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Appearance-based segmentation of indoors/outdoors sequenass
spherical views

Alexandre Chapoulfe Patrick Rive$ and David Filliat

Abstract— Navigating in large scale, complex and dynamic @
environments requires reliable representations able to capture Semantic
metric, topological and semantic aspects of the scene for sup- / I
porting path planing and real time motion control. In a previous . / . -/ ,'
work [11], we addressed metric and topological representations
thanks to a multi-cameras system which allows building of
dense visual maps of large scale 3D environments. The map
is a set of locally accurate spherical panoramas related by 6dof
poses graph. The work presented here is a further step toward a
semantic representation. We aim at detecting the changes in the i AT ; .
structural properties of the scene during navigation. Structural PLO A )
properties are estimated online using a global descriptor relying TR \
on spherical harmonics which are particularly well-fitted to o L ; 5
capture properties in spherical views. A change-point detection
algorithm based on a statistical Neyman-Pearson test allows us
to find optimal transitions between topological places. Results
are presented and discussed both for indoors and outdoors
experiments.
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[. INTRODUCTION )

Navigating in large scale, complex and dynamic environ-
ments is a challenging task for autonomous mobile robots.
Reliable representations able to capture metric, topoédgi

and semantic aspects of the scene have to be built for sugsherical views are related by 6dof poses graph estimated
porting path planing and real time motion control algorithm using a direct multi-views registration technique [12].
[14]. It is usual to define three levels of representation as

illustrated in fig. 1. Metric representation is used at the
control level in the design of trajectory tracking algonith

[4]. Topological representation captures the environment
accessibility properties in a graph structure and provies
first level of abstraction allowing complex navigation task
in large scale environments [21]. Semantic representation
consists in adding information about the places repredente
by nodes in the graph used at the topological level. The
semantic information can be basically the name of a place
[16] or its main characteristic such as office or corridor][24
The added information can also refer to objects presence or
other kind of information linked to the place. This level thvi

a higher degree of abstraction, allows us to specify context
based navigation tasks in terms of queries [7].

In [11], we addressed metric and topological representa-
tion levels thanks to a multi-cameras system onboard a man-
driven car which allows building of dense visual maps of  Fig- 2. Example of spherical view (Inria Campus Dataset).
large scale 3D environments. As in Google Street View [23],
the map is composed of a set of locally accurate spherical The work presented here is a further step toward a

panoramas (fig. 2) built online along the car trajectory. Th&€mantic representation of the scene. We aim at detecting
changes in the scene structural properties (such as texture
1 INRIA Sophia Antipolis - Mediterrake, 2004 route appearance, frequency and orientation of the straighs,line
??Sr < t'—#gir‘;:ssl ast nBaPnE é?’hrio;gff Sophia  Antipolis,  Francecryatures, repeated patterns) during navigatiomplake in
2 ENSTA ParisTech, 32 Boulevard Victor, 75739 Paris, FrancdhiS WOrk, is therefore associated to a segment of the robot

david.filliat@nsta-paristech.fr trajectory where the scene is sufficiently self simila, has

Fig. 1. Navigation-based representation




the same structural properties extracted from the spHerica
views. The main advantage of this definition is that it fits (—1)™(1 — 22)™/2 gi+m l
both to indoor and outdoor environments in order to partitio P (z) = S]] pE (@*-1)" (3

the topological graph in terms of meaningful places. Such
polog grap gni b Every function defined on the sphere surface can be

partition also provides advantages such as increasing Ioog di f spherical h . follows:
closure algorithms efficiency [10] and can be viewed as 46¢0MPosed in a sum of spherical harmonics as follows:

first step to environment semantic labeling. o
In [3], we presented preliminary results where the struc- f= Z Z Y
tural properties were estimated using a global descriptor

called GIST specially modified to deal with spherical images The f;™ coefficients are obtained from a functighnby:
Given our place definition, GIST appears more adapted than

local descriptors like SIFT used in [17] and [25]. Without m :/ F)Y,™(n)dn (5)
additional constraints, local descriptors have difficutty neS?

represent the environment global consistency. Since it has|s fim =o0foralll > L, fis said to be band limited
been introduced [15], GIST has been used multiple time igith a bandwidthZ. The coefficients sef;™ is called the

image-based learning algorithms and in robotics for placgpherical Fourier transform or the spectrum fofThe first
recognition and loop closure detection [13] or for indoor refiye spherical harmonics bands are displayed in fig. 3.

