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Abstract

Diabetes mellitus is associated with increased risk for cardiovascular disorders, which are 

major causes of mortality in this disease.  Hyperhomocysteinemia, defined by high plasma 

homocysteine  levels,  is  an independent  risk  factor  for  the  development  of  cardiovascular 

diseases. Type 2 diabetic patients have higher circulating homocysteine levels than healthy 

subjects and these levels are even higher in plasma of obese than nonobese diabetic patients. 

Homocysteine metabolism that has been studied in 2 animal models of type 2 diabetes with 

obesity, led to conflicting data. The aim of the present study was to analyze homocysteine 

metabolism in a spontaneous nonobese model of type 2 diabetes, the Goto-Kakizaki (GK) rats 

at  various  successive  and  well  characterized  stages  of  the  disease:  during  early postnatal 

normoglycemia,  at  onset  of  hyperglycemia  (around  weaning),  and  during  chronic  mild 

hyperglycemia with progressive insulin resistance. Compared to age-matched Wistar controls, 

GK  rats  showed  lower  plasma  levels  of  homocysteine  and  a  falling  trend  in  its  major 

byproduct antioxidant, glutathione, from the prediabetic stage onwards. Concomitantly, GK 

rats  exhibited  increased  liver  activity  of  cystathionine  beta  synthase,  which  catalyzes  the 

condensation of homocysteine with serine in the first step of the transsulfuration pathway. 

These results emphasize a strong association between homocysteine metabolism and insulin 

via the first step of the hepatic transsulfuration pathway in GK rats.

Research Highlights
GK rats have lower plasma homocysteine level
GK rats have lower plasma glutathione level 
Cystathionine beta synthase activity is increased in liver of GK rats

Keywords:  homocysteine,  cystathionine beta synthase,  glutathione,  type 2 diabetes,  Goto-

Kakizaki rats, prediabetes
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List  of  abbreviations : CBS,  Cystathionine  beta  synthase;  DTNB,  5,5’-dithiobis-(2-

nitrobenzoic acid) ; GK, Goto-Kakizaki; GSH, glutathione; Hcy, Homocysteine; HFS, high-

fat-sucrose; STZ, streptozotocin; tHcy, total Hcy; ZDF, Zucker diabetic fatty 
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1. Introduction

Cardiovascular  diseases  are  the  major  cause  of  death  in  diabetic  patients  [1]. 

Hyperhomocysteinemia,  defined  by high  plasma  homocysteine  (Hcy)  levels,  is  now well 

recognized as an independent risk factor for the development of cardiovascular diseases [2]. 

Hcy, an intermediate in the sulfur amino acid metabolism [3], is metabolized by remethylation 

to methionine or transsulfuration  to cysteine.  Cystathionine beta synthase (CBS),  the first 

enzyme involved in the transsulfuration pathway,  catalyzes  the condensation of Hcy with 

serine to form cystathionine. Cystathionine is subsequently hydrolyzed to form cysteine and 

cysteine,  in  turn,  can  be  incorporated  into  protein,  or  used  to  synthesize  the  antioxidant 

glutathione (GSH) via the  γ-glutamyl  cycle.  GHS is  either used as cellular  antioxidant  or 

exported and becomes  a substrate  for  γ-glutamyl  transpeptidase.  The action of  γ-glutamyl 

transpeptidase leads to the formation of cysteinylglycine, which is subsequently cleaved by 

dipeptidase to form cysteine and glycine. Cysteine can then be transported into the cell and 

thus be again used for GSH synthesis.

The relationship between diabetes and plasma Hcy levels has been studied in both humans 

and rodents. Plasma Hcy levels have been found to be higher in type 2 diabetic patients than 

in  healthy  subjects  and  also,  among  type  2  diabetic  patients,  in  obese  than  in  nonobese 

individuals  [4].  By contrast,  reduced serum Hcy levels  were described in type  2 diabetic 

patients  without  cardiovascular  complications  or  diabetic  nephropathy  [5].  Chronic 

hyperglycemia  was  thus  suggested  to  affect  its  renal  excretion,  or  accelerate  hepatic 

transsulfuration secondary to insulin disorders [5]. Moreover, subjects with insulin resistance 

had significantly lower serum Hcy levels compared with non-insulin resistant subjects [6]. 

