
HAL Id: hal-00717212
https://inria.hal.science/hal-00717212v6

Submitted on 6 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational results of a semidefinite
branch-and-bound algorithm for k-cluster

Nathan Krislock, Jérôme Malick, Frédéric Roupin

To cite this version:
Nathan Krislock, Jérôme Malick, Frédéric Roupin. Computational results of a semidefinite branch-
and-bound algorithm for k-cluster. Computers and Operations Research, 2016, 66, pp.153-159.
�10.1016/j.cor.2015.07.008�. �hal-00717212v6�

https://inria.hal.science/hal-00717212v6
https://hal.archives-ouvertes.fr

Computational results of a semidefinite

branch-and-bound algorithm for k-cluster

Nathan Krislocka,b, Jérôme Malickc,a, Frédéric Roupind

aINRIA Grenoble Rhône-Alpes, Grenoble, France
bDepartment of Mathematical Sciences, Northern Illinois University, DeKalb, IL, USA

cCNRS, Lab. J. Kunztmann, Grenoble, France
dLIPN - CNRS UMR7030 - Université Paris-Nord

Abstract

This computational paper presents a method to solve k-cluster problems ex-
actly by intersecting semidefinite and polyhedral relaxations. Our algorithm
uses a generic branch-and-bound method featuring an improved semidefinite
bounding procedure. Extensive numerical experiments show that this algo-
rithm outperforms the best known methods both in time and ability to solve
large instances. For the first time, numerical results are reported for k-cluster
problems on unstructured graphs with 160 vertices.

Keywords: combinatorial optimization, semidefinite programming, triangle
inequalities, k-cluster problem, k-densest subgraph problem

1. Introduction

1.1. The k-cluster problem

Given a graph G = (V,E), the k-cluster problem consists of determining
a subset S ⊆ V of k vertices such that the sum of the weights of the edges be-
tween vertices in S is maximized. This is a classical problem of combinatorial
optimization, also known under the names “heaviest k-subgraph problem”,
“k-dispersion problem”, and “k-densest subgraph problem” (when all the
weights are equal to one). The problem can be seen as a generalization of

Email addresses: krislock@math.niu.edu (Nathan Krislock),
jerome.malick@inria.fr (Jérôme Malick), frederic.roupin@lipn.univ-paris13.fr
(Frédéric Roupin)

Preprint submitted to Computer and Operations Research February 6, 2015

the max-clique problem, and also as a particular case of quadratic knapsack
problem where all the costs are equal.

Letting n = |V | denote the number of vertices, and wij denote the edge
weight for ij ∈ E and wij = 0 for ij /∈ E, the problem can be modeled as
the 0-1 quadratic optimization problem

(KC)

maximize 1
2
zTWz

subject to
∑n

i=1 zi = k

z ∈ {0, 1}n,

(1)

where W := (wij)ij is the weighted adjacency matrix of the graph G.
The k-cluster problem (1) is a fundamental graph optimization problem,

and arises in many applications such as telecommunication, warehouse loca-
tion, military defence, social networks, and molecular interaction networks;
see more details and references in the introductions of, e.g., [Pis06, MR12,
BCV+12].

It is well-known that the k-cluster problem is a hard combinatorial opti-
mization problem: it is NP-hard (even for special graphs, see,e.g., [FL01]), it
does not admit a polynomial time approximation scheme [CP84, Kho05], and
there is even a huge gap between the best known approximation algorithm
and the known inapproximability results (see, e.g., [BCC+10, BCV+12]).

In practice, k-cluster problems are also difficult to solve to optimality.
Even if there are many theoretical articles on k-cluster, there are only a
few of them on exact resolution. Among the only works attacking this
problem are the pioneering [Erk90], LP-based branch-and-bound method of
[Pis06, Sec 2.4], and the convex quadratic relaxation method of [BEP09] using
semidefinite programming and CPLEX. Note that, before 2006 and [Pis06],
no non-trivial k-cluster problem of size n = 100 was able to be solved. As
of 2014, the state-of-the-art method for solving problem (1) to optimality is
the semidefinite-based branch-and-bound algorithm of [MR12] which is able
to solve instances of size n = 120, and which compared positively to the
previous methods on smaller problems.

1.2. Contribution and outline of this article

Our recent work [KMR12] presents an improved semidefinite bounding
procedure for Max-Cut, another classical combinatorial optimization prob-
lem. Max-Cut problems can be written as maximizing a quadratic function
over the vertices of a hypercube, that is, as (1) but without the equality
constraint

∑n
i=1 zi = k.

2

In this current paper, we build upon both [MR12] and [KMR12] by
adapting and extending for the k-cluster problem the bounding procedure
of [KMR12]. As we will see, extending techniques to k-cluster that have
proven effective for Max-Cut brings complications due to the presence of
the additional linear constraint. However, the extensive numerical experi-
ments of this paper show that the resulting algorithm greatly outperforms
the methods of [BEP09, MR12], which are the previous best existing meth-
ods to solve the k-cluster problem to optimality. Our algorithm is also able
to solve unstructured k-cluster problems of sizes n = 140 and n = 160, for
which no numerical results have been reported in the literature. The main
contribution of this paper is thus to advance our ability to solve k-cluster
problems to n = 160 from the previous limit of n ≤ 120.

The outline of this paper is as follows. In Section 2 we describe our im-
proved semidefinite bounding procedure for the k-cluster problem (1). In
Section 3 we describe our branch-and-bound implementation using our im-
proved semidefinite bounding procedure for solving k-cluster problems to
optimality. In Section 4 we present our numerical results. Finally, we give
concluding remarks in Section 5.

