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Abstract

By homogenization, we propose a simplified 2-dimensional model for effective
behaviors of structures made of some thin flat masonries where the mortar occupied a
rather thin domain and is far softer than the bricks. Because a steady-state problem
considered here may be formulated in terms of minimization, we use the method
of variational convergence. Our model is simpler than the genuine one because it
involves a homogeneous body and is accurate enough due to our convergence result.
This work also shows what a reasonable candidate for effective energy density of the
assembly of bricks and mortar could be.

Keywords: homogenization, variational convergence, elastic masonries.

1 Introduction

We do not make any difference between the physical Euclidean space of R
3, if x :=

(x1, x2, x3) ∈ R
3 then x̂ stands for (x1, x2). A model of static behavior of a masonry

can be described as follows. Let a a positive real number, H ∈ aN, and h a small pos-
itive number. The domain occupied by the thin masonry under considerations here is
Ωh := ω × (−h, h) where ω := (0, L) × (0, H) (see Figure 1). This masonry is made of a
periodic distribution of bricks linked to each other by adhesive mortar occupying a very

Figure 1: The thin masonry Ωh



Figure 2: The unit cell Ŷ , S, M̂l and B̂l

thin domain. More precisely, if Ŷ := (0, 1)× (0, a),

S := { ŷ ∈ Ŷ | y2 = a/4 or 3a/4;

y1 = 1/4, and 0 < y2 < a/4 or 3a/4 < y2 < a;

y1 = b and a/4 < y2 < 3a/4, where b ∈ (0, 3/4] },

M̂l := { x̂ ∈ Ŷ | dist(x̂, S) < l }, l < min{b, a/4},

B̂l := Ŷ \ M̂l,

ε = L/n, n ∈ N,

Ŷ i
ε := εi+ εŶ , i ∈ Iε := { i ∈ Z

2 | Ŷ i
ε ⊂ ω },

M̂ i
lε = εi+ εM̂l, M̂lε = ∪i∈IεM̂

i
lε,

B̂i
lε = εi+ εB̂l, B̂lε = ∪i∈IεB̂

i
lε,

then Blεh := B̂lε × (−h, h) and Mlεh := M̂lε × (−h, h) are the domains occupied by the
bricks and the mortar, respectively (see Figure 2). The bricks are made of a homogeneous
linearly elastic material whose bulk energy density denoted by W is a strictly convex
quadratic function satisfying

∃α, β > 0 ; α|e|2 ≤ W (e) ≤ β|e|2 ∀ e ∈ S
3,

the space of symmetric 3 × 3 matrices. The mortar is assumed to be made of a homo-
geneous, isotropic linearly elastic material of density Wλµ whose Lamé coefficients λ and
µ are supposed to be far smaller than α and β. Eventually, the wall is assumed to be
clamped on a part Γ0h = γ0 × (−h, h) of ∂Ωh, γ0 being a part of ∂ω with positive length,
and subjected to body forces of density fh.

To find the equilibrium configurations of the wall, we are led to the problem :

(P) min

{
∫

Blεh

W (e(u)(x)) dx+

∫

Mlεh

Wλµ(e(u)(x)) dx−

∫

Ωh

fh(x) · u(x) dx

∣

∣

∣
u ∈ H1

Γ0h
(Ωh;R

3)

}

where
{

H1
Γ0h

(Ωh;R
3) := { v ∈ H1(Ωh;R

3) | v = 0 on Γ0h in the sense of the traces },

e(v) := 1
2 (∇v +∇vT ).

Assuming fh in L2(Ωh;R
3), this problem clearly has a unique solution, but, due to

the low values of (ε, l, λ, µ, h), obtaining numerical approximation may be difficult. Thus,
it is of interest to propose a simplified but accurate enough model. A first attempt [4] is
to replace (P) by a suitable 2-dimensional problem set in the cross section ω of the wall
which may read as :

(P̂ŝ) min

{
∫

B̂lε

Ŵ (e(u)(x̂)) dx̂+

∫

M̂lε

Ŵλ′µ(e(u)(x̂)) dx̂−

∫

ω

f̂(x̂) · u(x̂) dx̂

∣

∣

∣
u ∈ H1

γ0
(ω;R2)

}

,
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where

• we will still denote the symmetric part of the gradient in the sense of distribution of
x̂ ∈ ω 7→ u(x̂) ∈ R

2 by e(u) which is then a distribution on ω with value in S
2 the

space of 2× 2 symmetric matrices,

• Ŵ , deduced from W , is a strictly convex quadratic function satisfying

∃ α̂, β̂ > 0 ; α̂|e|2 ≤ Ŵ (e) ≤ β̂|e|2 ∀ e ∈ S
2,

• Ŵλ′µ(e) =
λ′

2 (e11 + e22)
2 +µ|e|2, λ′ = 2λµ

λ+2µ , which corresponds to Wλµ in the plane
stress assumption.