Animal  models  of  type  2  diabetes  were  then  used  to  better  understand  the  relationship 

between insulin resistance and/or hyperglycemia and circulating Hcy levels. In long-term fed 

rats with a high-fat-sucrose (HFS) diet, which induces hyperinsulinemia, insulin resistance 
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and obesity but no hyperglycemia, plasma Hcy levels were higher than in control rats fed at 

low-fat, low-carbohydrate diet [7]. The Zucker diabetic fatty (ZDF) rat is a spontaneous type 

2 diabetic obese animal model characterized by a prediabetic insulin-resistant stage followed 

by a rapid transition to frank hyperglycemic stage due to relative hypoinsulinemia. In the ZDF 

rat,  plasma Hcy levels were reduced at  both prediabetic  and diabetic  stages,  compared to 

respective control groups [8]. Thus, conflicting data were observed in 2 rat models of type 2 

diabetes with obesity. 

The Goto-Kakizaki (GK) rats is another spontaneous and well  characterized but nonobese 

model of type 2 diabetes [9]. In this model, a normoglycemic period, which associates low 

insulinemia  but  elevated  whole  body  insulin  sensitivity  precedes  onset  of  hyperglycemia 

around weaning [10].  The aim of the present  study was to analyze  Hcy metabolism at  4 

crucial steps of the GK rat life: in normoglycemic 2-week-old neonates and at 1 month of age 

(onset of hyperglycemia), and 2 of 3 months of age (aggravation of insulin resistance) [11].

5
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2. Materials and methods

2.1. Rats

All  Animal  care  was  conducted  in  accordance  with  internal  guidelines  of  the  French 

Agriculture Ministry for animal handling. Rats were housed in a controlled environment with 

unlimited access to food and water on 12-h light/dark cycle. Number of rats and suffering 

were minimized as possible. All animal experiments were conducted on age-matched male 

Goto-Kakizaki (GK) and nondiabetic (control) Wistar rats from our laboratory [11]. The GK 

line was established by repeated inbreeding from Wistar rats selected at the upper limit of 

normal distribution for glucose tolerance [9, 11].

2.2. Blood, tissue collection and assays

Male rats were weighed, killed by decapitation and blood samples were collected and placed 

on ice immediately. Basal fed morning glycemia was determined with a glucometer. Plasma 

was isolated by centrifugation at 2500 g for 15 min at 4°C. Liver were harvested, snap-frozen 

and stored at -80°C until use. Plasma total Hcy (tHcy), defined as the total concentration of 

Hcy after quantitative reductive cleavage of all disulfide bonds, and total glutathione (GSH) 

were assayed by using the fluorimetric high-performance liquid chromatography method as 

previously described [12]. The inter- and intra-assay coefficients of variation for mean tHcy 

level were 4.2% and 6.3% respectively and the linearity was from 1 to 100 µM [13]. Serum 

insulin  was  assayed  by  ELISA  (Rat  insulin  Elisa,  cat  10-1124-01,  Mercodia,  Uppsala, 

Sweden) [14].

2.3. CBS Enzyme Activity assays

Determination of CBS activity was assayed on 400 µg of total proteins obtained from liver  

samples,  as  described  [15]. Proteins  were  incubated  for  1  h  at  37°C  with  1  mM  of 
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propargylglycine, 0.2 mM of pyridoxal phosphate, 10 mM of L-serine, 10 mM of DL-Hcy, 

0.8 mM of SAM, using DTNB (5,5’-dithiobis-(2-nitrobenzoic  acid))  based-assay.  All  the 

chemical products were obtained from Sigma (Sigma-Aldrich, France). 

2.4. Data analysis

Statistical  analysis  was done with one-way ANOVA followed by Student’s unpaired  t-test 

using Statview software. In both cases, Student-Newman-Keuls tests were used for multiple 

pairwise  comparaisons.  The  results  are  expressed  as  mean  ±  SD.  Data  were  considered 

significant when p<0.05. 
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3. Results and discussion

3.1. Body weight and metabolic parameters in GK rats as a function of age

As previously described [10], male GK rat body weights were significantly lower compared 

to  age-matched Wistar  rats  (Fig.  1A).  Circulating  glucose levels  were similar  in  GK and 

Wistar rats at 2 weeks of age (Fig. 1B), but significantly increased in GK rats from 1 month of 

age (weaning) (Fig. 1B). Indeed, GK rats become hyperglycemic around weaning, when the 

diet shifts from lipid-enriched maternal diet to carbohydrate-enriched laboratory chow [16].