2. Improved semidefinite bounding procedure for k-cluster

In this section we describe the improved bounding procedure that is based
on semidefinite programming (SDP) bounds of k-cluster. We start by briefly
recalling the standard strengthened SDP relaxation of k-cluster that we will
approximate with our bounds. We use the following standard notation: the
inner product of two matrices X and Y is 〈X, Y 〉 := trace(XTY), and X � 0
means that X is symmetric positive semidefinite.

2.1. Strengthened semidefinite relaxation

Semidefinite relaxations of the k-cluster problem (1) have already been
considered in many papers for different purposes, such as [Rou04] for a com-
putational study of the bounds, [BCV+12] for (in)approximation results, and
[Pis06] and [MR12] in the context of exact resolution.

The algorithm presented in this paper uses a strengthened semidefinite
relaxation in {−1, 1} variables as in [MR12]. The derivation of this SDP
relaxation uses standard techniques (see, e.g., [PRW95, SVW00]), namely
reinforcement by redundant constraints, homogenization, change of variables,
and lifting to the space of matrices – see the reformulations 1-3 in [MR12,

3

Section 1] leading to the SDP relaxation [MR12, Equation (9)]. For the sake
of brevity, we do not repeat here the derivation of the relaxation, and we
describe only the final SDP problem, refering to [MR12, Section 2] for more
modeling information.

We consider the bound for the k-cluster problem (1) given by the following
SDP problem:

(SDPI)

maximize 〈Q,X〉

subject to 〈Qj, X〉 = 4k − 2n, j ∈ {0, . . . , n},

diag(X) = e, X � 0,

AI(X) ≥ −e,

(2)

where X lies in S
n+1, e is the vector of all ones, and

Q :=
1

4

[

eTWe eTW
We W

]

, Qj :=

[

0 eT + (n− 2k)eTj
e+ (n− 2k)ej eje

T + eeTj

]

,

for j ∈ {0, . . . , n}, with ej ∈ R
n being the j-th column of the n× n identity

matrix, for j ∈ {1, . . . , n}, and e0 := 0 ∈ R
n. To lighten notation, we will

gather all the equality constraints (including the diagonal ones) together as
B(X) = b, where b ∈ R

2n+2 and B : Sn+1 → R
2n+2 is a linear operator.

Let us explain briefly the role of the constraints; again, for more details
about this formulation, we refer to [MR12, Section 1]. The j = 0 constraint
in problem (2) comes from the constraint

∑n
i=1 zi = k in the original k-cluster

problem (1). In addition, we further strengthen the SDP bound by adding
reinforcing equality constraints and valid triangle inequality constraints:

i) Reinforcing equality constraints. The reinforcing equality constraints,

〈Qj, X〉 = 4k − 2n, j ∈ {1, . . . , n} , (3)

come from including the redundant product constraints
∑n

i=1 zizj =
kzj, for j ∈ {1, . . . , n}, to the original problem before forming the
SDP (Lagrangian) relaxation. It is known that the reinforcing equal-
ity constraints (3) provide the best possible SDP bound when con-
sidering the inclusion of valid equality constraints (see, e.g., [FR07]).
More precisely, when adding any set of redundant quadratic constraints
{zTCjz+ bTj z+aj = 0 : j ∈ J} before forming the SDP (Lagrangian) re-
laxation, the resulting bound is greater or equal to the partial Lagrangian

4

relaxation of k-cluster,

(DP) min
µ

max
z s.t. eT z=k

{

1

2
zTWz +

∑

µi(z
2
i − zi)

}

,

where only the binary constraints z ∈ {0, 1}n (written equivalently as
z2i − zi = 0, for i = 1, . . . , n) are relaxed, but the equality constraint
∑n

i=1 zi = k (written equivalently as eT z = k) is not relaxed. It is
shown in [FR07] that the set of product constraints achieves the partial
Lagrangian relaxation bound, and is therefore optimal when considering
the inclusion of valid equality constraints.

ii) Triangle inequalities. The triangle inequalities are defined by

Xij +Xik +Xjk ≥ −1,

Xij −Xik −Xjk ≥ −1,

−Xij +Xik −Xjk ≥ −1,

−Xij −Xik +Xjk ≥ −1,

for 1 ≤ i < j < k ≤ n+ 1, and correspond to the fact that for any
x ∈ {−1, 1}n+1, it is not possible to have exactly one of three products
{xixj, xixk, xjxk} equal to −1, nor is it possible to have all three of the
products equal to −1. There are a large number, 4

(

n+1
3

)

, of triangle
inequalities in total. Therefore, we will iteratively add a subset of the
most violated inequalities. For a subset of triangle inequalities I, we
let AI : S

n → R
|I| be the corresponding linear function describing the

inequalities in this subset. For every set of triangle inequalities I, the
SDP relaxation in problem (2) gives us an upper bound on the value of
the maximum weight k-cluster:

(KC) ≤ (SDPI). (4)

As was shown in [Rou04], the (SDPI) bound with all triangle inequalities
(i.e., |I| = 4

(

n+1
3

)

) is tight in that it achieves the optimal value of the k-cluster
problem on some instances, but it is also expensive to compute. Instead
of using the (SDPI) bound directly, our approach here is based upon the
semidefinite bounds of [MR13] that we present in the next section.

Before moving on to present our semidefinite bounds, we point out an easy
but important result on the SDP relaxation (2): unlike the SDP relaxation
of Max-Cut used in [KMR12], problem (2) is not strictly feasible.

