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

Abstract: In this paper a discrete-time design of continuous-time delay (TDC) is presented. The main 

goals are: (i) to eliminate the TDC assumption of accessibility to all the delayed derivative of the plant 

state variables, and (ii) to design discrete-time controllers based on approximate discrete-time models. 

Simulations results are given, for an articulated arm actuated with linear hydraulic motors with variable 

payloads, to illustrate the robustness of the proposed control design. The new proposed controller has 

similar results as that obtained by TDC without the use of a delay element which has become a time 

constant. Moreover, there is no need of measuring the joints jerk. The controller robustness is guaranteed 

despite the uncertainties in dynamic model caused by payload variation, imprecise modeling, etc. Other 

uncertainties such as friction and external disturbances are rejected in the controller automatically. Real 

time experimentations, with a small scale Liebherr excavator, of coordinated motion control of 

implements are presented.  

Keywords: discrete-time control, tuning parameter, coordinated motion control, hydraulic excavator 


1. INTRODUCTION 

In 1987, Youcef-Toumi and Ito (Youcef-Toumi et al. (1987)) 

proposed a robust control method for a class of nonlinear 

continuous-time systems with unknown dynamics and 

unexpected disturbances, i.e.      txhuxBxfx ,  where  txh ,  represents both unknown dynamics and unexpected 

disturbances, which is called Time Delay Control (TDC). 

Under the assumption of accessibility to all the state variables 

and estimates of their delayed derivative, TDC is 

characterized by a direct estimation of the function  txh , . 

This estimation is accomplished using time delay. This 

delayed observation of uncertainties is used to modify the 

control action directly, rather than to adjust the controller 

parameters like in gain scheduling or adaptive control 

techniques. Although TDC has been recognized as an 

efficient technique, see e.g. Youcef-Toumi et al. (1992.a) –  

Chang et al. (2003), it requires a good estimate of the system 

state derivative, and it is also inherently a continuous-time-

based design introducing a delay in the control loop.  

TDC implementations are thus carried out as time discretized 

functions of continuous-time functions, and this can lead to 

unstable closed-loop behavior as illustrated in the following 

example. Consider the first-order nonlinear plant proposed in 

Youcef-Toumi et al. (1990). This plant is exactly represented 

by   duxx  cos ,  xcos  is treated to be the unknown 

dynamics, and    5.05.0  ttd  is the unexpected 

disturbance acting at t = 0.5s. Note that  t  represents a unit 

step function. As expressed in Youcef-Toumi et al. (1990), 

the TDC is given by:  

         ttxLtxLtutu    

Let the sampling period be equal to the time delay L, then the 

discretized TDC is 

         
L

kxkx
kxkuku

21
11

  

Fig.1 shows simulation results where the plant output 

converges to the desired set-point under continuous-time 

control with L set to 0.05 s., and diverges under discretized 

control. 

In this paper, in opposition to the standard TDC, we first 

focus on the fact that the design model has to be a discrete-

time model, which is necessarily, an approximate model of 

the real system. 

Performance of the control system was evaluated through 

simulations. Through simulations for a first order nonlinear 

plant, good model following and disturbance rejection 

property were obtained within a large range of sampling 

periods. The good model following and disturbance rejection 

property was confirmed through simulations for a more 

complicated non-linear system — a two-link manipulator 

carrying an unknown payload.  



 

 

     

 

Real time experimentations, with a small scale Liebherr 

excavator, of coordinated motion control are presented. 
Proposed discrete-time TDC law is applied for the tracking 

control. Only the hydraulic cylinders positions are measured 

and only two tuning parameters are used, i.e. the sampling 

period T, and the dynamic of the desired state trajectory. 

The required motion will be achieved via a two-stage 

sampled data system: the first one solves the inverse 

kinematics problem and send joint velocity set points to a 

tracking control system.  

