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Spatial differentiation and positive circuits in a

discrete framework

Anne Crumière, Paul Ruet1

CNRS - Institut de Mathématiques de Luminy
Campus de Luminy, Case 907, 13288 Marseille Cedex 9 (France)

Abstract

The biologist R. Thomas has enounced a rule relating multistationnarity in a system of genes interacting
in a single cell to the existence of a positive circuit in the regulatory graph. In this paper, we address
the question of a similar rule for spatial differentiation. We consider the interactions of genes in several
biological cells located on a 1-dimensional infinite grid, and we assume that the expression levels of genes
are discrete. We show that the existence of a positive circuit is a necessary condition for a specific form of
multistationnarity, which naturally corresponds to spatial differentiation.

Keywords: Cell communication, Differentiation, Genetic regulatory graph, Positive circuit.

1 Introduction

Biologists often represent genetic interactions by means of graphs. In these genetic

regulatory graphs, vertices represent genes or their regulatory products, whereas
edges are directed and represent regulatory effects from one gene on another. Edges,
we often labelled with a sign, positive (+1) in the case of an activation and negative
(−1) for an inhibition.

This paper deals with relationships between the structure of such regulatory
graphs and their dynamical properties. The biologist R. Thomas has enounced the
following general rule [14]: a necessary condition for multistability (i.e., the existence
of several stable fixed points in the dynamics) is the presence of a positive circuit
in the regulatory graph, the sign of a circuit being the product of the signs of its
edges. Multistability corresponds to important biological phenomena, namely cell
differentiation processes. This rule is about the dynamics of a single cell, and it has
given rise to mathematical statements and proofs mostly in a differential dynamical
formalism [7,11,5,12], and more recently in the discrete formalism [8,10,9]. These
results are recalled in Section 2.
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This paper aims at extending this rule to regulatory interactions spanning within
cells (as in Thomas’ rule) and between cells, by establishing connections between
spatial differentiation and the existence of positive circuits. This is motivated by
the importance of spatial aspects in most biological processes: morphogenesis, im-
munology, etc. Positive regulatory circuits are often associated with spatial differen-
tiation: see, e.g., [4] for a study of dorsal-ventral boundary in the Drosophila wing.
The question is formally raised by Soulé in [13].

In the present paper we consider as a starting point the case of fixed cells located
on a 1-dimensional infinite grid, which we assume to be the set Z of integers. This
is a simplification which has the advantage of emphasising the basic formalism. The
more biologically realistic situation of hexagonal 2-dimensional grids is studied in
[1], with an application to the formation of sense organs in Drosophila as modelled
in [3].

We further assume in this paper that intercellular communication is local, in the
sense that a gene may interact only with genes in its own cell x and neighbouring
cells x−1, x+1. This assumption, which is biologically reasonable but for polarised
cells (typically neurons), is standard and at the basis of cellular automata [15]. We
then prove that the existence of a positive circuit is necessary for the presence of
several periodic fixed points having at least one cell with the same expression levels
(Theorem 4.1). We then apply this result to show that a single non-constant periodic
fixed point actually suffices to imply the existence of a positive circuit, as long as
its smallest period has two cells with the same expression levels (Corollary 4.3).

These theorems are the purpose of Sections 3 and 4, which concentrate on the
Boolean case (the expression level of a gene is either 0 or 1), but these results can
be simply generalised to the discrete multilevel formalism of [10]. We then discuss
further issues through several examples and counterexamples in Section 5.

A natural prospect would be to extend these results to other topological cellular
configurations, like cyclic grids, other finite grids with boudaries, networks of cells,
etc.

Acknowledgements. We wish to thank Claudine Chaouiya, Élisabeth Remy and
Denis Thieffry for helpful discussions, as well as the anonymous referees for their
remarks.

2 The intracellular case

In this section we recall the theorem relating multistationnarity in the case of a
single cell to the existence of a positive circuit [8].

Let us start with preliminary notations. For α ∈ {0, 1}, we define α by 0 = 1

and 1 = 0. For s ∈ {0, 1}n and I ⊆ {1, . . . , n}, sI ∈ {0, 1}n is defined by (sI)i = si

for i 6∈ I and (sI)i = si for i ∈ I. When I = {i} is a singleton, s{i} is denoted by si.
Let n be a positive integer, genes are denoted by numbers 1, . . . , n. A state s

is a n-tuple (s1, . . . , sn) ∈ {0, 1}n, where si denotes the expression level of gene i:
either 1 when gene i is expressed, or 0 when gene i is not expressed.