5

Lemma 1. The semidefinite relaxation (2) of the k-cluster problem is not
strictly feasible (i.e. a feasible matrix cannot be positive definite).

Proof 1. Let X be feasible for problem (2). Let v :=

[

4k − 2n
−2e

]

∈ R
n+1. By

partitioning X consistently with the vector v, we have

Xv =

[

X11 XT
21

X21 X22

] [

4k − 2n
−2e

]

=

[

(4k − 2n)X11 − 2XT
21e

(4k − 2n)X21 − 2X22e

]

.

Since diag(X) = e, we have X11 = 1. The j = 0 constraint can be written as

〈[

0 eT

e 0

]

,

[

X11 XT
21

X21 X22

]〉

= 4k − 2n.

Simplifying we get 2XT
21e = 4k−2n. Thus, the first component of Xv is zero:

(4k − 2n)X11 − 2XT
21e = (4k − 2n)− (4k − 2n) = 0.

Next we let j ∈ {1, . . . , n} and consider constraint j:

〈[

0 eT + (n− 2k)eTj
e+ (n− 2k)ej eje

T + eeTj

]

,

[

X11 XT
21

X21 X22

]〉

= 4k − 2n.

Simplifying we get 2XT
21e − (4k − 2n)eTj X21 + 2eTj X22e = 4k − 2n. Since

2XT
21e = 4k − 2n, we have (4k − 2n)eTj X21 − 2eTj X22e = 0. Since this holds

for all j ∈ {1, . . . , n}, the last n components of Xv are also zero:

(4k − 2n)X21 − 2X22e = 0.

Thus we can conclude that Xv = 0. Since v 6= 0, we have that X is not
positive definite. Therefore, problem (2) is not strictly feasible. �

In conic programming, strict feasibility is often used to guarantee no
duality gap; see, e.g., [BTN01, Th.2.4.1]. In spite of the previous lemma,
there is still no gap between (2) and its dual

minimize bTy + eT z
subject to Q− B∗(y) + A∗

I(z) � 0,
z ≥ 0,

(5)

6

where B∗ and A∗
I are the adjoint operators of B and AI respectively. Here

it is the strict feasibility of the dual problem that implies zero duality gap.
Since we have for y ∈ R

2(n+1)

B∗(y) =
n+1
∑

j=1

yjQj−1 +Diag(yn+1, . . . , y2n+2) (∈ S
n+1),

we can take y arbitrarily large and make the dual problem strictly feasible.
More specifically, taking z = e and y = γ(0, e), where γ is greater that the
largest eigenvalue of Q+ A∗

I(e), gives a positive definite matrix in (5).

2.2. Our semidefinite bounds for k-cluster

We now summarize some useful results about the nonlinear SDP bounds
we use to solve k-cluster to optimality. These bounds are based on the general
nonlinear SDP bounds of [MR13], but are specialized here for the k-cluster
problem.

For any matrix A, we denote by ‖A‖F the Frobenius norm of A, which is

defined as ‖A‖F :=
√

〈A,A〉. For a real number a, we denote its nonnegative
part by a+ = max{a, 0}. We extend this definition to vectors and matrices
as follows: for x ∈ R

n, we define (x+)i := (xi)+, for i = 1, . . . , n, and for
a symmetric matrix A, we define A+ := U Diag(λ+)U

T , where A has eigen-
decomposition A = U Diag(λ)UT , with eigenvalues λ ∈ R

n and orthogonal
matrix U ∈ R

n×n. We denote similarly a−, x−, and A−.
Our first proposition is based on [MR13, Theorem 2]; we give the main

ideas of the proof here to provide a convenient summary (using the notation
of this paper) of the derivation of the semidefinite bounds used in this paper
for the k-cluster problem.

Proposition 1. Let I be a set of triangle inequalities. For y ∈ R
2n+2 and

z ∈ R
|I|, let the matrix XI(y, z) ∈ S

n+1 be defined by

XI(y, z) := [Q− B∗(y) + A∗
I(z)]+ .

Let α > 0 and let F α
I : R2n+2 × R

|I| → R be the function defined by

F α
I (y, z) :=

1

2α
‖XI(y, z)‖

2
F + bTy + eT z +

α

2
(n+ 1)2. (6)

Then F α
I (y, z) is a valid upper bound for problem (1); that is,

(KC) ≤ F α
I (y, z), for all y ∈ R

2n+2, z ∈ R
|I|
+ . (7)

7

Proof 2. It is clear (see, e.g., [KMR12, Lemma 1]) that if X ∈ S
n+1 satisfies

diag(X) = e and X � 0, then ‖X‖F ≤ n + 1. Therefore, since α > 0, the
following problem

(SDPα
I)

maximize 〈Q,X〉+ α
2

(

(n+ 1)2 − ‖X‖2F
)

subject to B(X) = b, AI(X) ≥ −e, X � 0,

satisfies
(SDPI) ≤ (SDPα

I). (8)

The Lagrangian of the (SDPα
I) problem is given by

L(X; y, z) := 〈Q,X〉+
α

2

(

(n+ 1)2− ‖X‖2F
)

+ 〈y, b− B(X)〉+ 〈z, e+ AI(X)〉

= 〈Q− B∗(y) + A∗
I(z), X〉 −

α

2
‖X‖2F + bTy + eT z +

α

2
(n+ 1)2,

where y ∈ R
2n+2 and z ∈ R

|I|
+ . By [MR13, Theorem 2] we have that F α

I is
the corresponding dual function; that is,

F α
I (y, z) = max

X�0
L(X; y, z).

