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Abstract. We state and analyze a generalization of the “truncation trick”
suggested by Gourdon and Sebah to improve the performance of power series
evaluation by binary splitting. It follows from our analysis that the values of
D-finite functions (i.e., functions described as solutions of linear differential
equations with polynomial coefficients) may be computed with error bounded
by 2−p in time O(p(lg p)3+o(1)) and space O(p). The standard fast algorithm
for this task, due to Chudnovsky and Chudnovsky, achieves the same time
complexity bound but requires Θ(p lg p) bits of memory.

1. Introduction

Binary splitting is a well-known and widely applicable technique for the fast
multiple precision numerical evaluation of rational series. For any series

∑

n sn

with lim supn |sn|1/n < 1 whose terms sn obey a linear recurrence relation with
polynomial coefficients, e.g.,

ln 2 =

∞∑

n=0

sn, sn =
1

(n + 1)2n+1
, 2(n + 2)sn+1 − (n + 1)sn = 0,

the binary splitting algorithm allows one to compute the partial sum
∑N−1

n=0 sn

in O(M(N(lg N)2)) bit operations [5, 3]. Here M(n) stands for the complexity
of multiple precision integer multiplication, and lg denotes the binary logarithm.
As N = O(p) terms of the series are enough to make the approximation error
less than 2−p, the complexity of the algorithm is softly linear in the precision p,
assuming M(n) = O(n(lg n)O(1)).

Methods based on binary splitting tend to be favored in practice even in cases
when asymptotically faster algorithms (typically AGM iterations [2]) would apply.
One high-profile example is the computation of billions of digits of classical con-
stants such as π, ζ(3) or γ. Basically all record computation in recent years were
achieved by evaluating suitable series using variants of binary splitting [9, 28].

A drawback of the classical binary splitting algorithm, both from the complexity
point of view and in practice, is its comparatively large memory usage. Indeed, the
algorithm amounts to the computation of a product tree of matrices derived from
the recurrence—see Sect. 3 below for details. The intermediate results are matrices
of rational numbers whose bit sizes roughly double from one level to the next. Near
the root, their sizes can (and in general do) reach Θ(p lg p), even though the output
has size Θ(p).

However, the space complexity can be lowered to O(p) using a slight variation
of the classical algorithm. The basic idea is to truncate the intermediate results
to a precision O(p) when they start taking up more space than the final result.
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Of course, these truncations introduce errors. To make the trick into a genuine
algorithm, we need to analyze the errors, add a suitable number of “guard digits”
at each step and check that the space and time complexities of the resulting process
stay within the expected bounds.

The opportunity to improve the practical behavior of binary splitting using trun-
cations has been noticed by authors of implementations on several occasions over
the last decade or so. Gourdon and Sebah [10] describe truncation as a “crucial”
optimization. Besides the expected drop of memory usage, they report running
time improvements by an “appreciable” constant factor. Cheng et al. [4] compare
truncation with alternative (less widely applicable but sometimes more efficient)
approaches. Most recently, Kreckel [14] explicitly asks how to make sure that the
new roundoff errors do not affect the correctness of the result.

Indeed, the above-mentioned error analysis did not appear in the literature until
very recently. An article by Yakhontov [26, 27] now provides the required bounds
in the case of the generalized hypergeometric series pFq, which covers all examples
where the truncation trick had been used before. But the applicability of the
method is actually much wider.

The purpose of this note is to present a more general and arguably simpler analy-
sis. Our version is more general in two main respects. First, besides hypergeometric
series, it applies to the solutions of linear ordinary differential equations with ra-
tional coefficients, also known as D-finite (or holonomic) series [21]. D-finite series
are exactly those whose coefficients obey a linear recurrence relation with rational
coefficients, while hypergeometric series correspond to recurrences of the first order.
Second, we take into account the coefficient size of the recurrence that generates
the series to be computed. Allowing the size of the coefficients to vary with the
target precision p makes it possible to use the modified binary splitting procedure
as part of the “bit burst” algorithm [5] to handle evaluations at general real or
complex points approximated by rationals of size Θ(p).

Additionally, our analysis readily adapts to other applications of binary splitting.
The simplicity and generality of the proof are direct consequences of viewing the
algorithm primarily as the computation of a product tree. See Gosper [8] and
Bernstein [1, §12–16] for further comments on this point of view.

