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Ivan Nourdin® David Nualart and Guillaume Poly*
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Abstract

The aim of this paper is to establish some new results on the absolute continuity
and the convergence in total variation for a sequence of d-dimensional vectors whose
components belong to a finite sum of Wiener chaoses. First we show that the prob-
ability that the determinant of the Malliavin matrix of such vectors vanishes is zero
or one, and this probability equals to one is equivalent to say that the vector takes
values in the set of zeros of a polynomial. We provide a bound for the degree of this
annihilating polynomial improving a result by Kusuoka [8]. On the other hand, we
show that the convergence in law implies the convergence in total variation, extending
to the multivariate case a recent result by Nourdin and Poly [11]|. This follows from
an inequality relating the total variation distance with the Fortet-Mourier distance.
Finally, applications to some particular cases are discussed.

1 Introduction

The purpose of this paper is to establish some new results on the absolute continuity and the
convergence of the densities in some LP(R?) for a sequence of d-dimensional random vectors
whose components belong to finite sum of Wiener chaos. These result generalize previous
works by Kusuoka [8] and by Nourdin and Poly [11], and are based on a combination of
the techniques of Malliavin calculus, the Carbery-Wright inequality and some recent work
on algebraic dependence for a family of polynomials.
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Let us describe our main results. Given two d-dimensional random vectors F' and G,
we denote by dry (F, G) the total variation distance between the laws of F' and G, defined
by

dry(F,G)= sup |P(FeA)—P(GeA)
AeB(RT)

where the supremum is taken over all Borel sets A of R?. There is an equivalent formulation
for dry, which is often useful:

dn(P.G) = 5 sup| EIo()] = Elo(G)].

where the supremum is taken over all measurable functions ¢ : R? — R which are bounded
by 1. It is also well-known (Scheffé’s Theorem) that, when F' and G both have a law which
is absolutely continuous with respect to the Lebesgue measure on R?, then

with f and ¢ the densities of F' and G respectively. On the other hand, we denote by
dpy(F, G) the Fortet-Mourier distance, given by

dpy(F, G) = Sup |Elp(F)] = El¢(G)]],

where the supremum is taken over all 1-Lipschitz functions ¢ : R? — R which are bounded
by 1. It is well-known that dgp; metrizes the convergence in distribution.

Consider a sequence of random vectors F,, = (F ,,. .., Fy,) whose components belong
to @} _oHy, where H;, stands for the kth Wiener chaos, and assume that F,, converges in
distribution towards a random variable F.,. Denote by I'(F,,) the Malliavin matrix of F,,
and assume that E[det T'(F,,)] is bounded away from zero. Then we prove that there exist
constants ¢,y > 0 (depending on d and ¢) such that, for any n > 1,

dTV(FnaFoo) <CdFM(Pjn7Pjoo),y (11)

So, our result implies that the sequence F,, converges not only in law but also in total
variation. In [11] this result has been proved for d = 1. In this case v = q{l—l’ and one
only needs that F,, is not identically zero, which turns out to be equivalent to the fact
that the law of I, is absolutely continuous. This equivalence is not true for d > 2. The
proof of this result is based on the Carbery-Wright inequality for the law of a polynomial
on Gaussian random variables and also on the integration-by-parts formula of Malliavin
calculus. In the multidimensional case we make use of the integration-by-parts formula
based on the Poisson kernel developed by Bally and Caramelino in [1].

The convergence in total variation is very strong, and should not be expected from

the mere convergence in law without some additional structure. For instance, there is
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a celebrated theorem of Ibragimov (see, e.g., Reiss [16]) according to which, if F),, F
are continuous random variables with densities f,,, fo that are unimodal, then F,, — F.
in law if and only if dry(F,, Fx) — 0. Somehow, our inequality (1.1) thus appears as
unexpected. Several consequences are detailed in Section 5. Furthermore, bearing in mind
that the convergence in total variation is equivalent to the convergence of the densities
in L'(R%), we improve this results by proving that under the above assumptions on the
sequence F},, the densities converge in LP(R?) for some explicit p > 1 depending solely on
d and gq.

Motivated by the above inequality (1.1), in the first part of the paper we discuss the
absolute continuity of the law of a d-dimensional random vector F' = (Fy, ..., F;) whose
components belong to a finite sum of Wiener chaoses ®]_;Hy. Our main result says that
the three following conditions are equivalent:

1. The law of F' is not absolutely continuous with respect to the Lebesgue measure on
R

2. There exists a nonzero polynomial H in d variables of degree at most dg?~! such that
H(F)=0.

3. E[detT'(F)] = 0.

Notice that the criterion of the Malliavin calculus for the absolute continuity of the law of
a random vector F' says that det I'(F") > 0 almost surely implies the absolute continuity
of the law of F'. We prove the stronger result that P(det '(F') = 0) is zero or one; as a
consequence, P(detI'(F') > 0) = 1 turns out to be equivalent to the absolute continuity.
The equivalence with condition 2 improves a classical result by Kusuoka ([8]), in the sense
that we provide a simple proof of the existence of the annihilating polynomial based on a
recent result by Kayal [7] and we give an upper bound for the degree of this polynomial.
Also, it is worthwhile noting that, compared to condition 2, condition 3 is often easier to
check in practical situations, see also the end of Section 3.

The paper is organized as follows. Section 2 contains some preliminary material on
Malliavin calculus, the Carbery-Wright inequality and the results on algebraic dependence
that will be used in the paper. In Section 3 we provide equivalent conditions for absolute
continuity in the case of a random vector in a sum of Wiener chaoses. Section 4 is devoted
to establish the inequality (1.1), and also the convergence in LP(R?) for some p. Section
5 contains applications of these results in some particular cases. Finally, we list two open
questions in Section 6.