• f̂ is deduced from fh,

• ŝ := (ε, l, λ′, µ).

We will use the following notations :

Ŵŝ(ŷ, e) :=

{

Ŵ (e) if ŷ ∈ B̂l

Ŵλ′µ(e) if ŷ ∈ M̂l

which is extended into R
2 × S

2 by Ŷ -periodicity, and

Fŝ(u) =

∫

ω

Ŵŝ(x̂/ε, e(u)(x̂)) dx̂.

Assuming again that f̂ ∈ L2(ω;R2), problem (P̂ŝ) has a unique solution ûŝ but, due
to the low values of ŝ, getting numerical approximations remains difficult. Thus, taking
into account this low values, we will propose a simplified but accurate enough model by
studying the asymptotic behavior of (P̂ŝ) when ŝ goes to zero. Since we will only consider
2-dimensional problems in the sequel, to shorten notation we will denote a current point
of R2 by x = (x1, x2), y = (y1, y2) and s not by x̂, ŷ and ŝ, respectively.

Actually, (P̂s) looks like a problem of periodic homogenization since the geometry and
the mechanical properties of the microstructure are εŶ -periodic, but the geometry involves
an additional parameter l while the bulk energy of the mortar involves two other ones λ′, µ.
If (l, λ′, µ) were fixed, the asymptotic effective bulk energy of the heterogeneous structure
will be given by

W eff
lλ′µ(E) := min

{

1

|Ŷ |

(
∫

B̂l

Ŵ (E + e(v)(y)) dy +

∫

M̂l

Ŵλ′µ(E + e(v)(y)) dy

)

∣

∣

∣
v ∈ H1

per(Ŷ ;R2)

}

where

H1
per(Ŷ ;R2) := { v ∈ H1(Ŷ ;R2) | the traces of v on the opposite sides of Ŷ are equal }.

The asymptotic behavior of W eff
lλ′µ when (l, λ′, µ) → 0 is a problem of modelling of soft

elastic junctions. By using the arguments of [7] in a very general setting or of [1] in a
setting close to the present one, it may be shown that

lim
(l,λ′,µ)→0

W eff
lλ′µ(E) = min

{

1

|Ŷ |

(

∫

Ŷ \S

Ŵ (E + e(v)(y)) dy +

∫

S

W̄λ̄′µ̄([v](y)) dl

)

∣

∣

∣
v ∈ H1

per(Ŷ \ S;R2)

}

,

where

H1
per(Ŷ \ S;R2) := { v ∈ H1(Ŷ \ S;R2) | the traces of v

on the opposite sides of Ŷ are equal },
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we made the additional assumption

∃ λ̄′, µ̄ ∈ (0,+∞) ; λ′ ∼ 2λ̄′l, µ ∼ 2µ̄l, (1)

which leads to the most interesting case from the mechanical point of view,
{

W̄λ̄′µ̄(v) := Ŵλ̄′µ̄(v ⊗s n) ∀ v ∈ R
2

a⊗s b :=
1
2 (a⊗ b+ b⊗ a),

n is a chosen unit normal to S, [v] is the difference, taken in the direction of n, of the
traces of v on S.

In fact, in the sequel we prove that this previous limit is the effective bulk energy of

the wall by studying the asymptotic behavior of the strain energy functional Fs involved
by (P̂s) when s goes to zero with the sole condition (1). This will be done in the setting
of variational convergence by establishing that the strain energy functional converges in
some sense to an integral functional on ω whose density is :

W eff(E) := min

{

1

|Ŷ |

(

∫

Ŷ \S

Ŵ (E + e(v)(y)) dy +

∫

S

W̄λ̄′µ̄([v](y)) dl

)

∣

∣

∣
v ∈ H1

per(Ŷ \ S;R2)

}

.