4

leN |m|<1

gion classification [18]. Despite these good propertie§1GI
is not well adapted to encompass the spherical represamtati
richness because sphere spatial periodicity is partiaky. | =0 ‘ ‘
In this paper, we propose a novel representation relying
on spherical harmonics which are particularly well-fitted t =1 ~° t ‘“0
capture the structural properties in spherical views. s S
In the following, section 2 presents the representation =2 )
based on spherical harmonics. Section 3 is devoted to the * ‘ ’ * o€
detection of statistical changes in the scene structug-pr =3 ”°*° ‘ . ’ '* ® ”°*°
erties. Experimental results for indoor and outdoor emviro
ments are provided in section 4. The proposed method is l=4qp'*° *' ' - ’ - * . *'*'”'
discussed in section 5.

Il. SPHERICAL HARMONICS Fig. 3. The first five spherical harmonics bands are preserstemsigned

. . - . spherical functions from the origin and by color on the upihere. Green
Spherlcal harmonics are similar to the 2D Fourier trar"ﬁ:’orresponds to positive values and red to negative val&esm([8])

form but defined on the sphere surface and take complete
advantage of the spherical representation. Noticeably, th Due to the integralf™ coefficients exact computation can

complete spatial periodicity of the sphere is integrated 'nﬁ?e very time consuming. While it exists the fast Fourier trans

the spherl_cal harmomcg computatlc_)n. They _have alrea er,there exists a fast method to compute those coeffiient
shown their usefulness in the domain of robotics for local:

o . : ) he M lo i i |
ization [5] and for visual odometry [9]. Spherical harmanic based on the Monte Carlo integration, precomputed tables

. ! .~ and the properties of the associated Legendre polynomials.
will be used here to define a new scene structure descrlptq,rl,lis method is widely used in computer graphics for real-

A. Definition time lighting rendering. Further details can be found in [8]

In this paper, we only detail the application of spherical - gpherical harmonics as environment structure desaiipti
harmonics to our problem. Further mathematical details

about spherical harmonics can be found in [2], [1], [8].
The unit spheres? included inR3 is parametrized using
spherical coordinates. An elemeptbof S? is written:

Assuming that environment structure information is con-
tained in the spherical image frequencies, pixel integsiti
can be chosen as the samplgs;) values of the function
f. Spherical harmonics being a frequency description of the

_ . : . T spherical image, we propose to directly use the spectrum as
= 0 0 1
g [COS( Jsin(@), sin(6)sin(9), COS(¢)] @ a structure descriptor. Frequency information correspdod

The spherical harmonics are defined by: band numbei and orientation information to parameter
(the higher! is, the higher the frequency is, see fig. 3). The
20+ 1(—m)! spectrum coefficients’/” are stacked into a vector which

Y™ (n) = _p/™ (cos(¢))e’™? (2) constitutes the global structure descriptor.

) The number of bands used is an important parameter. In
with [ € N and |m| < [ where! is the band number the case of the 2D discrete Fourier transform, the spectrum

corresponding to a frequency andis an orientation param- size is constrained by the image size. In the case of the spher

eter.P/™ corresponds to the associated Legendre polynomiaisal harmonics, nothing constraints the required number of

with z € [-1, 1] such that: bands. The number of coefficients follows a square function



of the number of bands. The descriptor sizeSjs= /2. In  maximum of dissimilarity betweerf, and f,. ¢ being the
fig.3,1 = 5 and we havd? = 25 coefficients. current instant¢. will be eithert leading to no change-point

In computer graphics, only three bands are used due to detection orr which is the exact change-point instant.
exponential attenuation in bands of higher frequencies [8] This algorithm gives the exact change-point instants
For our study, there is no such attenuation and it is handhereas it needs a delay to evaluate the probability density
to determine the required number of bands. In [5], precisiinction f;. The computation time is very low for a small
localization is achieved using only the first five bands. Whileé but increases rapidly with the number of observations.
we seek a global description of the environment, the first fivBlo assertions are done concerniffy and the probability
bands should guarantee a sufficient information. density functionsf, and f; always need to be estimated for
all the change-points tested over all observations.

