N
N

N

HAL

open science

The Iterated Restricted Immediate Snapshot Model

Corentin Travers, Sergio Rajsbaum, Michel Raynal

» To cite this version:

Corentin Travers, Sergio Rajsbaum, Michel Raynal. The Iterated Restricted Immediate Snapshot
Model. [Research Report] PI-2005, 2013. hal-00829436v2

HAL Id: hal-00829436
https://inria.hal.science/hal-00829436v2

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00829436v2
https://hal.archives-ouvertes.fr

Publications Internes de 'lRISA
ISSN : 2102-6327 (.
Pl 2005 — Juin 2013

:IRISA

\®

The Iterated Restricted Immediate Snapshot Model

Corentin Travers Sergio Rajsbau?ﬁ* Michel RaynaT***

Abstract: Inthelterated Immediate Snapshmoibdel (/7S5) the memory consists of a sequence of one-Bhaotediate Snapsh¢is)
objects. Processes access the sequentg objects, one-by-one, asynchronously, iwait-freemanner; any number of processes
can crash. Although more restricted (each IS object can desaed only once), théS model is equivalent to the read/write model
for wait-free solvability of decision tasks. Its intereigtd in the elegant recursive structure of its runs, whicllifates its analysis,
round by round.

Although there are by now quite a few papers that usdifenodel or its variants, the approach has not yet been useddy st
failure detectors. The paper shows that an elegant way afigag the power of a failure detector and other partiallggdyonous
systems is by considering appropriate subsets of runs of/thenodel, giving rise to théterated Restricted Immediate Snapshot
model ([RIS).

The proposed approach has several benefits. First it puslevith new simulations in presence of asynchrony andréslu
Then, it gives new insights on the very nature of failure dites, and on how to represent them in an iterated model.ll¥iita
allows designing simpler proofs of existing results. Aswdgtcase, the paper considers a system enriched withited-scope
accuracyfailure detector, where there is a cluster of processes thatlsome correct process is eventually never suspectenyby a
process in that cluster. A new proof of theset agreement Herlihy and Penso’s lower bound for sharedamesystem augmented
with a limited-scope accuracy failure detector is provid€ke proof is based on an extension of the Borowsky-GAfhisimulation
to encompass failure detectors, followed by a very simppeltugical argumentation. The paper describes similariegibns for
other failure detectors including the clas§Esand <)Y,

Key-words: Algorithmic reduction, Asynchronous system, Distributddorithm, Distributed Computability, Failure detectors
Fault-tolerance, Round-based computation, Shared mefapplogy.

Un modele de calcul réparti itéré généralisé

Résumé : Ce rapport présente un modele de calcul réparti itéré géinsgra

Mots clés : Calcul réparti, modele, réduction.

* Earlier versions of this paper appeared in [44, 45, 46]
* LaBRI, Université de Bordeaux 1, France
™ Instituto de Mathematicas, UNAM, D.F. 04510, Mexico
™ Institut Universitaire de France et IRISA (équipe communeJailersité de Rennes 1 et Inria)

I\ ot &
RENN‘ES%'I @ s4INSR VS

©IRISA — Campus de Beaulieu — 35042 Rennes Cedex — France — 1384221 00 — www.irisa.fr

2 C. Travers, S. Rajsbaum,& M. Raynal

1 Introduction

A distributed model of computation consists of a sehqfrocesses communicating through some medium (some forneséage
passing or shared memory), satisfying specific timing apsiams (process speeds and communication delays), andgfaissump-
tions (their number and severity). A major obstacle in theetgpment of a theory of distributed computing is the widgetsy of
models that can be defined — many of which represent realmgstewith combinations of parameters in both the (a)synghron
and failure dimensions [6, 36]. Thus, an important line el ch is concerned with finding ways of unifying resultassibility
techniques, and algorithm design paradigms of differerdets

An early approach towards this goal has been to derive difetilations from one model to another, e.g., [2, 5, 8, 105how
how to transform a protocol running in an asynchronous ngespassing model to one for a shared memory model [2], or from
an asynchronous model to a synchronous model [5], or frono@gol tolerating some number of failures to one toleratimgye
failures [10] or more severe ones. A more recent approachéas to devise models of a higher level of abstraction, wresalts
about various more specific models can be derived (e.g.3[1,.937]). Two main ideas are at the heart of the approach, s
been studied mainly for crash failures only, and is the topibis paper.

Two bedrocks: wait-freedom and round-based execution It has been discovered [8, 31, 51] that thait-free case, where
any number of processes can crash (“wait statements” to fhear another process are useless) is fundamental. In pkatic
[31] provided a characterization of the tasks that are Wa#-solvable in a read/write shared memory system. One egwved
characterizations of task solvability in other models, éguction (via simulations e.g., [10, 20, 33, 34]) to the vt model and
then applying the characterization of [31].

The wait-free characterization of [31] is topological irtur&, and it is based on a representation of the executiocapastocol
as asimplicial complexi.e., a discrete geometric object, whose interesting gutags are invariant over continuous deformations,
namely, subdivisions. In more detail, one considerssihplicial complex of global statesf the system after a finite number of
steps. Various papers have analyzed topological invarambut the structure of such a complex, for wait-free andratiodels, to
derive impossibility results, and sometimes also procBlich invariants are based on the notiomdfstinguishabilitywhich has
played a fundamental role in nearly every lower bound inritisted computing. Two global states are indistinguisbdbla set of
processes if they have the same local states in both. 0

2

P4 P3 P, Ps

Figure 1: A simple complex with three simplexes

As an example let us consider Figure 1 that represents a eemyith three triangles. Each triangle isinplexrepresenting a
global state. The corners of a simplex represent localst#tprocesses in the global state. The center simplex andgienost
simplex represent global states that are indistinguightgb; andp,, which is why the two triangles share an edge. Onjycan
distinguish between the two global states.

Most attempts at unifying models of various degrees of dsyomy restrict attention to a subset of well-behavednd-based
executions. Given a model of distributed computation, avesiters subsets of executions, generated by particgjar sequences
of actions for the scheduler, each of which produces a QlayEnus, in a precise sense, such a layering can be viewediamde
sub-model of the original model. Lower bounds and impo#8siliesults proven for the sub-model translate directlpitne original
model. For example, [37] presents a uniform approach to tilysof solvability of consensus in various models of conagioh
in which, crash failure behavior can occur. The use of lagifacilitates performing round-by-round analysis: ata#y, results
regarding consensus follow from analyzing a single layeramhputation.

The approach in [9] goes beyond and definestammted round-based model/{S), where each communication object can be
accessed onlgnceby each process. In its basic form, the iterated model asstimeobjects arenmediate Snapsh¢LS) objects
[7], that are accessed by the processes with a single operdéinotedwrite_snapshot(), that writes the value provided by the
invoking process and returns to it a snapshot [1] of its aunt& benefit of using immediate snapshot operations is tleatdésulting
complex is amanifold as in the figure above, where for three processes, each sdgmtained in at most two triangles. The
sequence ofS objects are accessed asynchronously, and one after thebgtbach process. It is shown in [9] that the model
is equivalent (for bounded wait-free task solvability) ke tusual read/write shared memory model. A simpler and menergl
simulation appeared recently [23].

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 3

Thus, the runs of thélS model are not a subset of the runs of a standard (non-iterateete a process can access the same
object more than once) model as in other works, and the dratehtas to be payed is a simulation algorithm showing thattbéel
is equivalent to a read/write shared memory model (w.r.tt-fi@e task solvability). But the reward is a model that haselegant
recursive structure: the complex of global states afterl rounds is obtained by replacing each simplex in the compiegtabal
states afte¥ rounds, by a one round complex (see Figure 2). Thus, as in3[L,%37] impossibility results follow from analyzing
a single layer of computation, but in théS the layers are by definition independent. Furthermore, #etgad of algorithms is
also facilitated. Actually, roughly speaking, th&5 is the model resulting from programming distributed altforis in a recursive
manner [22]. Indeed, thHS model was the basis for the proof in [9] of the wait-free cletgezation theorem of [31] that holds for
any task. Also, thélS model, enriched with objects more powerful than read/watgsters, was instrumental for the results in [24]
showing that renaming is a strictly weaker task than seteagest. Later on it was shown that this enrichment is equivdteits
non-iterated version [23]. See [43] for an overview of resutlated to thdlS model, and more recent papers that take advantage
of the IIS model and its variants, such as [28, 29].

Failure detectors Although there are by now quite a few papers that use/flfemodel or its variants, the approach has not
yet been used to study failure detectors. Recall thailare detector[12] is a distributed oracle that provides each process with
hints on process failures (see [49, 50] for an introductmifatlure detectors). According to the type and the qualityhe hints,
several classes of failure detectors have been defined [(29.38, 54]). Failure detectors are used as an abstracfiogliability
assumptions, to design modular protocols in distributestiesys, and also as a theoretical device, to study modelgiofigadegrees

of synchrony.

The family oflimited scopeccuracy failure detectors, is denoted,. [27, 53]. These capture the idea that a process may detect
failures reliably on the same local-area network, but lesialsly over a wide-area network. They are a generalizatfdahe class
denoted®S that has been introduced in [12P§,, is ©S8). Informally, a failure detecto®S, ensures that there is a non-faulty
process that is eventually never erroneously suspecteayppracess in a cluster af processes. A failure detector of the class
&S, is for a system made up of a single cluster of processes. ThigyfaC S,)1<z<n,1<q<2 €Xtends the notion of limited scope
failure detector to a system where the processes are paetitinto multiple disjoint clusters. There aréisjoint clusters denoted
Xi,...,Xq where|X;| = z;, X = U1<i<q X, andz = Zle z;. Informally, there is a process that is never suspectedadh ea
clusterX;. Thus, as the parametersq vary, systems of different degree of synchrony are obtained

Many other families of failure detectors have been consdeNotably,{Q2*}1<.<,, and{ ¥ }1<,<,. The failure detector
class? [42] is a generalization of the clas® [13]; in particular, Q' is the clasx?, that is necessary and sufficient to solve
consensus. A failure detector of the cl&¥s controls a local variableEADER; containing a set process identities, and captures
weaker synchrony assumptions. A failure detector of thessta)¥ outputs at each procegsan integeNBC; that is an estimate of
the number of processes that have crashed. The fgd/il¥ }1 <, <, was introduced in [39] (although with a different formutat).

Context and goals of the paper The paper introduces tHRIS modelwhich consists of a subset of runs of the model of [9].
The aim is to obtain the benefits of the round by round and fxagdom approaches in one model, where any number of pegess
can fail (by crashing), but the executions represent thdése partially synchronous model. The proposed approach éaeral
benefits. First it provides us with new simulations in preseof asynchrony and failures. Then, it gives new insightshenvery
nature of failure detectors, and on how to represent them iteeated model. Finally, it allows designing simpler piof existing
results.

In the construction of a distributed computing theory, aticdmuestion has been understanding how the degree of ymchf
a system affects its power to solve distributed tasks. Thesdeof synchrony has been expressed in various ways, typedder by
specifying a bound on the number of processes that can crash, as bounds on dathpsocess steps [16], or by a failure detector
[12], or by using powerful shared memory objects [26]. It bagn shown multiple times that systems with more synchramy c
solve more tasks. Previous works in this direction have maionsidered an asynchronous system enriched with a éadlatector
that can solve consensus. Some works have identified thésdf/gynchrony in terms of fairness properties [52]. Otherkso
have considered round-based models with no failure detft8]. Some other works [35] focused on performance issussly
about consensus. Also, in some cases, the least amountafreyy required to solve some task has been identified, mwithine
paradigm. A notable example is the weakest failure detdotsplve consensus [13] or set agreement [34Eet agreement [14]
(see [48] for a short survey) represents a desired coordimeegree to be achieved in the system, requiring procéssagee on
at mostk different values (consensuslisset agreement), and hence is natural to use it as a meastine $ynchrony degremm the
system. The fundamental result of the area is khs¢t agreement is not solvable in a wait-free, i.e., fullyrabronous system even
fork =n —1]8, 31, 51].

However, a clear view of what exactly “degree of synchrony¢ams is still lacking. For example, the same power as far as
solving k-set agreement can be achieved in various ways, such asilvie fdetectors [38] or-resilience assumptions. A second
goal for introducing the RIS model, is to have a mean of precisely representing the dedregchrony of a system, and this is

Collection des Publications Internes de I'lIr@IRISA

4 C. Travers, S. Rajsbaum,& M. Raynal

achieved with thd RIS model by considering particular subsets of runs oftkfemodel. We observe in [47] that directly including
failure detectors in thélS model is useless, instead we consider subsets of runs to pexdi@l synchrony.

Our representation of synchrony complements previoudtseshoutt-resilient systems, derived by reduction to the wait-free
case [10], or using bivalency arguments (e.g., [17, 37])cWido not seem to be generalizable from consensus to setnagmee
The 1-resilient characterization of [11] is by reduction to tlesensus impossibility of [17], and in general dealing witksilient
executions is more difficult than the wait-free case; compar example the wait-free consensus impossibility pradli6] with
the one of [17], which is much more subtle.

Contributions This paper shows that thgS model has yet another fundamental advantage, namelypivatudying the com-
putability power of the read/write shared memory model pped with a failure detector, when any number of processestesh.
More specifically, the paper presents several results irdinection.

1. Given that directly adding a failure detector to th& model does not allow solving more tasks [47], an iterated ehexl
defined by a subset of its executions. For a failure deteétarctassC, a corresponding restrictddS model is defined. This
model is denotedRIS(PR¢). IRIS stands forlteratedRestricted/ mmediateSnapshot model PR denotes a property,
derived from the failure detector clag§ that is encapsulated in therite_snapshot() operation. The/RIS(PR) model
is induced by the runs in which therite_snapshot() operations satisfy the correspondif® property. Every run of
IRIS(PR¢) is arun of thelIS model, but the opposite is not necessarily true.

To illustrate the approach, the paper considers three ifssnif failure detector classe§:CS, }1<p<n, {2%}1<2<n, and
{OYY }1<y<n. For afailure detectof’ in each one, it defines a correspondifity'S (PR) model.

2. The paper shows that the synchrony exhibited byR&S (PR-) model characterizes the power of the read/write model
enriched withC'. It presents a simulation from the shared memory model @itio the IRIS(PR) model. Conversely, it
shows how to extraat’ from IRIS(PR¢), and then simulate the read/write model with A noteworthy corollary follows
from that simulation, namely, a task is solvable in the re@ité model withC' if and only if it is solvable in theRIS(PR¢)
model. Thus, the paper shows that the simulation of [23] ifgrdvement on the original one in [9]) of the read/write mode
in the /1S model, can be extended to work also with failure detectors.

3. As an application of the previous simulations, new, senploofs of the impossibility of solving-set agreement in the
read/write model equipped with a failure detector from thewe classes are derived. Such direct proofs were knownfonly
the {CS, H << family [27], using combinatorial topology techniques fr¢80]. Impossibility proofs for the other families
are by reduction to this result [38].

Conversely, the results presented in the paper open thibpibgsf designing new set agreement (and in particularsensus)
algorithms: design an algorithm in @& 7S (PR) model, and then using the simulation mentioned above, foenst into
an algorithm for the read/write model witf.

