
HAL Id: hal-00687195
https://hal.science/hal-00687195

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reference Architecture for StratusLab Toolkit 2.0
Marc-Elian Bégin, Konstantin Skaburskas, Louise Merifield, Charles Loomis,

Eduardo Huedo, Stuart Kenny, Henar Muñoz Frutos

To cite this version:
Marc-Elian Bégin, Konstantin Skaburskas, Louise Merifield, Charles Loomis, Eduardo Huedo, et al..
Reference Architecture for StratusLab Toolkit 2.0. 2011. �hal-00687195�

https://hal.science/hal-00687195
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

Reference Architecture for

StratusLab Toolkit 2.0

Deliverable D4.4 (V1.0)

3 October 2011

Abstract

The document describes the updated Reference Architecture for StratusLab v2.0,

building on D4.1, which described the architecture for StratusLab v1.0. This doc-

ument contains two main parts, the overall architecture identifying the required

services and components of which it is composed, followed by detailed descrip-

tions for each of these elements. For v2.0, the architecture is rationalized and

consolidated. For example, the policy validation, caching and cloud storage are

integrated as default features. The Appliance Repository is replaced by the cloud

storage service. Several services are also added, such as cloud storage, virtual net-

work provisioning and inter-cloud connectivity. From v1.0 to v2.0, incremental

versions of the StratusLab distribution will be built and released to provide an in-

creasing amount of the functionality identified in this document, alongside further

improvements to the robustness of the distribution.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2011, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 51

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Marc-Elian Bégin SixSq All

Konstantin

Skaburskas

SixSq All

Louise Merifield SixSq All

Charles Loomis LAL/CNRS All

Eduardo Huedo UCM All

Stuart Kenny TCD All

Henar Muoz Frutos TID All

Document History

Version Date Comment

0.1 30 August 2011 Initial version for comment.

0.5 27 September

2011

Final version for comment.

1.0 3 October 2011 Final version.

3 of 51

Contents

List of Figures 8

1 Executive Summary 9

2 Introduction 11

3 Architecture Overview 13

4 VM Manager (OpenNebula) Authentication Proxy 17

4.1 Overview . 17

4.2 Main Interfaces with Other Services/Components 17

4.3 License . 17

5 Persistent Disk Service 19

5.1 Overview . 19

5.2 Main Interfaces with Other Services/Components 19

5.3 License . 20

6 Registration Service 21

6.1 Overview . 21

6.2 Main Interfaces with Other Services/Components 21

6.3 Internal Composition . 21

6.4 License . 22

7 Network Manager 23

7.1 Overview . 23

7.2 Main Interfaces with Other Services/Components 23

7.3 Internal Composition . 23

4 of 51

7.4 License . 23

8 Marketplace 24

8.1 Overview . 24

8.2 Main Interfaces with Other Services/Components 24

8.3 Internal Composition . 24

8.4 License . 24

9 Image Manager 26

9.1 Overview . 26

9.2 Main Interfaces with Other Services/Components 26

9.3 Internal Composition . 26

9.4 License . 26

10 VM Manager (OpenNebula) 27

10.1 Overview . 27

10.2 Main Interfaces with Other Services/Components 27

10.3 Internal Composition . 27

10.4 License . 28

11 OpenNebula Driver/Extensions 29

11.1 Overview . 29

11.2 Main Interfaces with Other Services/Components 30

11.3 License . 30

12 Collector Service 31

12.1 Overview . 31

12.2 Main Interfaces with Other Services/Components 31

12.3 Internal Composition . 31

12.4 License . 32

13 Archivers 33

13.1 Overview . 33

13.2 Main Interfaces with Other Services/Components 33

13.3 Internal Composition . 33

5 of 51

13.4 License . 33

14 Inter-cloud Connector 34

14.1 Overview . 34

14.2 Main Interfaces with Other Services/Components 34

14.3 Internal Composition . 34

14.4 License . 35

15 End-User Command-Line Client 36

15.1 Overview . 36

15.2 Main Interfaces with Other Services/Components 36

15.3 License . 36

16 System Administrator Command-Line Client 38

16.1 Overview . 38

16.2 Main Interfaces with Other Services/Components 38

16.3 License . 38

17 Service Manager (Claudia) Authentication Proxy 40

17.1 Overview . 40

17.2 Main Interfaces with Other Services/Components 40

17.3 License . 40

18 Service Manager (Claudia) 41

18.1 Overview . 41

18.2 Main Interfaces with Other Services/Components 41

18.3 Internal Composition . 41

18.4 License . 42

19 Claudia Administrator and End-User Command Line Client 43

19.1 Overview . 43

19.2 Main Interfaces with Other Services/Components 43

19.3 License . 43

20 System Administrator Dashboard 44

20.1 Overview . 44

6 of 51

20.2 Main Interfaces with Other Services/Components 44

20.3 Internal Composition . 44

20.4 License . 44

21 User Dashboard 45

21.1 Overview . 45

21.2 Main Interfaces with Other Services/Components 45

21.3 Internal Composition . 45

21.4 License . 45

22 Probes 46

22.1 Overview . 46

22.2 Main Interfaces with Other Services/Components 46

22.3 Internal Composition . 46

22.4 License . 47

23 Monitoring 48

23.1 Overview . 48

23.2 Main Interfaces with Other Services/Components 48

23.3 Internal Composition . 48

23.4 License . 49

24 Billing 50

24.1 Overview . 50

24.2 Main Interfaces with Other Services/Components 50

24.3 Internal Composition . 50

24.4 License . 50

25 Conclusion 51

7 of 51

List of Figures

3.1 Architecture Overview . 14

3.2 Service and component decomposition 15

4.1 OpenNebula Authentication Proxy Workflow 18

8 of 51

1 Executive Summary

This document presents the StratusLab reference architecture for v2.0. This docu-

ment builds on the document D4.1 - Reference Architecture for StratusLab Toolkit

1.0, focusing on the updated architecture that guides work towards v2.0. The over-

all goal of producing an open source IaaS distribution that can be easily installed

and configured remains central to the development of the v2.0 release.