The dynamics of the system consisting in the n genes is given by a map f :

{0, 1}n → {0, 1}n. For each i = 1, . . . , n, fi is the i-th coordinate map {0, 1}n →
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{0, 1}. For each s ∈ {0, 1}n and i = 1, . . . , n, fi(s) denotes the value to which the
expression level of gene i tends when the system is in state s. A fixed point for f is
a state s ∈ {0, 1}n such that f(s) = s.

A regulatory graph is a signed directed graph, i.e., a directed graph with a sign,
+1 or −1, associated to each edge. To any f : {0, 1}n → {0, 1}n and s ∈ {0, 1}n

is associated a regulatory graph G(f)(s) as follows: its vertex set is {1, . . . , n}, and
G(f)(s) has an edge from i to j when

fj(s
i) 6= fj(s),

with positive sign when si = fj(s) and negative sign otherwise.
For instance, the following table represents a possible dynamics for a system of

three genes in a single cell:

s (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

f(s) (0, 1, 1) (0, 0, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0) (0, 1, 0) (1, 0, 0) (1, 1, 0)

The regulatory graph G(f)(s) for s = (0, 0, 1) thus contains four edges: a self-loop
on gene 3, as well as edges from gene 1 to gene 2 and from gene 2 to gene 1 and from
gene 3 to gene 2. As s1 = f2(s) and s2 = f1(s), the interactions between genes 1

and 2 are positive (activations), whereas s3 6= f2(s) and s3 6= f3(s) hence the other
two interactions are negative.

G(0, 0, 1) = 1 2 3

−

−

+

+

The sign of a circuit in a regulatory graph is the product of the signs of its edges.
If I ⊆ {1, . . . , n}, an I-circuit is a circuit whose vertices are in I.

Theorem 2.1 If f has least two fixed points, then there is an s ∈ {0, 1}n, such that

G(f)(s) has a positive circuit. More precisely, if f has two fixed points a and b, and

if I is such that b = aI , then there is an s ∈ {0, 1}n such that G(f)(s) has a positive

I-circuit.

In the previous example, f has two fixed points a = (0, 1, 0) and b = (1, 0, 0),
thus b = a{1,2}. In accordance with Theorem 2.1, the regulatory graph G(f)(0, 0, 1)

contains a positive circuit between gene 1 and gene 2.

3 The intercellular case

We now turn to the case of several interacting cells. In this paper, we shall consider
cells with a fixed location on an infinite 1-dimensional grid. We shall be interested
in the evolution of the system consisting in the same collection of n genes 1, . . . , n

in each cell.
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3.1 Dynamics

A state is a map s : Z → {0, 1}n. The set of states is denoted by S. If s ∈ S, si

denotes, for each i = 1, . . . , n, the i-th coordinate map Z → {0, 1}. For i = 1, . . . , n

and x ∈ Z, si(x) denotes the expression level of gene i in cell number x. A local

state is a map s :]x, y[→ {0, 1}n for some open interval ]x, y[⊂ Z. The restriction of
a state s to an interval ]x, y[⊂ Z is a local state denoted by s↾]x,y[ :]x, y[→ {0, 1}n.

Consider a map f : {0, 1}3n → {0, 1}n, a map F : S → S is then defined by

F (s)(x) = f(s(x − 1), s(x), s(x + 1)).

For any s, x and i = 1, . . . , n, Fi(s)(x) denotes the value to which the expression
level of gene i in cell number x tends when the system is in state s. The definition
of F from f corresponds to the assumption that cells interact locally, i.e., a cell can
only interact with itself or its immediate neighbours. A fixed point for F is a state s

such that for all x ∈ Z, f(s(x − 1), s(x), s(x + 1)) = s(x). By abuse of terminology,
we shall say that s is then a fixed point for f too.

Now, given such a map f , the nondeterministic asynchronous dynamics is a
graph with vertex set S, and with an edge from s to s′ when there exist i and x

such that Fi(s)(x) 6= si(x) and s′ is the state si,x defined by:

si,x(x) = s(x)
i

si,x(y) = s(y) for y 6= x.