2 Preliminaries

This section contains some basic elements on Gaussian analysis that will be used through-
out this paper. We refer the reader to the books [10, 13| for further details.



2.1 Multiple stochastic integrals

Let $) be a real separable Hilbert space. We denote by X = {X(h),h € H} an isonormal
Gaussian process over §). That means, X is a centered Gaussian family of random variables
defined in some probability space (2, F, P), with covariance given by

EX(h)X(9)] = (h, 9)s,

for any h, g € . We also assume that F is generated by X.

For every k > 1, we denote by H; the kth Wiener chaos of X defined as the closed
linear subspace of L*(€) generated by the family of random variables {Hy(X (h)),h €
9, |Ih]ls = 1}, where Hy is the kth Hermite polynomial given by

Hy(z) = (—1)ke”§d‘fk (e%) .

We write by convention H, = R. For any k > 1, we denote by $®* the kth tensor product
of . Then, the mapping I(h®*) = Hy(X(h)) can be extended to a linear isometry
between the symmetric tensor product H* (equipped with the modified norm V/&!|| - || ger )
and the kth Wiener chaos Hy. For k = 0 we write [y(z) = ¢, ¢ € R. In the particular
case ) = L*(A, A, i), where p is a o-finite measure without atoms, then $®* coincides
with the space L2(u*) of symmetric functions which are square integrable with respect to
the product measure p*, and for any f € $®* the random variable I;(f) is the multiple
stochastic integral of f with respect to the centered Gaussian measure generated by X.

Any random variable F' € L*(2) admits an orthogonal decomposition of the form
F =377 Ix(fx), where fo = E[F], and the kernels f;, € H®* are uniquely determined by
F.

Let {e;,i > 1} be a complete orthonormal system in §. Given f € H®* and g € H,
for every r = 0, ..., kA j, the contraction of f and g of order r is the element of $@*+7=2)
defined by

[e.9]

f®rg= Z (frea ® - ®ei)per @ (g6, @ - ® e )0

150y ir=1

The contraction f ®, g is not necessarily symmetric, and we denote by f®,g its sym-
metrization.

2.2 Malliavin calculus

Let S be the set of all cylindrical random variables of the form
F=g(X(h),...,X(hy)),

where n > 1, h; € $, and g is infinitely differentiable such that all its partial derivatives
have polynomial growth. The Malliavin derivative of F is the element of L?(€; ) defined
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By iteration, for every m > 2, we define the mth derivative D™ F which is an element of
L2(Q; H°™). For m > 1 and p > 1, D"™? denote the closure of S with respect to the norm
| - |lmp defined by

|E(l7,, = ENFPT+ Y E 1D F[5e] -
j=1
We also set D> = My,>1 Ny DTP.

As a consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semi-
group, all the || - ||, ,-norms are equivalent in a finite Wiener chaos. This is a basic result
that will be used along the paper.

We denote by  the adjoint of the operator D, also called the divergence operator.
An element u € L*(;$) belongs to the domain of §, denoted Domd, if |E(DF,u)g| <
cul| F|| 120y for any F' € D2 where ¢, is a constant depending only on w. Then, the random
variable §(u) is defined by the duality relationship

E[Fé(u)] = E(DF, u)s, (2.2)

Given a random vector F' = (F}, ..., Fy) such that F; € D2 we denote I'(F') the Malliavin
matriz of F', which is a random nonnegative definite matrix defined by

[i;(F) = (DF;, DFj)s,.

If F;,, € D' for some p > 1 and any i = 1,...,d, and if det ['(F') > 0 almost surely, then
the law of F is absolutely continuous with respect to the Lebesgue measure on R? (see, for
instance, |13, Theorem 2.1.2|). This is our basic criterion for absolute continuity in this

paper.
2.3 Carbery-Wright inequality

Along the paper we will make use of the following inequality due to Carbery and Wright
[4]: there is a universal constant ¢ > 0 such that, for any polynomial @ : R" — R of degree
at most d and any o > 0 we have

E[Q(X1, ..., X)) P(|Q(X1, ..., X,)| < ) < cda, (2.3)

where Xi,..., X, are independent random variables with law N (0, 1).



2.4 Algebraic dependence

Let IF be a field and f = (f1,..., fx) € Flx1,...,2,] be a set of k polynomials of degree at

most d in n variables in the field F. These polynomials are said to be algebraically depen-

dent if there exists a nonzero k-variate polynomial A(ty,...,t;) € F[t1,..., 1] such that

A(f1,..., fr) = 0. The polynomial A is then called an (fi, ..., fx)-annihilating polynomial.
Denote by

e (2

axj)Kigk,lgjgn

the Jacobian matrix of the set of polynomials in f. A classical result (see, e.g., Ehrenborg
and Rota [6] for a proof) says that fi,..., fi are algebraically independent if and only if
the Jacobian matrix J¢ has rank k.

Suppose that the polynomials f = (fi,..., fx) are algebraically dependent. Then the
set of f-annihilating polynomials forms an ideal in the polynomial ring F[t;,...,%]. In a
recent work Kayal (see |7]) has established some properties of this ideal. In particular (see
[7], Lemma 7) he has proved that if no proper subset of f is algebraically dependent, then
the ideal of f-annihilating polynomials is generated by a single irreducible polynomial. On
the other hand (see [7], Theorem 11) the degree of this generator is at most kq*~!.

3 Absolute continuity of the law of a system of multiple
stochastic integrals

The purpose of this section is to extend a result by Kusuoka [8] on the characteriza-
tion of the absolute continuity of a vector whose components are finite sums of multiple
stochastic integrals, using techniques of Malliavin calculus. In what follows, the notation
R[X1,. .., X ] stands for the set of d-variate polynomials over R.