Compared to v1.0, the v2.0 architecture is rationalized and consolidated. For

example, the policy validation, caching and cloud storage are integrated as default

features, where they were optional in v1.0. The Appliance Repository is replaced

by the Cloud Storage service. Several services are also added or significantly aug-

mented, such as Cloud Storage, virtual network provisioning and inter-cloud con-

nectivity. This is also a client for the Service Manager, such that users can interact

with this service remotely and securely.

Performance is also improved through integration of the Caching Service which

interacts with Cloud Storage, allowing for a scalable solution with minimal VM

start times.

The higher-level architecture is described, focusing on the main layers and of

the StratusLab architecture as well as groups or categories of services and compo-

nents. The main groups are: compute, storage, network, Marketplace (or image

management), monitoring and billing and finally inter-cloud connection. This de-

scription also identifies the main interfaces and protocols used. Most the the users

will interact with StratusLab using standard interfaces, e.g. OCCI, CDMI, OVF,

TCloud, or popular access mechanisms such as jClouds. When such standards are

not available or not appropriate, then RESTful web services are used, with the ex-

ception of OpenNebula (providing the function of VM manager) which is accessed

via XML-RPC.

The services and components composing the high-level architecture are shown

in a decomposition diagram, with a focus on the main interfaces between these

elements, such that the main control and data flows are clear. This diagram shows

that all user access is performed via proxies, to harmonize access and protect the

underlying services. Another noticeable architectural strategy is the central role

the new Collector Service plays in v2.0. This aggregator service collects data from

different services and components and also provides this data to any service or

component, via simple, secured access. Further, the integration of all data persis-

tence requirements are consolidated into a Persistence Storage Service, based on

9 of 51

iSCSI or NFS.

Each service and component is described in more detail, including the inter-

actions between the elements composing the architecture. Also described for each

element is its internal composition, focusing on what is reused, adapted and/or

newly developed to deliver the required functionality. The license of each service

and component is also provided for each element. All elements in the architecture

are released under the Apache 2.0 license, with the exception of Claudia, which is

released under the Affero GPL license.

From v1.0 to v2.0, incremental versions of the StratusLab distribution are being

built and released to provide an increasing amount of the functionality identified

in this document, alongside further improvements to the robustness of the distribu-

tion.

The ultimate aim of this document is to provide high-level information regard-

ing the architecture of the StratusLab distribution v2.0, such that readers have a

better grasp of how the system is structured, how it is integrated, and from where

do the different components and services come.

10 of 51

2 Introduction

This document is a complement to D4.1 - Reference Architecture for StratusLab

Toolkit 1.0, where it updates the architecture of the system such that StratusLab

can successfully support the ‘Hybrid Infrastructure’ use case identified in D4.1.

The following chapters from D4.1 are directly applicable to this document:

• Chapter 3: Requirements

• Chapter 4: Development Process and Strategy

• Chapter 7: State of the Art

• Chapter 8: Grid / Cloud Technology Gap

whereas the following are superseded by this document:

• Chapter 5: Component Architecture

• Chapter 6: Selected Components

This document introduces the updated architecture by showing the high-level

composition of the system; then each service and component in this high-level

view is described in detail. The section with the details serves a double purpose,

on one hand providing more clarity as to what was reused and integrated versus

newly developed software, and on the other hand providing more information such

that users can more easily understand the different components and services of the

StratusLab system. This information will be converted to pages on the website to

make it more accessible to the StratusLab users and administrators.

From v1.0 to v2.0, incremental versions of the StratusLab distribution are being

built and released to provide an increasing amount of the functionality identified in

this document, while also further improving the robustness of the distribution.

This document describes a complete and ambitious architecture for an IaaS

cloud distribution. Given time and resource constraints, the project will concen-

trate on the most important elements of this architecture; consequently, some ele-

ments may be developed during the evolution of the StratusLab distribution after

the project ends. It is a roadmap that guides the project’s developments to enable

to deliver software with relevant cloud functionality. As we realize this architec-

ture, gather further feedback, and investigate new cloud innovations, we may find

11 of 51

alternative and potentially better ways of accomplishing our goals and may conse-

quently alter the development priorities and architecture.

12 of 51

3 Architecture Overview

The StratusLab reference architecture can be viewed as a layered model, grouping

of the main components and services composing the system. Figure 3.1 identifies

two main blocks: ‘Image Management’ and ‘IaaS Cloud’. The same figure also

identifies the main interactions users have with the system. Since image manage-

ment is not required to be co-hosted with the IaaS cloud service, these are repre-

sented in separated high-level blocks. Figure 3.1 also identifies the main protocols

and standards that StratusLab aims to support for v2.0.

A pattern in newer services (e.g. Persistent Disk Manager, Marketplace, Dash-

board) is that they favor custom RESTful web service interfaces. The rational for

this design decision is to be able to deliver functionality immediately (without de-

pending on future standards) while allowing easy adaptation as we go forward.

New for v2.0, are the persistent disk manager, network manager and a con-

trol dashboard. The dashboard is an upgrade of the web monitor service, with

the important addition of accounting/billing functionality. In order to deliver this

feature however, another service, the collector, is required to transversally collect

data from several other services and components. Alongside the collector service

is an archiver service, which is responsible for archiving all relevant information

for later querying and/or (re)processing.

The network manager provides added features such that users can more dy-

namically create and configure deployment specific virtual networks, in order to

provide finer control and isolation of their system deployed in the cloud. The per-

sistent disk manager provides Amazon EBS-like functionality, such that persistent

disk devices can be used in conjunction with running virtual machines, either as the

main boot device, or as extra data stores that can be attached to virtual machines.

Another important new component is the ‘Inter-Cloud Connector’, which is

responsible for interfacing a given cloud site with another. At the time of writing,

we have not completed the design of this important element. It it therefore left at

a high-level, while the exact use cases are developed which will allow the detailed

design to be done.