We remark that the definition of &R 1S (PR) model is not in terms of process failures or failure detect®he characterization
of a failure detector clasS' appears as a restriction of the set of runs that would be peatlii the corresponding failure detector
was used in a certain canonical way and the schedules of rehd/idte operations follow a certain form. So, thBIS(PR¢)
model captures the synchronization/scheduling powerettiresponding failure detector class. In that sense|uadaletector is
a scheduler with specific fairness properties

Roadmap The paper is divided in 8 sections. Section 2 describes thmpuatational model and the classes of failure detectors we
are interested in. Iterated restricted models correspgndi the failure detector classesS,, 2* and<vY are presented in 3. The
computational equivalence of these models with the stahesd/write model enriched with the corresponding faillggectors is
proved in sections 4,5 and 6. Section 7 presents simple gafampossibility results regarding the computational poafthe
read/write model augmented with failure detectors. Thisige also shows that the IRIS model can be used to analyzerdsilient
model. Finally, section 8 concludes the paper.

2 Computation model and failure detector classes

This section presents a quick overview of the backgroundeéor the rest of the paper, more detailed descriptiondedound
elsewhere, e.g., [6, 9, 12]. We describe here the two mairetaeee are concerned with, in Section 2.1 the standard shaeetbry

1This is similar to thdinearizability consistency criterion [32] that restricts the set of runsegated by processes that access concurrently sharedsobjec

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 5

model enriched with failure detector, and in Section 2.2ff{femodel. In Section 2.3 we define tasks, and the known equigalen
between these models.

2.1 Shared memory model enriched with failure detectors

Asynchronous shared memory The paper considers a standard asynchronous system madenupracessesp:, ..., p,. A
process can fail bgrashing i.e., by prematurely halting. It behaves correctly (iaec¢ording to its specification) until it (possibly)
crashes. A process @rrect in a runif it takes an infinite number of steps afallty otherwise. If not otherwise indicated, we
do not assume any upper bound on the number of faulty prasebsthe case where no failure detector is available, thislied
thewait-free environment, because “wait statements” used by a procdssatofrom another process are useless. A system where
any number of processes may crash is sometimes called iwaief/en if a failure detector is available, despite the tfaat wait
statements may be useful in this case.

The shared memory is structured as an af&4/{1..n] of atomic registers. Each regist&i/ [i] supports two operationgrite(v)
andread() that allow to store the value and retrieve the current value of the register respectivelgly p; can write toSM|i],
but every process; can readSM[i]. Uppercase letters are used to denote shared registessoften useful to consider higher
level abstractions constructed out of such registers ateaimplementable on top of them, such as snapshots objjedlss case, a
process can read the entire mem@&#y/[1..n] in a single atomic operation, denotethpshot() [1].

Failure detectors As explained in the Introduction, a failure detector [124idistributed oracle that provides possibly unreliable
information about failures to the processes. Operatignaeich procesg; is endowed with a read-only variab#®; that contains
the information provided by the failure detector. Sevetasses of failure detectors can be defined according to titedad the
quality of failures information they provide.

The family (¢S,)1<z<n A failure detector of the claséS,, [25, 40, 27] provides each procgsswith a variableTRUSTED; that
contains identities of processes that are believed to bermily alive. Wherj € TRUSTED; we say *p; trustsp;”. The class®S, is
a simple generalization of the cla$sS introduced in [12] (in particular>S,, is ©S2.)

By convention, a crashed process trusts all processes ailtesfdetector classS,, is defined by the following properties:

e Strong completenes$here is a time after which every faulty process is nevestéai by every correct process and,

e Limited scope eventual weak accura@¥yere is a sef) of = processes containing a correct progessand a (finite) time after
which each process @j trustspy.

The timer, the set) and the procesg, are not known by the processes. Moreover, some processgsotild have crashed.
The parameter, 1 < x < n, defines the scope of the eventual accuracy property. Whenl, the failure detector provides no
information on failures, when = n the failure detector can be used to solve consensus [12].system where no more than
processes may crash, all the claséek, t < x < n, are equivalent [4].

It is sometimes convenient to use the following equivalentiulation of&S,, [38]. Assuming the local variable controlled by
the failure detector IREPR;:

e Limited eventual common representatiiénere is a sef) of = processes containing a correct processand a (finite) time
after which, for any correct proceps we havei €) — REPR = {andi ¢) —> REPR =i.

Clearly, a failure detector that satisfies the previous @rtypcan be transformed into one of the clésS, (defineTRUSTED; =
{REPR}). Conversely, an algorithm that transforms any failuredetr of$S,. into a failure detector satisfying the limited eventual
common representative property is described in [38].

The family (G9Y)1<y<,, A failure detector of the clas&¥ outputs at each procegsan integemBsc; that is an estimate of the
number of processes that have crashed. The ¢€lagsis defined by the following property, whejeis the number of actual crashes
inarun.

e Eventual accuracyThere is a time from whichBC; = max(n — y, f) at each correct proceps.

2The original definition of the failure detector cafisS [12] provides each procegs with a set denotedUSPECTER. Using the sefRUSTED; is equivalent to
using the seSUSPECTER. (more preciselyTRUSTED;= IT\SUSPECTER). We useTRUSTED; to emphasize the fact that what is important to ensure progréiss
set of processes that are alive.

Collection des Publications Internes de I'lIr@IRISA

6 C. Travers, S. Rajsbaum,& M. Raynal

The family {O4¥}1 <, <, was introduced in [39] although with a different formulatto It is shown in [38] that>y" is equivalent
to OP, the class of eventually perfect failure detectors [12pflufe detector of that class is strictly stronger tkias),), while O
provides no information on failures. A failure detector lo&t class provides each process with a set, dermted TED;, such that
after an arbitrary but finite time, the set of any correct pssccontains all the correct processes and only them.

The family (Q%)1<.<, The failure detector clas3® [42] is a generalization of the cla$s[13]; in particular,Q! is the clas€?.
A failure detector of the clasQ* controls a local variableEADER; containing a set process identities, and satisfies thexfltp

property :

e Eventual leadershipThere is a setk, of size at most and containing a correct process, and a (finite) time aftéchuine set
LEADER,; of every correct procegs remains forever equal tb.

Let us notice that when = n a failure detector of the clas¥® provides no information on failures; when= 1, Q7 is equivalent
to ©S = ©§,, [13], and hence powerful enough to solve consensus. Honasshown in [38], while it is possible to build a failure
detector of the clas®Q” from a failure detector of the classsS, iff + z > t + 1 (wheret is an upper bound on the number of
processes that may crash), it is impossible to build a fitletector of the claséS, from a failure detector of the clag$® for
1 < z,z < t. On another side, whil&¥ can be transformed intQ* iff y + z > ¢, 2% cannot be transformed intdyY [38].

Equivalently, the clas®* can be defined by the following property:

e Weak eventual leadershiphere is a sek, of size at most and containing a correct process, and a tinseich that for every
correct procesg; and every time”’ > 7, LEADER] C L andLEADER] N Correct # () whereLEADER] is the output of the
failure detector at time’ at proces®; andCorrect is the set of correct process.

Clearly, the weak eventual leadership property is impligdHe eventual leadership property. Conversely, a fail@tedor that
satisfies the eventual leadership property can be emuladtet & failure detector with the weak eventual leadershipgty is
available. Initially, an array’[0..m — 1] = [Lq, . . ., L,,—1] made of all possible sets of sizés shared by the processes & (7)).
Each process; maintains a countetn, initially equal to0. At any time, and at each process the output of the emulated failure
detector is defined a8[cn; mod m]. Each procesg; periodically checks whethef[cn; mod m] is contained in the current set
output by the failure detector. If this is not tryg,increments its countem; and writes the new value in its shared regist@d [i].
Each process also periodically reads every register aritbsstunter to the largest value it sees.

By the weak eventual leadership property, there exists & setch that eventually the output of the failure detectoriggk a
subset of_.. This property implies that the countens; are bounded. Moreover, the fact that each propggeriodically writesen;
in shared memory and updates it with the largest value isisgglies that all counters converge to the same valueherefore, the
output of the emulated failure detector is eventually abvegiual toZ[x mod m] = L’. By definition,|L’| = z and it contains a
correct process (Otherwise, the counters cannot convertipe tvaluer.). The emulated outputs thus satisfy the eventual leagtersh

property.

2.2 The Iterated immediate snapshot {/S) model

A one-shot immediate snapshalbject IS is accessed with a a single operation denoteide_snapshot(). That operation re-
places both thevrite() and thesnapshot() operations on the shared memay/[1..n]. Intuitively, when a procesg; invokes
write_snapshot(v) itis as if it instantaneously executes write operatiSfi].write(v) immediately followed by a snapshifi.snapshot().
If several IS.write_snapshot() operations are executed simultaneously, then their quoreing writes are executed concurrently,
and then their corresponding snapshots are executed centtyureach of the concurrent operations sees the valuigemvby the
other concurrent operations): they are set-linearizaflé [

The semantics of therite_snapshot() operation is characterized by the three following propsrtivherey; is the value written
by p; andsm;, theimmediate snapshair viewit gets back from the operation, for eaghinvoking the operation. A viewm, is a
set of pairgk, v), whereuv, corresponds to the value jn’s entry of the arrays M. If SM[k] = L, the pair(k, L) is not placed in
sm;. Moreover, we havem,; = 0, if the proces; never invokeswvrite_snapshot() on the corresponding object. For everyand
p; that invokewrite_snapshot() with valuesy; andv; as parameters and obtains sets, andsm; respectively, the three following
properties are satisfied:

e Self-inclusionVi : (i,v;) € sm;.

e ContainmentYi, j : sm; C sm; V smj C sm,.

3The Chandra-Toueg original definition of failure detectguired that the local output of a failure detector is a fiomcof the failure pattern, while the failure
detectors of>¢¥ as defined in [38] allowed processes to interact with thereaitletector providing a parameter to a query.

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 7

o ImmediacyVi,j : (i,v;) € sm; = sm; C sm;.

These properties are represented in the first image of FRyudoe the case of three processes. The image repressimgphcial
complexi.e., a family of sets closed under containment; each sedlied asimplex and it represents the views of the processes
after accessing th&5 object. Theverticesare theD-simplexes, of size one; edges drsimplexes, of size two; triangles are of size
three (and so on). Each vertex is associated with a prggeasd is labeled witlhm,; (theviewp; obtains from the object).

The highlighted2-simplex in the figure represents a run whereandps access the object concurrently, both get the same view
seeing each other, but not seejmg which accesses the object later, and gets back a view watB tralues written to the object.
But p, can't tell the order in whiclp; andps access the object; the other two runs are indistinguistable wherep, accesses the
object beforeps and hence gets back only its own value or the opposite. Tinseauns are represented by the coresimplexes.
Thus, the vertices at the corners of the complex represeatsins where only one processaccesses the object, and the vertices
in the edges connecting the corners represent runs wheyevenlprocesses access the object. The triangle in the cehtbe
complex, represents the run where all three processessabeesbject concurrently, and get back the same view.

o

JI

P

7N\
A A
A SN\

Figure 2: One, two and three rounds in th& model

In the iterated immediate snapshot modélS) the shared memory is made up of an infinite number of oneismoediate
snapshot object#S[1], IS[2], ... These objects are accessed sequentially and asynchrprmushch process, according to the
round-based pattern described in Figure 3. In Figure 2 onsea that théZS complex is constructed recursively by replacing each
simplex by the one round complex.

ri < 0; val; < input,;
loop forever r; < r; + 1;
val; < local computations;
sm; < IS[ri].write_snapshot(val;)

end loop.

Figure 3: Generic algorithm in the Iterated Immediate Shapmodel

2.3 Tasks and computational equivalence of the two models

Distributed tasks A distributedtask 7" is defined by two sets af-dimensional vectord and © and an input-output relation
A C T x O. The relationA specifies, for each input vectdrthe set of allowed output vectors. Operationally, in a ekeau
each procesg; is initially provided a private input value; and is required talecideand output valuev;. The input/ and output
vectorsO of the execution are then the vectors formed by the input ampub values respectively of the process (il = v; and
Oli] = w; or L if p; never decides).

A distributed algorithmA solves taskl' if, in any execution of the algorithm with input vectdr each non-faulty process
eventually decides on a private output value satisfyingdkk specification. Thus, it is required that the vector apativalues can
be extended to a vectér € O such thaf 1, O) € A. Inthek-set agreemertask,1 < k < n, the initial values are taken from some
arbitrary set, |V| > k. Z = O = V", and for any pai(1,0) € Z x O, (I,0) € Aif and only if

Collection des Publications Internes de I'lIr@IRISA

8 C. Travers, S. Rajsbaum,& M. Raynal

e Validity. Vj, 3i : O[j] = I]i] and,
o Agreement|{O[j],1 < j < n}| < k.

As can be seen in Figure 2, tHéS complex of global states at any round is a subdivided sim@ed hence Sperner's Lemma
implies thatk-set agreement is not solvable in th& model if & < n.

Computational equivalence Consider two models of computatidvl; and M, for n processes, and lét a set of tasks. Model
M is at least as strong as modél, with respect to sef' if each taski” € S that can be solved in modél; can also be solved in
modelM;. The two models are said to lequivalentf M, is at least as strong as modéf, and vice versa.

A task with a finite set of input vectors munded The k-set agreement task is a bounded task. The following eaarical was
proved in [9].

Theorem 2.1. [9] The I1S model and the standard wait-free asynchronous shared memodel are equivalent with respect to
bounded tasks.

Therefore, ag-set agreement is not solvable in th& model fork < n,

Theorem 2.2. [8, 31, 51]In then-processes wait-free shared memory modeljitiset agreement task cannot be solvefd i n.

3 ThelRIS model

This section presents thi&k1S model associated with a failure detector clégsdenoted/RIS(PR), whereC' is a class in the
families (OS;)1<z<n, (CVYY)1<y<n OF (2%)1<.<n. As in thelIS model, the processes share an infinite sequés¢s, 1.5[2],. ..

of IS objects. In an execution, each process accesses sedye¢héalequence of objects waite_snapshot() operations, following
the round-based pattern described in Figure 3. To distaighie operation in thélS model and its more constrained counterpart of
the IRIS model, the former is denotef$[r].write_snapshot(), while the latter is denoteflS[r]. WRITE_SNAPSHOT().

The model consists of a subset of runs of i model, that satisfy a correspondidtRR property. WRITE_SNAPSHOT()
operations on a given objeci$[r] have the same semanticwaste_snapshot() in the IIS model. However, the sequence of views
returned in every infinite execution satisfies an additigmaperty denoted’R that depends on the failure detector classve
consider.

Given an infinite executionsm! denotes the set returned BY[r].WRITE_SNAPSHOT) to proces®;. If p;, never accesses the
rth IS object,sm? = (). Note that in this caseyn! = (), Vr’ > r. Recall that each setn is made up of pair¢j, val) wherej is
the index of a process. We wrifec sm as a shorthand fat(j, val) € sm.