Theorem 3.1 Fiz q,d > 1, and let F = (Fy,..., Fy) be a random vector such that F; €
BDi_ Hi for any i = 1,...,d. Let T := I'(F) be the Malliavin matriz of F. Then the
following assertions are equivalent:

(a) The law of F' is not absolutely continuous with respect to the Lebesgue measure on
R,

(b) There exists H € R[X1,..., X4\ {0} of degree at most D = dq®~! such that, almost
surely,

H(F,...,Fy) =0.

(c) E[detT] = 0.



Proof of (a)=(c). Let us prove —(c) = —(a). Set N =2d(q— 1) and let {ex, k > 1} be an
orthonormal basis of §. Since det ' € @]kvzo Hy., there exists a sequence {Q,,,n > 1} of real-
valued polynomials of degree at most N such that the random variables Q,,(I1(e1), ..., [1(e,))
converge in L*(Q) and almost surely to det I' as n tends to infinity (see [11, Theorem 3.1,
first step of the proof] for an explicit construction). Assume now that E[det '] > 0. Then
for n > ng, F[|Qn(I1(e1), ..., I1(ey))]] > 0. We deduce from the Carbery-Wright’s inequal-
ity (2.3) the existence of a universal constant ¢ > 0 such that, for any n > 1,

P(1Qu(Li(e1), ..., Ti(en)] < N) < eNAYN(E[Qu(Ii(er), . .., Ti(e,)?]) /2.
Using the property

E[Qn(Ii(e1), ..., Ii(en)?] = (E[lQn(I1(e1), . .., I1(en)]])?

we obtain

P(|Qu(Li(e1), -, Ti(en)] < A) < eNAYN(E[|Qu(Li(er), - Li(en)) )Y,

and letting n tend to infinity we get
P(detT < \) < eNAYN(E[det T'])~ VN, (3.4)

Letting A — 0, we get that P(detI’ = 0) = 0. As an immediate consequence of absolute
continuity criterion, (see, for instance, [13, Theorem 2.1.1]) we get the absolute continuity
of the law of F', and assertion (a) does not hold.

It is worthwhile noting that, in passing, we have proved that P(det I' = 0) is zero or one.

Proof of (b)=(a). Assume the existence of H € R[Xy, -, X,] \ {0} such that, almost
surely, H(Fy,...,F;) = 0. Since H # 0, the zeros of H constitute a closed subset of R?
with Lebesgue measure 0. As a result, the vector F' cannot have a density with respect to
the Lebesgue measure.

Proof of (¢)=(b). Let {ex,k > 1} be an orthonormal basis of §), and set Gy = I;(ey) for
any k > 1. In order to illustrate the method of proof, we are going to deal first with the
finite dimensional case, that is, when F; = P;(Gy,...,Gy), i = 1,...,d, and for each i,
P, € R[Xy,...,X,] is a polynomial of degree at most ¢. In that case,

0P oP,
(DF;, DFy)g = axj(Gl,...,Gn)a—xj(Gl,...,Gn),

j=1

and the Malliavin matrix I' of F' can be written as I' = AAT, where

P
A= (8 Z(Gl,...,Gn))
Ox; 1<i<d, 1<

XA, \]gn




As a consequence, taking into account that the support of the law of (Gy,...,G,) is R,
if detI' = 0 almost surely, then the Jacobian (

gf? Y1y Yn) has rank strictly less
J d

xXn

than d for all (y1,...,y,) € R™. Statement (b) is then a consequence of Theorem 2 and
Theorem 11 in [7].

Consider now the general case. Any symmetric element f € H%* can be written as
o
E ap ..l €, ®...Q €1, -
l1,.. =1

Setting k; = #{j : |; = [}, the multiple stochastic integral of e;, ® ... ® ¢;, can be written
in terms of Hermite polynomials as

(e, ® ... @ ey) Hsz (GY),

where the above product is finite. Thus,

Z ap, ..., HHIQ Gh),

Iy lg=1

where the series converges in L?. This implies that we can write

I(f) = P(G1,Ga, . . ) (3.5)

where P : RY — R is a function defined v*N-almost everywhere, with v the standard
normal distribution. In other words, we can consider I;(f) as a random variable defined
in the probability space (RY,v®N). On the other hand, for any n > 1 and for almost all
Yni1s Ynios - - - in R the function (y1,...,y,) = P(y1,92,...) is a polynomial of degree at
most p. By linearity, from the representation (3.5) we deduce the existence of mappings
Py,...,P;: RY = R, defined v*N almost everywhere, such that for alli = 1,...,d,

F, = P(G1,Go,...), (3.6)

and such that for all n > 1 and almost all ¥, 11, Ynio, ... in R, the mapping (yi,...,y,) —
Pi(y1, 99, . ..) is a polynomial of degree at most ¢q. With this notation, the Malliavin matrix
" can be expressed as I' = AAT, where

OP;
A:(a (Gl,GQ,...)) .
Lj 1<i<d, j>1

Consider the truncated Malliavin matrix T',, = A, AT where

or;
A

1<i<d, 1<5<n



From the Cauchy-Binet formula

det T, = det(A,AT) = Z (det Aj)?,

J={j1,--»Ja}C{1,...,n}

where for J = {j1,...,ja},

op;
T B

Ox; 1<i<d, jeJ

we deduce that det I',, is increasing and it converges to det I'. Therefore, if det I' = 0 almost
surely, then for each n > 1, detI',, = 0 almost surely.

Suppose that E[det '] = 0, which implies that detI' = 0 almost surely. Then, for all
n > 1, detT',, = 0 almost surely. We can assume that for any subset {F;,,..., F; } of the
random variables {F}, ..., F;} we have

E[detTo(F,,, ..., F;,)] #0,

because otherwise we will work with a proper subset of this family. This implies that for
n = ng, and for any subset {F},,..., F; },

E[det Tn(Fy,,..., F;)] #0,

where I',, denotes the truncated Malliavin matrix defined above. Then, applying the
Carbery-Wright inequality we can show that the probability P(det',,(F;,, ..., F;.) =0) is
zero or one, so we deduce det ', (F;,, ..., F;,) > 0 almost surely.