Then, by weak duality we have

(SDPα
I) ≤ F α

I (y, z), for all y ∈ R
2n+2, z ∈ R

|I|
+ . (9)

Combining inequalities (4), (8), and (9), we obtain inequality (7). �

The bounds F α
I (y, z) coincide, up to change of sign and notation, with

the bounds Θ(λ, µ, α) of [MR13]. For fixed α > 0 and set of triangle in-
equalities I, the best possible bound F α

I (y, z) can be found by solving the
problem

minimize F α
I (y, z)

subject to y free, z ≥ 0.

The following proposition, based on [MR13, Theorem 2], gives us an impor-
tant fact that supports the practical use of these bounds: the above problem
is a convex and differentiable problem.

Proposition 2. The function F α
I is convex and differentiable; its gradients

are given by

∇yF
α
I (y, z) = b−

1

α
B (XI(y, z)) , and ∇zF

α
I (y, z) = e+

1

α
AI (XI(y, z)) .

(10)

8

Proof 3. From the proof of Proposition 1, the function F α
I can be interpreted

as a dual function, which immediately implies its convexity. The differentia-
bility of F α

I follows from [MR13, Theorem 2]. �

This smoothness allows us to use a quasi-Newton method that can han-
dle bound constraints, such as L-BFGS-B [BLNZ95], to efficiently minimize
F α
I (y, z) over y and z ≥ 0. For the management of the different parame-

ters, we closely follow the bounding procedure of [KMR12] for Max-Cut: we
minimize F α

I (y, z) with increasing accuracy (the stopping tolerance ε of the
quasi-Newton algorithm is driven to 0) while gradually adding inequalities
and reducing α. The sketch of our bounding procedure is given in Algo-
rithm 1; for more details, we refer to [KMR12, Algorithm 1].

Algorithm 1 Sketch of bounding procedure for k-cluster

Input: Scalars α1 > 0, ε1 > 0, and initial set of triangle inequalities I1 = ∅
for k = 1, 2, . . . do
Use L-BFGS-B to compute (yk, zk) such that

max

{

∥

∥

∥
b− B (Xk)

∥

∥

∥

∞
,
∥

∥

∥

[

e+ AI (Xk)
]

−

∥

∥

∥

∞

}

< εk,

where Xk ←
1
αk

XIk(yk, zk).

Remove inequalities I−k that are not active, and add some inequalities
I+k that are violated by Xk:

Ik+1 ← (Ik \ I
−
k) ∪ I+k .

if the number of inequalities added |I+k | is small then
Decrease αk and εk

end if

end for

We can extend the theoretical convergence analysis of [KMR12] to obtain
the following proposition, which corresponds, for the bounding procedure of
k-cluster, to the Theorem 1 of [KMR12] regarding the bounding procedure
of Max-Cut.

9

Proposition 3. Let the sequence (αk, εk, Xk, yk, zk, Ik)k be generated by Al-
gorithm 1. If (αk)k and (εk)k both converge to zero, and (X̄, ȳ, z̄, Ī) is an ac-
cumulation point of the sequence (Xk, yk, zk, Ik)k, then the sequence of bounds
converges to the classic semidefinite bound:

lim
k→+∞

F αk

Ik
(yk, zk) = (SDPĪ). (11)

The proof of Theorem 1 of [KMR12] (and the lemmas and results used
in the proof) extends easily to the k-cluster problem – except for Lemma 2
of [KMR12]. This lemma is in fact the obstacle to a straightforward gener-
alization, since the proof given in [KMR12] cannot be directly generalized
here: it requires that the semidefinite relaxation is strictly feasible, which is
not the case for the k-cluster problem, as discussed in the previous section.
Let us derive here the convergence result without this argument.

Proof 4. Consider the subsequence that converges to (X̄, ȳ, z̄, Ī). Since the
Ik are finite sets, the convergence of a subsequence to Ī means that there are
infinitely many indexes ki of this subsequence such that Iki = Ī. By (6), we
have

F
αki

Ī
(yki , zki) = eTyki + eT zki + αki(‖Xki‖

2 + n2)/2.

Since αk → 0, the straightforward generalization for k-cluster of Lemma 3 of
[KMR12] implies that the sequence (F αk

Ik
(yk, zk))k converges. Passing to the

limit in the bounds, we get

lim
k→+∞

F αk

Ik
(yk, zk) = lim

i→+∞
F

αki

Ī
(yki , zki) = bT ȳ + eT z̄. (12)

Let us now pass to the limit for the variables. We can repeat the arguments
when passing to the limit in the proof of Lemma 2 of [KMR12] (replacing diag
and Diag by B and B∗): we get that X̄ is feasible for (SDPĪ), that (ȳ, z̄) is
feasible for (DSDPĪ), and that we have complementarity

〈

Q− B∗(ȳ) + A∗
Ī(z̄), X̄

〉

= 0 and z̄T (AĪ(X̄) + e) = 0. (13)

Observe now that for all X feasible in (SDPĪ), we have

bT ȳ + eT z̄ ≥ bT ȳ + eT z̄ + 〈Q− B∗(ȳ) + A∗
Ī(z̄), X〉

= 〈Q,X〉+ ȳT (b− B(X)) + z̄T (e+ AĪ(X))

≥ 〈Q,X〉 .