2 The Asymptotic Model

2.1 An Auxiliary Problem

We have just emphasized the role played, for all E in S
2, by the problem

(P̂E) min

{

1

|Ŷ |

(

∫

Ŷ \S

Ŵ (E + e(v)(y)) dy +

∫

S

W̄λ̄′µ̄([v](y)) dl

)

∣

∣

∣
v ∈ H1

per(Ŷ \ S;R2)

}

which has a unique (up to a constant element of R2) solution vE and we have

W eff(E) =
1

|Ŷ |

(

∫

Ŷ \S

Ŵ (E + e(vE)(y)) dy +

∫

S

W̄λ̄′µ̄([vE ](y)) dl

)

and
∃ γ, β > 0 ; γ|E|2 ≤ W eff(E) ≤ Ŵ (E) ≤ β|E|2 ∀E ∈ S

2. (2)

Let us still denote the extension of vE into R
2 by Ŷ -periodicity by vE and let σE =

Ŵ ′(E + e(vE)). It is easy to check that div σE = 0 in the sense of the distributions on
R

2. Thus, vE , being solution of an elastostatic problem in quadrants Qi with boundary
conditions like σEn ∈ H1/2(∂Qi;R

2), belongs to H2(Ŷ \ S;R2) [5], [6]. The Sobolev
embedding implies that vE on each connected components of Ŷ \ S is the restriction
of Hölder continuous functions on R

2 and that e(vE) and consequently σE belongs to
Lr(Ŷ ; S2) ∀ r ∈ [1,+∞). This regularity property of σE is crucial to prove the lower
bound : the function x ∈ ω 7→ σE(x/ε) ∈ S

2 weakly converges in Lr(ω; S2) toward
∫

Ŷ
σE(y) dy ∀ r ∈ [1,+∞)!

The field vE does not belong to H1(Ŷ ;R2), thus in order to use this field for building
suitable test functions we proceed to a regularization as in [4] and [7]. For all v in H1

per(Ŷ \
S;R2) we define Riv, i = 1, 2, 3, 4, by :

R1v(y) :=
1

2

[

min

{

1,
1

l

∣

∣

∣

∣

y1 −
1

4

∣

∣

∣

∣

}(

v(y)− v

(

1

2
− y1, y2

))

+ v(y) + v

(

1

2
− y1, y2

)]

R2v(y) :=
1

2
[min{1, |y1 − b|/l}(v(y)− v(2b− y1, y2)) + v(y) + v(2b− y1, y2)]

R3v(y) :=
1

2

[

min

{

1,
1

l

∣

∣

∣
y2 −

a

4

∣

∣

∣

}

(

v(y)− v
(

y1,
a

2
− y2

))

+ v(y) + v
(

y1,
a

2
− y2

)

]

R4v(y) :=
1

2

[

min

{

1,
1

l

∣

∣

∣

∣

y2 −
3a

4

∣

∣

∣

∣

}(

v(y)− v

(

y1,
3a

2
− y2

))

+ v(y) + v

(

y1,
3a

2
− y2

)]

4



and let Rl := R4 ◦R3 ◦R2 ◦R1.
Clearly for all v in H1

per(Ŷ \ S;R2), Rlv belongs to H1
per(Ŷ ;R2) and Rlv(y) = v(y)

∀ y ∈ B̂l. It is straight forward to check that

lim
l→0

|RlvE − vE |Lr(Ŷ ;R2) = 0 ∀ r ∈ [1,+∞) (3)

lim
s→0

|Ŵ ′
λ′µ(e(RlvE))|Lr(M̂l;S2)

= 0 ∀ r ∈ [1,+∞) (4)

lim
l→0

|e(vE)|Lr(M̂l;S2)
= 0 ∀ r ∈ [1,+∞) (5)

As for vE we still denote the extension of RlvE into R
2 by Ŷ -periodicity by RlvE .

2.2 The Convergence Result

We start by establishing a compactness property for sequences with bounded energy. Let
Mb(ω; S

2) the space of bounded S
2-valued measures on ω and BD(ω) := {u ∈ L1(ω;R2) |

e(u) ∈ Mb(ω; S
2) }.

Proposition 1 (compactness property) Let (us) a sequence in H1
γ0
(ω;R2) such that

Fs(us) ≤ C, then there exist u in BD(ω) and a not relabelled subsequence such that us

weak* converges in BD(ω) toward u and consequently strongly in Lq(ω;R2), q arbitrary

in [1, 2) and weakly in L2(ω;R2).