Another way of looking at the reference architecture is to represent the dif-

ferent services and components, identifying the main interactions between them.

Figure 3.2 does just that. Here we can see that for v2.0, the ‘Collector Service’

plays a large role in gathering data from several elements, providing a central lo-

cation from which to query the state of different services and components in the

13 of 51

IaaS Cloud

Physical Computing Resources

KVM ...

VM Manager

iSCSI ...

Persistent Disk ManagerNetwork Services

XML-RPC → OCCI Proprietary REST → CDMI

Service Manager

TCloud

Image Management

Proprietary REST

Marketplace

Image Storage (Cloud, Web, Grid)

Physical Storage ResourcesPhysical Network Resources

Users

Network

isolation
...

D
a

ta
 c

o
ll
e

c
ti

o
n

 s
e

rv
ic

e

Monitoring & Accounting

(dashboard)

Proprietary REST

In
te

r-
c
lo

u
d

 C
o

n
n

e
c

to
r

Persistent Store

Figure 3.1: Architecture Overview

system, from a single interface.

StratusLab v2.0 gives a larger role to the Marketplace to identify virtual ma-

chines and disks to instantiate at a given cloud site. In this context, the appliance

repository functionality is absorbed in the Cloud Storage Service. Since in the

Marketplace each entry is digitally signed including a digital checksum of the vir-

tual image it represents, this approach promotes security and trust, no matter from

where the raw files are sourced.

The goal of this tighter integration between the Marketplace and the IaaS layers

is to provide a mechanism where trust can be built between the system administra-

tors and users. For this we use cryptographically signed virtual image manifests (or

metadata documents) to ensure that we can associate VMs to real users, as well as

ensuring that VMs were not modified after creation. This functionality is provided

by the Marketplace, together with extended command-line tools. A policy engine

and a set of black and white lists related to VM heuristics, integrated at the IaaS

VM management level, provide system administrators and users with an automated

mechanism to build trust.

Figure 3.2 shows also the facade role that the command-line client plays in

abstracting the service interfaces of the system for end-users. The same is true

for the dashboard, which abstracts the monitoring and billing services. In v2.0,

the Service Manager (Claudia) is also available via a remote command-line client,

which will allow users to control and monitor the service from outside the cloud

site, as is already available for several other services.

SlipStream has also been added to the overall architecture decomposition. Slip-

Stream is a service providing virtual machine factory functionality and multi-machine

deployment orchestration. While this service is not part of the StratusLab distribu-

tion, it leverages a significant number of StratusLab services and components. It

is a commercial product now available as a SaaS and turn key solution, and part of

the StratusLab sustainability and exploitation strategy.

14 of 51

Proxy
(Authentication)

Registration
Web Application

Marketplace

StratusLab
configuration

Persistent
Storage

(iSCSI / NFS)

libvirt / KVM
Image

Repository

System
Administrator

Command-Line
Client

Mail Server

Legend:

 Integrated/developed by StratusLab

 External service (not managed by StratusLab)

 Dependencies

Service Manager

Mail Server
LDAP

Monitoring Billing

Collector
Service

Physical
Machine
Probes

VM
Probes

Deployment/
Orchestration

Engine

VM Manager

Service Manager
Proxy

(Authentication)

DHCP NAT

StratusLab
Quattor
profile

Caching

Network
Manager

Archivers

User Command-
Line Client

User
Dashboard

System
Administrator
Dashboard

Quattor

Image
Manager

Figure 3.2: Service and component decomposition

1
5

o
f

5
1

All of the services and components discussed above are further detailed in the

following chapters.

16 of 51

4 VM Manager (OpenNebula) Authentication

Proxy

4.1 Overview
The VM Manager (OpenNebula) Authentication Proxy provides a secure, authenti-

cated bridge between external users and the OpenNebula daemon. The service au-

thenticates users based on its configuration, inserts this information into the XML-

RPC call to OpenNebula, forwards the modified request to OpenNebula, and then

passes the response back to the user.

The service takes advantage of the Java Authentication and Authorization Ser-

vice (JAAS) implementation with the Jetty web application container, providing a

flexible and extensible set of authentication methods. By default, the service is con-

figured to allow authentication with 1) username/password pairs obtained through

a simple configuration file or through an LDAP server or 2) digital certificates (e.g.

grid credentials in the form of certificates or short-lived proxies).

4.2 Main Interfaces with Other Services/Components
Users access the VM Manager (OpenNebula) service via the authentication proxy.

The authentication proxy is accessed programmatically through an XML-RPC in-

terface that mirrors the underlying OpenNebula XML-RPC interface. The only

difference is that authentication is handled by the proxy, with this information in-

serted into the XML-RPC calls passed to the OpenNebula daemon.

The workflow for accessing OpenNebula via the authentication proxy is shown

in Figure 4.1. The small core of the service has been developed by the Stratus-

Lab project. Standard authentication plugins are used for username/password au-

thentication mechanisms. The plugin supporting grid certificates was created by

StratusLab using the cryptographic tools provided by gLite.

The direct software dependencies of the service are listed in Table 4.1. Relevant

standards used or supported by the service are shown in Table 4.2.

4.3 License

License Apache 2

Git repository stratuslab-authn.git

17 of 51

User

OpenNebula

Authentication Proxy

OpenNebula

Username/Password

Jetty Plugin

LDAP

Jetty Plugin

Grid Authentication

Plugin

1. Initial XML-RPC
Request

2. Authenticate
user based on
provided credentials

3. Modified XML-RPC
request with authentication
information

4. Response from
OpenNebula

5. Unmodified response
from OpenNebula passed
back to user

Figure 4.1: OpenNebula Authentication Proxy Workflow

Table 4.1: Dependencies for OpenNebula Authentication Proxy

Jetty Java application server

XML-RPC Apache implementation of XML-RPC

protocol

Table 4.2: Relevant Standards for OpenNebula Authentication Proxy

JAAS Java Authentication and Authorization

Service

GSI Grid Security Infrastructure for grid

credentials

18 of 51

5 Persistent Disk Service

5.1 Overview
The Persistent Disk Service provides users with persistent storage with a disk-

based (or block device) abstraction. The service allows users to create disks, to

mount/unmount them on machine instances, and to destroy them. This lifecycle

is independent of any particular machine instance, allowing persistent storage of

data.