Observe that f determines the dynamics only locally, i.e., inside a local state re-
stricted to three cells, and the global dynamics F is obtained by gluing together
these local pieces of dynamics.

The asynchrony assumption does not take into account explicit delays. In par-
ticular, no difference is made between intracellular regulation processes on the one
hand, and on the other hand the regulation due to diffusion, which occurs in gen-
eral via transmembrane signaling, hence faster than regulation. Despite of these
limitations, it is worth observing that the main dynamical property we shall be
investigating is the presence of fixed points, which is independent from any reason-
able assumption on the dynamics: synchronous, asynchronous, with delays, parallel
evolution of the cells as in Lindenmayer systems [6], etc.

3.2 Regulatory graphs

Let f : {0, 1}3n → {0, 1}n, s : Z → {0, 1}n and x ∈ Z. The regulatory graph
G(f)(s)(x) has as vertices pairs (i, x − 1), (i, x) and (i, x + 1) with i ∈ {1, . . . , n}.
Its edges are of three types:

• G(f)(s)(x) has an edge from (i, x − 1) to (j, x) when

fj(s(x − 1)
i
, s(x), s(x + 1)) 6= fj(s(x − 1), s(x), s(x + 1))

with positive sign when si(x − 1) = fj(s(x − 1), s(x), s(x + 1)) and negative sign
otherwise,
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• G(f)(s)(x) has an edge from (i, x) to (j, x) when

fj(s(x − 1), s(x)
i
, s(x + 1)) 6= fj(s(x − 1), s(x), s(x + 1))

with positive sign when si(x) = fj(s(x − 1), s(x), s(x + 1)) and negative sign
otherwise,

• G(f)(s)(x) has an edge from (i, x + 1) to (j, x) when

fj(s(x − 1), s(x), s(x + 1)
i
) 6= fj(s(x − 1), s(x), s(x + 1))

with positive sign when si(x + 1) = fj(s(x − 1), s(x), s(x + 1)) and negative sign
otherwise.

The union of two graphs here is simply the union of vertex sets and the union of
edges sets. We define the regulatory graph G(f)(s) associated to a state s as follows:

G(f)(s) =
⋃

x∈Z

G(f)(s)(x).

The following Lemma is an immediate consequence of the definition of F from f as
a local interaction between cells (Section 3.1).

Lemma 3.1 Given F any map from S to S and s ∈ S, let G(F )(s) be the graph

with vertex set {1, . . . , n} × Z and an edge from (i, x) to (j, y) when

Fj(s
i,x)(y) 6= Fj(s)(y),

with positive sign when si(x) = Fj(s)(y) and negative sign otherwise. If F arises

from f : {0, 1}3n → {0, 1}n as in Section 3.1, then G(F )(s) = G(f)(s).

Given an interval ]x, y[⊂ Z, the regulatory graph G(f)(s↾]x,y[ ) on the restricted
state s↾]x,y[ is defined by:

G(f)(s↾]x,y[ ) =
⋃

x<z<y

G(f)(s)(z).

In particular, G(f)(s)(x) = G(f)(s↾]x−1,x+1[ ).

3.3 Example

Consider for instance the following table defining a partial dynamics in the intercel-
lular case with two genes in each cell (the two rows correspond to genes 1 and 2, and
columns correspond two cells). As observed in Section 3.1, this dynamics is defined
by giving the expression levels to which the two genes tend (an element of {0, 1}2 in
this case) for each tuple σ of expression levels in the neighbourhood. In this case,
σ is a triple of elements of {0, 1}2 corresponding to expression levels in the current
cell and in the two surrounding ones. The following dynamics is partial in the sense
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that we do not consider here all 64 possible values for σ.