Proof of Proposition 1 : We have

C ≥ α̂

∫

B̂lε

|e(us)|
2 dx+ µ

∫

M̂lε

|e(us)|
2 dx

≥
α̂

a

(
∫

B̂lε

|e(us)| dx

)2

+
µ

|M̂lε|

(
∫

M̂lε

|e(us)| dx

)2

≥
α̂

a

(
∫

B̂lε

|e(us)| dx

)2

+
Cµ

l

(
∫

M̂lε

|e(us)| dx

)2

Hence (1) and the boundary condition us = 0 on γ0 imply that us is bounded in
LD(ω;R2) := {u ∈ L1(ω;R2) | e(u) ∈ L1(ω; S2) } which gives the desired assertion [8]. �

Now, we are in a position to state our main convergence result.

Theorem 1 (upper and lower bound)

• Upper bound : for all u in H1(ω;R2) there exists a sequence (us) in H1(ω;R2) such
that us weak* converges in BD(ω) toward u and

F eff(u) :=

∫

ω

W eff(e(u)) dx = lim
s→0

Fs(us).

• Lower bound : for all u in H1(ω;R2) and all sequences (us) in H1(ω;R2) which

weak* converges in BD(ω) toward u, we have :

F eff(u) ≤ lim inf
s→0

Fs(us).

Proof of the upper bound : We add some ingredients of the mathematical theory of bonding
joints [7] and [1] to the classical proof by [2] for homogenization of elliptic operators.

First we assume that u is affine u(x) = Ex + d, E ∈ S
2, d ∈ R

2. Let wEs such that
wEs(x) = ε(RlvE)(x/ε), (3) and (5) imply :

lim
s→0

∫

ω

|wEs(x)− εvE(x/ε)|
r dx = 0 ∀ r ∈ [1, 2]

lim
s→0

∫

ω

|εvE(x/ε)|
r dx = 0

5



so that the field us = u+ wEs belongs to H1(ω;R2) and strongly converges in Lq(ω;R2),
and in L2(ω;R2), toward u. Moreover

Fs(us) =

∫

B̂lε

Ŵ (E + e(vE)(x/ε)) dx+

∫

M̂lε

Ŵλ′µ(E + e(RlvE)(x/ε)) dx

=
|ω|

|Ŷ |

(
∫

B̂l

Ŵ (E + e(vE)(y)) dy +

∫

M̂l

Ŵλ′µ(E + e(RlvE)(y)) dy

)

.

Hence, a simple computation (see [7] and [1]) gives

lim
s→0

Fs(us) =
|ω|

|Ŷ |

(

∫

Ŷ \S

Ŵ (E + e(vE)(y)) dy +

∫

S

W̄λ̄′µ̄([vE ](y)) dl

)

=

∫

ω

W eff(e(u)(x)) dx.

Next, we take u as a piecewise continuous affine function : u(x) = Eix + di on ωi,
i ∈ I finite, where the ωi form a partition by polyhedral sets. Like in first step, we define
us by ui

s(x) = u(x) +wEis on each ωi. But by due account to the possible discontinuities
on the interface σjk between ωj and ωk we need to introduce φδ in W 1,∞(ω), 0 ≤ φδ ≤ 1,
φδ = 1 on σjkδ = {x ∈ ω | dist(x, σjkδ) < δ }, δ > 0, φδ = 0 on ω \ σjk2δ and

uδs = φδu+ (1− φδ)u
i
s on ωi.

Hence, we can repeat the end of the proof by [2] p.47–48 because ui
s converges strongly

toward u not only in Lq(ωi;R2) but also in L2(ωi;R2) while Ŵλ′µ is convex and satisfies

Ŵλ′µ(e) ≤ C|e|2.
Eventually, the proof is complete by a diagonalization and density argument. �

Proof of the lower bound : Once more we proceed by introducing a continuous piecewise
affine function v(x) = Eix + di as approximation in H1 of u on ωi. For each ωi, let us
introduce φi ∈ D(ωi) such that 0 ≤ φi ≤ 1. The subdifferential inequality yields

Fs(us) ≥
∑

i∈I

(
∫

ωi

φi(x)Ŵs(x/ε,E
i + e(wEis)(x)) dx

+

∫

ωi

φi(x)Ŵ ′
s(x/ε,E

i + e(wEis)(x)) · e(us − v − wEis) dx

)

.