5.2 Main Interfaces with Other Services/Components
The core of the service is a Java-based, RESTful application presenting a propri-

etary API. Users can access this service via a web browser (HTML representation)

or programmatically via the StratusLab command line client (JSON representa-

tion).

The service creates user-accessible disks on storage directly attached to the

machine running the service. This storage can be accessed via LVM or as a normal

file system. LVM-based storage is preferred as this allows faster creation of disks

and snapshotting of volumes.

The disks are shared with virtual machines running on the compute hosts either

via an iSCSI server or via a shared file system. The iSCSI mechanism is preferred

because it provides better performance. Remote access to the defined disks can be

provided via HTTP or gsiftp protocols, if they are public and the associated servers

are properly configured and running.

This service was entirely developed within the project, although has significant

dependencies on other services to provide the complete functionality.

Table 5.1: Dependencies for Persistent Disk Service

Jetty Java application server

Restlet Java framework for RESTful applications

19 of 51

Table 5.2: Relevant Standards for Persistent Disk Service

JAAS Java Authentication and Authorization

Service

LVM OS-level service for creating block

devices

iSCSI Service for SCSI access to storage over

LAN

HTTP Web Server External access to disks

gsiftp External access to disks using grid

credentials

5.3 License

License Apache 2

Git repository stratuslab-storage.git

20 of 51

6 Registration Service

6.1 Overview
The Registration Service provides a web interface that allows new users to register

with the infrastructure, or existing users to update their registration information.

The service also provides cloud policy documentation that users must comply

with as part of the registration process.

6.2 Main Interfaces with Other Services/Components
Users access this service primarily via a web broswer, although the service could

also be accessed programmatically because of the RESTful nature of the interface.

The service keeps all of the user registration information in an LDAP server,

running separately from the Registration Service. The StratusLab installation uses

the ApacheDS LDAP server implementation, but any other LDAP implementation

could also be used.

Interaction with the cloud infrastructure happens through the various authenti-

cation proxies for the cloud services, which must be properly configured to access

the information in the LDAP server.

6.3 Internal Composition
This service has been entirely developed within the StratusLab project, making use

of the software listed in Table 6.1. The service requires access to an external LDAP

server to manage the user registration information. The ApacheDS implementation

is installed by default, but any other standard LDAP service could be used.

See Table 6.2 for the relevant standards supported or used by the service.

Table 6.1: Dependencies for Registration Service

Jetty Java application server

Restlet Java framework to simplify development

of RESTful applications

21 of 51

Table 6.2: Relevant Standards for Registration Service

LDAP Used to store user information.

ApacheDS implementation is used

by default.

6.4 License

License Apache 2

Git repository stratuslab-registration.git

22 of 51

7 Network Manager

7.1 Overview
StratusLab v1.0 only supports three networks (public, private and local), which

does not provide isolation between virtual machines in the multi-tenancy (multi-

machine) cloud environment. This component allows each user (or group) to cre-

ate, manage and remove sets of isolated LANs (VLAN). Additionally this com-

ponent allows filtering of virtual machine traffic based on simple rules, e.g. TCP

ports.

7.2 Main Interfaces with Other Services/Components
The network manager component interacts with the underlying networking fabric

and services to create and manage VLANs. The service is interfaced with the VM

management components.

7.3 Internal Composition
This component integrates the work of the Mantychore project into a new service,

interfaced with the VM manager.

7.4 License
Apache 2.0.

23 of 51

8 Marketplace

8.1 Overview
StratusLab provides a complete, open-source solution for deploying an “Infras-

tructure as a Service” cloud infrastructure. Use of the cloud requires the use of

prepared machine and disk images. Although StratusLab provides tools to sim-

plify the creation of these images, the procedure for doing so remains a significant

hurdle for use of a cloud. Consequently, StratusLab encourages the sharing and

reuse of existing images to reduce this barrier.

The Marketplace is at the center of the image handling mechanisms in the

StratusLab cloud distribution. It contains metadata about images and serves as a

registry for shared images. The Marketplace allows:

1. Users to browse for relevant, pre-existing virtual machine images,

2. System administrators to evaluate virtual machine images against their secu-

rity policies,

3. Machine creators to publish their work to a larger audience.

8.2 Main Interfaces with Other Services/Components
The core of the service is a Java-based, RESTful application presenting a propri-

etary API. Users can access this service via a web browser (HTML representation)

or programmatically via the StratusLab command line client (XML representa-

tion).

8.3 Internal Composition
This service has been entirely developed within the StratusLab project, making use

of the software listed in Table 8.1.

See Table 8.2 for the relevant standards supported or used by the service.

8.4 License

License Apache 2

Git repository stratuslab-marketplace.git

24 of 51

Table 8.1: Dependencies for Marketplace Service

Jetty Java application server

Restlet Java framework to simplify development

of RESTful applications

Sesame Java framework for storage and querying

of RDF data

Jena Java framework for building Semantic

Web applications

FreeMarker Java template engine

jQuery JavaScript library

Table 8.2: Relevant Standards for Marketplace Service

RDF/XML Used to store metadata entries.

SPARQL Used to query metadata database.

25 of 51

9 Image Manager

9.1 Overview
The Image Manager Service is responsible for resolving Marketplace unique iden-

tifiers to physical image files, stored in the Persistent Storage service / Image

Repository.

For v2.0, we aim to simplify and streamline the VM submission chain, where

the caching, policy validation and image retrieval are integrated into a more coher-

ent and better performing system. The Image Manager provides this functionality,

in collaboration with the Image Repository and the Persistent Storage service. This

service also absorbs v1.0 services such as the Appliance Repository and several

ad-hoc scripts that were integrated with OpenNebula drivers and extension mecha-

nisms.