3.1 The model/lRIS(PRss,)

The propertyPRo s, states that there is a s@tof = processes, a procegsand a round-, such that at each round > r, each
procesw; € Q either has crashedi] = () or obtains a viewsm] that containgm; . Formally,

Definition 3.1. (PropertyPRos,) PRos, = 3Q C {1,...,n},6,r: |Q| =z AV >rVie Q:sm} =0V L e sm!

Figure 4 shows runs of theRIS(PR«s,) model forz = 2. The complex remains connected in this case and conseguentl
consensus is unsolvable in that model
Ouir first main result is the following.

Corollary 3.2. Atask is solvable in the read/write model equipped with lfaidetector of the clasé S, if and only if it is solvable
inthe IRIS(PRos,) model.

This result is a corollary of a more general theorem proveBigntion 6. We prove that, for any arbitrary failure detectass
C, if we are able to define a iterated mod@S(PRc), that can be simulated in the shared memory model enricht#d Wi
and conversely simulate a failure detector of the cldsa IRIS(PR.), then the shared memory model enriched witland the
IRIS(PR¢) model have the same computational power. A simulatiofdf5 (PR+,) in the shared memory model enriched with
OS, is presented in section 4.1, and Section 5.1 provides aatéralgorithm emulating a failure detector of the cléss, in
IRIS(PRss,).

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 9

PLINLY
AN

Figure 4: One, two and three roundsliRIS(PRos,) with x = 2 andr = 2

The k-set agreement tasks withGS,, The power of the/R1S model becomes evident when we use it to prove the lower bound
for k-set agreement in the shared memory model equipped withuagfaietector of the classs, .

Theorem 3.3. In the shared memory model, in which any number of procesagsrash, there is n@S,.-based algorithm that
solvesk-set agreement # < n — x + 1.

The proof is established in th&RIS(PR«s,) models via a simple reduction argument. The lower boundiegppb the shared
memory model as well thanks to corollary 3.2.

The lower bound is obtained by reduction toranx + 1-processes wait-free shared memory system. We partiteon phocesses
in two setsL and H whereL consists in the firsh — x + 1 low-order processe§ps, ..., pn—wt1}t @NdH = {pp_szt2,...,Pn}
is the set of the remaining high-order processes. We obsleatevery/IS runs where the processesiimever see the process in
H trivially satisfy the PR¢s, property. More precisely, we consider the subset of exenstin which for every round, and every
p; € L,p; € H,j ¢ sm]. By Theorem 2.2 and the computational equivalence betweeishiared memory model and th&
model (Theorem 2.1), there is no algorithm that solvesitiset agreement task fér< n — = + 1 in these executions. Therefore,
the tasks is unsolvable as well in oliRIS(PR«s,) model. Theorem 6.9 then implies that it is unsolvable in #edfwrite shared
memory model equipped with a failure detector of the class.

The argument is illustrated in Figure 5. It depicts the filsee rounds of a subset of legal executions inARES(PRo.s,)
model. Figure 5 shows all executions that satisfy prop&my.s, with the following parametersy) = {ps,p3} and¢ = p,. This
set of executions contains all possible wait-free exeastinf processes; andp. (these executions are highlighted in the picture).
Moreover, neithep; nor p» seeps in their successive views. Therefore, an algorithm desidoethe IRIS(PR+s,) model that
solves some task can be directly used to wait-free solve the same task amoagdp,.

3.2 The models/RIS(PRoyv) and IRIS(PRq-)

This section shows how to define iterated restricted imntediaapshot model&R IS (PR) for other families of wherd is a failure
detector class in the familigs>¥) 1<, <y, Or (2%)1<.<p.

Given an infinite execution, let, 0 < f < n — 1 denotes the actual number of processes that fail in thatiégec The property
PRy is defined as follows.

Definition 3.4. (PropertyPRoyv) PRoys = 3r : Vr' > 7 : ((i =1 = (' —1) mod n) A (sm} # 0) = |sm?’| >
n —max(n — vy, f).

The intuition that underlies this property is the followirtgere is a logical time (round number) after which eachexrprocess
obtains infinitely often a view that misses at mastx(n — y, f) processes. As we can see, wher: n — y such views can miss
correct processes. As a particularly simple case, let usidenthe instancg = n (as already noticed" is equivalent to>P):
PRy States that after some round there is an infinite number afd®at whichp; obtains a view containing thig — f) correct
processes.

Collection des Publications Internes de I'lIr@IRISA

10 C. Travers, S. Rajsbaum,& M. Raynal

Figure 5: Subsets dRIS(PR+s,) that contain all executions by andps

The propertylRIS(PRq-) is defined as follows (wherg is a set of process indexes). Recall that in each round teeysét
(seen as sets of processes indexes) returned by the opsnaieoTE_SNAPSHOT) performed on the objedtS|[r] are ordered by
containment. Lesmiri” be the smallest set among the seis .

Definition 3.5. (PropertyPRq:) PRg- = 3L,r : |L| = 2 AVr' > r, smin” C L.

The propertyPRq- ensures that there exists a gebf z processes such that after roundhe smallest viewsmin is contain
only indexes of processes é&f Thus, past this round, each viewn returned by everyRITE_SNAPSHOT) invocation contains
processes iik.

Let us consider the case= 1, i.e., the simplest instance &R ,-. In that case, therd.| = 1 and there exists a processsuch
thatL = {p,}. Therefore, for every round > r, the valuev writtenp, in the object S[r’] (by callingI S[r'].WRITE_SNAPSHOT(v))
is seen by every non-faulty process(i.e., (£, v) € smg/). Said differently, whatever the concurrency degree antio@dS|r'].WRITE_SNAP®
invocations during round’, the invocation ofy, is always set-linearized first, and no other invocation idisearized together with
it.

The instances > 1 are weaker in the sense that they allow sevetRIiTE_SNAPSHOT) invocations issued by the processes of
a subset of. to be set-linearized first. Moreover this subseLafan differ from one round to another (This property is clagétt
different from, the notion of-bounded concurrency [21].).

4 Simulations of the /RIS (PR:) model in the shared memory model withC'

This section presents simulations of thelS(PR) model from the shared memory model equipped with a failuteaer of
one the familieg S,)1<o<n, (OYY)1<y<n and(Q5.,.n). The aim is to produce subsets of runs of fiié model that satisfy
the propertyPR.. To that end, each of the constructions described in Figui® &nd 8 relies on an infinite array of immediate
snapshot object§S[1], ... that can be in addition read in snapshots. Given an olij6pt], views returned bynapshot() and
write_snapshot() are ordered by containment, and the corresponding iml@mtatan be consistently set-linearized. Such objects
can be implemented in the shared memory model toleratingtatmeay number of failures [1, 7]. In addition to this shdrarray,
each construction uses appropriate additional sharesteegiand local variables.

In each construction, the last operation on shared objssted by a process in roumdis an I.S[r].write_snapshot(). It
consequently follows that the construct&s{r].wRITE_SNAPSHOT() automatically benefits from the self-inclusion, contaimie
and immediacy properties of the underlying object. Thismseaat only the property R has to be proved.

4.1 From the shared memory model with$S, to IRIS(PRos,)

The algorithm is described in Figure 6. It relies on the repr¢ative-based definition of the class,.

When it invokeslS[r].WRITE_SNAPSHOTv;), a procesp; repeatedly (1) issues a snapshot operatiof$jn] in order to know
which processes have already written in the objeti|, and (2) reads the value locally output by the failure dete@ePR), until
it discovers that it is its own representative{ =) or its representative has already writtenlii[r] ((rp;, *x) € sm;). When

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 11

operation IS[r].WRITE_SNAPSHOT(v;):

(1) repeatsm; <— IS[r].snapshot(); rp; < REPR
(2) until ((rps,*) € sm;) V (rp; = i) end repeat
(3) sm; < IS[r].write_snapshot(v;);

(4) return (sm;).

Figure 6: From the shared memory model witls,, to the/RIS(PRss,) model (code fop;)

this occursp; invokesR[r|.write_snapshot(v;) to write v;. It finally returns the snapshot value obtained by thdte_snapshot()
invocation.

Lemma 4.1. In the shared memory model equipped with a failure detedtdhen classS,, the algorithm described in Figure 6
simulates thdRIS(PRos,) model.

Proof. Let us consider an infinite execution of the algorithm déstiin Figure 6. By the definition of the classS,., there exists
a set(of at leastr processes, a correct procggsand a timer after whichRePrR = ¢ for every non-faulty process i@ and
REPR = i for each; ¢ Q. Let R the index of alS objects that has not been accessed by timiee., no processes has invoked
IS[R].WRITE_SNAPSHOT() by timer

We first note that the simulation is non blocking. Supposecfantradiction that for round some roumnd the invocation
IS[r].WRITE_SNAPSHOT() by some correct process never terminates. Eventually,cit earrect procesg; the value ofREPR
is eitheri or the index? of the correct process,. In the first case, the condition that ends the repeat loopesteally satisfied. In
the second case, as the correct progessventually exits the repeat loop (this follows from the frase), and therefore writes a
value in the objecf S[r|, the snapshots taken by the waiting process eventuallyirotiite index of its representative, thus enabling
the loop to terminate.

Finally, consider a round > R and a non-faulty process; whose invocation off S[r].WRITE_SNAPSHOT() terminates.
When p; invokes IS[r|.write_snapshot(), p; has previously obtained a snapshot containing the index.ofHence, the opera-
tion write_snapshot() issued byp, is set-linearized after that operation py Therefore,smj; C sm] and we have € sm] as
required by the definition oPR¢.s, . O

4.2 From the shared memory model with®¥ to IRIS(PRoyv)

The construction described in figure 7 (that has sé@meutual exclusion flavor [3]) uses a deterministic functider(r), where
the parameter is a round number. This function orders the process indexésllaws: order(r) returns a sequence of the indexes
1,...,n in which the last element is the indésuch tha{i — 1) = (r — 1) mod n.

operation IS[r].WRITE_SNAPSHOT() (v;):

(1) sequence; < order(r);

(2) pred; < {j : j appears beforéin sequence; };
(3) repeatsm; < IS[r;].snapshot();

(4) seen; < sm; N pred;;
(5) nbe; < NBC;
(6) until (|pred;| — nbe; < |seen;|) end repeat

(7) sm; < I1S[r].write_snapshot(v;);
(8) return (sm;).

Figure 7: From the base shared memory model witl¥ to IRIS(PR.v) (code forp;)

The simulation is described in Figure 7. When it invo8$r].WwRITE_SNAPSHOT(v;), proces®; first computes the sequence
(sequence;) of process indexes associated with the rour{tine 1), and determines the set of processesd;) that are ordered
before itin that sequence (line 2). Thengenters a loop in which it determines the set of processe$i#vatalready written ifiS|r]
(seen;) and whose indexes precedds the sequencecquence; (these are the processegired;). p; also reads the valuaigc;)
currently provided by the underlying failure detector €li6), which is an approximation of the number of crashed Ezes

p; exits the loop when the processegotd; that it perceives as not crashed have writted$t] (line 6); p; locally estimates
there are at leastpred;| — nbc;) such processes. As in the previous simulations, when tedigate becomes trug; writes its
value inZS[r] (line 7) and returns the associated snapshot value it heshjtsined (line 8).

Lemma 4.2. Every invocation ofvRITE_SNAPSHOT() by a correct process terminates.

Collection des Publications Internes de I'lIr@IRISA

12 C. Travers, S. Rajsbaum,& M. Raynal

Proof. The proof is by contradiction. Letthe smallest round in whichwRITE_SNAPSHOT() invocation by a correct process never

returns. LetB the set of correct processes whose roui/ocation ofwRITE_SNAPSHOT) never return. Let the smallest process

index in B in the sequencerder(r). We show next that the invocation 65[r].WRITE_SNAPSHOT) by p; returns: a contradiction.
Let us considepred; (i.e., the set of process indexes that are befdreorder(r)). We consider two cases:

e |preds| < max(n — y, f). It follows from the eventual accuracy property of the cléss? that eventually we always have
nbcs = max(t + 1 — y, f). Consequently, eventuallyred,| — nbes < 0 and thugseens| = |ms N preds| > 0. Therefore,
the predicate of line 6 is eventually true. Hence, the intiooa S[r].WRITE_SNAPSHOT() by procesg, eventually returns.

e |preds| > max(n — vy, f). Let faulty(S) denote the set of faulty processes in the SetWe have|faulty(preds)| <
|faulty({1,...,n})] = f < max(t + 1 — y, f). Leta be the number of correct processespireds. Note thata =
|preds| — |faulty(preds)| > |preds| — max(t + 1 — y, f). Let us recall that these processes have a rank smaller than
s in order(r). Moreover, it follows from the definition op, that all invocations ofwRITE_SNAPSHOT) by every cor-
rect processes whose index is smaller than order(r) returns. Hence, there is a time after which we always have
|seeng| = |ms N preds| > a.

Finally, due to the eventual accuracy propertyaf?, there is timer, after whichnbcs = max(t+ 1 —y, f). Therefore, after
time 7 = max(m1,), |[seens| = |ms N preds| > a anda > |preds| — nbes, from which we conclude that, eventually
exits therepeatloop. Hence, the invocatiohS|r].WRITE_SNAPSHOT) by proces®, eventually returns. =

Lemma 4.3. In the shared memory model equipped with a failure detedttine class®+?, the algorithm described in Figure 7
simulates thdRIS(PR.v) model.

Proof. It follows from Lemma 4.2 that each correct process exeautasfinite number of rounds (a requirement of d&/S (PR ¢)
model). So, it remains to show that the propePR (<) is satisfied.

By the eventual the eventual accuracy property of the clagéthere is a time- after whichnBC; = max(n — y, f) for every
correct processg;. Let R a round such that eve§S[R].WRITE_SNAPSHOT() invocation starts after.

Let p; a correct process and> R around such that— 1 = (r — 1) mod n. We show thatsm[| > n — max(n — y, f).

By the choice of-, the rank ofi in order(r) isn, i.e.,|pred;| = n—1. As the invocation oiWWRITE_SNAPSHOT) by p; terminates
(Lemma 4.2), the predicatgpred;| — nbe; < |seen;|) (line 7) is true, from which we havigred;| — nbc; = (n — 1) — max(t +
1—y, f) < |seen;|. Asi ¢ seen;, buti € sm! andseen; C sm! (immediacy and containment properties of immediate srapgh
n—lmax(n —y, f) < [seen;| < |smI|, which implies thats — max(n — y, f) < |sm?]|, as required by definition 3.4. O

4.3 From the shared memory model with2* to /RIS (PRg-)

This construction is described in Figure 8. As in the presioonstruction, a one-shot immediate snapshot oBjgfef is associated
with each round-. When procesg; invokesIS[r].WRITE_SNAPSHOTv;), it first waits until either some process has written in
1S][r], orits index belongs to the seEADER; managed by its local failure detector. When one of these tiondibecomes true;
writes in I.5[r] by invoking I.S[r].write_snapshot(v;). This invocation returns a snapshoticf[r] thatp; returns as the result of its
WRITE_SNAPSHOT() invocation.

operation IS[r].WRITE_SNAPSHOT((Z, v;)):

(1) repeatsm; < IS[r].snapshot(); ld; - LEADER;
(2) until (sm; #0) Vv (i € ld;) end repeat

(8) smy; < IS[r].write_snapshot(v;);

(4) return (sm;).