Ill. CHANGE-POINT DETECTION ALGORITHM Let's assume the density functions under each hypothesis,

A. Hypotheses and assumptions i.e. fo and f, follow a multivariate normal distribution:

According to our place definition as a set of positions
from which environment structure is similar, we aim to fo ~ N (uo, X0 Ji~ N(p,%0) (20)
detect the significant changes in the global descriptorevalu o o )
along the sequence of spherical views. This can be viewed”S €ach hypothesis is characteristic of one topological
as novelty detection as used in [19] or [20] for vehicld?lace, den§|tyfunct|ons characterize the structuralmpetars
safeguarding or as change-point detection as used in [191‘] topological places. The mean vector represents the most

and [16] for landmark detection and place labelling. Changdfobable structural parameters set. The covariance matrix
point detection is based on hypothesis testing: represents the parameters distribution tolerance insiopa

« Null hypothesisH, is the normal situation in which the logical place. Two matters arise concerning the distringi

observed parameters stick to the previous model. paramet('er's estimation: )
. Alternate hypothesi#/; is the alternate situation where ¢ Sufficient number of samples are necessary to insure

parameters vary from the previous model. well conditioned density function estimation and in par-
Change-point detection algorithm evaluates the monitored ticular the covariance matrix semi-definite positiveness

parameters and determines when a switch occurs from hy- prope_rty. . S : . .
pothesisH, to hypothesisi, . « Density function estimation requires identically and

Let us assume a set of independent input observations:

X17X27"'7XT717X7'7"’7Xt (6)

Assume that the input observatioAs, ..., X, are inde-
pendent random variables with a probability density fuorcti
fo(X;), while the observation ., ... are independent ran-

independently distributed sampléd.€). Independence

is assumed due to independent input observations as-
sumption from Neyman-Pearson lemma. Approximate
constant distance interval gathering (constant time gath-
ering with minimal distance between samples condition)
allows approximate identical distribution. This simple
method avoids accumulation at low or null speed.

dom variables with a probability density functiofy (X;). ) .
Let us assume thaf, is the probability density function B Online application

under hypothesidi, and f; under H;. Suppose we have As explained previously, the algorithm rapidly becomes
X1, ..., X; observations up to an instanceand we test the time consuming and only one change-point detection is
above hypotheses for these observations. The likelihadom rapossible for a complete set of input observations. In order t
(eq. 7) indicates whether the valdg mostly belongs tof;  alleviate those limitations, we introduce a fixed size slidi

or fo. window over the signal made up of the input observations
6 — lnfl(Xj) @) (fig. 4). First half of the sliding window corresponds to
! fo(X;) normal hypothesisH, while second half corresponds to

The Neyman-Pearson lemma conducting a simple hypothe&iéémate hypothesisi,. Change-point hypothesis is then

test, as used in [22], defines the uniformly most powerful tedeSted only at the sliding window center. Each time the robot
as the one rejecting the null hypothegis whenever: acquires a new observation, the signal is expanded with a new
input. The sliding window always encompasses ffidast

input observations. Older observations, already ana)yeed
forgotten. We finally obtain an approximation (due to non
complete signal observation) of the exact change-point.
This simple trick brings many advantages. The most
obvious ones are constant time change-point detection and

R CONS d . =
5= 2 gy T2 ®)

j=r

The above equation yields to the simple hypothesis test:

t
tc:min{t:argmaXZlnfl(Xj) > v} (9) dynamic signal analysis leading to an inline algorithm.
osr<t ;= fo(X;) Moreover, one of the most important is multiple hypothesis
wherev is the threshold controlling the detection sensitivity.tes“n?r; This Ia}st or:e g}IIO\t/vst:]o have n"lnal:lwy changlgae—pomts
arg max Z;,T Zn;IE?% > v returns the instant giving the over the signal contranly to the onginal Neyman-Fearson
0<r<t = o( A algorithm formulation.
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Fig. 4. Sliding window used in the estimation process.

is a reasonable trade-off between minimal environment size
Considering hypotheses about the density functions arfidr structural parameters extraction and minimal detdetab
the sliding window trick, the Neyman-Pearson final equatiotopological place. For environments changing slowly, the

results in: window can be larger.
N 15| IV. EXPERIMENTAL RESULTS
Sr Zzln (|ZO|> + This section presents experimental results for topoldgica
N ! segmentation in indoor and outdoor environments. Testing
T (S o+l BT — 20 25 ) + different kind of environment aims to show the method is
. generic and robust to context change. Using various kind of
5 Z (XJT (Zo Loy 1) Xj) (11) chamera for sphenc_al view acqwsmon.furthermore _hlgmisg
=i N2 the generic spherical concept. The indoor experiment was