Fix n > ng. We are going to apply the results by Kayal (see [7]) to the family of random
polynomials

Pl(n)(y17 v 7yn) = Pl'(ylu v 7yn7Gn+17Gn+27 .. ')7 1 < { < d.

We can consider these polynomials as elements of the ring of polynomials K[y, ..., y,l,
where K is the field generated by all multiple stochastic integrals. This field is well defined
because by a result of Shigekawa [17| if F and G are finite sums of multiple stochastic
integrals and GG # 0, then G is different from zero almost surely and g is well defined. The
Jacobian of this set of polynomials

api(”)
J<y17"'7yn): p) (ylv'--7yn>
y‘] 1<i<d, 1<j<
i j<n

XixW, 1x

satisfies J(G1,...,G,) = A, almost surely, and, therefore, it has determinant zero al-
most surely. Furthermore, for any proper subfamily of polynomials {PZ-(I"), e PZ-(T")}, the
corresponding Jacobian has nonzero determinant. As a consequence of the results by
Kayal, there exists a nonzero irreducible polynomial H,, € F[zy,..., x4 of degree at most

D := dqg?!, which satisfies the following properties:
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(1) The coefficients of H,, are random variables measurable with respect to the o-field

U{Gn+1, Gn+2, .. }

(7i) The coefficient of the largest monomial in antilexicographic order occurring in H,, is
1.

(7i7) For all yq,...,y, € R,

Hn(Pl(n)(ylv cee 7yn)7 .- '7P0§n)(y17 cee 7yn)) =0

almost surely.

(iw) If A € Flay,..., x4 satisfies

A(Pl(n)(yla s Un)y >Pc§n)(?/17 o Un)) =0
almost surely, then A is a multiple of H,,, almost surely.

If we apply property (iii) to n + 1 and substitute y,, 11 by G,11 we obtain

HnJrl(Pl(nJrl)(ylu N ) Gn+1>7 ey chnJrl)(ylv <o Yn, Gn+1)) =0.

From property (iv) and taking into account that for any 1 <i < d,

Pi(n+1)(y17 <y Yn, Gn+1) = ‘Pz(n) (y17 e 7yn)

almost surely, we deduce that H,.; is a multiple of H, almost surely. Using the fact
that H,,; is irreducible and normalized we deduce that H,, = H,,; almost surely for
any n > ng. The coefficients of these polynomials are random variables, but, in view
of condition (i), and using the 0 — 1 Kolmogorov law we obtain that the coefficients are
deterministic. Thus, there exists a polynomial H € R[X7,..., Xy] \ {0} of degree at most
D = dq® ! such that H(Fy,..., F;) = 0 almost surely. |

The condition EldetI'] > 0 can be translated into a condition on the kernels of the
multiple integrals appearing in the expansion of each component of the random vector F'.
Consider the following simple particular cases.

Example 1. Let (F,G) = (I1(f), Ix(g)), with & > 1. Let I' be the Malliavin matrix of
(F,G). Let us compute F[detI']. Applying the duality relationship (2.2) and the fact that
d(DG) = —LG = kG, where L is the Ornstein-Uhlenbeck operator, we deduce

E[|DG|3] = E[GO(DG)] = kE[G?] = kk!| gl

so that

EldetT] = |fISEIDGIR] - EXf, DG)3] = IFISEIDGIE] — k*Elli-1(f @1 9)’]

KRV B9l Ger = ILf @1 gll3enn)-

10



We deduce that E[detI'] > 0 if and only if ||f ®1 g|lgex-1v < ||fllsllgllger. Notice that
when & = 1 the above formula for E[det '] reduces to E[det '] = det C', where C' is the
covariance matrix of (F, Q).

Example 2. Let (F,G) = (I2(f), Ix(g)), with k > 2. Let I' be the Malliavin matrix of
(F,G). Let us compute E[detI']. We have

k 2 2
k—1 k
||DG||52§ = kj2 Z(T — 1)' (T _ 1) ]Qk_gr(g ®7» g) = ZTT‘! (T) ng_gr(g ®r g),

r=1 r=1

so that

(DF,DG)g = 2k(Ii(f ®19)+ (k — 1) Ii—a(f ®2 g))
IDFI 4| fllFe2 +4L(f @1 f)

k 2
k
IDGIZ = kKgll3ex + (k — 1)kE! (g @1 g) + D _rr! (T) Lye—2:(g @, g).

r=3

We deduce

EldetT] = E[|DF|3|DG|3] — E[(DF, DG)3]
= AKE! fI|3e2llgl[5er + 8(k = EKLf @1 f,9 @1 g)gez — 4K°K!| f ©19]50n
—4k(k = DU f 2 gl[§ew-2
= 4kk!||f||%®2||g||%®k + 8(k5 - l)kk?'Hf ®1 g||523®k - 4k52k!||f <§>19||523®k
—4k(k — K| f @2 gl3e02- (3.7)
Therefore, E[det '] > 0 if and only if the right hand side of (3.7) is strictly positive.

Consider the particular case k = 2, that is, F' = (I5(f), I2(g)) and let C be the covari-
ance matrix of F'. By specializing (3.7) to k = 2, we get that

Eldet T) = 161 /1302l gll302 — (. 9Y302) +32(1f @1.9l13e2 1 Engllhes) > 4detC. (3.8)

We deduce an interesting result, that generalizes a well-known criterion for Gaussian
pairs.