Moreover (13) gives that the above inequalities are equalities for X̄. This shows
that the limit bT ȳ + eT z̄ coincides with the optimal value of (SDPĪ). �

10

0 1 2 3 4 5
time (s)

1000

1100

1200

1300

1400

1500

1600
b
o
u
n
d

Figure 1: Time/bound plot of the Algorithm 1 bounding procedure on problem
PB3 n160 d025 k80 which has optimal value 1026.

This proposition establishes the convergence and thus the consistency
of the bounding procedure. More importantly, in practice the bounding
procedure rapidly attains high quality bounds, which is the key property to
be included in a branch-and-bound method. For illustration, we plot the
convergence for our bounding procedure in Figure 1 on a k-cluster problem
(n = 160, edge density 25%, k = 80). Such convergence curve is typical of
what we have observed in our numerical experiments.

3. Branch-and-bound method for k-cluster

In this section, we describe our method for solving k-cluster to optimality.
We list the main ingredients of our branch-and-bound implementation, and
briefly compare them with the ones of [MR12].

a) Bounds. We have described our bounding procedure in Algorithm 1 in
the previous section. We now discuss the differences between the bounding
procedure of Algorithm 1 and the one used in [MR12]. With our notation,

11

the bounds used in the branch-and-bound algorithm of [MR12] are given
by (see [MR12, Lemma 2]):

Θ(y, α) :=
α

2

∥

∥[Q/α +B∗(y)]+
∥

∥

2

F
−αbTy+

α

2
(n+1)2, for α > 0. (14)

Observe therefore that we have Θ(y, α) = F α
∅ (−αy) for all y and α > 0.

In other words, the bounds used in [MR12] essentially correspond (up to
a scaling of the vector y) to the bounds that we use here, but with no
triangle inequalities (I = ∅). The presence (and the efficient manage-
ment) of the inequalities in Algorithm 1 is the key difference between our
bounding procedure and the one of [MR12].
Though it is well-known that triangular inequalities greatly improve the
SDP bounds for k-cluster (see, e.g., [Rou04]), it is a computational chal-
lenge to incorporate them in the bounding in a tractable way; this has
never be done for this problem in a context of exact resolution (neither by
[MR12] nor [Pis06, BEP09]). In practice, Algorithm 1 gradually reduces
the two tightness parameters α and ε to zero while incorparating blocks of
promising inequalities. This is another difference with [MR12] for which
α and ε are kept fixed. Moreover, although both bounding procedures
(ours and the one of [MR12]) use quasi-Newton algorithms, here we have
to use a quasi-Newton solver that can handle bound constraints, and we
also have to run this solver several times during the computation of the
bounds.

b) Heuristics. We use the same two heuristic methods in the current
branch-and-bound implementation as in the one of [Pis06] and [MR12]:

(a) For the initial feasible point, we use the classical two-step greedy
heuristic for k-cluster, since it gives very good feasible solutions.

(b) After running the bounding procedure on a subproblem having k′

nodes added to the cluster, we add the remaining k−k′ nodes having
the largest fractional values.

c) Branching rules. In the current branch-and-bound implementation, we
use the “difficult first” branching rule to decide which variables to branch
on next: in the {0, 1} problem formulation, we select the variable having
fractional value closest to 1

2
. This is the same branching rule that was

used in [MR12]. In addition, given a list of subproblems in the branch-
and-bound method, we must decide which subproblem to branch on next.
We use the BOB Branch & Bound platform [CR95] that provides an easy

12

and flexible way to implement a branch-and-bound algorithm. The BOB
platform automatically handles the management of subproblems, and we
select the subproblem with the weakest bound with the hope of making
the most progress. In contrast, a basic depth-first traversal of the branch-
and-bound tree was used for the selection of subproblems in [MR12].

4. Numerical results

As far as we are aware, the most challenging k-cluster test-problems pub-
licly available are the ones used by [Bil05, BEP09, MR12], created by the
graph generator rudy. The parameters of the instances of k-cluster are the
size of the graph n, the value of k, and the graph density d. We take:

k =
1

4
n,

1

2
n,

3

4
n, d = 25%, 50%, 75%.

The instances are randomly generated as follows: given a density d ∈ [0, 1],
a uniformly distributed random number ρ ∈ [0, 1] is generated for any pair
of indexes i < j; if ρ > d, then wij is set to 0, otherwise it is set to

• either to 1, generating an instance of pure k-densest subgraph problem,

• or to a integer in {0, . . . , 100} (or {−100, . . . , 100}), generating an in-
stance of (generalized) heaviest k-subgraph problem.

We implemented our algorithm in C / FORTRAN and have used the Intel
Math Kernel Library (MKL) for the eigenvalue computations. We report
the computational results of our algorithm on the two above sub-families
of k-cluster problems. In our tests we used a Dell Intel Xeon CPU E31270
3.40 GHz (using a single core) with 8Go of memory and running the Linux
operating system.

4.1. Numerical results for k-densest subgraph

For the k-densest subgraph instances, we have n = 80, 100, 120, 140, 160,
and five instances generated by the graph generator rudy for each set of
parameters (n, d and k). We also have a set of random instances for n =
120, 140, 160 generated by Amélie Lambert and available online. Thus we
have a total of 360 instances of the k-densest subgraph problem.

The instances with n = 80, 100 have already been used in previous articles
about k-cluster, such as [Bil05, BEP09, MR12]; we call them the standard

13

instances. We call the instances with n = 120, 140, 160 the larger instances.
As far as we are aware, this paper is the first one where numerical results
are reported for instances with n = 140 and n = 160. The instances with
n = 120 were used by [MR12], and their solver failed on some on them.