The remainder of this note is organized as follows. Section 2 contains some
notations and assumptions. In Sect. 3, we recall the standard binary splitting
algorithm, which will serve as a subroutine in the linear-space version. Then, in
Sect. 4, we state and analyze the “truncated” variant that achieves the linear space
complexity for general D-finite functions. Finally, Sect. 5 offers a few comments
on other variants of the binary splitting method and possible extensions of the
analysis.

2. Setting

The performance of the binary splitting algorithm crucially depends on that of
integer multiplication. Following common usage, we denote by M(n) a bound on the
time needed to multiply two integers of at most n bits. Currently the best theoret-
ical bound [7] is M(n) = O(n(lg n) exp O(lg∗ n)), where lg∗ n = min{k lg◦k n 6 1}.
In practice, implementations such as GMP [11] use variants of the Schönhage-
Strassen algorithm of complexity O(n(lg n)(lg lg n)). We make the usual assump-
tion [25] that the function n 7→ M(n)/n is nondecreasing. It follows that M(n) +
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M(m) 6 M(n + m). We also assume that the space complexity of integer multipli-
cation is linear, which is true for the standard algorithms.

Write K = Q(i), and define the bit size of a number (x + iy)/w ∈ K (where
w, x, y ∈ Z) as ⌈lg w⌉ + ⌈lg x⌉ + ⌈lg y⌉ + 1. Consider a linear differential equation
with coefficients in K(z). It will prove convenient to clear all denominators (both
polynomial and integer) and multiply the equation by a power of z to write it as

(1)
(

ar(z)
(

z
d

dz

)r

+ · · · + a1(z)z
d

dz
+ a0(z)

)

· y(z) = 0, ak ∈ Z[i][z].

Let s = maxk deg ak, and let h1 denote the maximum bit size of the coefficients of
the ak. Although our complexity estimates depend on r and h1, we do not consider
more general dependencies on the equation. Thus, the ak are assumed to vary only
in ways that can be described in terms of these two parameters. Specifically, we
assume that s = O(1) and that the coefficients of ak(z)/ar(0) are all restricted to
some bounded domain.

We also assume that 0 is an ordinary (i.e. nonsingular) point of (1). This implies
that ar(0) 6= 0 and s > r. The case of regular singular points (those for which we
still have ar(0) 6= 0 but possibly s < r [13, Chap. 9]) is actually similar [23, 17]; we
focus on ordinary points to avoid cumbersome notations.

Let ρ = min{|z| : ar(z) = 0} ∈ (0, ∞]. Then any formal series solution y(z) =
∑

n>0 ynzn of (1) converges on the disk |z| < ρ. We select a particular solution

(say, by specifying initial values y(0), . . . , y(r−1)(0) in some fixed, bounded domain),
and an evaluation point ζ ∈ K with |ζ| < ρ. Let h2 denote the bit size of ζ, and
let h = h1 + h2. Again, h2 is allowed to grow to infinity, but we assume that |ζ| is
bounded away from ρ.

Given p > 0, our goal is to compute a complex number ω ∈ K such that
|ω − y(ζ)| 6 2−p. By a classical argument, which can be reconstructed by sub-
stituting a series with indeterminate coefficients into (1), the sequence (yn) obeys
a recurrence relation of the form

(2) b0(n)yn+r + b1(n)yn+r−1 + · · · + bs(n)yn+r−s = 0, bj ∈ K [n] .

Writing ak(z) = ak,0 + ak,1z + · · · + ak,szs, the bj are given explicitly by

(3) bj(n) =
r∑

k=0

ak,j(n + r − j)k.

Based on the matrix form of the recurrence (2), set

(4) B(n) =

(
ζC(n) 0

R 1

)

∈ K(n)(s+1)×(s+1)

where

C(n) =








1
. . .

1

− bs(n)
b0(n) · · · · · · − b1(n)

b0(n)








, R =
(

0 . . . 0
︸ ︷︷ ︸

s−r zeroes

1 0 . . . 0
︸ ︷︷ ︸

r−1 zeroes

)

.