σ

(
1, 0, 0

1, 0, 1

) (
0, 0, 0

1, 0, 1

) (
1, 1, 0

1, 0, 1

) (
1, 0, 1

1, 0, 1

) (
1, 0, 0

0, 0, 1

) (
1, 0, 0

1, 1, 1

) (
1, 0, 0

1, 0, 0

)

f(σ)

(
1

0

) (
0

0

) (
1

0

) (
1

0

) (
1

1

) (
1

0

) (
0

0

)

σ

(
0, 0, 1

0, 1, 1

) (
1, 0, 1

0, 1, 1

) (
0, 1, 1

0, 1, 1

) (
0, 0, 0

0, 1, 1

) (
0, 0, 1

1, 1, 1

) (
0, 0, 1

0, 0, 1

) (
0, 0, 1

0, 1, 0

)

f(σ)

(
1

0

) (
1

1

) (
1

0

) (
0

0

) (
1

0

) (
1

0

) (
1

0

)

σ

(
0, 0, 1

0, 0, 1

) (
0, 1, 0

0, 1, 0

) (
1, 1, 1

1, 1, 1

)

f(σ)

(
0

0

) (
1

1

) (
1

1

)

For σ =

(
1, 0, 0

1, 0, 1

)

, let

σℓ =

(
1

1

)
, σc =

(
0

0

)
, σr =

(
0

1

)

denote its left, central and right columns. Then the regulatory graph G(f)(σ) con-
tains three edges, a positive edge from gene 1 in the left cell to gene 1 in the central
cell, because

f1

(
1, 0, 0

1, 0, 1

)

= 1 6= 0 = f1

(
0, 0, 0

1, 0, 1

)

and σℓ
1 = 1 = f1

(
1, 0, 0

1, 0, 1

)

,

a negative edge from gene 2 in the left cell to gene 2 in the central cell,

f2

(
1, 0, 0

1, 0, 1

)

6= f2

(
1, 0, 0

0, 0, 1

)

and σℓ
2 6= f2

(
1, 0, 0

1, 0, 1

)

,

and a positive edge from gene 2 in the right cell to gene 1 in the central cell, because

f1

(
1, 0, 0

1, 0, 1

)

6= f1

(
1, 0, 0

1, 0, 0

)

and σr
2 = f1

(
1, 0, 0

1, 0, 1

)

.

6
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Therefore:

G(f)

(
1, 0, 0

1, 0, 1

)

=

• • •

• • •

+ +

−

Where the first row corresponds to gene 1, the second row to gene 2, and columns
correspond to cells. Similarly, the regulatory graph

G(f)

(
0, 0, 1

0, 1, 1

)

contains two edges, a positive edge from gene 1 of the right cell to gene 1 of the
central cell and a positive edge from gene 1 of the left cell to gene 2 of the central
cell.

G(f)

(
0, 0, 1

0, 1, 1

)

=

• • •

• • •

+

+

We may now build the regulatory graph

G(f)

(
1, 0, 0, 1

1, 0, 1, 1

)

which is by definition the union of

G(f)

(
1, 0, 0

1, 0, 1

)

and G(f)

(
0, 0, 1

0, 1, 1

)

:

G(f)

(
1, 0, 0, 1

1, 0, 1, 1

)

=

• • • •

• • • •

+ +

−

+

+

4 Positive circuits

Consider the action of Z on S given by (z · s)(x) = s(z + x). A state s is periodic
when there exists some integer z such that z · s = s; and z is then a period of s.

7
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Two states s and s′ are equivalent modulo translation when they are in the same
orbit for this action, i.e., when there is a z ∈ Z such that s′ = z · s. On the other
hand, let us say that two states s and s′ have a common cell when there exist
x, x′ ∈ Z such that s(x) = s′(x′).

Theorem 4.1 Let f : {0, 1}3n → {0, 1}n. If f has two periodic fixed points which

are not in the same orbit and have a common cell, then there is a state s such that

G(f)(s) has a positive circuit. More precisely, if f has two fixed points a and b with

periods k and k′, then there is a state s such that G(f)(s↾]1,K+1[ ) has a positive

circuit, where K is the least common multiple of k and k′.

As in Section 2, the sign of a circuit is the product of the signs of its edges.

Proof. Given a and b two fixed points of periods k and k′ respectively. Since a and
b have a common cell and the action of Z clearly preserves the fact of being a fixed
points, we may assume that a(1) = b(1).