In 2-week-old GK rats, basal insulinemia was significantly decreased (Fig. 1C). However, 

because  GK  neonates  exhibit  a  transient  increase  in  whole  body  insulin  sensitivity  as 

previously described [10],  they stay normoglycemic  until  around weaning.  Then, GK rats 

displayed mildly elevated but not statistically significant insulin levels at 1 month of age and 

the hyperinsulinemia became statistically significant at 2 and 3 months of age, once insulin 

multi-organ resistance and especially liver insulin resistance has been established [11, 17]. 

Thus,  in  addition  to  HFS-fed  rats  and  ZDF rats,  GK rats  appeared  to  be  a  suitable  but 

nonobese  model  to  analyze  Hcy  metabolism  in  association  with  alterations  of  glucose 

metabolism. 

3.2. Hcy metabolism in GK rats as a function of age

Figure 2A shows that GK plasma tHcy levels were only about 45% of that found in age-

matched Wistar rats  in both the prediabetic  and diabetic  periods.  These low plasma tHcy 

levels are in agreement with those described in both type 1 STZ-induced diabetic rat model 

[18] and spontaneous type 2 diabetic obese ZDF rats [8]. 

From the prediabetic stage onwards (Fig. 2B), GK rat also showed a falling trend in plasma 

GSH levels, the effect being only significant at 2 weeks and 3 months of age. GSH is the most 

abundant  low-molecular-weight  thiol  and plays  a  key role  in  the  cellular  defense  against 
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oxidative stress. GSH is a reference of antioxidant and its  antiatherogenic properties have 

been  demonstrated  in  humans  and  rodents  [19,  20].  Here,  it  should  be  underlined  that 

decreased plasma GSH levels are indicative of a compromise protection against oxidative 

stress, which is already present in prediabetic GK animals [21]. 

The hepatic activities of several enzymes involved in the remethylation and transsulfuration 

pathways that play a role in the removal of Hcy were found to be increased in ZDF rat liver 

[8]. Previous results emphasized a direct effect of insulin in repressing CBS expression in 

both human and rat cultured hepatocytes [22]. Therefore, to examine whether the lowering of 

GK rat plasma Hcy levels, reflecting cellular and mainly liver production, could result from 

increased Hcy catabolism through the first step of the transsulfuration pathway, we measured 

the CBS enzyme activity. Given that the majority of dietary methionine is metabolized in the 

liver, which contributes to much of the plasma Hcy levels, we analyzed the hepatic enzyme 

activity  [23]. Fig. 2C shows that the hepatic CBS activity was significantly elevated in GK 

versus Wistar rats and, once again, the effect was present from the prediabetic stage onwards . 

Thus, low plasma tHcy levels were associated with increased hepatic CBS enzyme activity in 

GK rat. However, increased CBS activity does not imply increased transsulfuration flux. This 

flux is determined by the rate at which methionine enters into hepatic metabolism, which will 

be  largely  determined  by  dietary  methionine  consumption.  In  the  experimental  mouse 

hyperhomocysteinemia induced by methionine-enriched diet, increase plasma Hcy levels are 

accompanied  by proportional  increased  GSH levels,  without  modification  of  cysteine  and 

cysteinylglycine levels  [24]. The major effect of increased CBS activity is to decrease the 

steady-state Hcy concentration at which transsulfuration occurs, and then contributes to the 

decrased  plasma  Hcy  level.  Therefore,  decreased  circulating  GSH  levels  may  reflect 

decreased circulating Hcy levels in GK rats.
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Similar  data demonstrate  low plasma tHcy levels  with elevated hepatic  CBS activity in 3 

different rat models of diabetes, STZ-induced type 1 diabetes [18] and type 2 diabetes, either 

obese ZDF [8] or nonobese GK rats (the present study). Thus, the association between low 

plasma tHcy levels and high CBS activity does not depend on the type of diabetes and the 

presence of obesity,  and is observed during the short period of prediabetes in both type 2 

models. 

The repression of hepatic CBS expression and activity by insulin has been demonstrated in 

STZ-induced type 1 (insulin-dependent) diabetic rats [18, 22]. In this model, increased hepatic 