Let P (a, b) = B(b − 1) · · · B(a + 1)B(a) for all a 6 b. (In particular, P (a, a) is the
identity matrix.)
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Algorithm 1. BinSplit(a, b)
1 If b − a 6 (some threshold)

2 Return B̂(b − 1) · · · B̂(a) where B̂ is defined by (5)
3 else

4 Return BinSplit(⌊ a+b
2 ⌋, b) · BinSplit(a, ⌊ a+b

2 ⌋)

One may check that b0(n) 6= 0 for n > 0, due to the fact that 0 is an ordinary

point of (1). Thus the computation of a partial sum SN =
∑N−1

n=0 ynζn reduces to
that of the matrix product P (0, N). Indeed, we have

(yn+r−sζn, . . . , yn+r−1ζn, Sn)T = P (0, n) (yr−s, . . . , yr−1, 0)T

where yr−s = 0, . . . , y−1 = 0, y0, . . . , yr−1 are easily determined from the initial
values of the differential equation.

3. Review of the Classical Binary Splitting Algorithm

Since the entries of the matrix B(n) are rational functions of n, the bit size of
P (a, b) grows as O((b − a) lg b) when b, (b − a) → ∞. This bound is sharp in the
sense that it is reached for some (in fact, most) differential equations. Computing
P (a, b) as B(b−1) · [B(b − 2) · [· · · B(a)]] then takes time at least quadratic in b−a,
as can be seen from the combined size of the intermediate results. The term “binary
splitting” refers to the technique of reorganizing the product into a balanced tree of
subproducts, using the relation P (a, b) = P (m, b) · P (a, m) with m = ⌊ 1

2 (a + b)⌋,
and so on recursively.

A slight complication stems from the fact that removing common divisors be-
tween the numerators and denominators of the fractions appearing in the interme-
diate P (a, b) ∈ Kr×r would in general be too expensive. Multiplying the numer-
ators and denominators separately and doing a single final division yields better
complexity bounds. Let

(5) B̂(n) = b0(n)ζ̌B(n) ∈ Z[i][n](s+1)×(s+1), ζ = ζ̂/ζ̌ (ζ̂ ∈ Z [i] , ζ̌ ∈ Z).

The entries of B̂(n) are polynomials of degree at most r and bit size O(h). To

compute P (a, b) by binary splitting, we multiply the B̂(n) for a 6 n < b using
Algorithm 1, and then divide the resulting matrix by its bottom right entry. The
general algorithm considered here was first published by Chudnovsky and Chud-
novsky [5], with (up to minor details) the analysis summarized in Prop. 1. The
idea of binary splitting was known long before [8, 1].

Proposition 1. [5] As b, N = b − a, h, r → ∞ with r = O(N), Algorithm 1 com-
putes an unreduced fraction equal to P (a, b) in O(M

(
N(h+r lg b)

)
lg N) operations,

using O
(
N(h + r lg b)

)
bits of memory. Assuming M(n) = n(lg n)(lg lg n)O(1), both

bounds are sharp.

sketch. The bit sizes of the matrices that get multiplied together at any given
depth 0 6 δ < ⌈lg N⌉ in the recursive calls are at most C2−δN(h+d lg b) for some C.
Since there are at most 2δ such products and the multiplication function M(·) was
assumed to be subadditive, the contribution of each level is bounded by M(C(b −
a)(h + d lg b)), whence the total time complexity. See [5, 17] for details. The
intermediate results stored or multiplied together at any stage of the computation
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are disjoint subproducts of B(b − 1) · · · B(a), and we assumed the space complexity
of n-bit integer multiplication to be O(n), so the space required by the algorithm is
linear in the combined size of the B(n). Finally, it is not hard to construct examples
of differential equations that reach these bounds. �

Remark 1. The link between our setting and the more common description of
the algorithm for hypergeometric series is as follows. In the notation of Haible
and Pananikolaou [12] also used in Yakhontov’s article, the partial sums of the
hypergeometric series are related to its defining parameters a, b, p, q by

(

s̃(i + 1)

S(i)

)

=

(
p(i)
q(i) 0

a(i)
b(i)

p(i)
q(i) b(i)q(i)

)(

s̃(i)

S(i − 1)

)

, s̃(i) =
b(i)

a(i)
s(i).

