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Abstract

(In,Ga)As/GaP(001) quantum dots (QDs) are grown by molecular beam epitaxy and studied both theoretically and

experimentally. The electronic band structure is simulated using a combination of k·p and tight-binding models.

These calculations predict an indirect to direct crossover with the In content and the size of the QDs. The optical

properties are then studied in a low-In-content range through photoluminescence and time-resolved

photoluminescence experiments. It suggests the proximity of two optical transitions of indirect and direct types.
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Background

In the context of the monolithic integration of photonics

on silicon, the pseudomorphic approach, i.e., growing

lattice-matched compounds on Si, is a promising route

towards an efficient and long-term stable laser on Si [1].

It should overcome the issue of the dramatic number of

crystalline defects due to the large lattice mismatch

encountered in the growth of most III-V materials onto

Si substrates [2]. Among binary III-V materials, GaP pre-

sents the closest lattice constant to Si (0.37% at 300 K).

The perfect lattice matching can even be obtained by

introducing 2% of nitrogen in GaP. Recently, the epitax-

ial growth on Si substrate of GaP and GaPN0.02 has been

greatly improved by several groups [3-5]. Various active

zones grown on GaP substrate or on GaPN0.02/GaP/Si

have been proposed. The best results have been achieved

with compressive strained GaNAsP/GaP quantum wells

(QWs) in electrically pumped lasers operating up to 150

K (Si substrate) [6] or at room temperature (GaP sub-

strate) [7]. However, the electron wave function at the

conduction band minimum has a special character [8]. It

is expected to limit the performances of laser devices

yielding high threshold current densities. Indeed, the

conduction band of the GaAsP host material has a mini-

mum at the XXY point on the edge of the Brillouin zone,

and partially localized electronic levels related to nitro-

gen incorporation lie at energies below this minimum.

The conduction band minimum of GaNAsP/GaP QWs

evidences a predominant localized N character [8].

Moreover, the maximum of the emission wavelength

reported for such structures with reasonable N content

is equal to 980 nm [7], which is not yet in the transpar-

ency window of Si.

Quantum dot (QD) lasers grown on GaAs or InP sub-

strate display lower threshold currents due to the 0D

density of states when compared with QW lasers on the

same substrates [9]. (In,Ga)P QDs grown on GaP sub-

strate have already been studied, and room temperature

electroluminescence has been obtained [10]. However,

theoretical studies have shown that the electronic band

lineups correspond to a borderline case between type I

and type II [11]. The (In,Ga)As(N)/GaP QDs system has

recently attracted much attention. Fukami et al. [12]

have claimed that the transparency window of silicon

may be reached with InGaAsN/GaP QDs when In com-

position is 50% to approximately 60% and N compos-

ition is 1% to approximately 2%. In the following,

InGaAs/GaP QDs are studied as a step toward

InGaAsN/GaP QDs system. Both room-temperature

photoluminescence (PL) [13] and electroluminescence
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[14] of InGaAs/GaP QDs have been recently reported.

However, the description of the electronic band struc-

ture of this QD system is still lacking.

In this paper, we investigate (In,Ga)As/GaP QDs in a

low-indium-content range both from the theoretical and

experimental points of view. The effects of both indium

composition and QD geometry is analyzed through a

combination of k·p and tight-binding (TB) simulations.

Optical properties are then studied by temperature-

dependent photoluminescence and time-resolved photo-

luminescence (TRPL).

Methods

(In,Ga)As QDs are grown on n-doped GaP(001) sub-

strate using gas-source molecular beam epitaxy. After

the growth of a 450-nm buffer layer and a 4-monolayer

(ML) (In,Ga)As deposition with 30 s of annealing under

As (see the work of Nguyen Thanh et al. [13] for more

information), a 30-nm GaP capping layer is finally

deposited to prevent surface non-radiative recombina-

tions. The growth temperature is set at 580°C. The nom-

inal composition of indium is set at 30%, but because of

high growth temperature, indium effective composition

is assumed to be below or equal to 15%.

Temperature-dependent PL experiments are carried

out by exciting samples with a 405-nm continuous-wave

laser diode. Power density is roughly estimated at 80

W·cm−2. Samples are set in a helium bath closed-cycle

cryostat to study PL from 10 K to room temperature.