 
Fig. 1. Response of the first-order nonlinear system under 

continuous-time TDC versus a time-discretized 

implementation. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

The design of any feedback control law requires some a 

priori knowledge about the dynamics of the plant to be 

controlled. In this paper, we consider the designer’s a priori 

knowledge is a continuous-time plant model: 

     uxBxfx     (1) 

where the term  is completely unknown and represents both 

unmodeled plant dynamics and external unexpected 

perturbations. This plant model satisfies the matching 

condition that the unknown term  enters the plant through 

the same input distribution matrix  xB  as the control input 

u . As usual, we use the following notations: 

    pT
p

nT
n UuuuXxxx  ,...,,,..., 11  

      xbxbxB p,...,1 ,  

and assume the nonlinear functions, ibf ,  for pi ...1  are 

known and are, at least continuous. Given this a priori 

knowledge, and under the assumption of accessibility to all 

the state variables and estimates of their delayed derivative, 

TDC is characterized by a simple estimation of the unknown 

vector: 

     txBtxh , , i.e.     LtLtxhtxh  ,,ˆ   

which is directly derived from (1) at Lt  .  

In opposition to TDC, we first require that the design model 

to be used is a discrete-time model. However, even though 

the unknown term  in (1) is ignored, an exact discrete-time 

model of (1) is impossible to obtain in general. Hence, it is 

realistic to use approximate discrete-time models in the 

control design. In the sequel, only the Euler forward 

integration scheme will be considered. This simple 

approximation scheme is consistent, and moreover, the 1p  

known functions pbbf ,...,, 1  are evaluated once only at each 

sampling instant. 

Assuming,      kxkukx ,1,1   are known at kTt  , then 

the consistency error due to the Euler-forward integration 

scheme is given by: 

       11~
11   kkuBfTxke kkk  , 

where short-hand notations such as    kxkxxk  1 ,   kxff k  , and   kxBBk   are used. Therefore, since  1k  is unknown at that time, this later equation is 

rewritten as: 

    111   kuBfTxkT kkk                  (2) 

where      1~
1   kTBkekT k   represents both the 

consistency error due to the approximate numerical 

integration scheme, and the effects of unmodeled dynamics 

as well as unexpected disturbances over a sampling period. 

Note that,    1,~ kke   cannot be separately computed; only 

the term  kT  can be computed at kTt  . 

Based on (2), a causal prediction of  1k  can be defined 

as    kk  1ˆ . Hence, for any vector p
ku  , a 

prediction  kukx 1ˆ   of the next plant state is expressed as: 

   )(1ˆ kuBfTxukx kkkkk   (3) 

In summary, given the a priori known continuous-time model 

(1), the model that will be used to design a control law is the 

one-step ahead prediction model (3), where       Tkxukx k
ˆ1ˆ   can be viewed as a prediction of the 

next state derivative under a particular choice of ku . 

3. DERIVATION OF CONTROL LAWS 

Assume, the desired n-dimensional trajectory is known one 

step ahead at each sampling instant, i.e.  1kxd  is known 

at kTt   such that      kGrkFxkx dd 1 . Let,      kxkxke d  , be the tracking error. After some 

algebra, this leads to: 

           kk uxTkxIFkGrkFeuke ~1ˆ  , 

where  kuke 1ˆ   is the predicted tracking error, and    kuBfux kkkk ~ . Hence, if it is possible to 

determine a control such that the following equation is 

always met: 

     kkk uxTxIFGrkKe ~    (4) 

This will lead to,      keKFuke k 1ˆ  where K is an  nn  error feedback matrix. The control ku , that satisfy 



 

 

     

 

(4), must then be selected in order to obtain a desired error 

dynamic. However, equation (4) cannot always be satisfied 

because the number of state variables is generally greater 

than the number of control inputs. Thus, the least square 

solution of (4) is adopted to determine the control ku : 

  kBu kkk        (5) 

where   T
kk

T
kk BBBB

1   is the Moore-Penrose pseudo 

inverse matrix of kB , and: 

           
T

kKekxIFkGr
kfk k

    (6) 

Control laws derived in this manner are based on the 

assumption of accessibility to all the state variables; they 

have only two tuning parameters, i.e. the sampling period T, 

and the dynamic of the desired state trajectory.  