This equation becomes
( B(i)

T (0,i)

)
=
( b(i)p(i) 0

a(i)p(i) b(i)q(i)

)(B(i−1)P (i−1)
T (0,i−1)

)
upon clearing de-

nominators. The standard recursive algorithm for hypergeometric series may be
seen an “inlined” computation of the associated product tree. Each recursive step
is equivalent to the computation of the matrix product

(
BrPr 0

Tr BrQr

)(
BlPl 0

Tl BlQl

)
.

We return to the evaluation of a D-finite power series within its disk of conver-
gence. From the differential equation (1), suitable initial conditions, the evaluation
point ζ and a target precision p, one can compute [18] a truncation order N such
that |SN − y(ζ)| 6 2−p and

(6)

{

N ∼ Kp =
(
lg(|ζ| /ρ)

)−1
p, if ρ < ∞

N = Θ(p/ lg p), if ρ = ∞.

Combined with these estimates, Proposition 1 implies the following.

Corollary 1. Write ℓ = h + r lg p. Under the assumptions of Proposition 1, one
can compute y(ζ) in O(M(ℓp lg p)) bit operations, using O(ℓp) bits of memory. The
complexity goes down to O(M(ℓp)) operations and O(ℓp/ lg p) bits of memory when
ar(z) is a constant.

This result is the basis of more general evaluation algorithms for D-finite func-
tions [5]. Indeed, binary splitting can be used to compute the required series sums
at each step when solving a differential equation of the form (1) by the so-called
method of Taylor series [15]. Corollary 1 thus extends to the evaluation of y outside
the disk |z| < ρ. Chudnovsky and Chudnovsky further showed how to reduce the
cost of evaluation from Ω(hp) = Ω(p2) to softly linear in p when h = Θ(p). This
last situation is very natural since it covers the case where the point ζ is itself
a O(p)-digits approximation resulting from a previous computation. The method,
known as the bit burst algorithm, consists in solving the differential equation along
a path made of approximations of ζ of exponentially increasing precision. Its time
complexity is O(M(p(lg p)2)) [16]. The improvements from the next section apply to
all these settings. See also [24] for an overview of more sophisticated applications.

4. “Truncated” Binary Splitting

The superiority of binary splitting over alternatives like summing the series in
floating-point arithmetic results from the controlled growth of intermediate results.
Indeed, in the product tree computed by Algorithm 1, the exact representations of
most subproducts P (a, b) are much more compact than Θ(p)-digits approximations
would be. However, as already mentioned, the bit sizes of the P (a, b) also grow
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larger than p near the root of the tree. The size of a subproduct appearing at
depth δ is roughly 2−δN(h + r lg N). Assuming N = Θ(p), this means that the
intermediate results get significantly larger than the output in the top Θ(lg lg p)
levels of the tree.

A natural remedy is to use a hybrid of binary splitting and naive summation.
More precisely, we split the full product P (0, N) into ∆ = Θ(ln N) subproducts of
O(p) bits each, which are computed by binary splitting. The results are accumu-
lated by successive multiplications at precision O(p).

We make use of the following notations to state and analyze the algorithm. In
Equations (7) to (11) below, the coefficients of a general matrix A ∈ Ck×k are
denoted ap,q = xp,q + iyp,q (1 6 p, q 6 k) with xp,q, yp,q ∈ R. Let ‖·‖ be a
submultiplicative norm on Ck×k, and let βk > 0 be such that

(7) ‖A‖ 6 βkN (A), N (A) = max{|xi,j | , |yi,j |}16i,j6k.

For definiteness, assume for now that ‖·‖ = ‖·‖1 is the matrix norm induced by the
vector 1-norm. (We will discuss this choice later.) Then it holds that

(8) N (A) 6 ‖A‖1 =
k

max
j=1

k∑

i=1

|ai,j | 6
√

2kN (A)

and

(9) ‖P (a, b)‖ 6

b−1∏

n=a

‖B(n)‖ 6

b−1∏

n=a

(

1 + |ζ| + |ζ| s
max
k=1

∣
∣
∣
∣

bk(n)

b0(n)

∣
∣
∣
∣

)

.

Observe that, since 1 is an eigenvalue of B(n) and the norm ‖·‖ is assumed to be
submultiplicative, we have ‖B(n)‖ > 1 for all n. Besides, it is clear from (3) that
‖B(n)‖ is bounded.

Given a ∈ Q and ε < 1, let

(10) Trunc(a, ε) = sgn(a) ⌊2e |a|⌋ 2−e, e =
⌈
lg ε−1

⌉
.