Figure 8: From the shared memory model withto IRIS(PRq-) (code forp;)

Lemma 4.4. In the shared memory model equipped with a failure detedtthieclass?#, the algorithm described in Figure 8 is a
simulation of the/RIS(PRg-) model.

Proof. The proof is made up of two parts: (1) any correct processwgge@n infinite number of rounds; and (2) the propétik, -
is satisfied.

Collection des Publications Internes de I'lIri@IRISA

The Iterated Restricted Immediate Snapshot Model 13

1. To prove that every correct procgsexecutes an infinite number of rounds, we have to show thdotia¢ predicate sm, #
0) v (i € ld;) evaluated by, at line 2 is eventually true for each round> 1. Let us proceed by contradiction. Letbe
the first round at which a correct processremains blocked forever, i.g.sm; = () A (i ¢ ld;) remains forever true once.
This means that, after some timeyever belongs teEADER; whenp; reads this set, angn,; remains always empty. As;
remains empty, no invocations d5[r].WRITE_SNAPSHOT() terminate (Observatio®1).

However, due to the eventual leadership property of thesélds there is a sel of size at most containing at least one
correct procesg, such that, after some arbitrary (but finite) timethe predicatea EADER, = L is true forever ap,. It
follows that whilep, is blocked at round, the local predicaté € Id, becomes eventually true. Consequently, the round
invocation ofWRITE_SNAPSHOT() by p, eventually terminates ang proceeds to the round+ 1 (ObservationD2). The
observation®)1 andO2 contradict each other, from which we conclude that everyembiprocess executes an infinite number
of rounds.

2. Let us now show that the properfyR- is satisfied. By the eventual leadership property of thesdl¥s there are a set
L containing at least one correct procegs(and at most: processes) and a time such that, afterr, we always have
LEADER; = L for every correct process;,. Due to the very existence af and the fact that the correct processes execute
rounds infinitely often, we conclude that there is a rousdich that, for every round > r, we havdd; = L for every correct
procesy;.

Let L(r") be the subset of the processesinthat stop waiting at line 1 because the predicate [d; is true while the
predicatesm; # () is false. Let us also notice that the invocatidrifr].write_snapshot() issued by the processes bfr’)
are set-linearized before the invocations issued by thegsses that do not belong ig+’). Therefore, sets returned by the
invocationsI S[r|.write_snapshot() satisfy the inclusion, immediacy and containment propsrtihe smallest set returned is
contained inL(r’). As the set returned by the invocationdf|r].write_snapshot() is the set output by therite_snapshot()
operation at each process, we havein” C L(r'). SinceL(r') C L, we conclude that for every round > r, the smallest
snapshosmin” is included inL. This completes the proof 45| < z. B

5 Extracting a failure detector of the classC in the IRIS(PR¢) model

Given the read/write model equipped with a failure detectothe clas<C, the previous section has shown how to simulate the
IRIS(PR¢) model. This section presents algorithms for the iteratedehfR IS (PR) that construct a failure detector of the class
C. In each of these algorithms, a varialsle; is maintained at each process the successive values of this variable simulate the
output of a failure detector of the clags

Section 6 provides a complete simulation from S (PR) model to the read/write model equipped with a failure detect
of the clas<C, provided that a failure detector of the cladsan be emulated iiRIS(PR:). Suppose that a task is solvable
in the shared memory model equipped with a failure detedtdhe classC, where(is a failure detector of one of the classes
{08}, {Oyv} or {Q*}. The emulations presented in this section, together wétlyneral simulation described in Section 6 imply
thatT is also solvable iTRIS(PRc).

5.1 From IRIS(PRss,) to afailure detector of the classCS,

In a model equipped with a failure detector, each processazaghat any time the output of the failure detector. We denRtesTED;
the variable that emulates the output of a failure detedttheclass®S,. at proces;. A trivial algorithm that simulates a failure
detector of the claséS,, in the IRIS(PR«s,) model is described in figure 9.

init r; < 0; TRUSTED; < II.

repeat forever

(1) ri <7+ 1; sm; < IS[r;].WRITE_SNAPSHOT(7);
(2) TRUSTED + {j:j € sm;}

end repeat

Figure 9: Emulation of a failure detector of the clasS,, in IRIS(PRss,)

Lemma 5.1. The algorithm of Figure 9 implements a failure detector & thass¢S,..

Collection des Publications Internes de I'lIr@IRISA

14 C. Travers, S. Rajsbaum,& M. Raynal

Proof. Consider an infinite execution. We prove that the values@ftriableTRUSTED; satisfy the first variant of the definition of
the class®S,. It is easy to see that strong completeness is ensured: tg faotess; accesses finitely mangS objects. Hence,
after some time, no s@RUSTED contains;. For the limited accuracy property, 1€, ¢ and R be respectively the set of at least
processes, the index of a process and the round number asdeyithe property’Ro s, (Definition 3.1). Clearly, for every > R,
and everyp; € @, every setsm! obtained in round as a result of &/RITE_SNAPSHOT() invocation containg. Moreover,p, is a
correct process. Hence, there exists a correct propgsarid a set oft processes®) such thaip, is eventually always trusted by
each member of the set, as desired. O

5.2 From IRIS(PRsyv) to a failure detector of the class®yY

Figure 10 builds a failure detector of the clagg? from IRIS(PRc,v). It has the same structure as the previous algorithm. The
only lines that are modified are the initialization line aimtkl2. The aim of this new line is to take into account the priypef
PRo.v. The emulated failure detector output is kept in the vaeaisic;.

init 7; < 0; NBC; < (n — y).

repeat forever

(1) ri < 7ri+1; smy < IS[r;].WRITE_SNAPSHOT(%);

(2 if(i—1)=((rs —1) mod n)thenNBC; - max(n —y,n — |sm;|) end if
end repeat

Figure 10: Emulation of a failure detector of the cl&sg? in IRIS(PRoyv)

Lemma 5.2. The algorithm described in Figure 10 simulates a failurestédr of the class>y¥ in the IRIS (PR v) model.

Proof. The proof is nearly the same as for Lemma 5.1. It is left to dzaler. O

5.3 From IRIS(PRg-) to a failure detector of the class(?*

The algorithm described in Figure 11 emulates a failureaeteof the clas$)*. It provides each procegs with a local variable
LEADERS; containing set of processes indexes. The successive \@flties sets EADER; satisfy the weak eventual leadership of
the failure detector clag3®.

The algorithm consists in identifying “fresh” smallest pehots. According to the definitiaRR,-, we know that in each infinite
run of theIRIS(PRg-) model, there is a roun® and a sef. such that for every > R, the processes indexes that appear in the
smallest snapshatmin” of roundr are contained in.. We also observe that eventually, only correct process#exas appear
in the snapshots returned byrRITE_SNAPSHOT) operations. Hence, sequence of smallest snapgkotsn”) (or any infinite
sub-sequence) is a valid output for a failure detector otthss()>.

The algorithm relies on the following characterizationtod smallest snapshot of round

s=smin" <= Vj € s,s=smj.
Each procesg; maintains a local historf; intended to record the snapshot that other processes dedbegsponses tORITE_SNAPSHOT)
invocations. h; is a two dimensional array;[r][j] is initially equal tof); if p; learns the snapshetobtained byp; in roundr,
h;[r][4] is updated to contain that value. LUefr : +’][¢] denote th&th column of the rows;, ..., 7’ (i.e., the values;[r|[i], h;[r +
1[i], - .., hi[r][2]).

Each time a new smallest snapshwotin is identified byp;, the variable.EADER; is set tasmin, if the smallest snapshot is more
recent than the previous smallest snapshot identifieg by; identifies smallest snapshots by observinglf in row r, there exists
a sets such that for eachi € s, the entryj is equal tos, thens is the smallest snapshot of roundThe correctness of the emulation
relies on the fact that in round p; can always find the smallest snapshot of some rotiméherer —n +1 < r’ < r (Lemma 5.3).

Lemma 5.3. Let R > n, p; a process that has not failed by the end of routicand i the value of the variablé,; after the update
steps of round? (at line 6). There exists around n — R+ 1 < r < R and a non-empty seatof processes indexes such that for
eachyj € s, hlr][j] = s.

Proof. Let assume for contradiction that the lemma is not true. Tpkfy the exposition, we number, ..., n the roundsk —
n+1,...,R. Foreach round,1 < r < n, leto[r] denotes the set of processes indexes in the smallest shapshandr (i.e.,
olr] ={j: (j,*) € smin"}.) ands} the indexes in the snapshot receivedphyn roundr (i.e., sy = h;[r][i]).

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 15

init r; < 0; hs[1.. 4+ oo][l..n] « [1.. 4+ o0][D, ..., 0]; LEADER; < {1,...,z}.

repeat forever
(1) 7 < 1 + 1; smy < IS[ri].WRITE_SNAPSHOT((i, h;[max(1,n — r; + 1) : 7][i]));
(2) hi[ri][f] < {€: ¢, %) € sm;};
% update histonfb
(3) foreach?: (¢, he) € sm; do
4 foreachr e {n—r; +1,...,7; — 1} do
(5) if hi[r][€] = 0 then h;[r][€] < he[r][¢] end if
(6) end for end for;
% look for smallest snapsho%
(7) foreachr e {n—r;+1,...,7, — 1} do
(8) if 3s C {1,...,n},s # O suchthat/j € s, h;[r][j] = s then LEADER; «+ s end if
(9) end for
end repeat

Figure 11: Emulation of a failure detector of the cl&ssin IRIS(PRq-)

Note that|s?| > 2. Otherwise/|s}| = 1 and, by self-inclusion we haw&' = {i}. Henceo[n] = s7, which is known byp;. Let
Jn+1, Jn two distinct indexes i3}".

Consider some round, 1 < r < n. Notice that for eacly € sI, p, knows the snapshot obtained py in each round
r’:1 <r’ <r—1. More precisely, we have for each such;[r'][j] = s;'. Suppose that, ' € U, .. <, s7. It then follows that
for each subset of s;"l and eacty € s, the round- — 1 snapshot op; is known byp;. In particular, this holds for the smallest
snapshob[r — 1]. So, there exists such that for eachi € s, h;[r — 1][j] = s, which contradicts our initial assumption stating that
the lemma is false. Therefore,”! ¢ Uy<rrcn si - Letgrn € sit \U, <7<, si - Thus, we construct a sequenge. . . , jin+1 Of
n + 1 distinct processes indexes, which is impossible as thesysbnsists ofi processes. O

Lemma 5.4. The algorithm described in Figure 11 emulates a failure diteof the clas$?* in IRIS(PRgq-).

Proof. According to the property’Rq,-, there exists a rounf,, and a sef. of processes indexes such that the smallest snapshot of
round Ry and every subsequent round contains indexds iAlso, there exists a rount; after which every snapshot contain only
correct processes indexes. lRt= max(Ry, R1) + n. Let us consider a round> R and a correct procegs. By Lemma 5.3, the
variableLEADER; contains the processes indexes that appear in the smalgstt®ot of some round wherer —n +1 <’ < r.

In particular, this implies that' > max(Ry, R;) from which we conclude thatEADER; contains the index of a correct process and
thatLEADER; C L. Therefore, for each correct procgsswe eventually haveEADER; C L andLEADER; N Correct # (). Thus,

the weak eventual leadership property is satisfied and theaded failure detector is in the clags. O

6 From [RIS(PR() to the read/write model with C: general case

This section presents a simulation of executions of the/vaétd model equipped with a failure detector of the class the model
IRIS(PR¢). The simulation does not depend on the failure detectos clagprovided that an algorithm that emulates a failure
detector of the clas§’ in the IRIS(PR¢) model is given (Examples of such emulation have been destiibSection 5 for the
three failure detector classesS,, Y andQ?.).

Preliminaries The aim is to establish that any tagksolvable in the read/write model equipped with a failureedtdr of the class
C'is also solvable in the correspondifB/S(PR-) model. Thus, the simulation takes as parameter a read/algeeithm A that
solves a task” and an emulatio of a failure detector of the clags £ is an iterated algorithm that emulates the output of the
failure detector. The simulation relies on the original giation of the read/write model in the iterated mod& [9] and on a recent
improvement by Gafni and Rajsbaum [23].

Without loss of the generality, we assume that algorithiis a full information protocol in normal form, as describedrigure
12. The state of procegs is stored in the variabletate;, which is initialized with the input op; for the task.deg is a special write
once variable intended to store the decision valug; op; queries its local failure detector module by reading théatde FD,. In
order to obtain a decision, procesgsenters an infinite loop. In each iteration, the failure deters queried and the value returned
is appended to the state pf. p; then writes its entire state in its register and takes a $mwapd his snapshot constitutes the new
state ofp;. Note that it include its previous state. Finallypifhas not yet decidedléc = L) but its current state allows deciding, it

Collection des Publications Internes de I'lIr@IRISA

16 C. Travers, S. Rajsbaum,& M. Raynal

init state; < input;dec; < L; k <+ 0.

repeatk <k + 1;
fd; < FDy; state; < state; - fd; ; % kth failure detector query %

SM]i].write(state;); % kth write %
state; <— SM.snapshot(); % kth read %
if dec; = L A candecidéstate;) thendec; < §(s;) end if

until dec; # L.

Figure 12: Full information normal form protocol with a faie detector.

decides by applying a functianto its state. Therefore, every full information protocohiormal form is completely determined by
a predicateandecideand a decision functiof. The predicate is defined over processes states; the defiisiction is defined only
for statess such thatandecide(s) is true.

We also suppose that an algorithm extracting a failure ttated the clas” in IRIS(PRc) is given. Again, we assume that
the extraction algorithm can be written as a full informatjrotocol in normal form, as described in Figure 13. Henoehsan
extraction algorithm is completely determined by the péifumctionsinitfd andupdatefd initfd provides an initial value for the
failure detector. The functionpdatefdoutputs failure detector values, and takes as parametéultieformation state of a process.
The invocation ofupdatefdmay not produce a fresh failure detector value each timeiivisked. Nevertheless, we assume that
there exists a boundl/ on the number of rounds needed to actually update the siedldailure detector output. For example, in the
simulation ofQ* in TRIS(PRgq-), M = n (Figure 11).

init h; < i; r; < 0; FD; < initfd().

repeat forever
ri < nr; +1;
hi < IS[r;].WRITE_SNAPSHOT((%, h;));
FD; < updatefdh;);

end repeat

Figure 13: Normal form simulation of a failure detector oé ttlassC' in IRIS(PRc).

The simulation The algorithm extends the simulation given in [9] and imgmayn [23] to the context of the read/write model
equipped with failure detectors. The simulation, desdtiimeFigure 14, solves a taskin the IRIS(PR¢) model, provided that an
algorithm A to solveT in the read/write model witld' and an emulatiol of a failure detector of the class are provided. In a
nutshell, the simulation is the algorithm in [23] augmenagth an helping mechanism.

The simulation takes as parameteput which is the process input to the task. Each progessaintains two variables a state
state; and an history:;, as well as a write-once decision varialite:; initialized to L. Variablesstate; andh; are updated following
the normal form pattern in which algorithp and extractior€ are given.