Proposition 3.2 Let F' = (I2(f), I2(g)) and let C be the covariance matriz of F'. Then,
the law of F' has a density if and only if det C' > 0.

Proof. 1f det C' > 0 then E[det '] > 0 by (3.8); we deduce from Theorem 3.1 that the law
of F' has a density. Conversely, if det C' = 0 then I5(f) and I5(g) are proportional; this
prevents F' to have a density. ]
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4 Convergence in law and total variation distance

In this section we first prove an inequality between the total variation distance and the
Fortet-Mourier distance for vectors in a finite sum of Wiener chaoses.

Theorem 4.1 Fiz q,d > 2, and let F,, = (Fi,,...,Fa,) be a sequence such that F;,, €
Dl Hy for anyi=1,...,d andn > 1. Let I, := T'(F,) be the Malliavin matriz of F,.
Assume that F), oy F. as n — oo and that there exists f > 0 such that EldetT,| > B for

all n. Then F., has a density and, for any v < (d+1)(4d(q171)+3)+1, there exists ¢ > 0 such
that

dTV(FnaFoo> g CdFM(Fn,FOO)PY. (49)
In particular, F,, — F, in total variation as n — oo.
Proof. The proof is divided into several steps.

Step 1. Since Fj,, il F,  with F;,, € @j_, Hy, it follows from [11, Lemma 2.4] that
for any i = 1,...,d, the sequence (F;,) satisfies sup, E|F;,|P < oo for all p > 1. Let
¢ : R? — R € C* be such that ||¢|l < 1. We can write, for any n,m,p, M > 1,

|E[¢(F,)] — E[0(F)]| < |E (01 myzmyzge) (F)] = E [(11-nrjonr/20) (Fn)] |
+2 sup P(max |Fy| > M/2)

n=1

< sup | B[p(F)] = B[ (Fn)]]

PEC®: ||Y|loo<1
suppy)C[—M,M]4

2l+p
P
o S L@%‘FM ] '
Therefore, since sup,,~, F [maxi<i<q |F; »|P] is finite, there exists a constant ¢ > 0 (depend-
ing on p) satisfying, for all n > 1,
c
dv(FoF) < swp o |BIO(ED)] ~ BlO(F)| + 1o (4.10)

PEC®: ||¢loo<1
supp¢C[—M,M]4

As in [11], now the idea to bound the first term in the right-hand side of (4.10) is to
regularize the function ¢ by means of an approximation of the identity and then to control
the error term using the integration by parts of Malliavin calculus. Let ¢ : R? — R € C*
with compact support in [—M, M]? and satisfying ||¢|/. < 1. Let n,m > 1 be integers.
Let 0 < a < 1 and let p : R — Ry be in C° and satisfying [, p(z)dz = 1. Set
palx) = Z5p(£). By [11, (3.26)], we have that ¢ * p, is bounded by 1 and is Lipschitz
continuous with constant 1/a. We can thus write,

|E[6(Fo)] — Elo(Fn)|
< |E[9 % palFn) = ¢ pa(F)]| + 25up |E [($(Fn) — ¢ % pa(Fn))]]

n=1

1
< —dpm(F,, Fy) + 2R, (4.11)
a
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where dpys is the Forter-Mourier distance and
Ro = sup |E[(¢(Fn) — ¢ * pa(F2))]| -

In order to estimate the term R, we decompose the expectation into two parts using the
identity
€ det I,

1= > 0.
detT',, +¢ + detT',, + ¢’ c

Step 2. We claim that there exists ¢ > 0 such that, for all e > 0 and all n > 1,

[ 5 | o
E|———| < cea—nd+1, 4.12
| det T, + €| S e (4.12)

Indeed, for any A > 0 and by using (3.4) together with the assumption E[detT’,| > 3,

£ | 5 1 ¢ 1
E|l—— | <FE|——— 14 AT@EDE < = 4 ¢ \TaDe,
det Ty + 2| [det T, e U ”””] e y e
2(q—1)d
Choosing A = £2@=DaFT proves the claim (4.12). As a consequence, the estimate (4.12)
implies
€ det I,
= E F,) — F,
o = sup W( n) = ¢ palln)) (detrn+g * detrn+5)H
1 det I"
< 2cea-naFt E _ o) (F - n 4.13
ce +sup l(cb ¢ * pa)( )detFnJrs] (4.13)

Step 3. In this step we will derive the integration by parts formula that will be useful
for our purposes. The method is based on the representation of the density of a Wiener
functional using the Poisson kernel obtained by Malliavin and Thalmaier in [9], and it has
been further developed by Bally and Caramellino in the works [1] and [2].

Let h : R — R be a function in C* with compact support, and consider a random
variable W € D>. Consider the Poisson kernel in R? (d > 2), defined as the solution to
the equation AQq = &. We know that Qs(r) = cylog|z| and that Qu(x) = cg|z|?>~? for
d > 3. Then, we have the following identity

d
h=> " 0ihx0:Qu. (4.14)
=1
As a consequence, we can write

d
EWdetT, h(F,)] = Y E [W det Fn/ 8,Qua(y)Dh(Fy — y)dy
i=1 R4
d
= " | 0Quly)E (W det T, 0:h(F, — y)) dy.

d
i=1 /R

13



We claim that

E[W detT,0;h(F, —y)] = i E[h(F, —y)0(W(Coml,,); o DF, )], (4.15)

a=1

where ¢ is the divergence operator, and Com(-) stands for the usual comatrice operator.
The equality (4.15) follows easily from the relation

Oh(Fy —y) =Y (T il D(M(Fy = y)), DFun)s,

multiplying by W det I',,, taking the mathematical expectation, and applying the duality
relationship between the derivative and the divergence operator. The random variable

d
Ain(W) = Y 6(W(Coml,);DF,,)

a=1

d
= =) ((D(W(ComI,)s,:), DFyn)g + (ComD,), WLE, )

a=1

satisfies A;,, (W) € D>, and we can write
E[W det T, h(F, ZE { / h(y)0;Qa(F, — y)dy| . (4.16)
R4

Step 4. We are going to apply the identity (4.16) to the function h = ¢ — ¢ * p, and to

the random variable W =W, . = m. In this way we obtain
det T,
E (¢ — o) (Fn) o —
(6= 0xmE) ]

ZE[ /(<b ¢ * pa) (y)0iQa(F, — y)dy| . (4.17)

We claim that, for any p > 1, there exists a constant ¢ > 0 such that

sup E[|Ain (W )P < ce™?