We have |Trunc(a, ε) − a| 6 ε; the size of Trunc(a, ε) is O(lg ε−1) for bounded a;
and Trunc(a, ε) may be computed in O(M(h + e)) bit operations where h is the bit
size of a. We extend the definition to matrices A ∈ Kk×k by

(11) Trunc(A, ε) =
(
Trunc(xp,q, β−1

k ε) + i Trunc(yp,q, β−1
k ε)

)

16p,q6k
,

so that again ‖Trunc(A, ε) − A‖ 6 ε. Note that we often write expressions of the
form Trunc(a⋆b, ε) for some operator ⋆. Though this does not affect our complexity
bounds, it is usually better to compute the approximate value of a⋆b directly instead
of starting with an exact computation and truncating the result. See Brent and
Zimmermann [3] for some relevant algorithms.

The complete binary splitting algorithm with truncations is stated as Algo-
rithm 2. Its key properties are summarized in the following propositions.

Proposition 2. The output P̃ = TruncBinSplit(p) of Algorithm 2 is such that
‖P̃ − P (0, N)‖ 6 2−p.

Proof. Set P (q) = P (0, ⌊ q
∆N⌋) and Q(q) = P (⌊ q

∆ N⌋, ⌊ q+1
∆ N⌋). Then, for 0 6 q 6

∆, it holds that

(12) ‖P̃ (q) − P (q)‖ 6
q

∆

ε

M∆−q
.
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Algorithm 2. TruncBinSplit(p)
The notation X(q), q = 0, 1, . . . refers to a single memory location X at different

points q of the computation.

1 Set ε = 2−p

2 Compute N such that |SN − y(ζ)| 6 ε [22, 18]
3 Set ∆ = ⌈ N

p (h + r lg N)⌉, where h and r are given following Eq. (1)

4 Compute M such that max∆−1
q=0 ‖P (⌊ q

∆ N⌋, ⌊ q+1
∆ N⌋)‖ + ε 6 M 6 CN/∆, where C

does not depend on p, h, r [say, by approximating the right-hand side of (9) from
above with O(lg p) bits of precision]

5 Initialize P̃ (0) := id ∈ K(s+1)×(s+1)

6 For q = 0, 1, . . . , ∆ − 1
7 Q̂ = (Q̂i,j) := BinSplit(

⌊
q
∆ N

⌋
,
⌊

q+1
∆ N

⌋
) (Algorithm 1)

8 Q̃(q) := Trunc(Q̂−1
s+1,s+1 · Q̂, 1

2∆ M−∆+1ε)

9 P̃ (q+1) := Trunc(Q̃(q) · P̃ (q), 1
2∆ M−∆+q+1ε)

10 Return P̃ (∆)

Indeed, this is true for q = 0. After Step 8 of each loop iteration, we have the
bound ‖Q̃(q) − Q(q)‖ 6 1

2∆M−∆+1ε 6 ε since ‖B(n)‖ > 1 for all n. Using (12) and

the inequality ‖Q̃(q)‖ 6 M from Step 3, it follows that

‖Q̃(q)P̃ (q) − Q(q)P (q)‖6‖Q̃(q) − Q(q)‖‖P (q)‖ + ‖Q̃(q)‖‖P̃ (q) − P (q)‖

6
2q + 1

2∆

ε

M∆−q−1
.

After taking into account the truncation error from Step 9, we obtain

‖P̃ (q+1) − P (q+1)‖ = ‖P̃ (q+1) − Q(q)P (q)‖ 6
q + 1

∆

ε

M∆−q−1

which concludes the induction. �

Proposition 3. Not counting the cost of Step 2, Algorithm 2 runs in time

(13)

{
O
(
M(p)(h + r lg p) lg p

)
, if ρ < ∞,

O
(
M(p)(h + r lg p)

)
, if ρ = ∞,

as p, h, r → ∞ with r = O(lg p) and h = O(p). In both cases, it uses O(p) bits
of memory (where the hidden constant is independent of h and r, under the same
growth assumptions).

We neglect the cost of finding N to avoid a lengthy discussion of the complexity
of the corresponding bound computation algorithms. It could actually be checked
to be polynomial in r and lg p.

