetrafoil

Appendix B: Experimental removal of residual tip, tilt and d efocus from the modes used
for correction

When correcting for aberrations it is of utmost importartea the imaged area is not shifted
in space during the process, either laterally (by tip angdi axially (by defocus). Movements
induced by the modes are therefore corrected by adding fivejapate amounts of tip, tilt and
defocus to each of themodes. This is performed experimentally so as to take intowaut
the exact intensity profile of the excitation beam whichsgly influences the shift induced by
each mode. Our approach is similar to the method describg@]n

The process is illustrated on Fig. 8 on the example of astigmathe shift of the images
is first measured in two-dimensions by correlating imageainbd with different amounts of
aberration applied, in each modas well as for tip, tilt and defocus. The amount of tip and
tilt to add to modae is then calculated as the opposite of the ratio between gptagiement for
modei and that for tip or tilt, respectively. This is also appli@ddefocus so that subsequent
correction for the axial shift does not reintroduce latstatft.

As a second step, the z-profile of the 2PEF signal from a thimpsa (such as a layer of
100 nm diameter fluorescent beads) is acquired for variowsiatof aberration applied for all
modes and defocus in turn. Following the same principle as for &terkl shift, the axial shift
for each mode is then removed by adding the appropriate amount of defocus.
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Fig. 8. lllustration of the experimental removal of resititija and tilt on the case of astig-
matism (z=6). (a), images are acquired with and withoutraitien applied, and the cross-
correlation plane is calculated. The displacement of threetation peak with respect to
the center of the plane is then calculated as a function citi@unt of aberration, and the
slope is extracted along the two lateral directions. Thegse is repeated for tip and tilt (b
and c), and the appropriate amount of tip and tilt to add tigrmsttism is calculated as the
ratio of the previously measured slopes.
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