Let us introduce the following notation: if c = (c1, . . . , cℓ) ∈ {0, 1}nℓ, let c∞

denote the orbit of the state s which sends x ∈ Z to cy, 1 ≤ y ≤ ℓ, such that x = y

mod ℓ. With this notation, the orbit of a is

(a(1), . . . , a(k))∞

and the orbit of b is (b(1), . . . , b(k′))∞.
Let now K be the least common multiple of k and k′. We can define an imaginary

intracellular dynamics with Kn genes as follows. Intracellular states in {0, 1}Kn are
denoted as K-tuples (s1, . . . , sK) of n-tuples. Let f̂ be the map from {0, 1}Kn to
{0, 1}Kn defined by:

f̂
(
s1, . . . , sK

)
=

(
f(sK , s1, s2), . . . , f(sx−1, sx, sx+1), . . . , f(sK−1, sK , s1)

)
.

The intuition is that this dynamics f̂ preserves the local dynamics of intercellular
communication, i.e, a gene i of a cell number x can just act that on the genes in
the cells x− 1, x and x + 1: each gene has a field of activity restricted to a window
of three cells. More precisely, as stated in Lemma 4.2, the restriction of G(f̂)(s) to
vertices in {1, . . . , n} × {2, . . . ,K} equals G(f)(s∞↾]1,K+1[ ).

Now, a↾]1,K[ and b↾]1,K[ are two different fixed points of f̂ such that

(a↾]1,K[ )(1) = (b↾]1,K[ )(1).

According to Theorem 2.1, there is therefore an s ∈ {0, 1}Kn, such that G(f̂)(s) has
a positive I-circuit for I = {1, . . . , n} × {2, . . . ,K}. This circuit does not involve
vertices of the form (i, 1) (i.e., vertices corresponding to the first cell), hence by the
previous paragraph, it is in G(f)(s∞) as well. 2

Lemma 4.2 With the above notations, G(f)(s∞↾]1,K+1[ ) equals the restriction of

G(f̂)(s) to vertices in {1, . . . , n} × {2, . . . ,K}.

Proof. In this restriction of G(f̂)(s), we have five types of edges to consider:

8
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(i) An edge from (i, x− 1) to (j, x) for x ∈ {3, . . . ,K − 1} and i, j = 1, . . . , n when

f̂j

(
s1, . . . , sx−1

i
, sx, . . . , sK

)
(x) 6= f̂j

(
s1, . . . , sx−1, sx, . . . , sK

)
(x).

This is equivalent to fj(sx−1
i
, sx, sx+1) 6= fj(s

x−1, sx, sx+1) by definition of f̂ .
By definition of the regulatory graph in the intercellular case, this is also equiv-
alent to the existence of an edge from (i, x − 1) to (j, x) in G(f)(s∞↾]1,K+1[ ).
The equality of the signs of the edges is immediate.

(ii) An edge from (i,K − 1) to (j,K) for i, j = 1, . . . , n when

f̂j

(
s1, . . . , sK−1

i
, sK

)
(K) 6= f̂j

(
s1, . . . , sK−1, sK

)
(K)

which is equivalent to fj(sK−1
i
, sK , s1) 6= fj(s

K−1, sK , s1), hence there is an
edge from (i,K − 1) to (j,K) in G(f)(s∞↾]1,K+1[ ) and conversely.

(iii) An edge from (i, x+1) to (j, x) for x ∈ {2, . . . ,K − 1} and i, j = 1, . . . , n when

f̂j

(
s1, . . . , sx, sx+1

i
, . . . , sK

)
(x) 6= f̂j

(
s1, . . . , sx, sx+1, . . . , sK

)
(x)

which is equivalent to fj(s
x−1, sx, sx+1

i
) 6= fj(s

x−1, sx, sx+1), hence there is an
edge from (i, x + 1) to (j, x) in G(f)(s∞↾]1,K+1[ ) and conversely.

(iv) An edge from (i, x) to (j, x) for x ∈ {2, . . . ,K − 1} and i, j = 1, . . . , n when

f̂j

(
s1, . . . , sxi

, . . . , sK
)
(x) 6= f̂j

(
s1, . . . , sx, . . . , sK

)
(x)

which is equivalent to fj(, s
x−1, sxi

, sx+1) 6= fj(s
x−1, sx, sx+1), therefore there

is an edge from (i, x) to (j, x) in G(f)(s∞↾]1,K+1[ ) and conversely.