Proof. Computing the bound M using Equation (9) as suggested is more than
enough to ensure that lg M = O(N/∆). It requires O(N) arithmetic operations on
O(lg p)-bit numbers, that is, o(N(lg N)2) bit operations.

By Proposition 1, each of the ∆ calls to BinSplit requires

O
(
M(N

∆ (h + r lg N)) lg N
)

= O
(
M(p) lg p

)

bit operations. The resulting matrices Q(p) all have size O(p), hence the divisions
from Step 8 can be done in O(M(p)) operations using Newton’s method [25, Chap. 9].
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Time Space (classical) Space (trunc.)

ρ < ∞ BinSplit O(M(p(h + r lg p) lg p)) O(p(h + r lg p)) O(p)
BitBurst O(M(p(lg p)2)) O(p lg p) O(p)

ρ = ∞ BinSplit O(M(p(h + r lg p))) O(p(r + h/ lg p)) O(p)
BitBurst O(M(p(lg p)2)) O(p) O(p)

Table 1. Complexity of some D-finite function evaluation algo-
rithms based on binary splitting. The rows labeled “BinSplit”
summarize the cost of computing a single sum by binary splitting,
with or without truncations. Those labeled “BitBurst” refer to the
computation of y(ζ) by the “bit burst” method, using either of Al-
gorithm 1 and Algorithm 2 at each step. All entries are asymptotic
bounds as p, h → ∞ with h = O(p). In the “BinSplit” case, we also
let r tend to infinity under the assumption that r = O(lg p). The
whole point of the “bit burst” method is to get rid the dependency
on h.

The truncations in Steps 8 and 9 ensure that the bit sizes of P̃ and Q̃ are always
at most

(14) lg ε−1 + ∆ lg M + lg ∆ + O(1) = O(p).

It follows that the matrix multiplications from Step 9 take O(M(p)) operations
each. Summing up, each iteration of the loop from Step 6 can be performed in
O(M(p) lg p) operations, for a total of O(∆M(p) lg p). Equation (13) follows upon
setting N = O(p) or N = O(p/ lg p) according to (6).

The required memory comprises space for the current values of P̃ (q) and Q(q),
any temporary storage used by the operations from Steps 7 to 9, and an additional
O(lg p) bits to manipulate auxiliary variables such as M and q. We have seen
that P̃ (q) and Q(q) have bit size O(p). Besides, our assumption that fast integer
multiplication could be performed in linear space implies the same property for
division by Newton’s method. Thus, Steps 8 and 9 use O(p) bits of auxiliary storage.
Finally, again by Proposition 1, the calls to Algorithm 1 use O((N/∆)(h+r lg p)) =
O(p) bits of memory. �

Plugging Algorithm 2 into the numerical evaluation algorithms mentioned at
the end of Sect. 3 yields corresponding improvements for the evaluation of D-finite
functions at more general points. Table 1 summarizes the complexity bounds we
obtain. The omitted proofs are direct adaptations of those that apply without
truncations [5, 22, 17]. There would be much to say on the hidden constant factors.
The main result may be stated more precisely as follows.

Theorem 1. Let U ⊂ C be a simply connected domain such that 0 ∈ U and
ar(z) 6= 0 for all z ∈ U . Fix ℓ0, . . . , ℓr−1 ∈ C and ζ ∈ U . Assume that 0 is an
ordinary point of (1), and let y be the unique solution of (1) defined on U and such
that y(k)(0) = ℓk, 0 6 k < r. Then, the value y(ζ) may be computed with error
bounded by 2−p in time O(M(p)(lg p)2) and space O(p), not counting the resources
needed to approximate the ℓk or ζ to precision O(p) or to find suitable truncation
orders for the Taylor series involved.
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Finally, some comments are in order regarding the “working precision”, that is,
the size p′ of the entries of P̃ and Q̃ in Algorithm 2. Equation (14) suggests a
number of “guard digits” p′ − p = Θ(p). Moreover, if the bound M is computed
using (9), the hidden constant depends on the choice of ‖·‖.

Let B∞ = limn→∞ B(n). For the norm ‖·‖opt given by Lemma 1 below, we have

lg ‖P (a, b)‖opt 6

b−1∑

n=a

lg
(
‖B∞‖opt + O(n−1)

)
= O

(
lg(b − a)

)
,

and hence lg ‖P (a, b)‖ = O(lg(b − a)) for any norm ‖·‖.