To simulatewrite andsnapshot operations, each procegs maintains a vectoe; with one entry per process. Each entry has
two fields denotedlock andval respectively. We denote.clock andc;.val the vectors formed by taking théock andval field
respectively of each entry. At each process, the execufitreanormal form protocal proceeds bygycle In its eachkth cycle, the
process queries its failure detector, writes in its regiatel performs a snapshot operation. Progessarts the simulation of itsth
cycle by incrementing the clock entry offi] and placing ir;[i].val the value to write in this cycle, that is its current statete;
(lines 19 — 21) ¢; hence represents procgssestimate of the state of the simulated shared memory. Whgn= (v, k), p; knows
thatp; is currently simulating itgth cycle and that the simulation of the previous cyclep dfiave been successfully completed.

Vectorsc are partially ordered according to thick fields. ¢ < ¢ if and only if ¢[i].clock < ¢[i].clock for every entryi, an
¢ < c ifin addition, c[i].clock < ('[i].clock for some entryi. |c| denotes the sum of the clock entries in veetand for a set of
vectors,top(s) denote the component-wise maximum of the vectors irormally,

le] = Z cli].clock,

1<i<n
V1 <j<n,top(s)[j] = C[j]st.[j].clock = max{c[j].clock,c € s}.
In every round, process; updates the emulated failure detector output (line 9) arthigs its vector; by performing atop
operation on the sets of vector that appear in its view (l@e Recall thatV/ is an upper bound on the number of rounds needed

Collection des Publications Internes de I'lIri@IRISA

The Iterated Restricted Immediate Snapshot Model 17

by the extraction algorithm to produce a new failure detestdput. EveryM roundsp; checks ifM|c;| = r. When this condition
is verified, the cycle currently simulated by terminates, and;.val is the value returned by the snapshot of that cycle. Intlitiv
vectorse satisfyingM |c| = r are totally ordered and thus the valuesal are valid snapshots of the simulated shared memory. If
it has not already decideg; then checks whether it can decide (line 17)p;lfs still undecidedg;[i].clock is incremented, and the
simulation of the next cycle starts (lines 18—-22). Otheewis does not increment any more its clock entry, but keeps fjaatiag
in the simulation. This is required for the correctness efslmulated run, as the failure detector extraction algoriassumes that
every correct process takes steps forever.

However, by not increasing their clock entries foreverrecrprocess do not impede undecided processes. Indeaihthiation
is non-blocking, as demonstrated by Lemma 6.4. To ensurefregdom, a simple helping mechanism is implemented by the
variablesC'C; andcc;. Each vector such thatM|c| = r for some round- is a valid snapshot of the simulated shared memory.
Hence, a procegs; simulating itskth cycle may adopt such a vectoas the output of itéth snapshot provided thatcontains the
kth write of p;, i.e., c[j].clock = k. Each procesp; therefore stores its last simulated snapshaiin(lines 14-15).C'C;[;] then
contains, according to the knowledgepef the value of last snapshot completedihyline 11). Wherp; is simulating itskth cycle,
p; also checks every rounds if its matrixC'C; contains a vector such that[i].clock = k (line 13) which it can adopt as a result
of its kth snapshot.

simulation(input)
(1) init r; <= 0; dec; < L; FD; <« initfd(); state; < input - FD;;
) for each j # i do ¢;[j].clock < 0; ¢;[j].val + L end dog,

?3) cili].clock < 1; ¢;[i].val < states; hy < i; k < 1;
(4) for each j do cc;[j].clock + 0; ce;[j].val + L end do
(5) CCi[l.n][l.n] < [[L,..., L], .., [L, ..., L]].

(6) repeat forever
) repeat M times

(8) ri <= 1 + 1; sm; < IS[r;].WRITE_SNAPSHOT((Z, hs, ¢;, cc;));
9) append (j, h;) : j € sm;} to h;; FD; < updatefdh,;);

(10) ci < top({c; : (J, *,cj, %) € sm;i});

(11) for each (j, hj, ¢, cc;) € sm; do CC;[j] < cc; end for

(12) endrepeat
13) if || M = r; v 35 2 CCyi[j][d].clock = k then % kth read %

(14) if |c;| M = r; then state; < c¢;.val; cc; <+ ¢

(15) else state; + CC;[jl.val; cc; + CC;i[j]

(16) end if;

a7) if dec; = L A candecidéstate;) then dec; < d(state;) end if;
(18) if dec; = 1 then

(19) k<« k+1; fd; < FD;; % k + 1th failure detector query %
(20) state; < state; - fd;; % input of thek + 1th write %

(21) cili].val + state;; ¢;i].clock + ¢;[i].clock + 1(= k)

(22) end if

(23) endif

(24)end repeat

Figure 14: Simulating an algorithm for the read/write mo#él' in IRIS(PR¢) (code forp;)

Proof of correctness The proof structure follows the one given in [23]. denotes the value of the vectgrof process;, right
after the execution of th&p operation in round- (line 10), but before it is possibly modified in line 20. Thestiiemma states that
the vectors corresponding to the values of the variahleght after the execution of line 10 of roundare totally ordered, for every
T.

Lemma 6.1. Letr a round number ang;, p; two processes.
1. Assuming that; andp; do not fail by the end of round, ¢j < ¢ v ¢ < ¢,

2. Assuming that; does not fail by the end of round+ 1, ¢f < ¢/,

Collection des Publications Internes de I'lIr@IRISA

18 C. Travers, S. Rajsbaum,& M. Raynal

Proof. To prove the first part, let us observe that the views§ andsm’; thatp; andp; get back by performingS[r]. WRITE_SNAPSHOT()
are related by containment. Without loss of generalityuteassume thatn] C smj. Let? € {1,...,n}. By definition of the top
operationg; [{].clock = max{cy[{].clock : (k, cx,*,*) € sm]}. Sincesm; 2 smy, c}[].clock < c}[l].clock. Thereforec] > cf.

The second part follows from the self-inclusion propertyimmmediate snapshot. In round+ 1, sm; contains an element
(1, ¢, %, %) wherec = ¢ or ¢ > ¢ (this occurs ifp; initiates a the simulation of a new cycle in rourid Then, by the definition of
thetop operation, we have, ™' > ¢I. O

We say that a processusidecidedat roundr if it does not decide before roundi.e., when the process invokéS[r].WRITE_SNAPSHOT()
dec; = L. A process undecided at roumdnight however decide in round Next lemma presents two simple invariants on the
values of the vectot; of undecided processes.

Lemma 6.2. Letr a round andp; an undecided process at round Letc the value of; just before line 10 and'(= ¢}) its value
after executing line 10. We have (@K ¢ and (2)r < M|d/|.

Proof. Inequality (1) directly follows of the self-inclusion pregy of immediate snapshot and the definition of the operation.
We prove invariant (2) by induction. We first show that. M |c}| for eachl < r < M. Clearly , we havéc] *| < |cf|. Initially,
r = 0and|c;| = 1, sincec;[j].clock = 0 for eachj # i ande;[i].clock = 1. Hence, we haveé < |c!|, and thus < M < M|c!|
foreachl <r < M.

Let o« > 1 and assume now that the invariant holds for each roand — 1)M. Letr’ such thata — 1)M </ < aM. In
roundr = (o — 1) M, eitherr = M|cl| orr < M]|cl|.

e Inthe first case, either; decides in round (line 17) orc;[é].clock is incremented. 1p; decides, the invariant is not required to
hold in subsequent rounds. Otherwise, we haye+ 1 < |c! |, from which we ge{a — 1) M + M < M|c} |. Consequently,
P < M|ct' | for ' < oM.

e In the second caséy (o — 1) < M|c;|. Thereforeqa < |¢f| , and ascl| < |¢/'| for everyr < ', Ma < M|c}'|. We
conclude that’ < M|¢’| for every(a — 1)M < ' < aM.

O
An immediate consequence of Lemma 6.1 is that in each roatanost one vectar satisfiesM |c| = 7.

Lemma 6.3. (Simultaneity [23])Letr a round in which the conditiofi/|c;| = r is true for some procegs. There exists a unique
vector denoted” such thatM|c}| = r = ¢} = c". Moreover, for each undecided process c;, > ¢" assuming thap,. does not
fail by the end of round.

Proof. Letr around in which the conditiof/ |c| = r (line 14) is true for some process. Lt p; two processes such thaf|c | = r
and M|c%| = r. By Lemma 6.1¢] < ¢ orc; < ¢[. Assume without loss of generality thgt < c};. Hence, for every entry,
ci[l].clock < cj[l].clock. Therefore, a$_, cj[l].clock = |c| = |c}| = >_, c%[l].clock, c;[l].clock = c}[f].clock for every entry
¢. To conclude, observe thal].clock = ¢/[¢].clock = ¢[¢].val = [f].val. This completes the proof of the first part of the
Lemma.

Let p, a process that has not decided by the end of rourdl. By Lemma 6.2(2) < M|c}|. Asr = M|c"|, |¢"| < |cf).
Moreover,c” = ¢} for some procesg;, andc] < ¢}, V ¢}, < ¢ by Lemma 6.1. We thus conclude thét< ¢}, sincelc| < |/| =
d £ c. O

As round numbers keep increasing, Lemma 6.2(2) implies ahewing property. An operatiowompletesn roundr if the
simulation of a cycle terminates in roundMore precisely, théth cycle of procesg; completes in round if the condition of line
13 is satisfied at procegs in roundr.

Lemma 6.4. (Non-blocking progress [23])etr a round in which some correct process is undecided. Thestseairound’ > r
in which some process completes its operation.

Proof. Letp; a correct undecided at roundLet.S the largest snapshot returned in rour(@s snapshots are ordered by containment,
S is well defined) andm = top(S). By lemma 6.1 and the definition of thtep operation,|c};| < [em| for each procesp; that
has not failed prior to round. Assume for contradiction that no process completes aratiparafter round-. Hence, after round

r, theclock fields are never incremented. Therefore, for every rodng r, \c§'| < |em|. However, by Lemma 6.2(2), we have

V' ' < M|¢'|: a contradiction. .

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 19

We next show that every simulated execution is a valid execwif the read/write model equipped with a failure detectfathe
classC executing algorithm4. To do so, we prove that simulated operations (i.e., writepshot and failure detector queries) can
be linearized. Following [23], operations are linearizeddaunds; an operation linearized in roungrecedes in the linearization
order every operation linearized in round for everyr’ > r. When several operations are linearized in the same roundefiree
how they are ordered.

Let R the set of rounds for which there exists some progessich thatM |¢]| = r. Intuitively, R is the set of rounds at which
the simulation produces valid output for the simulated shapoperation. Formally,

re€R < Ip;: M|c]|=r.
Per Lemma 6.3, every rounde R is uniquely associated with a vector denotéd
Lemma 6.5. Letr <7/ € R.¢" < ¢

Proof. Letr; < r; € R suchthat'r; < r < r;,r ¢ R. By definition of R, there exists two processgs p; such that;* = ¢ and
c;j = ¢". By Lemma 6.1(1), the vectorg’ andc;j are ordered. We consider two cases, according to the relatder of the two

vectors.

e cj' > c¢j". By Lemma 6.1(2) for every round> r;, ¢; > ¢}. Therefore, ag™s = ¢}/, ¢j* < ¢’.

i ="

e c;' < c;'. LetS the immediate snapshot obtainediyn roundr; and L the set of processes that obtain immediate snapshots
smaller thanS. Let U the complement of.: the set of processes that have not failed by the end of reymed obtain
immediate snapshots larger than or equaf ia roundr.

Note that for each procesgs € L, ¢’ < ¢;" andp; € L. Therefore, it follows from Lemma 6.3 that each processlidet! in
U has decided before roung. After it has decided, a process no longer increments itkamtry in its vector (at line 18).
In roundr;, we havec;-j = ¢, with [¢"7] > [¢"*| > |¢}|. Hence, in some roundbetweenr; andr;, the immediate snapshot
of p; must include a vectat such that is the vector of some procegsncluded inU or ¢ > ¢, wherep,, € U. In both case,
this implies that; > ¢*, and thus by Lemma 6.1(2}* > c;".

We have shown that" < ¢’’. Sincer; < r;, we havejc™

< |¢7| and thussf" < ¢’ O
We show by induction that each simulated snapshot opertitaircompletes returns a vectérval wherer € R.

Lemma 6.6. Assume that the simulation of théh snapshot operation ky; completes in round. There exists’ € R, ' < r such
that the value returned by this operationds.val.

Proof. Suppose that the lemma holds for every rosnd and that the simulation of theh snapshot of; completes in round. By
the code, the condition of line 13 is satisfied for progess here are two cases to consider:

o M]|cl| = r (line 14). In this case; € R, and thekth snapshot op; is ¢".val;

e Jj : CC;ljlli].clock = ¢;i].clock = k. In that case, théth snapshot op; is CC;[j].val. Note thatC'C;[j] containsL or
a vectore such that.val is the value returned by a simulated snapshat;afompleted in some round r (lines 14—-15 and
line 11). Therefore, by the induction hypothesiss ¢ for some round” : v/ < r A7 € R.

In the first round, each entry @f'C; is equal to[L,..., L]. By the analysis of the first case above, the lemma thus holds f
r=1.]

We now define the linearization of simulated operation. Audated snapshot operatiamp that completes can be uniquely
associated to a roundin R by Lemma 6.6. We linearize each snapshot in its associatetiraMore precisely, it is the value
returned by a snapshot operatign there exists a unique € R such thai” = ¢ by Lemma 6.6.0p is then linearized in round.
A simulated write is linearized right before the first snagighat includes it. A failure detector query by processs linearized in
the round in which the corresponding instancef @f < FD; (line 19) is performed. Finally, when several operatioreslarearized
in same round, snapshot are ordered first, followed by failletector queries and then writes. Several operationeafdme type
linearized in the same round are arbitrary ordered.

More formally, for each round € R, let S[r] the set of simulated snapshot operations that returml. Similarly, forr € R,
W r] is the set of write operations defined as follows. Ftewrite operation op; is included ini¥[r] if and only if ¢"[i].clock = k
andvr’ < r, ¢ [i].clock < k. Letc the vector such thatwval is the output of theith snapshot of;. By the coder[i].clock = k
and by Lemma 6.6; = ¢” for somer € R. Therefore, each completed write operation is includedmessetV[r]. Finally, for

Collection des Publications Internes de I'lIr@IRISA

20 C. Travers, S. Rajsbaum,& M. Raynal

each round- (not necessarily ifR), let Q[r] the set of failure detector queries that are simulated indou Thekth failure detector
query ofp; is simulated in round if the kth instance offd; < FD; (line 19) performed by, occurs in round-. In each round,
the operation included il [r] U S[r] U Q[r] are linearized whenevé¥ [r], S[r] or Q[r] is defined. Write operations are linearized
first, followed by snapshots and finally failure detectorrigse Operations of the same type linearized in the samedrareordered
arbitrarily.

The discussion above is summarized by the following lemmerejrabusing notation [r], X beingS, W or Q, is the opera-
tions included in seX [r] ordered arbitrarily ifX [r| is defined and) otherwise.