Measurements are also performed above room tempera-

ture using a hot plate. Attention is given to avoid the

red luminescence of the deep centers in n-doped GaP

substrates. Actually, the penetration length of the

405-nm beam is lower than the thickness of the GaP

buffer layer, avoiding the substrate to be excited. Sec-

ondly, similar PL spectra are obtained on the same

structures on non-doped GaP substrate, thus excluding

any significant contribution from the GaP deep center

luminescence.

For TRPL measurements, the sample is excited by a

frequency-doubled Ti/sapphire laser at the wavelength

of 405 nm. The repetition rate is 80 MHz. The PL signal

is analyzed by an S20 streak camera, and measurements

are performed at 10 K to overcome non-radiative recom-

binations channels.

Results and discussion

Band structure calculations

The eight-band k·p method has been extensively used to

accurately simulate the electronic band structure of QDs

with type I band alignment and direct optical transition

(InAs/GaAs, InAs/InP. . .) [15,16]. The case of InGaAs/

GaP QDs in the low-In-content range is expected to be

trickier because of the coupling of zone center conduction

band states with conduction band states located on the

edge of the Brillouin zone [13]. To deal with this issue, we

simulate the direct optical transition with the eight-band

k·pmethod. To get an estimation of X-like and L-like state

energies in the dot, we consider the TB sp3d5s* model [17]

for a QW with a thickness equal to the height of the dot.

Thus, the lateral quantum confinement effect is disre-

garded but is assumed to have negligible effects on lateral

valleys with large effective masses.

To consider realistic QD geometries for the simula-

tion, the morphology of InGaAs/GaP QDs are imaged

by plane-view scanning tunneling microscopy (STM).

The 75 × 75-nm2 STM image shown on Figure 1a exhi-

bits InGaAs/GaP QDs with approximately a cone shape.

The in-plane anisotropic ratio (between length and

width) is indeed measured in the range of 1 to 1.5. The

statistical analysis of diameter and height distributions is

presented in Figure 1b. The k·p simulation is performed

using the geometry defined on Figure 2. A C
∞v sym-

metry is considered for QD geometries, and strain calcu-

lations are performed using elasticity and parameters of

Vurgaftman et al. [18] and the finite element method for

numerical computation. Three typical dimension sets

representative of the inhomogeneous size distributions

are summarized in the table of Figure 2. The A, B, and

C geometries correspond to real QDs typically found in

the sample (see Figure 1b). The D geometry is chosen to

study theoretically larger QDs in order to address the

problem of lowering the emission energy. A typical

wetting layer of 1-ML thick is added in the model to ac-

count for the Stranski-Krastanov growth mode. Deform-

ation potentials and Luttinger parameters used in the

k·p model are those extracted from the TB calculation

for bulk InGaAs and GaP [17]. The valence band offsets

are taken from recent ab initio calculations [19].

The influence of In content is presented on Figure 3a

for a QD with the C geometry. The first electronic levels

in the Γ, X, and L valleys and the first heavy-hole level of

the QD are represented as a function of the In content.

The electronic Γ and the heavy-hole levels are calculated

with the k·p method, whereas the X and L electronic

levels are calculated with the TB model. For low In con-

tent (below 30%), the ground optical transition is type I

but is indirect with the first electron level of the X type.

For very low In content (below 15%), the Γ-type conduc-

tion band level in the QD is even located at an energy

above the one of the X-type conduction band of the GaP

barrier. Nevertheless, a direct and type I ground state

transition is predicted for In composition above 38%.

This is a necessary condition in order to obtain a very

efficient optical transition for such a QD geometry.

The influence of QD geometry is shown on Figure 3b

for a medium In content of 30%. For small QDs, the first

Γ electronic level undergoes an important quantum
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confinement effect which lifts up this level above both X

and L levels, which are less affected by confinement

effects. An indirect to direct type crossover is predicted

for large QDs.

In conclusion, an increase of In content and an en-

largement of QD size are expected to lower the first

Γ-type conduction band level and thus yield an efficient

optical transition. Moreover, the indirect to direct type

crossover should be induced by strain relaxation asso-

ciated to In content increase and QD enlargement.