Lemma 1. There exists a matrix norm ‖·‖opt such that ‖B∞‖opt = 1.

Proof. We mimic the classical proof of Householder’s theorem [20, Sect. 4.2]. By (3),
the limit C∞ = limn→∞ C(n) is the companion matrix of the polynomial zsar(1/z).
The eigenvalues of ζC∞ are strictly smaller than 1 in absolute value since |ζ| < ρ.
Let Γ be such that Γ−1C∞Γ is in (lower) Jordan normal form. Let λ > 0, and
set Π = diag(Γ, 1) · diag(1, λ, . . . , λs). Then Π−1B∞Π is lower triangular, with
off-diagonal entries tending to zero as λ → 0. Hence we have ‖Π−1B∞Π‖1 = 1

for λ small enough. We choose such a λ (e.g., λ = 1−|ζ|/ρ
2 max(1,|ζ|) ) and set ‖A‖opt =

‖Π−1AΠ‖1. �

One way to eliminate the overestimation in the algorithm is to compute approx-
imations of the matrices P (⌊ q

∆ N⌋, ⌊ q+1
∆ N⌋) with O(lg p) digits of precision before

doing the computation at full precision. One then uses the norms of these approx-
imate products instead of those of the individual B(n) to determine M . We can
also explicitly construct an approximation Π̃ of the matrix Π from the proof of
Lemma 1 precise enough that ‖Π̃−1B∞Π̃‖1 = 1, and use the corresponding norm
instead of ‖·‖1 in (9). (Compare [22, Algorithm B].) Other options include com-
puting symbolic bounds on the coefficients of P (a, b) as a function of a and b [18]
or finding an explicit integer n0 such that n > n0 ⇒ ‖B(n)‖opt = 1 based on the
symbolic expression of n. Which variant to use in practice depends on the features
of the implementation platform.

In any case, replacing the O(·) in the space complexity bound by an explicit con-
stant would also require more specific assumptions on the memory representation
of the objects we work with, as well as finer control on the space complexity of
integer multiplication and division (see, e.g., Roche [19]).

5. Final Remarks

What we lose and what we retain. The price we pay for the reduced memory
usage is the ability to easily extend the computation to higher precision. Indeed, the
classical algorithm computes the exact value of the matrix P (0, N), from which we
can deduce P (0, N ′) for any N ′ > N in time roughly proportional to N ′ − N . This
is no longer true with the linear-space variant. In some “lucky” cases where P (0, N)
can be represented exactly in linear space, it is possible to get the memory usage
down to O(N) while preserving restartability: see Cheng et al. [4] and the references
therein. Additionally, the resulting running time is reportedly lower than using
truncations, probably owing to the fact that the size of the subproducts in the
lg(N/∆) lower levels of the tree is reduced as well. Unfortunately, the applicability
of the technique is limited to very special cases.
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Two other traditional selling points of the binary splitting method are its easy
parallelization and good memory locality. Nothing is lost in this respect, except
that the memory bound grows to Θ(t · p) when using t = o(lg N) parallel tasks in
the approximate part of the computation.

Generalizations. The idea of binary splitting “with truncations” and the outline
of its analysis adapt to various settings not covered here. For instance, we may con-
sider systems of linear differential equations instead of scalar equations [5]. Product
trees of matrices over number fields K′ = Q(α) other than Q(i) or over rings of
truncated power series K′ [[ε]] /

〈
εk
〉

are also useful, respectively, to evaluate lim-
its of D-finite functions at regular singular points of their defining equations, and
to make the analytic continuation process more efficient for equations of large or-
der [22, 17]. It is not essential either that the coefficients of the recurrence relation
satisfied by the yn are rational functions of n: all we really ask is that they have
suitable growth properties and can be computed fast.

Implementation. We are working on an implementation of the algorithm from
Sect. 4 in an experimental branch of the software package NumGfun [16]. The
current state of the code is available from

http://marc.mezzarobba.net/supplementary-material/trunc-CASC2012/.

A comparison (updated periodically) with the implementation of binary splitting
without truncations used in previous releases of NumGfun is also included.

Acknowledgments. I would like to thank Nicolas Brisebarre and Bruno Salvy for
encouraging me to write this note and offering useful comments, and Anne Vaugon
for proofreading parts of it.
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