Indeed, this follows immediately from the fact that the sequence (F; ) is uniformly bounded

in LP for each i = 1,...,d and that we can write
d
AnWas) = S = L ((D(ComT,)us, DF,n)s — (Coml)oi L)
’ ’ “ detT, +¢ Y ’ o

1

"—m (Coan)a,i<D(det Fn), DFa7n>5 } .
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On the other hand, we have
/Rd(cb — ¢ pa)(y)0:Qa(F, — y)dy = /Rgd(cb(y) — 0y — 2))pa(2)0;Qa(Fn — y)dydz
= [ 0B = 9pu()(0Qu(0) ~ 2.Quly )iy

Taking into account that

0:Qu(z) = ‘ |d, (4.18)

for some constant k;, we can write
Yi Yi —
— o) (1)0;Qq(F, — y)dy = k Fy —vy)pa — dyd
/]R;d<¢ (b*p )(y) Qd< y) Y d/Qd (b( y)p (’Z) (‘y‘d |y Z‘d) z.

Fix R > 0. Set B = {(y,2) : l[y| = R, |y — z| > R}. We can assume that the support of
p is the unit ball {|z| < 1}. Then for any (y, 2) € (Bg)® with |z| < «, both |y| and |y — 2|
are bounded by R + «, and we obtain

Yi Yi
S(Fr — 1)pal2) (— —) dyd:
‘/(Bmc lyl? |y — 2|
|yi| |?/z‘ |)
< /)a(Z) ( + d dz
/(BR)c lyld |y — 2|4

< 2/ |yiLdy:2/ v |dy><(R—i—a)
(lyl<r+a} 1Y <1y 1yl

On the other hand,
Yi Yi —
O(Fn —y)pa(2) < — d) dydz
Br Z|

lyl® y —

vyl
lyld Jy— =47

< (max |Ey.| + M)* sup / (2)dz.
{z:ly—z|=R}

1<isd lyl>R

There exists a constant ¢ > 0 such that, for |y| > R, |y — 2| > R and |z| < a,

yi  vi—z | _ yllly =2 = [yl 2] y|* d
— < cR “a.
ey =zt T Jyldly — 2] lyldly — 2|
Therefore,

[ 6= 0% p)00Qutr, ~ iy < e (R o+ ar- el Fal 30,

Rd \ \

for some constant ¢ > 0. Substituting this estimate into (4.17) and assuming that M > 1,
yields

sup <ce?(R+a+aR"M?),

n

L

15



1 d
for some constant ¢ > 0. Choosing R = a@+1 M 4+1 and assuming o < 1, we obtain

det I’ 1 d
n < ce2quart Mart 4.1
detl“n+e] ce” “adrt M a+t, (4.19)

sup\zv|}¢>—-¢>kpa><ﬁz>

n

for some constant ¢ > 0.

Step 5. From (4.11), (4.13) and (4.19) we obtain
BIO(E)] = Blo(Fn)]| < ~dea(Fo, Fuc) + ce¥i-bais + e s,
By letting m — oo, we get
E[6(F,)] — Elo(Fo)]| < édFM(Fn,FOO) 4 e T 4 ce2aab M, (4.20)

Finally, by plugging (4.20) into (4.10) we obtain the following inequality, valid for every
M>21,p>21l,n>1,e>0and 0 <a<1:

1 d

1 1 QT Ma+t 1

dry(Fo, Fy) < c | —dpy(Fr, Fuo gD+l f ——— || 4.21

v ( ) C(a Fum( )+ e + = +Mp> (4.21)
) , 2(g—1)d+1
where the constant ¢ depends on p. Choosing ¢ = (aﬁ MdTl> AT e get

1 T=1aF3

dpy(F,, Fy) < ¢ (—dFM(Fn, Fyo) + (ad—il M#) ammes Mp) . (4.22)
Q@

Notice that dpy(F, Fso) < 1 for n large enough (n > ng say). So, assuming that n > ng
and choosing

(d+1)(4(g—1)d+3) . d
a = dFM(Fm Foo) @D E—Dd+3)+T )]~ @FDEG-Da+3)+T

we obtain

(SES

M

o=

dry (Fy, Fi) < c <dFM(Fn, F) i M*p) , (4.23)

where D = (d + 1)(4(q¢ — 1)d + 3) + 1. Notice that o < 1 provided M > 1 and n > ny.
Optimizing with respect to M yields

drv (Fy, Fa) < cdppr(Fy, Fao) 7974,

and taking into account that p can be chosen arbitrarily large, we have proved that for any
v < & there exists ¢ > 0 such that (4.9) holds true.

Step 6. Finally, let us prove that the law of F, is absolutely continuous with respect to
the Lebesgue measure. Let A C R? be a Borel set of Lebesgue measure zero. By Lemma
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3.1 and because E[detT',] > > 0, we have P(F,, € A) = 0. Since dry(F,, Fs) — 0
as n — oo, we deduce that P(F,, € A) = 0, proving that F,, has a density by the
Radon-Nikodym theorem. The proof of the theorem is now complete.
]
Under the assumptions of Theorem 4.1, if we denote by p, (resp. ps) the density of
F, (resp. F.), then the convergence in total variation is equivalent to

() = poo(@)|dz — 0,
R4

as n tends to infinity. We are going to show that this convergence actually holds in LP(R9)
forany1<p<1+m.