Our first experiment consists in comparing our method with the two best
existing methods to solve the k-cluster problem to optimality:

1. the semidefinite method of [MR12], which is a precursor of the method
presented here using the same branch-and-bound structure but basic
semidefinite bounds (without dynamic control of α, ε and without tri-
angle inequalities), as described in the previous section;

2. the quadratic convex reformulation (QCR) of [BEP09] which first con-
vexifies the objective function of the problem (1) and then uses the
state-of-the-art IBM/CPLEX mixed-integer convex quadratic solver
(we use CPLEX 12.6 for the experiments). Since the best convexifying
parameters of the initial problem are obtained by solving the semidefi-
nite relaxation (SDPI) (we use CSDP [Bor99] for the experiments), the
QCR and our method use the same (tight) bound at the root node of
the branch-and-bound tree. However, the tightness of the QCR bounds
deteriorates when going down this the search tree.

We have implemented the three methods, tuned their parameters to reach
the best performance, and run them on the same machine. Table 1 reports
their comparison in terms of CPU time and number of nodes of the search
tree to reach optimality for all the problems. Note that the reported times for
QCR are the ones of CPLEX 12.6 (single thread). The dual variables needed
to convexify the problem are obtained by CSDP [Bor99]; but the computing
times of CSDP are not consider in the reported CPU time as they are usually
unsignificant (about 0.4 seconds for n = 80 and 0.9 or n = 100).

The figures of Table 1 show that our algorithm clearly outperforms the
two other methods. Regarding memory issues, the two first methods use a
few amount of memory (less than 4 Mo) whereas the third featuring CPLEX
uses up to 6 Go. In view of this first experiment on the standard instance,
we know focus on our method and try to reach larger size.

For the second experiment, we consider the larger instances and report in
Table 2 the average number of nodes and time required for our solver to solve
each set of five problems. We emphasize that our solver does not need to
visit a lot of nodes in the branch-and-bound search tree; for example, we have
found that 55% of the problems with size n ≤ 120 are solved at the root of

14

Table 1: For the standard k-cluster problems: for the three best existing methods, we
compare the number of nodes and CPU time (s), averaged over five instances for each
triple (n, k, d).

n k d(%)

80 20 25
50
75

40 25
50
75

60 25
50
75

mean

100 25 25
50
75

50 25
50
75

75 25
50
75

mean

(b) our method

nodes time

3.4 3.2
7.4 6.1
13.8 9.5
1.4 1.1
1.0 0.8
6.6 8.0
1.0 1.1
1.0 0.8
1.0 0.7

4.1 3.5

20.6 31.3
35.0 41.6
30.6 32.3
3.4 5.3
25.4 46.1
1.4 2.1
1.0 1.9
1.8 3.8
1.0 1.6

13.4 18.5

(c) [MR12]

nodes time

11650 94.5
41857 323.1
102948 1002.4
1544 13.1
2806 24.6
19789 195.7
148 1.3
302 2.7
1123 11.2

20241 185.4

127901 2207.1
303648 5543.0
1180710 19661.2

9328 164.9
211308 3923.5
27099 514.2
455 8.0
2018 39.7
1958 38.7

207158 3566.7

(d) [BEP09]

nodes time

170658 39.9
536648 125.0
1827452 407.4
26597 8.6
34148 9.6
231620 55.2

946 0.6
5128 3.1
5754 3.4

315439 72.5

5680415 1882.8
19164583 6684.9
44336562 14275.8
415340 153.6
5156390 2182.2
514822 203.1
10261 5.1
108962 37.3
14956 6.5

8378032 2825.7

the branch-and-bound tree. Our algorithm is also able to solve unstructured
k-cluster problems of sizes n = 140 and n = 160, for which, as far as we are
aware, no numerical results have been reported in the literature. Finally we
note that 96% of the 360 test problems in are solved within three hours.

There are significant differences on the performance of the algorithm for
problems of the same size. In particular, we notice that the number of nodes
and total time tends to increase when d increases from 25%- 75%. This is due
to the presence of many near-optimal k-clusters (and more generally many k-
clusters can have very similar values) for larger density graphs. Consequently,

15

Table 2: For the larger problems: the number of nodes and CPU time, averaged over five
instances for each triple (n, k, d). Entire set of results available online at http://lipn.univ-
paris13.fr/BiqCrunch/results.

n k d(%)

120 30 25
50
75

60 25
50
75

90 25
50
75

140 35 25
50
75

70 25
50
75

105 25
50
75

160 40 25
50
75

80 25
50
75

120 25
50
75

(b) rudy instances

nodes time (s)

119.4 315.8
194.2 425.1
422.2 889.8
59.8 198.5
85.8 263.2
43.0 143.0
1.8 6.8
22.2 96.9
1.0 3.0

366.2 1165.8
1063.4 2888.6
1558.6 4079.5
134.2 543.0
780.6 3035.3
52.2 202.9
2.6 14.1
11.0 61.5
6.6 34.8

744.6 2856.4
11325.4 37565.2
8050.6 26302.6
395.4 1835.2
993.4 4654.5
3829.0 18653.9
31.4 219.8
17.4 143.4
9.8 82.2

(c) other instances

nodes time (s)

16.6 36.0
39.4 83.1
62.2 119.5
12.2 28.3
27.4 69.4
41.8 93.0
1.0 2.9
1.0 2.7
1.0 2.6

131.0 445.1
383.0 964.7
485.0 1279.8
54.2 216.5
298.6 1133.0
155.8 571.7
1.4 7.5
7.4 39.8
3.0 19.1

235.4 1023.6
858.6 3280.1
1132.2 3997.8
73.4 401.6
479.8 1908.6
1425.0 6288.9

1.4 9.5
2.2 16.7
4.2 31.7

even if the bound is tight, it is hard to prune nodes in the search tree since
the evaluations of many nodes are almost the same. The bottomline is that

16

http://lipn.univ-paris13.fr/BiqCrunch/results
http://lipn.univ-paris13.fr/BiqCrunch/results

n = 160 is the largest size of unstructured k-cluster problems to be solved to
optimality within a reasonable amount of time on a single-threaded machine.