Using equations (3), (5), and (6), it is easy to exhibit the 

general equation governing the dynamics of the tracking 

error, 

      kkeKFke 1    (7) 

where,       kBBkTBBI kkkkkk    1  (8) 

Therefore, the tracking error  ke  will be ultimately bounded 

if it can be proved that k  is bounded, i.e.  k , 

provided the matrix (F + K) is a stable matrix, i.e. 

1 KF . 

The effectiveness of the proposed design method can be 

briefly illustrated on the example already mentioned in the 

introduction. The control is now expressed as: 

            
T

kxkxkra
kuku

 1
1  

where the desired state trajectory  1kxd  has been derived 

from a continuous-time first-order dynamic system, i.e.  txx dd 1 , as in Youcef-Toumi et al. (1990), therefore  Ta  exp . Fig. 2 shows two cases of behaviors of the 

tracking error      txtxte d  , corresponding respectively 

to T = 0.04 s., and T = 0.4 s. respectively. In both cases, the 

closed-loop plant trajectory converges to the desired 

trajectory. 

4. APPLICATION TO MANIPULATOR CONTROL 

The a priori knowledge representation of the dynamics of a n- 

link robot manipulator is: 

     tqqquqGqqD ,,,      (9) 

In this representation, the control vector u is the n-

dimensional vector of forces/torques applied on the joint axis,     0 qDqD T is an approximate inertia matrix (e.g. the 

inertia matrix derived from the assumption that all the links 

are point masses),  qG  is also an approximation of the 

gravity terms. Hence, the unknown vector  tqqq ,,,   is a 

lumped representation of the centrifugal and Coriolis terms, 

of the friction torques on joints axis, and of the force/torque 

acting at the end-effector.  

The state    TTTTT xxqqx 21 ,,    is a 2n-dimensional 

vector, and the design model is thus characterized by: 

         






 

1
1

11
1

2 0
;

xD
xB

xGxD

x
xf  (10) 

 

Fig. 2. Tracking error    txtxd  of the nonlinear first-order 

system under the control (7). 

It is easy to show that     10 xDxB  . Hence, using (5) 

and (6), only the n-dimensional vector  kT 2  has to be 

computed at each sampling instant, i.e. 

     11
1
122   kkk GuDkxkT   (11) 

In order to determine the desired joint trajectory, a 

continuous-time reference model can be selected as a set of 

second order linear systems described by BrAxx dd  , 

such that: 

r
bx

x
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Then, using the Euler-forward-integration scheme, this leads 

to      kGrkFxkx d 1ˆ , where: 

TBGTAIF  ;    (12) 

Note that, the error feedback matrix K, in (6), can be selected 

as K = 0, provided F = I + TA is a stable matrix. Thus, under 

this assumption, substituting (10)-(12) into (5), the control 

ku  can be expressed as: 

    kkDGu kkk 22     (13) 

where       
T

kx
GuDk kkk

2
11

1
12

    (14) 

and        krBkxAkxAk ddd 222112   (15) 



 

 

     

 

Note that, the second term in the right-hand side of (14) 

represents an approximation of the joint acceleration at t =kT. 

Practical implementations of this control, (13)-(15), can be 

carried out using only sampled joint position information   2,1,0,1  iikx , provided each joint sensor output is 

suitably filtered before sampling. 

Simulation was done for a two-link manipulator, for which 

all the inertia and center of mass parameters were obtained 

from an industrial company. These technical data correspond 

to those of a heavy-duty excavator. The Matlab/Simulink 

toolbox was used to represent this system, where an 

additional point mass (m) situated at the end of the second 

link was used to represent an unknown payload.  

In the design model the two links were assimilated as point 

masses. The same second order reference model was chosen 

for each link, 
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The simulation was performed with a sampling period 

T=0.05 s., with m = 0 kg, and m = 300 kg, respectively, using 

the same values of natural frequency ( n  = 2.0 rad/s) and 

damping ration (z = 2.0). The input commands 1r  and 2r  

where chosen to be step inputs. 

 
Fig. 3. Response of the first joint variable. 

 
Fig. 4. Response of the second joint variable. 

 
Fig. 5. Torque input on the first joint axis. 

 
Fig. 6. Torque input on the second joint axis. 