Proposition 4.2 Suppose that F,, is a sequence of d-dimensional random vectors satisfying
the conditions of Theorem /.1. Denote by pn (resp. peo) the density of F,, (resp. Fi).

Then, for any 1 <p <1+ W’ we have

(@) — pocl@)Pdz = 0.
R4

Proof. The proof will be done in several steps. We set N = 2d(q — 1) and we fix p such

that1<p<l+m.

1) Denote by I, the Malliavin matrix of F,,. Using Carbery-Wright’s inequality (2.3),
we have, for any v < %,

sup E [(detT',) 7] = sup/ A P(det T, <t H)dt < C (1 +/ tv_l_%dt) < 00
n 0 1

n

and 1+ 9 <p <1+ 5%, we have

2) Fix a real number M > 0. For any a < —a

N+1

/ P ()11, (@) <arydi
Rd

de
- E [pﬁ (£ )1{|pn(Fn>l<M}%}

< B [p0 VN (E) L, () jan (det T,) N0 55 B [(det rn)*%a] N+
- o
< CE [ (F)lpumjen det Tn] (4.24)

where

C:=supkl [(det Fn)’%a] M < .
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Applying the identity (4.16) to h = pn 1{|pn()|<M} and W = 1 and taking into account
that (4.18) holds, yields

E | pn® (F)1{|pn<Fn <ary det T —de/
d

\y\d F — Y1 {jpn(Fn—y)l<rryAin | dy,

(4.25)

where A;,, = A; (1) = 30, 6 ((ComT,); o DF,.).
For any € R? and any function f : R? — R, , the integral

/R Ui fla — y)dy

a |yl

can be decomposed into the regions {y : |y| < 1} and {y : |y| > 1}. Then, using Holder’s
inequality, for any exponents S > d and v < d, there exist a constant C, such that

sup
zERY

/ gt y)dy’ < oy (115 + I1£11)

p—1

We are going to apply this estimate to the function f = p,* 1y,,()<m} and to the expo-
nents § = 24 > d and v = % < d. In this way we obtain from (4.25)

p—1

B | pu (F) Lo ycry det T

< Y BllAinlCas (Ad%(x)l{pn<x>|<M}dx) +(4dﬂn($)1{pn<x>|<M}dx) ]
i=1

p—1

< Y BllAin]Cas <Ad%($)1{pn<x>|<M}dx) +1
=1 L

From (4.24) and (4.26) we deduce the existence of a constant K, independent of M and n,
such that

(4.26)

p—1

4dﬂ(x)1{pn<x>|<M}dx S K [(4dﬂ(w)1{pn<x>|<M}dx) +1

Since [pa P2(2) 111, @))<aryde s finite (it is less than MP1), we deduce from (4.27) that

(4.27)

sup sup Ph ()1 p, (@) <mydr < 00,
n M>0 JRA

implying in turn that

sup [ ph(x)dx < oo,
R4

n
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) Let n,m > 1. By applying Holder to

/|pn = pu)Pda = [ 19u(o) = pula) pa(o) = pn(a) o

we obtain, for any 0 < e < 1,

/Rd|/7n(:€)—/)m(x)|pd:c<(/Rd|pn( — Pz |d:c) (/ on() — pr(@)} zdx)l_g_

(4.28)

We can choose € > 0 small enough such that

p_
<1 .
P +2d2(q—1)+d+1

Then, from Part 2) we deduce
|pn(2) = pm(x)|Pde — 0 as n,m — oco.
d

As a result, {p,} converges in LP(R?), which is the desired conclusion. |

5 Some applications

In this section we present some consequences of Theorems 3.1 and 4.1. We start with a
straightforward consequence of Theorem 4.1.

Proposition 5.1 Fizq,d > 2, and let F,, = (F1,, ..., Fa,) be a sequence such that F;,, €
Dl Hy for anyi=1,...,d andn > 1. Let I, := T'(F,) be the Malliavin matriz of EF,.
Asn — oo, assume that F,, — Fy, in law and that T',, — My, in law, with E[det M| > 0.
Then F,, converges to Fy, in total variation.

Proof. We set N = 2d(q — 1). Since I',,(4,7) oy M (i,7) with T',(z,5) € @ffzo Hy, it
follows from [11, Lemma 2.4| that for any i,7 = 1,...,d, the sequence I',,(i,7), n > 1,
satisfies sup,, E|I", (7, j)|P < oo for all p > 1. As a result, E[detI',] — Eldet M) > 0 and
the desired conclusion follows from Theorem 4.1. [

Our first application of Proposition 5.1 consists in strengthening the celebrated Peccati-
Tudor [15] criterion of asymptotic normality.

Theorem 5.2 Letd > 2 and ky,..., kg = 1 be some fixed integers. Consider vectors
Fn = (Fl,n7 cee de) = ([kl (fl,n)a ey [kd<fd,n>>7 n 2 1,

with fi, € H7% . As n — oo, assume that F =5 N ~ Ny(0,C) with det(C) > 0. Then,
dry(Fn, N) = 0 as n — oo.
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Proof. Since F;,, iy F; o with F;,, € Hy,, it follows from [11, Lemma 2.4] that for any
i =1,...,d, the sequence (F;,) satisfies sup,, E|F;,|P < oo for all p > 1. In particular,
one has that E[F;,Fj,] — C(i,j) as n — oo for any ¢,j = 1,...,d. Denote by I',, the
Malliavin matrix of F,,. As a consequence of the main result in Nualart and Ortiz-Latorre
[14], we deduce that T',, — C' in L*(Q2) as n — oo. Finally, the desired conclusion follows
from Proposition 5.1. n

The next result is a corollary of Proposition 5.1 and Theorem 3.1, and improves sub-
stantially Theorem 4 of Breton [3]. It represents a multidimensional version of a result by
Davydov and Martynova [5].