9.2 Main Interfaces with Other Services/Components
The Image Manager component interacts with the Image Repository, which sits on

top of the Persistent Storage Service.

9.3 Internal Composition
This component is developed from scratch, reusing command-line client logic and

REST interfaces to other services.

9.4 License
Apache 2.0.

26 of 51

10 VM Manager (OpenNebula)

10.1 Overview
The VM Manager is the core of the system. It orchestrates requests and manages

the allocation of resources, as well as the life-cycle of running virtual images. This

functionality is provided by OpenNebula, an open-source toolkit for on-premises

IaaS cloud computing, offering a comprehensive solution for the management of

virtualized data centers to enable private, public and hybrid (cloud bursting) clouds.

OpenNebula includes enhancements to address the requirements of the StratusLab

project, such as integration with Ganglia, fault tolerance functionality, and virtual

network improvements.

10.2 Main Interfaces with Other Services/Components
OpenNebula is a core component of the StratusLab distribution and interfaces with

most of the other StratusLab components, mainly: Marketplace, Persistent Disk

Service, Authentication Proxy, Network Manager and Service Manager (Clau-

dia). Additionally, OpenNebula interacts with the underlying physical infrastruc-

ture (servers, networking fabric and services, storage etc.) to manage virtualized

infrastructures.

10.3 Internal Composition
We can distinguish three different areas related to StratusLab in the VM Manager:

• VM Management: It interfaces with physical resource hypervisor, such as

KVM, to control (e.g. boot, stop or shutdown) the VMs. It also provides

access control to virtual resources and provides fault tolerance.

• Image/Volume Management: Through extended hooks and in collaboration

with other services such as the persistent storage and the Marketplace, it

transfers the VM images from an image repository to the selected resource

and creates on-the-fly temporary images. These also provide caching poli-

cies.

• Network Management: Also through hooks, allows each user (or group) to

have access to a set of isolated LANs (VLAN) that may be dynamically cre-

ated. Additionally, this component will allow filtering of virtual machine

27 of 51

Table 10.1: Relevant Standards for VM Manager

IEEE 802.1Q Used for network isolation.

traffic based on simple rules, e.g. TCP ports. These integrate with the Net-

work Manager service.

The components provided for building hybrid or federated clouds are described

as part of the Inter-cloud Connector (Chapter 14). Also, OpenNebula provides

support for the monitoring and accounting needed in StratusLab.

This component has been extended by the StratusLab project. Specific func-

tionality developed to address StratusLab requirements are:

• VM Management:

– User groups

– Access control lists

– Ganglia information drivers

– Fault tolerance for virtual machines

– VM Template repository

• Image/Volume Management:

– Improved image management

– Volume management

– Caching

• Network Management

– New networking model

– Dynamic firewalls

– Network isolation

– Elastic IPs

See Table 10.1 for the relevant standards supported or used by the VM Man-

ager.

10.4 License

License Apache 2

Git repository git://git.opennebula.org/one.git

28 of 51

11 OpenNebula Driver/Extensions

11.1 Overview
StratusLab extends OpenNebula through its driver extensibility mechanism. To

this effect, StratusLab ships with a number of upgraded/replaced standard driver

and scripts. Here is the list of such extensions:

• Authentication Driver

• Image Downloader

• Quarantine Manager

• Caching Manager

• Policy Validator

Here is an overview of these extensions:

Authentication Driver StratusLab has a unified authentication mechanism, pro-

vided by the Authentication Proxy. This means that we require OpenNebula not to

perform its normal authentication logic, but trust the proxy. In order for this mecha-

nism to be safe, the StratusLab installation procedure ensures that the OpenNebula

daemon cannot be access from outside the machine running it.

Image Downloader StratusLab uses a sophisticated mechanism to allow users

to specify which virtual machine they require to be instantiated on the cloud. This

feature works in conjunction with the Marketplace service. For this to work, Stra-

tusLab also ships with enhanced ‘clone’ scripts, which provides the logic for ac-

cessing the Marketplace to retrieve metadata required to find the physical virtual

machine image file, and create a cloned persistent device from which to instantiate

the VM.

Quarantine Manager StratusLab supports a quarantine feature, such that sys-

tem administrators can define a quarantine time during which all terminated ma-

chines are kept. This allows them to perform forensic analysis on faulty or abusive

virtual machines and to take appropriate actions.

Enhanced Logging To further improve forensic analysis and troubleshooting,

improved logging of key events are provided such that, for example, event time

correlation can be performed by extracting relevant data from logs.

29 of 51

Table 11.1: Dependencies for OpenNebula Driver/Extensions

Ruby Ruby version supported by OpenNebula

Bash Standard scripting language

Caching Manager To boost performance, StratusLab supports a caching mech-

anism, such that the usually large virtual machine image files are not downloaded

across the WAN on every request and also are not moved unnecessarily inside the

cloud site. By default this is implemented using copy-on-write functionality.

Policy Validator The Marketplace provides rich metadata for each virtual ma-

chine and disk image registered with it. This metadata includes digital endorsement

and other information on which validation logic can be built. The Policy Validator

is integrated as an extension to OpenNebula such that system administrators can

have fine control over which virtual machine and disk users are authorized to run

on their cloud. This is made possible using a set of black and white lists based on

a number of configurable parameters.

11.2 Main Interfaces with Other Services/Components
All of the extensions elements integrate with OpenNebula, but have little or no

interaction with OpenNebula.

Authentication Driver None.

Image Downloader Communicates with the Marketplace to retrieve metadata.

Once the final endpoint is resolved, it will retrieve (possibly via the caching mech-

anism) the images and request a clone to be created as a bootable device from the

Persistence Service.

Quarantine Manager Persistent storage in which to move the terminated im-

ages for a configurable amount of time.

Caching Manager Volatile storage for retrieving cached images.

Policy Validator Communicates with the Marketplace in order to retrieve meta-

data on which to apply the locally configured policy.