CBS  enzyme  activity  was  associated  with  elevated  CBS  mRNA  expression  and  insulin 

treatment normalized hepatic CBS expression and activity. Type 2 diabetes is characterized 

by relative lack of insulin and/or the resistance to the action of insulin.  Insulin resistance is a 

multisite dysfunction that involves, in particular, the liver  [25]. Insulin signaling in liver is 

critical  in  regulating  glucose  homeostasis  and maintaining  normal  hepatic  function.  At  1 

month of age, GK rats already exhibit increased hepatic glucose production specifically linked 

to  early liver  insulin  resistance.  These data  highlight  a  possible  primary role  of  the liver 

defect, and not simply a late consequence of chronic hyperglycemia  [26]. Thus, the lack of 

functional insulin or decreased insulin sensitivity (insulin resistance) in the liver is probably at 

play very early,  during prediabetes  in both the ZDF and GK type  2 models,  resulting in 

increased hepatic CBS activity and low plasma Hcy levels. Indeed, during the prediabetic 

stage, GK rats are mostly characterized by very low insulin levels, while  ZDF rats already 

exhibit  insulin resistance concomitant with hyperinsulinemia  [8]. After diabetes onset, GK 

rats exhibit progressive hepatic insulin resistance and hyperinsulinemia [17], while ZDF rats 

become hypoinsulinemic  in  addition  to  being  insulin  resistant  [8].  Therefore,  the  lack  of 

insulin or the resistance to insulin action rather than hyperglycemia appear to increase hepatic 

CBS activity and consequently decrease plasma Hcy levels. 
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Because of anti-inflammatory effects of insulin [27], decreased insulin levels in GK rats from 

end of  fetal  life  onwards  [28]  might  be  partly  responsible  for  various  neonatal  oxidative 

stress-related  signs,  like  oxidized  state  of  GSH  in  red  blood  cells  associated  with  low 

circulating  GSH  and  elevated  chemokine  levels,  and  high  islet  ROS  concentration  and 

alterations  in  GSH-  and  thioredoxin-related  gene  expression  [21].  We  suggest  that  early 

insulin deficit may cause systemic and tissue oxidative stress in GK rats. This hypothesis is in 

agreement with: 1) the situation of prediabetic insulin-resistant (i.e., with a relative lack of 

insulin) in ZDF rats; 2) the ‘unexpected’ inverse relationship between insulin resistance and 

serum Hcy in healthy subjects [6]. Thus, hypohomocysteinemia associated with low systemic 

levels of GSH (the latter has antiatherogenic properties in humans and rodents [19, 20]) rather 

than hyperhomocysteinemia might be a risk factor for CVD in insulin resistance and diabetes 

in humans and rodents. 

By  contrast,  hyperhomocyteinemia  in  type  1  and  type  2  diabetic  patients  appears  to  be 

dependent on the presence of nephropathy [29, 30]. GK rat does not spontaneously develop 

kidney  disease.  However,  secondary  injurious  mechanisms  such  as  hypertension  induces 

progressive nephropathy  [31]. By contrast,  long-term (from 6 months to 2 years) HFS-fed 

rats,  which  are  obese,  normoglycemic,  hyperinsulinemic,  and  insulin  resistant,  display 

hyperhomocysteinemia and lower hepatic CBS enzyme activity and mRNA expression than 

normally  fed  rats  [7].  These  HFS-fed  rats exhibit  hypertension,  and  their 

hyperhomocysteinemia probably result from kidney alterations which develop rapidly after a 

few  weeks  of  diet  [32,  33].  Altered  CBS  activity  in  HSF-fed  rat  kidney  may  cause 

hyperhomocysteinemia  and  diminish  hepatic  CBS  activity  [34].  Accordingly, 

hyperhomocysteinemia in obese and/or diabetic patients might more probably reflect kidney 

alteration.
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In conclusion, the spontaneous nonobese type 2 diabetic GK rat, characterized by an early 

deficit in functional beta-cell mass, shows decreased levels of circulating Hcy and a falling 

trend  in  its  major  byproduct  antioxidant  GSH  from  the  prediabetic  stage  onwards. 

Concomitant  increased  hepatic  CBS  activity  emphasizes  the  role  of  insulin  in  Hcy  and 

antioxidant GSH metabolism.
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Figure legends

Fig. 1. Age-dependent changes in body weight, and in basal plasma glucose and insulin levels 

in  GK  and  Wistar  rats.  Postnatal  growth  (A).  Glucose  (B)  and  insulin  (C)  levels  were 

determined.*p<0.05, **p<0.005, ***p<0.0005 versus age-matched Wistar group.

Fig. 2.  Age-dependent changes in plasma Hcy and GSH levels,  and relative hepatic CBS 

activity. Hcy (A) and GSH (B) levels were determined in plasma. (C) CBS activity assay was 

performed on extracts from liver of individual rats. CBS activity values are normalized from 

age-matched Wistar rats. *p<0.05, *p<0.005, *p<0.0005 versus age-matched Wistar group.
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