4.2. Numerical results for heaviest k-subgraph

For the (generalized) heaviest k-subgraph instances instances, we have
n = 120, 140, 160 and five instances generated by the graph generator rudy
for each set of parameters (n, d, and k) and for positive weights in 0, . . . , 100
and for integer weights in −100, . . . , 100. This makes a total of 270 instances.
As above, we report the average number of nodes and time required to solve
each set of five problems in Table 3.

The computing time and number of nodes reported in the two Tables 2
and 3 are comparable. The main difference between the two tables is for
dense graphs with large k (look for example at the last lines of the two
tables). For dense graphs with large k, unweighted instances have several
optimal solutions (thus, it is easier to find an optimal solution). When k
is smaller, the instances in the weighted and unweighted cases are more
difficult and comparable with each other (look, for example, at the first line
with n = 160, in the two tables).

The bottonline is that the nature of the weights (positive, negative, or
0-1) do not change the order of magnitude of computing times and the num-
ber of nodes. This confirms the folklore knowledge that the instances with
{0, 1} weights (k-densest subgraph instances) are as hard to solve as the
weighted ones (heaviest k-subgraph instances). This is probably the reason
why [Bil05, BEP09, MR12] only considered these instances. Such numerical
observations can be related to theoretical results in complexity theory for
similar optimization problems in graphs (see, e.g., [CST01]).

4.3. Online complementary material and on-going developments

We have made the following complementary material available online:

• the entire dataset of problems,

• the full numerical results of our tests,

• a web interface for the solver.

To access this material, we invite the interested reader to visit the BiqCrunch
website:

http://lipn.univ-paris13.fr/BiqCrunch.

17

http://lipn.univ-paris13.fr/BiqCrunch

Table 3: For graphs with weights: the number of nodes and CPU time, averaged over five
instances for each triple (n, k, d). Entire set of results available online at http://lipn.univ-
paris13.fr/BiqCrunch/results.

n k d(%)

120 30 25
50
75

60 25
50
75

90 25
50
75

140 35 25
50
75

70 25
50
75

105 25
50
75

160 40 25
50
75

80 25
50
75

120 25
50
75

(b) 0-100 weights

nodes time (s)

37.8 178.8
147.4 633.4
110.6 472.6
27.4 141.3
113.0 536.4
69.4 353.3
1.0 5.4
4.2 29.5
4.2 32.1

115.8 673.9
254.6 1368.1
853.4 4282.9
44.6 293.3
118.6 722.2
478.2 2787.6
3.4 32.8
6.6 55.5
14.6 147.7

372.6 2631.9
1443.0 9842.8
2009.0 12102.4
541.8 4161.5
429.4 3628.1
2473.8 17398.4

6.2 67.7
7.4 86.7
20.2 242.4

(c) -100-100 weights

nodes time (s)

21.8 112.5
45.4 222.7
107.4 467.9
18.6 106.6
76.2 392.4
48.2 282.4
1.8 21.2
3.0 41.7
2.6 26.7

104.6 612.4
1325.4 6581.9
899.4 4135.8
19.8 142.3
226.6 1348.0
247.8 1457.4
1.8 35.2
3.4 59.4
8.2 123.8

584.2 3971.7
1767.4 11622.0
2522.2 16667.4
165.0 1441.7
427.4 3330.4
94.6 743.9
2.2 47.5
10.6 203.4
12.6 227.1 I

Our current research and development are about extending the approach
presented in this paper to general binary quadratic problems with quadratic

18

http://lipn.univ-paris13.fr/BiqCrunch/results
http://lipn.univ-paris13.fr/BiqCrunch/results

and linear constraints. Since the theory has already been presented for the
general case [MR13], our work essentially consists of modeling and computer
implementations. For example, during the review process of this paper, we
have done numerical experiments with the max-clique problem (also called
“max independent set problem”), for which there exist many publicly avail-
able instances (DIMACS instances). These complementary results are and
will be be posted on the web site.

We want to point out that it is for the k-cluster problem that we have got
the most spectacular computational results, as reported in this paper. This
comes probably from the fact that k-cluster is harder than other problems
– in particular, harder than max-clique, both in the sense of computational
resolution and in the sense of complexity theory (max-clique reduces to k-
cluster in bipartite graphs [CP84]). Thus we do not present other results
in this paper and instead we refer the interested reader to the website for
further research and developments.

5. Conclusions

In this paper, we have presented an improved branch-and-bound algo-
rithm to solve k-cluster problems to optimality. Our method is based on the
previous work of [MR12] and [KMR12] and here we have summarized the
main ideas from these papers and have highlighted the differences. The two
main reasons why the method presented here is much better than the results
reported in [MR12] are the introduction of triangle inequalities and the strat-
egy of reducing α and ε in the semidefinite bounding procedure presented in
Algorithm 1.

The main contribution of this paper is the extensive numerical experi-
ments on benchmark k-cluster problems, including large-scale problems that
are beyond the ability of previous exact methods to solve within a reason-
able amount of time. We were able to solve for the first time a set of hard
k-cluster instances of size n = 160, advancing our ability to solve instances
from the previous limit of n = 120.