5. COORDINATED-MOTION CONTROL OF A 

HYDRAULIC EXCAVATOR 

To illustrate the effectiveness of the proposed control law, we 

have chosen to consider a highly nonlinear system that is the 

arm of hydraulic excavator. The testbed (Fig.8.) consists of a 

small scale hydraulic excavator, xPC targetBox 

(Matlab/Simulink, Real Time Workshop) and joystick 

(definition of the Cartesian velocity  ,, yx VV ). Each 

hydraulic cylinder is instrumented with linear displacement 

sensor SLS 095 Penny&Giles (mounted in parallel to the 

cylinders). The hydraulic system is driven by one hydraulic 

pump with output pressure of 10 [bars] and constant flow. 

The flow from the pump to the cylinders is controlled 

through variables orificies (Fig. 7.) by micro servo Graupner. 

The control signal u is a digital PWM signal with a 50 Hz 

frame rate.  

 

 

 

 

 

 

Fig.7. Flow control 

 

5.1 Actuator model 

The aim of this stage of model building was to establish a 

simplest actuator model. Let a highly simplified model be 

given as: 

Servo 



 

 

     

 

      11  kkukv      (16) 

 v – is the linear hydraulic cylinder velocity;   - represents 

the non-modeled dynamics and all external perturbations and  – is a static caracreristic of hydraulic cylinder. The latter 

caractericstic is obtained by some open loop 

experimentations  –  with zero initial velocity different 

control values u are applied at time k and v(k+1) - the 

stabilized velocity at time k+1. Thus the steady states 

characteristics are obtained (Fig.10.). The control law 

proposed above is based on this simplest model. 

 

Fig. 8. Experimental testbed 

The relationship between joint variables and measured 

hydraulic (Fig. 9) cylinders displacements can be written as:    

 11
222

1 cos2   BABCBABC LLLLq  

 22
222

2 cos2   FDFEFDFE LLLLq  (17) 

 33
222

3 cos2   IHIGIHIG LLLLq  

 

Fig.9. Detail of the arm links 

 
a. Boom hydraulic cylinder 

 
b. Stick hydraulic cylinder 

 
c. Bucket hydraulic cylinder 

Fig. 10. Steady states characteristics  

The Jacobian matrix   33xJ  is square and obtaining its 

inverse is trivial. Thus, with   qBq   (derived from (17)), 

the relationship between Cartesian velocity vector and 

hydraulic velocities can be presented as: 

   















 

y

x

V

V

JqBq 1    (18) 

thus, joint velocity set points to a tracking control system are 

defined. 
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5.2 Real time experimentations  

The experimentation was performed with 0,0 yV and 

xV  reference defined in Fig. 11. Dashed line presents 

measured bucket velocity. Fig. 12.a shows the closed loop 

tracking of boom, stick hydraulic cylinders. In Fig.12.b 

applied control signals are given.   

 

Fig.11. Tracking of reference Cartesian velocity 

 
               Boom                       Stick                   Bucket  

a. Generated trajectory (continuous line), measured 

velocity (dashed line)  

 
          Boom                      Stick                         Bucket  

b. Control signal   

 Fig.12. Tracking of reference Cartesian velocity 

6. CONCLUSION 

The discrete-time design proposed in this paper follows the 

presentation of TDC given in Youcef-Toumi et al. (1990). 

However, the design model which is used here is a nonlinear 

discrete-time model derived from a nonlinear continuous-

time model, both being approximate models. In this design 

model, only the more recent past effects of unmodeled 

dynamics and unexpected disturbances are estimated at the 

beginning of each sampling period, together with the last 

consistency error due to the necessary use of an approximate-

integration scheme (in this paper only the Euler-forward-

integration scheme was used). This is accomplished under the 

assumption of accessibility to all the state variables.  

Through simulations for a first order nonlinear plant, good 

model following and disturbance rejection property were 

obtained within a large range of sampling periods. The good 

model following and disturbance rejection property was 

confirmed through simulations for a more complicated non-

linear system — a two-link manipulator carrying an unknown 

payload. In this case, all the joint velocities involved in the 

control were estimated using first order difference of joint 

positions. Performance of the control system was evaluated 

through simulations and real time experimentations with 

highly nonlinear system.  
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