Optical properties

Continuous-wave PL spectra are presented in Figure 4

for various temperatures. At 12 K, the PL spectrum

exhibits a single peak centered at 1.78 eV. The peak

shape undergoes a strong evolution from low to high

temperatures. At 260 K, a shoulder appears on the

high-energy side of the spectrum. At 300 K, a second

optical transition clearly appears. When increasing the

temperature above 300 K, the maximum of PL intensity

switches from the low-energy (LE) transition to the

higher-energy (HE) transition. This behavior may indi-

cate that the HE optical transition is more efficient than

the LE one. At 300 K, the LE transition is reported at

1.74 eV and the HE transition at 1.84 eV.

To understand the nature of these two optical transi-

tions, the dynamics of the recombination of carriers are

investigated through TRPL spectroscopy. Experiments

are performed at 10 K to overcome non-radiative recom-

bination channels. The radiative lifetimes are deduced

from the measured PL decay times. The sample is first

excited with a low-incident power density equal to 70

W·cm−2. The LE optical transition is only detected in ac-

cordance with the spectrum shown on Figure 4 at low

temperature. The evolution of the emission as a function

of time is shown on Figure 5a. The LE optical transition

exhibits a very long decay time which is greater than the

repetition period of the laser (12 ns) and is not easily

measurable with this experimental setup. Such a long

lifetime can be interpreted on the basis of the theoretical

results of the previous section. The energy position of

the LE PL peak at low temperature (ELE = 1.78 eV)

is consistent with the calculated indirect transition

(between 1.74 and 1.79 eV) for medium-sized dots in

the 0% to 15% In content range.

The sample is then excited with a large power density

equal to 4,000 W·cm−2 in order to fill the low-energy

electronic levels and allow the HE optical transition to

occur. The PL dynamics at selected energies, ELE and

EHE, are respectively shown on Figure 5b,c. The time-

resolved emission related to the LE transition can be fit-

ted by the sum of a shorter exponential decay with a

lifetime of 770 ps and a constant associated with the

very long lifetime of the indirect transition. Many-body

Auger effects leading to an enhancement of intradot car-

rier relaxation may lower the optical transition lifetime.

Figure 1 (In,Ga)As QD image and statistical correlation. (a) A 75 × 75-nm2 STM 3D plane view of (In,Ga)As QDs. (b) Statistical correlation

between diameter and height on a 800 × 800-nm2 image.

Figure 2 QD morphologies used for the eight-band k·p

calculations.
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The density of electron-hole pairs is indeed estimated to

be high (above 10 per QD). Such effects have been

observed in InAs/InP QDs [20]. For the HE transition,

the emission shows a biexponential decay with short life-

times of 340 and 1,700 ps, respectively. Both times are

consistent with a direct type-I electronic transition in

QDs and a better overlap of electron and hole wave

functions. The EHE-ELE difference is also in reasonable

agreement with that of theoretical calculations. For

large-sized dots and In content of 15%, an energy differ-

ence of 100 meV is indeed calculated between both dir-

ect and indirect optical transitions.

Conclusions

The (In,Ga)As/GaP QD system is studied both theoretic-

ally and experimentally. The simulation results of k·p

and TB methods are coupled and predict an indirect to

direct crossover with the increase of In content and the

ripening of QDs. Optical properties are then studied in

the low-In-content range. In agreement with theoretical

results, TRPL measurements are consistent with a

ground optical transition of indirect type. A direct op-

tical transition can be observed for high-power density

or at room temperature where electrons get enough

thermal energy to partially fill the Γ-type conduction

band state.

Figure 3 Influence of In content and QD geometry on the electronic levels. (a) Electronic levels of InxGa1−xAs QD with geometry C.

(b) Electronic levels of In0.3Ga0.7As QDs for the four geometries defined in Figure 2. The Γ electronic level and the heavy-hole level in the QD are

calculated with the k·p method. The X and L electronic levels are calculated with the TB model.

Figure 4 Temperature-dependent PL spectra of (In,Ga)As/GaP

QDs. The black thin dashed lines show the fit of the two transitions

by two Gaussian peaks.

Figure 5 PL dynamics at 10 K at selected energies, LE and HE.

For power densities of (a) 70 and (b, c) 4,000 W·cm−2. Red lines

show biexponential fits.
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