Lemma 6.7. (Linearizability) Consider a finite execution of the simulation protocol thatsists in-. rounds.c = W[1], S[1], Q[2], W[2], S
is a valid linearization of some execution.dfin the read/write model equipped with

Proof. Each operation whose simulation completes is linearized ihfollows from Lemma 6.5, and the way write operations are
ordered ino that each snapshot contains the values written by the lagt @perations that precede itdin

By the correctness of the algorithm that simulates a faitlegector of the clas€' in IRIS(PRc), the results of the failure
detector queries are a valid history with respect to theipation of the clas€” and the failure pattern of thERIS(PR¢) run. If
a procesy; fails in round some round, no operation of that process starts after that round, améhiture detector values obtained
after that round are compatible with the failurepgf Reciprocally, ifp; does not fail, the failure detector values are compatibth wi
that fact by the correctness of the extraction algorithnmigght however be the case thatdoes not complete a write or snapshot
operation, although it is correct. As the execution we aersis finite and asynchronous, it is possible fhiadoes not fail and does
not complete a write or snapshot operation. O

To argue about the correctness of the simulation, it rentaiseow that every correct process eventually obtains aidecialue
(atline 17).

Lemma 6.8(Termination) Every correct process eventually decides.

Proof. Let us consider an infinite execution of the simulation. Tethe set of correct processes. Define the relatiohetween
correct processes as follows: for everyp; € T', p; ~ p; if and only if p; “sees”p; in infinitely many rounds. More precisely,

pi ~ p; <= theset {r:j € smj}isinfinite.
Let -~ the transitive closure of.:
pi > pj <= 3pin = PisPi2s - Piz = Pj Pil ™ Pi2y Pi2 ™ Pids - - -5 Pi(e—1) ™ Dix

andseen(p;) the set of processes thatsees directly or indirectly infinitely many often:

seen(p;) = {p; : pi 2 pj}-

Assume for contradiction that there exists a correct potest never decides. L&Y, andT), be the set of correct process that
decide and do not decide respectively. Per lemma 6.4, anfd¢héhat the code of the simulated algoritbdris in normal form, at
least one process, € T, completes infinitely many write/snapshot operations. Tio®frelies on the following claim:

Claim C1 For each correct procegs € seen(p,), p; either decides or completes infinitely many write/snapsipetrations.

Claim C1 tell us that every process seen directly or indiydnfinitely many often byp,, either decides or simulates infinitely
many write/snapshot operations. Suppose for contraditiiat the seteem(p,,) includes a procesgs that never decides. Consider
now a procesp; ¢ seen(p,). Note that this may happen everpifis a correct process. Howevey, and every process ieen(p.,)
cannot distinguish the considered execution from an ei@tin whichp; fails. In particular, by the correctness of the extraction
algorithm, the output of the simulated failure detectorhe process included iseen(p,,) must be consistent with the failure of
p;j. Hence, we simulate an execution.4f with set of correct processesen(p,,), where every correct process performs infinitely
many operation or decides and in which a correct process deeides. This execution is a valid executiondfn the read/write
model equipped with a failure detector of the clégsas every finite prefix is linearizable (Lemma 6.7). This thastradicts the
correctness afd, which requires that every correct process decides in eagtugon of A.

Proof of the Claim C1 Letp;, € seen(p,) an arbitrary correct process. For each write/snapshotatiparcompleted by,
there, there exists a vectorand a round- € R such that” = ¢ andc¢".val is the value returned by the snapshot operation. This
vector is either the value of the variahlg at roundr (if the operation completes at line 14) or the value of thealde c; of some
other process (if the operation completes at line 15). Irakecasep,, is helped byp; to complete its operation. As, completes

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 21

infinitely many snapshot operations, there exists a prggessch that, infinitely often, the value returned by these shajpopera-
tions is the value,.val of the variable:, of procesgy,. Note thatp, is not necessarily distinct from,. Clearly,p, € seen(p,,) and
P € seen(pe), @s in order that théth snapshot op,, is ¢,.val, p, has to perforne,[u].clock + k.

Letr € R such thatM |cj| = r. By definition ofp,, there are infinitely many such rounds. Asdoes not decidé/|c]| > r
(Lemma 6.3). Moreover, singe completes finitely many operations, we ha\@c}| > r, for large enough which implies that
smy D smj. Hencep; ~ p,, and as the relatior is transitive and becauge ~ p,, andp,, ~+ p;, we getp; ~> p;.

When p; initiates its kth operation, it sets;[i].clock to k (line 21). Suppose the last cycle initiated pyis its kth. As
p; € seen(pg), and for every vector, cli].clock > k can occur only after theth operation ofy; is completed, there is a round after
which we always havey|i].clock = k. It then follows from the fact that the predicaté|c;| = r is satisfied infinitely often that the
vectorce of procesgy is eventually such thaic[i].clock = k (lines 14). Sincey, € seen(p;), p; thus eventually observes a vector
cc such thatc[i].clock = k and completes itsth operation at line 15: a contradictioBnd of the proof of claim C1 O

Computational equivalence between the read/write model wht C and the IRIS(PR¢) model The correctness of the simulation
implies the following main theorem.

Theorem 6.9. LetC be a failure detector class andk1S (PR) be the corresponding iterated restricted immediate snapstodel.
Let us assume that there are two algoritffinand 72 such that (1)7; simulates’RIS(PR) in the read/write model equipped with a
failure detector of clas§’ and, (2)7; emulates a failure detector of the cla8sn IRIS(PR¢). AtaskT is solvable infRIS(PR¢)

if and only if it is solvable in the read/write model equippeith a failure detector of clas€’.

Proof. Let us first consider thes> direction. Let.A be an algorithm that solveE in the IRIS(PR¢) model. It follows that by
stackingA on top of the algorithny; we obtain an algorithm that solv&sin the read/write model equipped with a failure detector
of the clas<”.

Let us now consider the- direction. LetA be an algorithm that solves the taBkn the read/write model equipped with a failure
detector of the clas€'. Without loss of generality, we can assume tHais written in normal form. The simulation describes in
Figure 14 then provides an algorithm that sol¥&s the IRIS(PR:) model. By Lemma 6.8, every correct process decides. Lemma
6.7, applied to the prefix of the simulated execution thaseafter the last decision, then implies that the decisiotsioéd are valid
decisions forT". O

7 Benefiting from the /RIS model

This section presents several applications of our previesisits.

7.1 Characterizing tasks solvable with failure detectors

The previous characterization in thRIS (PR) framework of the synchrony achievable by the failure detefetmilies($S,) 1<z <n,
(9%)1<2<n, and(CY¥Y) <<y, can be used to study their computational power in the reéé/shared memory model. As a partic-
ular example, we have the following.

Theorem 7.1. Thek-set agreement problem is not solvable in a read/write sthanemory system with a failure detector of the class
Q*ifk < 2.

This result was proved in [38] by reduction to a similar imgibdity for {<¢S,} proved in [27] using combinatorial topology
techniques from [30]. A simple proof of the theorem is ddsedli next.

Consider the/RIS(PRy;-) model. Notice that all runs of the IS model where are mogtocesses are correct (and the others
crash initially) are runs of théRIS(PR,-) model. This is because these processes do not see a writey loyhem process (i.e.,
their views are always contained in a getf size at most, as required by propert¥R,- property). But it is known that in the 1IS
model ofz processeq,z — 1)-set agreement is not solvable [9] (because it is similant@igfree system of processes).

More generally, thanks to Theorem 6.9, thelS(PR¢) allows characterizing the agreement tasks wait-free btdvin the
read/write model enriched with a failure detector of thessta.

7.2 t-resiliency

We may want to solve tasksresiliently, i.e., tolerating only < n failures. A taskl’ has at-resilient solution if there exists an
algorithm A that solvesI” in every execution in which the number of failures<st. That is, in every such execution, each non-
faulty process outputs, and the outputs are valid outputhiéoexecution inputs according to the task specificatioexkecution with

Collection des Publications Internes de I'lIr@IRISA

22 C. Travers, S. Rajsbaum,& M. Raynal

strictly more thart failures, however, nothing is required. In particular, +fanlty processes may produce arbitrary outputs or may
not output at all. The question of whether a task hasesilient solution or not may be studied via an iterated eh@d explained
below. We show that-resilient computability is captured by a class of failuetettor, namely, the clagg—* which is the perpetual
counterpart of the classy™ ! defined in Section 2.1. More precisely, we establish thatyeizesk T has at-resilient solution if and
only if T is (wait-free) solvable in the asynchronous read/write eheduipped with a failure detector of the clagst. Moreover,
every failure detector clasg’ induces a iterated model denot&®lS (PR,) of equivalent computational power. The question of
whether a task hastaresilient solution or not thus reduces to the solvabilityhe task in the iterated modéR1S(PR,»-+). This

is summarized by the following theorem.

Theorem 7.2. LetT a task. The following propositions are equivalent:
1. T is t-resiliently solvable in the read/write model;
2. T is wait-free solvable in the read/write model equipped wiffailure detector of the clasg™¢;
3. T is wait-free solvable in the iterated mod&t IS (PR yn-).

The remainder section is devoted to prove this theorem.

The family of failure detector classes(y¥);1<,<, As indicated before, the failure detector classis the perpetual counterpart

of the failure detector class¥ [38]. A failure detector of the clagg? outputs integers, which are estimates of the current number
of failed processes. More precisely, the outputs satisfhyfallowing properties, wheré is the actual number of failures that occur
in the execution:

1. Perpetual safetyvr,n — y < NBCT < max(f,n — y), wheref is the number of failures that have occurred before by titne
2. Eventual accuracyThere is a time from whichBC; = max(n — y, f) at each correct procegs.

The failure clasg)? induces an iterated mod&R S (PR.;») where the property’R ;. is the perpetual counterpart of the property
PRy (f is the total number of failures in the execution):

PRyy =¥r' >0: ((i—1=(r"=1) modn) A (sm! +# 0) = lsm!’| > n — max(n — v, f)

The IRIS(PRyv) model can be simulated in the read/write model equipped avftilure detector of the clags’. The simulation
is the same as the simulation B?IS (PR« v) (Figure 7) in the read/write model equipped with)¥. Reciprocally, one can check
that the algorithm describes in Figure 10 emulates a fadletector of the clasg? when the underlyingR 7S model satisfies the
propertyPR,». By Theorem 6.9, we thus obtain :

Lemma 7.3. A taskT is wait-free solvable in the read/write model equipped aittailure detector of the clasg? if and only if it
is solvable iNfRIS (PR).

Solvability with 4™t implies t-resiliency Suppose that task is solvable in the read/write model equipped with a failuseedtor
of the clasg)™~t. This means that there exists an algoritiusing failure detectop™~* to solveT. Note thatA is wait-free, i.e.,
it tolerates an arbitrary number of failures. By the defamitdf the clasg)™~¢, every query to the failure detector returns an integer
z suchthath — (n —t) =t < z < max(n — (n — t), f) = max(t, f) wheref is the total number of failures in the execution.
Hence, in every execution in which the number of failufas at most, every failure detector query returhsWe use this fact to
show thatl" can be solved-resiliently in the read-write model without failure detec

Let A’ the algorithm identical tod except that every query "t is emulated by always returnirtg Sincet is a valid output
of a query toy™~t in every execution in which no more thamprocesses fail, each non-faulty process must produce ¢ waiput
according to the specification @fin every execution ofA’ where no more thatprocesses fail. Thereford’ is at-resilient solution
for T

t-resiliency implies solvability with /"=t The remaining of this section is devoted to prove the revdiigstion: if task1 is
t-resilient solvable]" is wait-free solvable in the read/write model equipped witfailure detector of the clags®~t. We consider
tasksT = (Z, O, A) that satisfy the following naturahonotonycondition:

Definition 7.4 ([18]). LetT = (Z, O, A) atask. Task’ satisfies the monotony property if and only if for evaryv) € Z x O and
u' € Z such that(u,v) € A andu C u'4, there exists’ € O such that’ € A(v') andv C v'.

4For twon-vectorsv, v/, v C v’ if and only ifv[i] # v'[i] == wv[i] = L foreveryi € {1,...,n}.

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 23

LetT = (Z,0, A) denote a task that isresilient solvable. Suppose that we are given an algorithtinat solved” ¢-resiliently.
Our goal is to construct an algorithil that solvesI” independently of the number of failures, but with the help édilure detector
of the clasg)™~*. On one hand, as long as the number of failyfesmains bounded from above hythe behavior of algorithr’
might be identical as algorithtd. On the other hand, wheh> ¢ a failure detector of the clags*~* provides accurate information
on the number of failures. In fact, one can show [38] that wiieennumber of failures becomes larger thtag™ ¢ has the same
power as a perfect failure detectBr[12].

Suppose we are given a perfect failure dete®ott is then possible to implement consensus objects. Rglgithese objects,
taskT can then be solved as follows. The construction used an afragonsensus objects denot€édNS[1..n]. Consensus object
CONS|/] is used by the processes to agree on a valid pair of input apdioeectors forl” of size/®. In more details, each process
accesses in order the consensus objé@@S[1], CONS[2],... until one object returns a pair that contains an output B#lit It
then decides that output. Lei’, v*) denote the pair returned by thh consensus object. #f[i] = L, the pair proposed by process
p; to the/ + 1th consensus object extends the faif, v*) with the input ofp; and a valid output fop;. More precisely, the pair
(u,v) of size + 1 vectors proposed by processis such that* C u, v* C v, (u,v) € A, v[i] # L andul[i] is equal to the input of
pi. As taskT is monotone (Definition 7.4) and by constructirf, v*) € A, finding such a pair is always possible. As the size of
the pair returned by the consensus objects is increasio,rem-faulty process eventually finds an output for itsklareover, by
construction, the outputs are valid outputs with respecs.to

These ideas are implemented in the algorithm describedgar&il5. Without loss of generality, we assume thatresilient
algorithm A for T' is given as a full-information algorithm in normal forma is thus completely determined by a decision predicate
candecideand a decision functiod.

Each process first executes algoritbtuntil the number of failures becomes larger thglines 1-9). An estimate of the current
number of failures is provided by the underlying failureateor of the clasg™ ¢ (line 3). Whenever a value larger thais returned,
the process stop executingand instead tries to obtain an output using consensus skijgcicedurddecideCons lines 11-23).
By the perpetual safety property, a failure detector quesy neturn a value larger tharonly if the number of failures is above
Therefore, when processes switch to the proce@@edeCons the underlying failure detector is as powerful as a peffi@itiire
detector, and the consensus-based approach for sdlvaag thus be implemented.

However, in the same execution, some processes may obtantpat for 7" via the execution ofAd (at line 6) while other
processes may decide in the proceddexideCons(at line 23). We rely on adopt-commit objects [53] to guaeanthat outputs
for T' obtained in both parts of the algorithm are consistent, e vector formed by the output of each process is a validibup
according to the input vector of the execution and the rahai.