(v) An edge from (i,K) to (j,K) for i, j = 1, . . . , n when

f̂j

(
s1, . . . , sK

i)
(K) 6= f̂j

(
s1, . . . , sK

)
(K)

which is equivalent to fj(, s
K−1, sK

i
, s1) 6= fj(s

K−1, sK , s1), therefore there is
an edge from (i,K) to (j,K) in G(f)(s∞↾]1,K+1[ ) and conversely.

2

Remark that for a map f : {0, 1}3n → {0, 1}n which only depends on the expres-
sion levels in the central cell (f(a, b, c) only depends on b), there is no communication
between cells: there are only intracellular interactions and we recover the case of
Theorem 2.1. In the general case with intercellular communication, Theorem 4.1
ensures that a positive circuit can be found in a neighbourhood of a most K − 1

cells: there is thus an upper bound to the lenght of the predicted circuit; one may
however conjecture a stronger, more local, result implying a positive circuit in a
neighbourhood of at most two cells, for instance.

It is also interesting to observe that a single periodic fixed point a suffices to
imply the existence of a positive circuit, as long as a is non-constant and has two
common cells in its (smallest) period (a(ℓ) = a(k) for some k 6= ℓ). Indeed, we may
then recover the hypothesis of Theorem 4.1 by shifting from k to ℓ.

9
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Corollary 4.3 Let f : {0, 1}3n → {0, 1}n. If f has one periodic fixed point which

has two common cells in its period, then there is a state s such that G(f)(s) has a

positive circuit.

It is clearly not difficult to adapt Theorem 4.1 and Corollary 4.3 from our Boolean
formalism to the multilevel formalism of [10].

5 Examples and discussion

5.1 Illustration of Theorem 4.1

Consider for instance the dynamics of Section 3.3. f has two fixed points modulo
the Z-action (

100

100

)∞

and

(
1

1

)∞

.

They are periodic with periods 3 and 1 respectively, are not in the same orbit and
have a common cell (

1

1

)
.

Thus according to Theorem 4.1, there is a state s : Z → {0, 1}2, such that
G(f)(s↾]1,4[ ) has a positive circuit. This is actually the case for

s =

(
100

101

)∞

, since G(f)(s↾]1,4[ ) = G(f)

(
1, 0, 0, 1

1, 0, 1, 1

)

for this choice of s. Another example is given by the following dynamics, with one
gene in each cell:

s (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

f(s) (1) (0) (1) (0) (0) (0) (0) (0)

This dynamics corresponds to f(a, b, c) = a ∧ c for a, b, c ∈ {0, 1}, and has two
non-constant fixed points (0, 1)∞ and (1, 0, 0)∞ with a common cell. By Theorem
4.1, there is a state s, such that G(f)(s) has a positive circuit. This is the case for
s = (1, 0, 0)∞, since G(f)((1, 0, 0)∞) equals

. . . • • • . . .

−

−

−

−

−

−

Observe that for this dynamics, there is no state s such that G(f)(s) has an intra-
cellular circuit, simply because f(a, b, c) does not depend on b.

10
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5.2 Common cell

The common column allows one to avoid the edges between the left and right sides of
the “window”, and thus to avoid wrong positive circuits. As an example to illustrate
this point, consider the following dynamics in the intercellular case with one gene in
each cell:

s (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

f(s) (0) (0) (0) (0) (1) (1) (1) (1)

This dynamics is simply given by f(a, b, c) = a for a, b, c ∈ {0, 1}, and corresponds
to a positive influence from left to right. We can easily prove that for any state, the
regulatory graph is:

· · · • • • · · ·
+ + + +

and has no positive circuit. There are two fixed points, the two constants states
(0)∞ and (1)∞ of period 1, which are not in the same orbit but have no common
cell. However f̂ : {0, 1} → {0, 1} is given by the following table:

s f̂(s)

0 0

1 1

and G(f̂)(0) has a positive autoregulation:

G(f̂ )(0) =
•

+

This positive loop results from gluing the two sides of the window. It is therefore
conceivable that the common cell condition could be removed when the grid is finite
and circular, but this is beyond the framework considered in this paper.