11.3 License

License Apache 2

Git repository stratuslab-one.git

30 of 51

12 Collector Service

12.1 Overview
Different types of information are produced across the StratusLab system. For

example, information regarding the physical nodes, the virtual machines and the

state of the instances from a virtual machine manager.

The Collector Service aggregates the information from these different sources,

such that they can be accessed and consumed via a central interface.

To this effect, for example, virtual machine usage information is obtained from

OpenNebula information drivers for physical hosts and virtual machines. This in-

formation is stored in the OpenNebula database with a proprietary format not nec-

essarily suitable for accounting or billing processing purposes. Therefore, the data

is either published or queried in order for the collector service to provide its clients

with a uniform REST and/or messaging interface to retrieve the data. This allows

high-level services, such as the monitoring and billing service to provide higher

value products to the users.

12.2 Main Interfaces with Other Services/Components
The collector is designed as an autonomous component that either periodically

extracts information, or better registers with services to be called on important

state changes or event triggers.

For example, in the case of OpenNebula, usage information from a running

OpenNebula instances can be pushed to the collector service using custom drivers

and extensions.

A similar adapter is required for each service from which the collector collects

information.

12.3 Internal Composition
This component is developed from scratch making use of existing REST services

(e.g. Marketplace, Storage Service) and messaging frameworks (e.g. RabbitMQ

or ActiveMQ) and protocols (e.g. Stomp, XMPP, JMS). Other standards such as

OGF Usage Record1 are also used.

1More information about Usage Record WG (UR-WG) http://www.ogf.org/gf/group info/view.

php?group=ur-wg.

31 of 51

http://www.ogf.org/gf/group_info/view.php?group=ur-wg
http://www.ogf.org/gf/group_info/view.php?group=ur-wg

The different collector modules are developed based on existing interfaces and

extensibility mechanisms. For example, the OpenNebula APIs are used.

12.4 License
Apache 2.0.

32 of 51

13 Archivers

13.1 Overview
The archivers are components providing persistence storage for collector service.

This can take the form of databases and/or flat files. At the time of writing, this

component is still to be better defined and designed.

13.2 Main Interfaces with Other Services/Components
The main provider and consumer of the archivers is the collector service.

13.3 Internal Composition
The archivers are implemented reusing standard database technology, such MySQL,

or flat files.

13.4 License
Apache 2.0.

33 of 51

14 Inter-cloud Connector

14.1 Overview
The Inter-cloud Connector allows instantiation of VMs on public clouds (like Ama-

zon EC2 or Flexiscale) as well as partner clouds (other StratusLab clouds). The

component will abstract the external clouds’ APIs by providing a common inter-

face to them that can be plugged into the VM Manager component allowing a

hybrid cloud approach (where the VM manager decides to outsource computation

to another cloud) or the Service Manager component with a cloud brokering ap-

proach (when the VM is deployed in different cloud providers according to users’

policies).

14.2 Main Interfaces with Other Services/Components
The component interfaces with OpenNebula and exposes a public cloud interface to

create, manage and monitor VMs on StratusLab sites. The Inter-cloud Connector

will be used through OpenNebula, the VM Manager, by means of virtualization

and image transfer drivers. These drivers will also interface with Amazon-EC2

compatible clouds.

The component will also interface with Claudia which exposes a TCloud API,

considered as an aggregated API, that incorporates different drivers for different

Cloud providers (StratusLab-based clouds, Amazon, Flexiscale etc.).

14.3 Internal Composition
For the public cloud interface, a new binding for the jclouds API will be devel-

oped. The drivers for StratusLab and Flexiscale clouds are developed from scratch,

while the EC2 ones will reuse exiting OpenNebula and Claudia EC2 drivers. These

drivers will use the libraries needed to interface each cloud, i.e. the OpenNebula

OCA API, the OCCI interface, the Amazon EC2 API or the Flexiscale API.

New functionality for image management will be integrated in order to import

disk images from external storage providers, and adapting them so they can bene-

fit from StratusLab’s contextualization. For example, an Amazon EBS driver will

allow importing Amazon EC2 AMIs into StratusLab sites. And in the other di-

rection, the ability to convert StratusLab images into EC2 compatible images and

contextualization will be integrated.

34 of 51

14.4 License

License Apache 2

Git repository stratuslab-one.git and stratuslab-claudia.git

35 of 51

15 End-User Command-Line Client

15.1 Overview
The user command-line client is the main user interface for controlling and moni-

toring StratusLab cloud resources. It allows users to start, stop and query the state

of their resources. This remote client also supports a number of authentication

mechanisms.

Most StratusLab services provide commands, packaged with this component,

such that the user is presented with a uniform mechanism for interacting with the

cloud.

The starting point of this component was reused from proprietary code trans-

ferred to the StratusLab project from SlipStream by SixSq, with all permissions.

This component is written in portable Python (requires version 2.6 or higher)

such that it can be simply installed on a wide range of user machines.

The component was entirely developed within the project, although it has sig-

nificant dependencies on other services to provide the complete functionality.

A simple configuration file allows the user to configure defaults, which are used

by most commands.

15.2 Main Interfaces with Other Services/Components
This component communicates through the proxy services and the Marketplace,

using the appropriate protocols, e.g. REST, XML-RPC.

15.3 License

License Apache 2

Git repository stratuslab-client.git

Table 15.1: Dependencies for End-User Command-Line Client

Python Python language, version greater or equal

to 2.6

36 of 51

Table 15.2: Relevant Standards for End-User Command-Line Client

REST REpresentational State Transfer

XML-RPC XML Remote Procedure Call

37 of 51

16 System Administrator Command-Line Client

16.1 Overview
The system administration command-line client is one of the two supported mech-

anisms to configure and install StratusLab.

A single configuration file is used to capture an entire StratusLab installation,

from which the system administrator command-line client take configuration in-

formation.

16.2 Main Interfaces with Other Services/Components
This component installs and configures all the StratusLab services and components.