Our other contributions are: adapting the branch-and-bound method and
bounding procedure of [KMR12] to solve k-cluster problems; extending the
convergence results of [KMR12] in spite of the lack of strict-feasibility of the
SDP relaxation of Lemma 1; comparing practical complexity for different
subfamilies the of k-cluster problem; making the benchmark dataset of k-
cluster problems and entire numerical results available online together with

19

a web interface for our solver.
Since the semidefinite relaxation (2) of the k-cluster problem is not strictly

feasible, we will also consider in our future work the use of semidefinite facial
reduction (see, e.g., [RTW97]) with the hope of further improving the time
to solve k-cluster problems to optimality.

Acknowledgment. We thank the referee for their pertinent comments and
suggestions which helped us improve our numerical comparisons, as well as
the convergence analysis. We acknowledge the support of the grant ”ANR
GeoLMI” and of the CNRS ”Mastodons” grant ”Gargantua”.

References

[BCC+10] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vi-
jayaraghavan. Detecting high log-densities: an o(n1/4) approxi-
mation for densest k-subgraph. In Proceedings of the 42nd ACM
Symposium on Theory of Computing (STOC’10), pages 201–210,
2010.

[BCV+12] A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami,
and Y. Zhou. Polynomial integrality gaps for strong sdp re-
laxations of densest k-subgraph. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’12), pages 388–405, 2012.

[BEP09] A. Billionnet, S. Elloumi, and M.-C. Plateau. Improving the per-
formance of standard solvers for quadratic 0-1 programs by a tight
convex reformulation: The QCR method. Discrete Applied Math-
ematics, 157(6):1185–1197, 2009.

[Bil05] A. Billionnet. Different formulations for solving the heaviest k-
subgraph problem. Information Systems and Operational Res.,
43(3):171–186, 2005.

[BLNZ95] R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algo-
rithm for bound constrained optimization. SIAM J. Sci. Comput.,
16(5):1190–1208, September 1995.

[Bor99] B. Borchers. CSDP, a C library for semidefinite programming.
Optimization Methods and Software, 11(1):613–623, 1999.

20

[BTN01] R. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Opti-
mization. MPS-SIAM Series on Optimization. Siam Publications,
2001.

[CP84] D.G. Corneil and Y. Perl. Clustering and domination in perfect
graphs. Discrete Applied Mathematics, 9(1):7–39, 1984.

[CR95] B.L. Cun and C. Roucairol. BOB: A unified platform for im-
plementing branch-and-bound like algorithms. Technical report,
University of Versailles Saint-Quentin-en-Yvelines, 1995.

[CST01] P. Crescenzi, R. Silvestri, and L. Trevisan. On weighted vs un-
weighted versions of combinatorial optimization problems. Infor-
mation and Computation, 167(1):10 – 26, 2001.

[Erk90] E. Erkut. The discrete p-dispersion problem. European Journal
of Operational Research, 46(1):48–60, 1990.

[FL01] U. Feige and M. Langberg. Approximation algorithms for max-
imization problems arising in graph partitioning. J. Algorithms,
41(2):174–211, 2001.

[FR07] A. Faye and F. Roupin. Partial Lagrangian for general quadratic
programming. 4’OR, A Quarterly Journal of Operations Re-
search, 5(1):75–88, 2007.

[Kho05] S. Khot. Ruling out PTAS for graph min-bisection, dense k-
subgraph, and bipartite clique. SIAM J. Comput, 36:1025–1071,
2005.

[KMR12] N. Krislock, J. Malick, and F. Roupin. Improved semidefinite
bounding procedure for solving max-cut problems to optimality.
Mathematical Programming, pages 1–26, 2012.

[MR12] J. Malick and F. Roupin. Solving k-cluster problems to optimal-
ity with semidefinite programming. Mathematical Programming
B, 136:279–300, 2012. Special issue on Mixed-Integer Nonlinear
Programming.

21

[MR13] J. Malick and F. Roupin. On the bridge between combinatorial
optimization and nonlinear optimization: a family of semidefi-
nite bounds for 0-1 quadratic problems leading to quasi-newton
methods. Mathematical Programming B, 140(1):99–124, 2013.

[Pis06] D. Pisinger. Upper bounds and exact algorithms for p-dispersion
problems. Computers and Operations Research, 33:1380–1398,
2006.

[PRW95] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite
relaxation for (0,1)-quadratic programming. Journal of Global
Optimization, 7:51–73, 1995.

[Rou04] F. Roupin. From linear to semidefinite programming: an algo-
rithm to obtain semidefinite relaxations for bivalent quadratic
problems. Journal of Combinatorial Optimization, 8(4):469–493,
2004.

[RTW97] M. Ramana, L. Tunçel, and H. Wolkowicz. Strong duality
for semidefinite programming. SIAM Journal on Optimization,
7(3):641–662, 1997.

[SVW00] R. Saigal, L. Vandenberghe, and H. Wolkowicz. Handbook of
Semidefinite Programming. Kluwer, 2000.

22

	Introduction
	The k-cluster problem
	Contribution and outline of this article

	Improved semidefinite bounding procedure for k-cluster
	Strengthened semidefinite relaxation
	Our semidefinite bounds for k-cluster

	Branch-and-bound method for k-cluster
	Numerical results
	Numerical results for k-densest subgraph
	Numerical results for heaviest k-subgraph
	Online complementary material and on-going developments

	Conclusions