5.3 A unique (non-constant) fixed point

Consider the following intercellular dynamics with one gene in each cell:

s (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

f(s) (1) (1) (1) (1) (0) (0) (0) (0)

This dynamics is given by f(a, b, c) = a for a, b, c ∈ {0, 1}, and just amounts to a
negative influence from left to right. We can easily prove that for any state, the

11
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regulatory graph:

· · · • • • · · ·
− − − −

has no positive circuit, although f has a non-constant fixed point (01)∞.
Remark that if we change the values of f(0, 1, 1) and f(1, 0, 0), the fonction f

is isotropic in the following sense: f : {0, 1}3n → {0, 1}n is isotropic when for all
a, b, c ∈ {0, 1}n,

f(a, b, c) = f(c, b, a).

The intuition for this condition is that communication is undirected, a situation
which occurs among non-polarised cells.

Then f still has a non-constant fixed point (01)∞ and G(f)(. . . , 0, 1, 0, 1, . . .):

· · · • • • • · · ·

− −−−

−

−

−− − −

has a positive circuit. It is possible that the isotropy condition and the presence of
a non-constant fixed point suffice for the presence of positive circuit, but we have
no proof of this conjecture.

5.4 Symmetrically ultimately periodic states

A state s is symmetrically ultimately periodic when there exist two states s1 : I1 →

{0, 1}n and s2 : I2 → {0, 1}n restricted to finite intervals I1, I2 ⊂ Z such that s has
orbit (s1)

∞s2(s1)
∞.

Lemma 5.1 Let f : {0, 1}3n → {0, 1}n. If f has two symmetrically ultimately

periodic fixed points which are not in the same orbit and have a common cell, then

there is a state s such that G(f)(s) has a positive circuit.

Proof. Three cases are to be considered:

(i) The common cell is in the periodic part of each state. From a symmetrically
ultimately periodic fixed point, it is possible to extract a periodic fixed point:
if s = (s1)

∞s2(s1)
∞ with s1 : I1 → {0, 1}n, s2 : I2 → {0, 1}n, then (s1)

∞ is a
periodic fixed point for f . The result is therefore an immediate consequence of
Theorem 4.1.

(ii) The common cell is in the non-periodic part of each state. In order to ap-
ply Theorem 4.1, choose a window of length K sufficiently large to overlap
the two periodic part of each state. More precisely, let s and s′ be two such
symmetrically ultimately periodic fixed points, whose orbits are respectively

(s1)
∞s2(s1)

∞ and (s′1)
∞s′2(s

′
1)

∞.

12
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Here s1 : I1 → {0, 1}n, s2 : I2 → {0, 1}n, s′1 : I ′1 → {0, 1}n, s′2 : I ′2 → {0, 1}n,
I1, I2, I

′
1, I

′
2 are of lengths k1, k2, k

′
1, k

′
2 respectively. It suffices to take for K the

least common multiple of k, k′ with k = 2k1 + k2 and k′ = 2k′
1 + k′

2.

(iii) The common cell is in the periodic part of a state and in the non-periodic part
of the other one. This case follows from the two previous cases.

2

Consider for instance the following partial dynamics in the intercellular case with
two genes in each cell:

s

(
1, 1, 1

1, 1, 1

) (
1, 0, 1

1, 1, 1

) (
0, 1, 0

1, 1, 0

) (
1, 0, 0

1, 0, 1

) (
0, 0, 1

0, 1, 1

) (
1, 1, 1

0, 0, 0

) (
1, 1, 0

0, 0, 0

)

f(s)

(
1

1

) (
0

1

) (
1

1

) (
0

0

) (
0

1

) (
1

0

) (
1

0

)

s

(
0, 0, 1

0, 0, 0

) (
0, 1, 1

0, 0, 0

)

f(s)

(
0

0

) (
1

0

)

f has two symmetrically ultimately periodic fixed points

(
1

1

)∞(
0100

1101

)(
1

1

)∞

and

(
1

0

)∞(
00

00

)(
1

0

)∞

with a commun cell (
0

0

)

.