An adopt-commit objectiC' supports a single one-shot operation dengiegose() that takes as parameter values from some
arbitrary sefl”. An invocationpropose(v) returns a paigb, v') whereb € {adopt, commit} andv’ € V. The pair returned satisfy
the following properties:

Termination:Each invocation by a correct process terminates.

o Validity: If an invocation returngb, v) then some process invoketd”'.propose(v).

Agreementif an invocation returngcommit, v), then every invocation returris, v).

Convergencelf every invocation has the same input valyghen(commit, v) is the only pair that can be returned.

Adopt-commit objects can be wait-free implemented in ttaglferite model, e.g., [19, 53].

We associate with every processan adopt-commit object denotet”[i]. Only two values may be proposed to objelet’[:]:
val;, the output forfl” thatp; may obtain by executing algorithm (line 5) or the special valuabortthat we assume is never a valid
output forT'. The former case occurs whenobtains an output fdf’ by executingA (line 5). The latter case occurs in the procedure
DecideCons(line 12—15). By proposingbortto AC([i], a process executirgecideConsattempts to prevent; from deciding an
output obtained by executing.

Suppose that procegs obtains output by executingA4 (line 4). p; then invokegropose(v) and is allowed to decide this value
only if the invocation returnécommit, v). If this does not occur, some process has proposed the ¥adueto AC/[i]. This follows
from the fact thatbort is the only value# v that can be proposed and the convergence property of adaptiit. This means that
some process has discovered that the number of failure®ig abp; thus switches t@ecideConsprocedure to attempt to obtain
an output for7”" (line 7).

Proces®; executingDecideConsnitiates the procedure by proposiagortto each adopt-commit obje&tC[j] for j # i (line
13). Asp; may have first proposed a valueA@’[:] in the first part of the algorithny; does not propose a value & [i]. The goal
is to avoidp, to obtain an output in the first phase of the algorithm, or p;ihas already decided — to learn the outpupgf In

5The size of an input or output vector is the number of its doaatries.

Collection des Publications Internes de I'lIr@IRISA

24 C. Travers, S. Rajsbaum,& M. Raynal

more detailsp; maintains two local vectors:; andout; which are intended to store each process input and outpectgely. If
the propose() invocation toAC|j] returns(commitv) or (adopt v), with v # abort, v has been proposed #C/[j] and thus may
be the output fofl” decided byp;. In that casep; stores this value inut;. If (commitabort) or (adopt abort) is returned, the entry
out;[7] is left to its initial value_L. Notice that in that case, cannot decide and output f@tin the first part of the algorithm. Inputs
values are obtained by taking a snapshot of the sha(kde 16), to which each process initially writes its input.

Two processes; andp, executingDecideCongmnay obtain different responses from thgispose() operation on the same object
ACj]. In particular,(adopt v) and(adopt abort) my be returned. Similarlyy; andp may have different views of the processes
inputs. Thus, the pairs of vectois; /out; andin,/out, may differ. Observe however that; € A(out;) andin, € A(out,) as the
non-L values inout; andout, are decisions in a execution gfin with no more thart failures. Moreover, if entry differs in out;
andout, thenp; cannot have decided in the first part of the algorithm. On trary, if p; does decide in the first part of the
algorithm, therout; [j] = out,[j] = v.

init AC/[1..n] array of adopt-commit objects
I[1..n], SM|[1..n] arrays of atomic registers initiallyL, . . ., L]
ACONS, CONS[1..n] " *-based consensus objects

solveT(candecide, §, input,)

(1) state; + input;; dec; < L; I[i] < input;;

(2) repeat

(3) SMTJi].write(state;); state; < SM.snapshot(); nbc; < NBC;;
(4) if (nbe; < t) A (dec; = L) A candecide(state;) then

(5) val; + §(state;); (b,v) < AC[i].propose(val;);

(6) if (b,v) = (commit, val;) then dec; <+ val;; decidddec;)
(7 else DecideCong endif

(8) end if

(9) until nbe; >t
(20) if dec; = L then DecideCon¢$) end if

DecideCong)

(11) out; « [L,..., L];in; « [L,..., L];

(12) foreachj € {1,...,n} \ {i} do

(13) (b,v) « AC[j].propose(abort)

(14) if v # abort then out;[j] < v endif

(15) end for

(16) s; < I.snapshot(); for each (j,v) € s doin;[j] < v end do
(17) (ins, out;) <+ ACONS.propose(in;, out;);

(18) let ¢ the number of nonk entries inout;;

(19) while out;[i] = L do

(20) in;[i] + input;; letout’ € O s.t. (ing, out’) € A AVJ # i, out;[j] = out'[j] A out'[i] # L;
(21) £ <+ £+ 1; (in;, out;) < CONS[{].propose(in;, out');
(22) end while

(23) dec; «+ outli]; decidddec;);

Figure 15:(¢"*)-based algorithm for task (code for processg;)

Every proces®; agree at line 17 on the same input/output pair by proposingout; to the consensus objedtCONS. Let
in/out denote the pair agreed upon. By the observation aboye,decides in the first part of algorithni[j] contains the input
of p; andout[j] the value decided by;. Processes then obtain an outputTofollowing the consensus-based approach explained
earlier (lines 19-22). The only difference is that procesgtart with the input/output pain /out that already containsinput/output
values instead of the empty pair.

Proof Consider an execution of the algorithm described in Figbre/e denote by the number of failures in this execution.
Lemma 7.5. Every correct process decides.

Proof. We consider two cases according to the valug.of

e f < t. Inthat case, for every procegsand every timer, nbc] < t and thus no processes invoRecideCong). As every
correct process writes t8M infinitely often, and no more thatfailures occur, each correct processventually reaches a

Collection des Publications Internes de I'lIri@IRISA

The Iterated Restricted Immediate Snapshot Model 25

statestate; for which the predicateandecide() (line 4) is verified. Let the value returned by the decision functibapplied
to this state. Since no processes invBlexideCong), procesy; only accesses the adopt-commit’[i]. It thus follows from
the convergence property of adopt-commit thatgtepose() operation performed by; returns(commit, d), from which we
conclude thap; decides (line 5).

e f > t. Inthat case, there exists a timafter which we always havebc; = f. Assume for contradiction that some correct
processp; does not decide. By the previous observation and the code g, procesg; eventually invokedDecideCons
(at line 7 or line 10). By the termination property of adoptyumit, every invocation opropose() on adopt-commit object
performed byp; terminates. Note also that, #s> ¢, they " t-based implementations of consensus are correct, anddlshs e
propose() operation on the consensus objed¢tSONS and CONS|[j],1 < j < n performed byp; terminates.

By the code, procegs decides (at line 23) if theut vectors obtained as a response pf@pose() operation on a consensus
object CONS|[j] contains an output value for itself, i.ewt[i] # L. In thewhile loop (lines 19-22), procegs accesses in
this order the consensus obje€t® N S[/], ..., CON S[n] for somel > 0. Each object is accessed onceghyand the vector
out? returned by theth consensus object (line 21) contajinson-L entries. Hencegut™[i] # L andp; eventually decides:
a contradiction.

O
Next Lemma establishes that decisions at line 6 or 23 follensipecification of task.
Lemma 7.6. Decided values are valid with respect to the task specificedind the input values.
Proof. Denote byD, andD,, the sets of processes that decide at line 6 and at line 23ataégge. We consider two cases:

e D, = (. Consider a finite prefix- of the execution of the full information protocol in normarfn .A. This prefix can
be extended to an infinite execution with no more thdailures. Therefore, each value decided (if any) duwni valid
according to the specification @f, sinceA is at-resilient algorithm and when the value is decided no precas distinguish
the current execution with an execution with no more théailures.

In the first part of the algorithm (lines 1-10), each procesxetes the full information protocol in normal for, until it
possibly discovers that more thafailures occur. By the observation above, every decisidhus valid according to the task
specification.

e D, # (. Let L the index of the largeSEONSobject accessed in the procediecideCons Let (I;,0.) the pair of
input/output vector returned by this object. By the code, itiput of everypropose() operation performed o@ONSL] is
valid a input/ouput pair according to the specificatiorfofThereforeO; € A(Iy).

Suppose that some processdecides in the first part of the algorithm at line 6. kethe value decided by;. By the code,
the propose() operation performed by; to AC[i] at line 5 returngcommito;). Consider now a procegs that executes
DecideCons Note that by the codg; # p;. By the agreement property of adopt-commit, phepose() operation performed
by p; on AC[i] returns(commit, o;) or (adopt, 0;) (line 13). Thus we haveut;[i] = o; whenp, accesses the consensus
objectACONS(line 17). Since this holds for every process accessinghfect the input/output pait,, O,) returned by the
object is such thab,, [:] = o,. By code,0, C Oy, from which we conclude thab, [i| = o;.

Consider now some proceps that decides in the proceduBecideConsvalueo; (line 23). By the codep; gets back an
input/output pairZ,, O,) from an invocation opropose() to CON S[¢], where|O,| < ¢ < L. SinceO,; C Or, Op[j] = o;.

Therefore, for each procegs that decides, thgth entry of the vecto;, contains the value decided Ipy. Similarly, for
eachj € {1,...,n},if I [j] # L thenI.[j] is the input value for task’ of procesp;. As O, € A(I}), the decided values
are thus valid according to the specificatiorifoénd the input value of the execution.

O

Lemma7.7. LetT = (Z, 0, A) a task that satisfies the monotony property andrssiliently solvable. The algorithm described in
Figure 15 solveqd” in the read/write model equipped with a failure detectorhef tlass)™¢.

Proof. Immediately follows from Lemma 7.5 and Lemma 7.6. O

Collection des Publications Internes de I'lIr@IRISA

26 C. Travers, S. Rajsbaum,& M. Raynal

7.3 k-set agreement with limited-scope failure detectors

To illustrate the advantage of tH&S(PR¢) framework when one is interested in lower bounds, this sedjives a new proof
of the lower bound for thé-set agreement problem. That lower bound, conjectureddp s been proved in [27] in the context
of t-resilient message-passing systems, using techniquesae from combinatorial topology. The new proof is on wait-free
case { = n — 1) in the read/write model enriched with a failure detectothef class®S,. ,. Technically speaking, the problem is
reduced to the question of tlieset agreement wait-free solvability. No topology notismaquired.

scope failure detector to a system where the processes iteopad into multiple disjoint clusters. There agelisjoint clusters
denotedXy, ..., X,, where|X;| = z;, X = U1<i<q X, andx = 22:1 x;. Informally, there is a process that is never suspected in
each clusterX;. More specifically, the variablerRuSTED; provided by a failure detector of the classS, , contains the identities

of the processes that are believed to be currently alive. WWhemRUSTED; we say ; trustsp;.” By definition, a crashed process
trusts all the processes. The failure detector claSs , is defined by the following properties:

e Strong completeness. There is a time after which every faulty process is nevesté by every correct process.

e Eventual weak (z,g)-accuracy. There areg disjoint setsX;, ..., X, of cumulativelyz processesg processeg,, <
Xi,...,pe, € X4 and a (finite) timer such that each process &f trustspy, .

The timer, the setXy, ..., X, and the processeg, are not explicitly known. Moreover, some or all processeX pmay be faulty
(A cluster X; of faulty processes trivially satisfiés, ¢)-accuracy).
Recall the following equivalent formulation 6fS,, , [38], assuming the local variable controlled by the faildetector iREPR.

e Eventual (z,¢)-common representative. There arg; disjoint setsX;, ..., X, of cumulativelyz processesg processes
pe, € X1,...,pe, € Xy, and a (finite) timer after which, for any correct procegs, we havej € X; = REPR; = /; and
Jjé¢ Ulgigq X; = REPR; =j.
Clearly, a failure detector that satisfies the previous @riypcan be transformed into one of the clésS, , (defineTRUSTED; =
{REPR}). Conversely, one can easily extend the algorithm in [38} thansforms a failure detector of clagsS,, into a failure

The lower bounds The lower bounds established in [27] are on aret-oesilient asynchronous message-passing systems (i.e.,
systems prone to up toprocess crashes). They are the following.

o If the system is equipped with, ,, anyk-set agreement protocol must satisfy k£ 4+ « — ¢ if ¢ < k andt < x otherwise.

o If the system is equipped withS, ,, any k-set agreement protocol must satigfy< min(3,%k + = — ¢) if ¢ < &k and
t < min(%,) otherwise. (In the shared memory context, the requirerhent; is no longer needed, and the lower bound
becomes < min(k + x — q).)

IRIS(PRss,,) The propertyPRos, , extends the properti# o s, in a natural way. InformallyPRos, , is satisfied ifPRos, is
satisfied for each cluste¥;.

PRos,, = 3X1,.... X.:| |J Xjlzaavi<j<k<q:X;nX,=0,
1<j<q
EIEl,...,Kq Vlgquﬁj GXj,
IV >rV1<j<q:(ieX;—{{,}) = (sml =0 v L€ sml).
This property states that, for each clusiéy, there is a processy, that, from some round, always belongs to the view of the
processes aok; that have not crashed.

Building IRIS(PRss, ,) in the read/write model equipped with ©S, , An algorithm that simulates th&R IS (PRs,) model
from one-shot immediate snapshot objects is describedgur€i6. It can easily be checked that the very same construcéin be
used to simulate th&/RITE_SNAPSHOT() operations of thd RIS(PRos, ,) in the read/write model equipped with a failure detector
of the class® S, ;. Thus we obtain:

Lemma 7.8. In the shared memory model equipped with a failure detedttneclass®S,, 4, the algorithm described in Figure 6
simulates theRIS(PRos, ,) model.

Collection des Publications Internes de I'lIri@IRISA

The Iterated Restricted Immediate Snapshot Model 27

Simulating a failure detector of the class¢S, , in the IRIS(PRos,) model A simple algorithm implementing a failure
detector of the clas$S,. in the IRIS(PRss,) model is described in Section 4.1 (Figure 9). Again, one @milyecheck that this
algorithm executed in théR1S(PRos, ,) model emulates a failure detector of the clasS, ,. Therefore,

Lemma 7.9. The algorithm described in Figure 9 emulates a failure degteof the class®S, , inthe IRIS(PRos, ,) model.

Proof. The propertyPRos, , states that there argdisjoint setsXy, ..., X, of cumulativelyz processes ang processeg,, €
X1,...,pe, € Xqand around after which,vj : 1 < j < g, £; belongs to the vieWSmZT' of the processeg; of X; that have not

yet crashed. Due to the assignm&RUSTED; + smg/ executed during each round > r, this immediately translates as “there
areq disjoint setsXy, ..., X, of cumulativelyx processes; processes,, € Xi,...,ps, € X, and atimer after which, for each
1 <j <, pe, is not suspected by the processes(of. O

Lower Bound To prove the lower bound the following strategy is used. Gike< n — z + ¢, let us assume that there is an
algorithm A that solves wait-free solves tlheset agreement problem in the basic read/write model eqdipgth a failure detector

of the class®S, ,. From the Lemmas 7.8 and 7.9, the conditions required by tte®iem 6.9 hold. We can consequently conclude
that there is an algorithii that solves:-set agreement in th&?1S(PRos, ,) model. Then, analyzing a class of admissible runs in
IRIS(PRss,) model, itis possible to derive (from the algoritti#) a solution to the:-set agreement problem fok &) n — z + ¢
processes in thé&lS model, which is known to be impossible ([8, 9, 31, 51]).