Corollary 5.3 Fix d > 2 and ky,...,kqg = 1. Consider a sequence of d-dimensional
random vectors {F,,n > 1} of the form F, = (Fin,...,Fan), with F,, = Ii,(fin),
i=1,....,d, n > 1. Suppose that F, converges in L*(Q) to Fy and the law of F, is
absolutely continuous with respect to the Lebesgue measure. Then, F, converges to F, in
total variation.

Proof. By the isometry of multiple stochastic integrals, for any ¢ = 1,...,d, the sequence
fin € HF converges as n tends to infinity to an element f; o, € H% and we can write

Foo = (Ikl(fLOO)v . '7Ikd(fd,oo))'

Since the law of F, is absolutely continuous with respect to the Lebesgue measure, we
deduce from Theorem 3.1 that E[det'(F,,)] > 0, where I'(F,) is the Malliavin matrix of
F. On the other hand, taking into account that all the norms || - ||, are equivalent in a
fixed Wiener chaos, we deduce that for all 1 <i,57 < d

Lij(Fn) = Tij(Fa)

in LP(€2) as n tends to infinity, for all p > 2. Therefore, we can conclude the proof using
Proposition 5.1. [

In the case of a sequence of 2-dimensional vectors in the second chaos, it suffices to
assume that the covariance of the limit is non singular. In fact, we have the following
result.

Corollary 5.4 Let (F,,G,) = (I2(fn), I2(gn)) be a pair converging in law to (Fu, Gs) as
n tends to 0o. Let Cy be the covariance matriz of (Fu, Gs) and assume that det Cyy > 0.
Then (F,,,Gy) converges to (Fu, Go) in total variation.

Proof. Let I';, (resp. C,,) be the Malliavin (resp. covariance) matrix of (F),, G,). Taking
into account that all p-norms are equivalent in a fixed Wiener chaos, we deduce that that
both {F,,n > 1} and {G,,,n > 1} are uniformly bounded with respect to n in all the LP(2).
Thus, one has det C;,, — det Cy, as n tends to co. On the other hand, we have by (3.8) that
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EldetT,] > 4det C,. By letting n tend to oo, we deduce that EldetT,] > 1detCss > 0
for n large enough. Theorem 4.1 allows us to conclude. ]

Another situation where we only need the limit to be non degenerate in order to obtain
the convergence in total variation, is the case where the limit has pairwise independent
components.

Corollary 5.5 Fixd > 2 and ky,...,kq = 1. Consider a sequence of d-dimensional ran-
dom vectors of multiple stochastic mtegmls {F,, f = 1} of the form F,, = (Fi, ..., Fyn) =
(L, (f1n),s -y Ly (fan)). Suppose that F,, converges in law to Foo = (Fioo, .-, Fuoo). As-
sume moreover that Var(Fj ) > 0 forany j =1,...,d and that F ., . .., Fj « are pairwise
independent. Then F,, converges to F. in total variation.

Proof. The proof is divided into several steps.

Step 1. We claim that there exists v > 0 such that E[|DFy,||*...||DFui.ll?] = v
for all n large enough. Indeed, let j = 1,...,d. Since E[||DF;,||*] > Var(F};,) and
Var(F},) — Var(Fj ) as n — oo, we have that E[[|DF},|/*] > $Var(Fj) > 0 for all n
large enough. Using Carbery-Wright’s inequality, we deduce that there exists ¢ > 0 such
that, for all n large enough and all A > 0,

1
P(IDFj.|> < A\) < eA™72.

1

A Trmax ook We can write

As a consequence, for 0 < a <

E[[DF ). (1D Fanll ™

e 1
_ / P <||DF1,n||°‘ o IDFanl® < —) dz
0 A
o0 1 a 1
< 1+ [ {r (1Rl < )+---+P(||DFd,n|| <)}
1 xXr €Td
< ofie [T s ) i),
1

so that sup,,o; E[||DFi |~ ... ||DFy,| ] < co. Combined with

&.\'—‘

E[|DFyul*.. - |DFynl’] E[|DFull*. .. | DFan*]*

2
> (EUDPL™ . IDFanl ™) =,

this proves the claim.

Step 2. We claim that E[detT'(F,)] — E[|DFy.|?.. HDFdnHQ] — 0asn — oo. To
prove the claim it suffices to show that, for any 1 < i # j < d, one has (DF;,,, DF} )5 — 0
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in all the LP(2). By hypercontractivity, to prove this latter property it is enough to check
that (DF;,,, DFj,)s — 0 in L*(Q). Recall from [12, (3.20)] that

k‘i/\k‘j
ki\ (k;
COV(FZ-?H, F]2,n) = kllk]' Z (T) (TJ) ”fz,n ®r fj,n”2
r=1
k‘i/\k;j

AN ~
+) r!z(rz) (TJ) (ki + kj — 20| fin®r finl)
r=1

Since Cov(F7,, F},) = Cov(F7,, F7,) = 0 (recall that F; . and Fj . are assumed to be

7,n7 1,007

independent), we deduce that || fi ,®, fj.||> = 0 for all 7 = 1,... k; A k;. But

p ke — 1\ (k; — 1\
BUDF DE3 =282 3 = 0P ( T (97 1) by =200l
r=1

and the claim is shown.

Step 3. By combining Steps 1 and 2, we obtain the existence of v > 0 such that
E[detI'(F,)] = ~ for all n large enough. Theorem 4.1 then gives the desired conclusion of
Corollary 5.5. m
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