According to Lemma 5.1, there is a state s : Z → {0, 1}2, such that G(f)(s) has a
positive circuit. Actually, we have:

G(f)

(
1, 1, 1

1, 1, 1

)
=

• • •

• • •

+

It is worth noting that the existence of a fixed point ensures the presence of a periodic
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one. Indeed, let B be the following de Bruijn graph [2]:

(0, 0, 1) (0, 1, 1)

(0, 0, 0) (0, 1, 0) (1, 0, 1) (1, 1, 1)

(1, 0, 0) (1, 1, 0)

A state s : Z → {0, 1} is the same as a doubly infinite path in B: for instance, given
s, the path consists in all edges from (s(x), s(x + 1), s(x + 2)) to (s(x + 1), s(x +

2), s(x + 3)) for x ∈ Z, and conversely any path in B induces a state up to the
Z-action. Similarly, a state s : Z → {0, 1}n is the same as a doubly infinite path in
the categorical product B × · · · × B is n copies of B. (Recall that the categorical
product G×G′ of two graphs G and G′ has vertex set the Cartesian product of the
vertex sets and has an edge from (x, x′) to (y, y′) for each edge from x to y in G and
each edge from x′ to y′ in G′.) Now, a fixed point s : Z → {0, 1}n determines a path
γ in B×· · ·×B, hence a sequence of vertices (γx)x∈Z such that γx = (γ1

x, γ2
x, γ3

x) and
f(γx) = γ2

x. From this infinite sequence of vertices in a finite graph, it is possible to
extract a cyclic one, therefore one corresponding to a periodic fixed point.

References

[1] A. Crumière. Positive circuits and two-dimensional spatial differentiation. Application to the formation
of sense organs in Drosophila. Technical report, Institut de Mathématiques de Luminy, 2007.

[2] N. G. de Bruijn. A combinatorial problem. In Nederlandse Academie van Wetenshapen, volume 49,
pages 758–764, 1946.

[3] A. Ghysen and R. Thomas. The formation of sense organs in Drosophila: a logical approach. BioEssays,
25:802–807, 2003.

[4] A. González, C. Chaouiya, and D. Thieffry. Dynamical analysis of the regulatory network defining the
dorsal-ventral boundary of the Drosophila wing imaginal disc. Genetics, 2006.

[5] J.-L. Gouzé. Positive and negative circuits in dynamical systems. Journal of Biological Systems,
6:11–15, 1998.

[6] A. Lindenmayer. Mathematical models for cellular interaction in development I. filaments with one-
sided inputs. Journal of Theoretical Biology, 18:280–289, 1968.

[7] E. Plahte, T. Mestl, and S. W. Omholt. Feedback loops, stability and multistationarity in dynamical
systems. Journal Biological Systems, 3:409–413, 1995.

[8] É. Remy, P. Ruet, and D. Thieffry. Graphic requirements for multistability and attractive cycles in a
Boolean dynamical framework. Technical Report 2005-08, Institut de Mathématiques de Luminy, 2005.
Under review.

14



Crumiere, Ruet

[9] É. Remy, P. Ruet, and D. Thieffry. Positive or negative regulatory circuit inference from multilevel
dynamics. In Positive Systems: Theory and Applications, volume 341 of Lecture Notes in Control and
Information Sciences, pages 263–270. Springer, 2006.

[10] A. Richard and J.-P. Comet. Necessary conditions for multistationnarity in discrete dynamical systems.
Technical Report 123-2005, Laboratoire de Méthodes Informatiques, Université d’Evry, 2005.

[11] E. H. Snoussi. Necessary conditions for multistationarity and stable periodicity. Journal of Biological
Systems, 6:3–9, 1998.

[12] C. Soulé. Graphic requirements for multistationarity. ComPlexUs, 1:123–133, 2003.

[13] C. Soulé. Mathematical approaches to gene regulation and differentiation. In Comptes Rendus de
l’Académie des Sciences, volume 329 of Biologies, pages 13–20. Elsevier, 2006.

[14] R. Thomas. On the relation between the logical structure of systems and their ability to generate
multiple steady states and sustained oscillations. In Series in Synergetics, volume 9, pages 180–193.
Springer, 1981.

[15] J. von Neumann. Theory of self-reproducing automata. University of Illinois Press, 1966.

15


	Introduction
	The intracellular case
	The intercellular case
	Dynamics
	Regulatory graphs
	Example

	Positive circuits
	Examples and discussion
	Illustration of Theorem 4.1
	Common cell
	A unique (non-constant) fixed point
	Symmetrically ultimately periodic states

	References