16.3 License

License Apache 2

Git repository stratuslab-client.git

Table 16.1: Dependencies for System Administration Command-Line

Client

Python Python language, version greater or equal

to 2.6

38 of 51

Table 16.2: Relevant Standards for System Administration Command-Line

Client

REST REpresentational State Transfer

XML-RPC XML Remote Procedure Call

39 of 51

17 Service Manager (Claudia) Authentication

Proxy

17.1 Overview
The Service Manager, provided by Claudia, Authentication Proxy provides a se-

cure, authenticated bridge between external users and Claudia. The service authen-

ticates users based on its configuration, interact with the Claudia API server and

then passes the response back to the user.

The service takes advantage of the Java Authentication and Authorization Ser-

vice (JAAS) implementation with the Jetty web application container, providing a

flexible and extensible set of authentication methods. By default, the service is con-

figured to allow authentication with 1) username/password pairs obtained through

a simple configuration file or through an LDAP server or 2) grid credentials (cer-

tificates or short-lived proxies).

17.2 Main Interfaces with Other Services/Components
In a public infrastructure, users access Claudia via the authentication proxy. The

authentication proxy is accessed programmatically through an HTTP interface.

17.3 License

License Apache 2

40 of 51

18 Service Manager (Claudia)

18.1 Overview
The Service Manager is provided by Claudia. The Claudia platform is an advanced

service management toolkit that allows service providers to dynamically control

the service provisioning and scalability in an IaaS cloud. Claudia manages ser-

vices as a whole, controlling the configuration of multiple VM components, virtual

networks and storage support by optimizing their usage and by dynamically scal-

ing up/down services applying elasticity rules, SLAs and business rules. Claudia

can deploy services in a public cloud (Amazon, Flexiscale, GoGrid, etc.) or in

a private cloud using a Virtual Infrastructure Manager (such as OpenNebula, Eu-

calyptus, etc.) through a plug-in driver mechanism that will orchestrate virtual

resource allocation.

Claudia has evolved in StratusLab to address the requirements of the Stratus-

Lab project, such as the provision and usage of hardware information integration

for scalability, scalability and management for grid services, authentication, etc.

18.2 Main Interfaces with Other Services/Components
Claudia, as service manager, can interact with other Cloud providers, like Open-

Nebula by using an aggregated API, this is the TCloud API. Thus, Claudia can de-

ploy networks or virtual machines. Moreover, other components can interact with

Claudia by also using TCloud. Monitoring systems provide monitoring events to

Claudia for scalability.

18.3 Internal Composition
The main component in Claudia is Clotho, which includes the Service Lifecy-

cle Manager (which handles service application instantiation and management of

services) and the Scalability and Optimization Module (responsible for managing

monitoring events and scalability rules). In order to interact with cloud providers,

there is an aggregated API implementation, which provides the translations to the

cloud providers’ APIs. This is an implementation of the TCloud API, aimed to

serve as an interface for cloud systems based on Claudia’s Service Lifecycle Man-

ager. This application is modular, so it can be tailored to work with any other

provider of TCloud services, by creating and using a customized driver.

41 of 51

Table 18.1: Relevant Standards for Service Manager

TCloud Cloud service API for Claudia

component

OVF Service Manifest Format

This component has been extended by the StratusLab project. Specific func-

tionality developed to address StratusLab requirements are:

• Scalability:

– New policies for scaling according to grid service requirements

– Expand/Contract a grid site

– Deployment of a grid site (including grid services, certificates, scripts)

– Scalability considering VM metrics

• Monitoring:

– Monitoring at service layer

– Claudia subscription to services KPI values

• Cloud brokering

– New Cloud providers drivers

– Placement Decision Module

See Table 18.1 for the relevant standards supported or used by the Service

Manager.

18.4 License

License Affero GPL

Git repository stratuslab-claudia.git

42 of 51

19 Claudia Administrator and End-User Com-

mand Line Client

19.1 Overview
This component involves a set of tools for administrator and end-user for i) in-

stalling and configuring Claudia and ii) interacting with Claudia for deploying,

undeploying services.

19.2 Main Interfaces with Other Services/Components
This is a python application, developed from scratch in StratusLab, which it is

integrated with the the System Administrator Command Line Client (see chapter

16) for manual installation. It also interacts with the TCloud client for invoking

Claudia API and instantiating services, undeploying and so on.

19.3 License
Apache 2.0.

43 of 51

20 System Administrator Dashboard

20.1 Overview
The system administrator dashboard allows system administrators to monitor their

infrastructure, both at the level of the physical machines and the level of the virtual

machines. Since this dashboard displays data that should be restricted to only site

administrators, this dashboard either requires authentication or can only be access

from within the organization’s network.

20.2 Main Interfaces with Other Services/Components
The system administrator dashboard interfaces with the monitoring service.

20.3 Internal Composition
The dashboard extends the current web monitor, which is a simple set of CGI

scripts implemented in Python. This extended functionality builds on the existing

logic of the core of the command line clients (end-user and system administrator

tools).

20.4 License
Apache 2.0.

44 of 51

21 User Dashboard

21.1 Overview
The user dashboard allows end-users to monitor their virtual machines, and even-

tually control them. This dashboard requires authentication such that users only

see their own resources (e.g. virtual machines, virtual disks).

21.2 Main Interfaces with Other Services/Components
The user dashboard interfaces with the monitoring service, for monitoring, and

eventually with the control services (e.g. VM manager, persistent service, network

service).

21.3 Internal Composition
Different options exist for this implementation of this web application.

1. The dashboard can either extends the current web monitor, which is a simple

set of CGI scripts implemented in Python. This extended functionality builds

on the existing logic of the core of the command-line clients (end-user and

system administrator tools).

2. Extend the OpenNebula Sunstone application to cover the other StratusLab

services, such as network manager, persistence storage and image manage-

ment.

3. Simply provide javascript-based monitor that interacts directly with the dif-

ferent services (including monitoring).