Theorem 7.10. There is no algorithm that wait-free solvksset agreement fatz processes in the read/write model equipped with a
failure detector of the clas¢S, 4, fork <n —x +¢.

Proof. From the previous discussion, there is an algorifhithat solves thé-set agreement task in tH&IS(PRos, ,) model. We
restrict our attention to a particular class of executiBrgefined iterated models. Let us partition the set of prosass®vo sets: the
low-order processeb = {p1, ..., Pn—s+q} and the high-order process&5= {p,,—y+q¢+1,--.,Pn}. E is asubset of all (infinite)
executions admissible in théS model. Moreover, in an executieanc E, there is at least one low-order process that is correct and,
at each round, low-order processes that have not yet crashestheduled before any high-order process. In other warbisv
order procesp; never observes a high order process in its view. More formally, an iterated executierbelongs taoF iff the two
following conditions hold:

e Ip, € L:Vr:smi #0.
o Vr,Vp; € L,Vp; € H: (sm} # DA smj #0) = sm] C sm.

Let us observedbservation O} that all wait-free runs in which only a subset of low-ordmocesses participate are included in
E. We next show that all executions that belongtare admissible in théRS PR, , model bservation Op

Lete € E. There is a low-order procegs, that takes infinitely many steps in W.l.0.g., let us assume that, = pq (as
n—x > 0,n—xz+q > ¢, i.e.,p, is alow-order process). Consider the followipgets of processex’; = {p1},..., X4—1 = {pg—1}
andX, = {p,} UH. These sets are disjointahld), ., X;| = ¢—1+1+|H|=q+x—q=x. Definel; =1,0, =2,...,{, =q.
Finally, observe thatr, Vj € X, —{p,} = H, sm;q_g_ sm7. The later follows from the fact that the low-order procgsss always
set linearized before any high-order process. To summarizé&/j,1 < j < ¢, Vi € X; — {{;} : sm} = 0V smj, C sm[, from
which we conclude that the properBfios, , is satisfied in the execution !

It follows from O1 that in all the wait-free runs in which only low-ordered pesses participate are includedih Moreover,
O2 establishes that algorithii is a wait-free solution t@-set agreement ifv. Consequentlyl3 is solution tok-set agreement in
the I1S model forn — (x — ¢) processes. This would imply a wait-free solutionfor (x — q) > k processes to thie-set agreement
problem in the read/write model [9], which is known to be impible [8, 31, 51]. O

Wait-free algorithms for solving-set agreement fat processes in a message-passing system equipped withra faéiector
of the classS, 4, such thayy < k An —x + ¢ < k, are given in [27, 40]. Such algorithms can easily be traedlan the read/write
model equipped with a failure detector of the class,. Then, using the techniques developed in [53], these dlgosi can be
transformed to obtain solutions in the read/write modeigoed with<$S,, .. We consequently obtain the following corollary.

Corollary 7.11. Letg < k. There is a wait-free algorithm for solvingrset agreement amongprocesses in the read/write model
equipped with a failure detector of the classs, , iff n —z + ¢ < k.

Collection des Publications Internes de I'lIr@IRISA

28 C. Travers, S. Rajsbaum,& M. Raynal

8 Conclusion

This paper has shown that failure detectors can be repesbast schedulers in thE#S model, the aim of which is to prevent
some runs from occurring. To that end, the paper has inastigthe Iterated Immediate SnapshbiS] model equipped with
failure detectors. First, a companion paper [47] has shévahenriching such a model with a failure detector does noegse its
computational power with respect to wait-free solvabl&sa3hen, given a failure detector of a clasgwhereC is {CS, bi<a<n,
{9 h<.<n, Or {OYY }<y<p), it has shown that the power 6fcan be added to the iterated model as soon as its base wajpsksst
primitive satisfies an additional requirement, giving tis¢he Iterated Restricted Immediate Snapshot model déd&E (PR¢).
The paper has then shown that, for any the three previousdalketector class&s, IRIS(PR) and the classical read/write model
enriched with a failure detector of the claShave the same computational power.

In addition to providing a better insight on the very natufefailure detectors, the approach followed in the papervaslio
designing novel impossibility proofs, entirely based orayorithmic reasoning.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and ShavN., Atomic Snapshots of Shared Memodpurnal of the ACM
40(4):873-890, 1993.

[2] Attiya H., Bar-Noy A., Dolev D., Sharing Memory Robusily Message Passing Systerdsurnal of the ACM42(1):124-142,
1995.

[3] Afek Y., Dolev D., Gafni E., Merritt M. and Shavit N., A Bowed First-In, First-Enabled Solution to thé&xclusion Problem.
ACM Transactions on Programming Languages and Syste6§8):939-953, 1994.

[4] Anceaume E., Fernandez A., Mostéfaoui A., Neiger G. aagral M., A necessary and Sufficient Condition for Transfiogn
Limited Accuracy Failure Detectordournal of Computer Systems Scierg®(1):123-133, 2004.

[5] Awerbuch, B., Complexity of network synchronizatialournal of the ACM32:804-823, 1985.
[6] Attiya H. and Welch J.Distributed Computing: Fundamentals, Simulations, angakated TopicsWiley, 2004.

[7] Borowsky E. and Gafni E., Immediate Atomic Snapshots Badt RenamingProc. 12th ACM Symposium on Principles of
Distributed Computing (PODCACM Press, pp. 41-51, 1993.

[8] Borowsky E. and Gafni E., Generalized FLP ImpossibiRgsults for-Resilient Asynchronous Computatiosoc. 25th ACM
Symposium on Theory of Computing (STQ&EJM Press, pp. 91-100, 1993.

[9] Borowsky E. and Gafni E., A Simple Algorithmically Reassrl Characterization of Wait-free ComputatioRgoc. 16th ACM
Symposium on Principles of Distributed Computing (POD&EJM Press, pp. 189-198, 1997.

[10] Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BGtridhuted simulation algorithmDistributed Computing
14(3):127-146, 2001.

[11] Biran, O., Moran, S., and Zaks, S., A Combinatorial Gleéerization of the Distributed 1-solvable Taslisurnal of Algo-
rithms 11:420-440, 1990.

[12] ChandraT., Toueg S., Unreliable Failure Detector$Jeliable Distributed Systemdournal of the ACM43(2):225-267, 1996.

[13] ChandraT., Hadzilacos V. and Toueg S., The Weakestifeadetector for Solving Consensusurnal of the ACM43(4):685-
722, 1996.

[14] Chaudhuri S., Mor€hoicesAllow More Faults: Set Consensus Problems in Totally Asynchronous Systerfiesmation and
Computation]105:132-158, 1993.

[15] Cornejo A., Rajsbaum S., Raynal M., Travers C., FailDetectors as Schedulers (Brief AnnouncemeRtpc. 26th ACM
Symposium on Principles of Distributed Computing (PODEIM Press, pp.308-309, 2007.

[16] Dwork C., Lynch N., Stockmeyer L., Consensus in the Enes of Partial Synchronyournal of the ACM35(2):288-323,
1988.

Collection des Publications Internes de I'lri@IRISA

The Iterated Restricted Immediate Snapshot Model 29

[17] Fischer M., Lynch N. and Paterson M., Impossibility abBibuted Consensus with One Faulty Procdssirnal of the ACM
32(2):374-382, 1985.

[18] Fraigniaud P., Rajsbaum S. and Travers C., Locality @hdckability in Wait-free Computingroc. 25th International Sym-
posium on DIStributed Computing (DISAp appear, 2011.

[19] Gafni E., Round-by-round Fault Detectors: Unifyingr8jarony and Asynchronyproc. 17th ACM Symposium on Principles
of Distributed Computing (PODCACM Press, pp. 143-152, 1998.

[20] Gafni E., The Extended BG-simulation and the Charaxation of t-Resiliency.Proc. 41st ACM Symposium on Theory of
Computing (STOGACM Press, pp. 85-92, 2009.

[21] Gafni E., Merritt M. and Taubenfeld G., The concurrerdgrarchy and algorithms for unbounded concurreiegc. 20th
ACM Symposium on Principles of Distributed Computing (PQDXCM Press, pp. 161-169, 2001.

[22] Gafni E., Rajsbaum S. Recursion in Distributed CommutProc. 12th Int'l Symposium Stabilization, Safety, and 8gcof
Distributed Systems (SS§S3pringer Verlag LNCS #6366, pp. 362-376, 2010.

[23] Gafni E., Rajsbaum S. Distributed Programming withkEaBroc. 14th Int'l Conference On Principles Of Distributeds&ms
(OPODIS) Springer Verlag LNCS #6490, pp. 205-218, 2010.

[24] Gafni E., Rajsbaum S. and Herlihy M., SubconsensusstaRkenaming is Weaker than Set Agreem@nbc. 20th Int'l Sym-
posium on Distributed Computing (DISGpringer Verlag LNCS #4167, pp.329-338, 2006.

[25] Guerraoui R. and Schiper A., Gamma-Accurate FailuréeBters.Proc 10th Int'l Workshop on Distributed Algorithms
(WDAG) Springer Verlag LNCS #1151, pp. 269-286, 1996.

[26] Herlihy M.P., Wait-Free SynchronizatioACM Transactions on Programming Languages and Syste8{$):124-149, 1991.

[27] Herlihy M. and Penso L. D., Tight Bounds farSet Agreement with Limited Scope Accuracy Failure Detextistributed
Computing 18(2):157-166, 2005.

[28] Herlihy M., and Rajsbaum S., The topology of shared-rogmadversariesProc. 29th ACM Symposium on Principles of
Distributed Computing (PODCACM Press, pp. 105-113, 2010.

[29] Herlihy M., and Rajshaum S., Concurrent Computing ahdll@ble ComplexesProc. 24th Int'l Symposium on Distributed
Computing (DISC)Springer Verlag LNCS #6343, pp. 109-123, 2010.

[30] Herlihy M.P., Rajsbaum S., and Tuttle M., Unifying Symonous and Asynchronous Message-Passing Mo&ets,. 17th
ACM Symposium on Principles of Distributed Computing (PQDXCM Press, pp. 133-142, 1998.

[31] Herlihy M., Shavit N., The Topological Structure of Asshronous Computabilitylournal of the ACM46(6):858-923, 1999.

[32] Herlihy M.P. and Wing J.M., Linearizability: a Corress Condition for Concurrent Objec#&CM Transactions on Program-
ming Languages and System&(3):463-492, 1990.

[33] Imbs D. and Raynal M., Visiting Gafni’'s Reduction Larfdom the BG Simulation to the Extended BG Simulati®noc. 11th
Int'l Symposium on Stabilization, Safety, and Security afiiliuted Systems (SSSpringer-Verlag LNCS 5873, pp. 369-383,
2009.

[34] Imbs D. and Raynal M., The Multiplicative Power of Consas NumbersProc. 29th ACM Symposium on Principles of
Distributed Computing (PODCACM Press, pp. 26-35, 2010.

[35] Keidar I., Shraer A., Timeliness, Failure-detect@sd Consensus Performan&eoc. 25thh ACM Symposium on Principles
of Distributed Computing (PODCACM Press, pp. 169-178, 2006.

[36] Lamport, L. and Lynch, N., Distributed Computing: Mdsland MethodsHandbook of Theoretical Computer Science, Volume
B: Formal Models and Semanti¢pp. 1157-1199, 1990.

[37] Moses Y. and Rajsbaum S., A Layered Analysis of Conse/®&AM Journal of Computindg1(4):989-1021, 2002.
[38] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C. tt@nComputability Power and the Robustness of Set Agreement
oriented Failure Detector Classes. Distributed Comp2ib@): 201-222 (2008)

Collection des Publications Internes de I'lIr@IRISA

30 C. Travers, S. Rajsbaum,& M. Raynal

[39] Mostefaoui A., Rajshaum S., Raynal M. and Travers Ce Tombined Power of Conditions and Information on Failuces t
Solve Asynchronous Set Agreeme8tAM Journal of Computing38(4):1574-1601, 2008.

[40] Mostefaoui A. and Raynal Mk-Set Agreement and Limited Accuracy Failure Detectb®h ACM Symposium on Principles
of Distributed Computing (PODCACM press, pp. 143-152, 2000.

[41] Neiger G., Set LinearizabilityBrief Announcement, Proc. 13th ACM Symposium on PrincipfeBistributed Computing
(PODC), ACM Press, pp. 396, 1994.

[42] Neiger G., Failure Detectors and the Wait-free Hiehgr&roc. 14th ACM Symposium on Principles of Distributed Cotimgu
(PODC), ACM Press, pp. 100-109, 1995.

[43] Rajsbaum S., Iterated Shared Memory Modé@mc. 9th Latin American Symposium Theoretical Informga(icATIN'10)
Springer Verlag LNCS #6343, pp.407-416, 2010.

[44] Rajsbaum S., Raynal M., Travers C., Failure DetecterSehedulersTechnical Report #1838RISA, Université de Rennes,
France, 2007.

[45] Rajsbaum S., Raynal M., Travers C., The Iterated Rasttiimmediate Snapshot Mod@&kchnical Report # 1874RISA,
Université de Rennes, France, 2007.

[46] Rajsbaum S., Raynal M., Travers C., The lterated Raetitiimmediate Snapshot Mod@roc. 14th Annual Int'l Conference
Computing and Combinatorics (COCOON 2008pringer Verlag LNCS #5092, pp. 487-497, 2008.

[47] Rajsbaum S., Raynal M., Travers C., An impossibilityoabFailure Detectors in the Iterated Immediate snapshadeéllo
Information Processing Letterd08(3), 2008, 160-164.

[48] Raynal M., Set agreemeriEncyclopedia of AlgorithmsSpringer-Verlag, pp. 829-831, 2008 (ISBN 978-0- 387-3D1TY.

[49] Raynal M., Failure Detectors for Asynchronous Digttdd Systems: an Introductiowiley Encyclopdia of Computer Science
and Engineering\Vol. 2, pp. 1181-1191, 2009 (ISBN 978-0-471-38393-2).

[50] Raynal M., Communication and Agreement AbstractiomsHault-Tolerant Asynchronous Distributed Systeigrgan &
Claypool Publishers251 pages, 2010 (ISBN 978-1-60845-293-4).

[51] Saks M. and Zaharoglou F., Wait-FreeSet Agreement is Impossible: The Topology of Public Knage.SIAM Journal on
Computing 29(5):1449-1483, 2000.

[52] Volzer H., On Conspiracies and Hyperfairness in Dimtted Computing?roc. 19th Int’l Symposium on Distributed Computing
(DISC), Springer Verlag LNCS #3724, pp. 33-47, 2005.

[53] Yang J., Neiger G. and Gafni E., Structured Derivatioh€onsensus Algorithms for Failure DetectdPsoc. 17th Symposium
on Principles of Distributed Computing (POD@CM Press, pp.297-308, 1998.

[54] Zielihski P., Anti-Omega: the Weakest Failure Detector for SeteAment.Proc. 27th ACM Symposium on Principles of
Distributed Computing (PODCACM Press, pp. 55-64, 2008.

Collection des Publications Internes de I'lri@IRISA