A slight and obvious modification of the argument used in establishing the first step of
the proof of the upper bound gives :

lim
s→0

∫

ωi

φi(x)Ŵs(x/ε,E
i + e(wEis)(x)) dx =

∫

ωi

φi(x)W eff(e(v)(x)) dx.

Moreover, (3), (4) and (5) imply :

lim
s→0

∫

ωi

φi(x)Ŵ ′
s(x/ε,E

i + e(wEis)(x)) · e(us − v − wEis) dx

= lim
s→0

∫

ωi

φi(x)Ŵ ′
s(x/ε,E

i + e(vEi)(x/ε)) · e(us − v − wEis) dx

= lim
s→0

∫

ωi

σEi(x/ε) · e(φi(us − v − wEis)) dx

−

∫

ωi

σEi(x/ε) · ∇φi ⊗s (us − v − wEis) dx

= −

∫

ωi

σEi(x/ε) · ∇φi ⊗s (us − v − wEis) dx (div σEi = 0)

= −

∫

ωi

(
∫

Y

σEi(y) dy

)

· ∇φi ⊗s (u− v) dx

6



because σEi(·/ε) weakly converges in Lq′(ω; S2) toward
∫

Ŷ
σEi(y) dy and (us − v − wEis)

converges strongly in Lq′(ω;R2) to u− v. Hence,

lim inf
s→0

Fs(us) ≥
∑

i

∫

ωi

φiW
eff(e(v)) dx+

∑

i

∫

ωi

φi(W
eff)′(e(v)) · e(u− v) dx

And we conclude as in [2] by letting φi converge increasingly to one on ωi for the
first term and using (2) and the density of the piecewise affine continuous functions in
H1(ω;R2) for the second term. �

3 Mechanical Interpretation, a Proposal of Model

Indeed, we did not succeed in proving that cluster points of sequence with uniformly
bounded finite strain energy belongs to H1(ω;R2) and satisfies an homogeneous Dirichlet
boundary condition on γ0. Thus we cannot (see [2], [3]) assert that the unique solution ûs

of (P̂s) weak* converges in BD(ω) toward the obviously unique solution ū of (Peff)

(Peff) min

{
∫

ω

W eff(e(v)) dx−

∫

ω

f̂ · v dx

∣

∣

∣

∣

v ∈ H1
γ0
(ω;R2)

}

.

Problem (Peff) describes the equilibrium of a homogeneous elastic flat body occupying
ω as reference configuration with bulk energy W eff, clamped on γ0 and subjected to body
forces of density f̂ . Hence, our model is simpler than the genuine one because it involves
a homogeneous body and accurate enough due to our convergence result. We only can
claim that a reasonable candidate for effective energy bulk energy density of the assembly
bricks mortar is W eff. This was also derived in [4] through rather heuristical arguments.

Due to (2) the effective homogeneous material is weaker than the genuine material of
the bricks. This is the price to pay due to the difficulty of making a homogeneous wall.
The effective strength of the wall should be greater than the one of the bricks when stiff
mortar is used. It should be interesting to consider the case when the magnitudes of λ′, µ
is of order 1/l. Hence our model is simpler than the genuine one because it involves a
homogeneous body and is accurate enough due to our convergence result.
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très mince, Ph.D. Thesis, University Montpellier 2, France (1989).

[2] H. Attouch, Variational Convergence for Functions and Operators, Applicable Math-
ematics Series, Pitman Advanced Publishing Program, Boston (1985).

[3] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV

Spaces Application to PDEs and Optimization, MPS-SIAM Book Series on Optimiza-
tion, Philadelphia (2006).

[4] A. Cecchi and K. Sab, A Multi-Parameter Homogennization Study for Modeling Elas-

tic Masonry, European Jounal of Mechanics A/Solids, 21 (2002), 249–268.

[5] P. Grisvard, Behavior of the Solution of an Elliptic Boundary Value Problem in a

Polygonal or Ployhedral Domain, Symporium on Numerical Solutions of Partial Dif-
ferential Equations III, B. Hubbard Editor (1975).

[6] P. Grisvard, Boundary Value Problems in Plane Plygone. Instructions for Use, EDF
Bulletin de la Direction des Etudes et Recherches Série C’ Mathématiques, Informa-
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