21.4 License
Apache 2.0.

45 of 51

22 Probes

22.1 Overview
Monitoring probes are the software, installed in the virtual and/or physical ma-

chine, which are responsible for measuring metrics. They are the key component

in the data gathering mechanisms of the monitoring system. Monitoring informa-

tion can be obtained from the virtual infrastructure, physical infrastructure, soft-

ware metrics or KPIs. There are different monitoring probes specialized for each

type of metric, and the data they provide is in different formats and offered though

different interfaces. Ultimately, the data collected by the probes are collected and

pushed to the collector service.

Physical machine probes are installed on the physical machine hosts. These

provide the the system monitoring and state transition information required by

other services and components to perform their work.

The VM probes, as opposed to the physical machine probes, collect data at the

level of the hypervisor, for each virtual machine deployed on the node.

Software probes gather metric information about the software installed in the

virtual machine, and are used to monitor this software. For instance, it is possible

to measure the number of transactions in a database or the active sessions in a web

server.

Finally, the Key Performance Indicators provide metrics related the service,

which indicate the status of the service.

22.2 Main Interfaces with Other Services/Components
The probes push data to the collector service. This data is then used by several

other services to perform their business.

22.3 Internal Composition
The physical probes are typically written as Nagios/Ganglia scripts, with depen-

dencies corresponding to the transport and protocol used to push the data to their

consumer.

The VM probes are highly dependent on the hypervisor used on the physical

nodes. StratusLab standardizes on libvirt and KVM, which reduces complexity and

dependencies.

46 of 51

Table 22.1: Dependencies for Persistent Disk Service

Nagios Open source computer system and net-

work monitoring software application

Ganglia scalable distributed system monitor tool

for high-performance computing systems

Collectd Gathering tool which collects, transfers

and stores performance data of comput-

ers and network equipment.

The software and KPI probes rely on collectd, as gathering tool. It has a set of

plugins to which we can add more.

22.4 License

Probes License

Physical and VM Apache 2.0

Software and KPI Affero GPL

47 of 51

23 Monitoring

23.1 Overview
Every distributed system needs to incorporate monitoring mechanisms in order be

able to check the health and performance of the system. This is especially true

in cloud services that are governed by Service Level Agreements (SLAs) and so

the system needs to be able to constantly check that the level of service adheres

to the terms of the agreement. As different types of monitoring information are

required (e.g. physical, virtual hardware, software, KPIs), corresponding probes

(see Section 22), are available to provide this information. Thus, the monitoring

service is a RESTful service providing aggregation of monitoring data for system

administrators and end-users consumption.

Monitoring differs from accounting and billing, in that it provides a current,

real-time view of the cloud service and its main components and services. In com-

parison, accounting and billing provides aggregated information, over time, on key

items.

23.2 Main Interfaces with Other Services/Components
The monitoring service consumes data from the collector service.

23.3 Internal Composition
The monitoring service is composed of a set of components:

• Data Collector and Aggregator: It gathers monitoring information from the

collector service, aggregating information according to the data model and

storing it in the database.

• Monitoring database: This is a database containing history metrics. These

metrics are organized according to a data model, including aggregated infor-

mation, such as service layer or virtual data center layer.

• API: It is the REST monitoring API implementation which allows querying

monitoring information.

This service will be implemented in the project, although has significant de-

pendencies on other services to provide the complete functionality.

48 of 51

Table 23.1: Dependencies for Monitoring

Tomcat application server

Restlet Java framework for RESTful applications

MySQL Monitoring database

23.4 License

License Affero GPL

Git repository

49 of 51

24 Billing

24.1 Overview
The billing service provides consolidated information on the consumption of re-

sources on the cloud. This data includes compute, storage and network resources.

The end-users can generate their own billing statement, and the service can send

via email, on a regular basis, billing statements.

Eventually, the billing service could include SLA violations and/or other by-

products of resource utilization.

24.2 Main Interfaces with Other Services/Components
The billing service interfaces with the collector services to retrieve consumption

data.

24.3 Internal Composition
Like all the web services in StratusLab, the billing service will expose a RESTful

web service. In terms of implementation, we are hopeful to be able to reuse results

from other projects, such as VENUS-C, in order to reduce development effort.

24.4 License
Apache 2.0.

50 of 51

25 Conclusion

This document describes a complete and ambitious architecture for an IaaS cloud

distribution, building on the services provided as part of the v1.0 release delivered

in the summer of 2011. From v1.0 to v2.0, incremental versions of the StratusLab

distribution will be built and released, providing an increasing amount of the func-

tionality described in this document as well as changes to existing services that

improve their robustness and performance.

Given time and resource constraints, the project will concentrate on the most

important elements of this architecture; consequently, some elements may be de-

veloped during the evolution of the StratusLab distribution after the project ends.

It is a roadmap that guides the project’s developments to enable to deliver software

with relevant cloud functionality. As we realize this architecture, gather further

feedback, and investigate new cloud innovations, we may find alternative and po-

tentially better ways of accomplishing our goals and may consequently alter the

development priorities and architecture.

51 of 51

	List of Figures
	Executive Summary
	Introduction
	Architecture Overview
	VM Manager (OpenNebula) Authentication Proxy
	Overview
	Main Interfaces with Other Services/Components
	License

	Persistent Disk Service
	Overview
	Main Interfaces with Other Services/Components
	License

	Registration Service
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Network Manager
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Marketplace
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Image Manager
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	VM Manager (OpenNebula)
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	OpenNebula Driver/Extensions
	Overview
	Main Interfaces with Other Services/Components
	License

	Collector Service
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Archivers
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Inter-cloud Connector
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	End-User Command-Line Client
	Overview
	Main Interfaces with Other Services/Components
	License

	System Administrator Command-Line Client
	Overview
	Main Interfaces with Other Services/Components
	License

	Service Manager (Claudia) Authentication Proxy
	Overview
	Main Interfaces with Other Services/Components
	License

	Service Manager (Claudia)
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Claudia Administrator and End-User Command Line Client
	Overview
	Main Interfaces with Other Services/Components
	License

	System Administrator Dashboard
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	User Dashboard
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Probes
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Monitoring
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Billing
	Overview
	Main Interfaces with Other Services/Components
	Internal Composition
	License

	Conclusion