) _ realized in the Robotic Hall at INRIA Sophia Antipolis using
The equation contains three terms: a Neobotix MP-500 platform equipped with a paracatadiop-
« First term is linked to distribution spreads. The term igyic camera. In the outdoor experiment, a man-driven vehicl
canceled for equal spreads. equipped with the multi-cameras system described in [11]
« Second term approximately corresponds (because of ifjas used. The trajectory was about 600 meters across the
possible factorization) to the squared difference betwegrr|aA Sophia Antipolis research center.
distribution means. The whole code is written in Matlab without being specif-
« Last term is the sum of the squared observationga|ly optimized. Spherical harmonics spectrum compatati
weighted by the spread difference between the densipgquires 290ms using the implementation described above
functions. The term is canceled for equal spreads.  (the sphere is sampled with 62500 samples uniformly dis-
As stated before, we can observe that the equation comfibuted). The change-point detection algorithm runs im0
putes a value linked to the difference between two distribuFhe complete algorithm then runs inline in about 300ms
tions. The greater the difference is, the higher the value igacquisition up to 3.3Hz). However, the spherical harmsnic
In our case, this leads to change-point detection indigadin spectrum code is highly parallelizable and might take great
change in the structural parameters, which corresponds tg@vantage of a C/C++ parallel implementation.
transition between two topological places. ) )

An example of signal obtained with equation 11, made uf- Indoor experiment analysis
of the change-point values, is displayed in fig. 5. The signal Figure 6 presents the robot trajectory and the detected
is filtered in the time domain with a simple Gaussian filtechange-points. It is first interesting to notice that all rfpex
(parametersy = 0, o = N/10) in order to reduce the signal points correspond to important structure variations such a
noise. Peak detection mechanism relies on peak magnitudeorsteps or room volume variationg; passing from a nook
relatively to the minima flanking the peak. Thresholdt to a more open space). The trajectory in the wide space is
0.4) is then used on the peak amplitude and not on theery little segmented.
peak maximum value. This results in a peak detection less The easiest way to validate a topological place segmen-
sensitive to noise. tation algorithm is to consider the doorsteps case. This cas

Considering the density function estimation constraints illustrated by images 2680, 3480, 5328, 10455, 11954

aforementioned, the sliding window has to be sufficienthand 12322 where change-points are precisely localized at
large for a correct estimation. For the experiments, the sizloorsteps. The examples illustrated by images 996, 1401 and
is of 80 observations. As the minimal distance between twd044 correspond to room volume variations. Image 996 and
samples is 0.015m, the sliding window spatial size is 1.2ni401 show when the robot comes from a narrow space to
Each density function is then estimated over a distance afwider space. Image 2044 shows the opposite case when
0.6m. These values satisfy the requisites for density estiméne robot leaves a wide environment to enter a quite narrow
tion but has consequences on the experiment as two chang&ce similar to a corridor. Images 6376 and 6624 correspond
points cannot be closer than 0.6m for detection. This digtanto the detection of changes in the objects present in the



Cluttered area

Fig. 6. Indoor trajectory inside the Robotic Hall. Detectdthnge-points are marked with red crosses.

environment. The images (9516, 11231) define the spad@3). A change-point, image 842, occurs when the vehicle
between the wall and the electric vehicles. crosses under a sidewalk and discovers a new area.

All those aforementioned change-points are relevant and
are very significant considering the topological place defi- . )
nition we gave. There are however some false and missingVe have presented an new method to cluster images into
change-points. Concerning the false change-points, Oneqgnlﬂ_cant topological places. A place is de_:flned as a segmen
illustrated by image 8940 in the upper left office. Thisof trajectory where the _sFructuraI properties extractennfr
change-point is detected while the robot was turning arpung@Pherical views are sufficiently self similar. Place chtgac
we suppose the problem is due to strong illumination variZation is made by a global descriptor given by the spherical
ations in the images caused by the automatic shutter of tR@rmonics spectrum. The segmentation algorithm relies on

camera. Conversely, a change-point which should be detect@ efficient change-point detection based on multi-hypmithe
is missing at the entrance of the same office. testing and allowing constant time computation. Resuks ar

very satisfying for both indoor and outdoor environments.
While the results are very good, the algorithm still shows
some limitations. As descriptors are based on appearance
The results are shown in fig. 7. The parking areas afeequencies, when the robot approaches walls, frequencies
clearly identified in (630, 842) and in (1035,1450). In thebecome lower and a new topological place is defined.
last case, it is interesting to notice that this parking isglo  For future work, we plan to improve our algorithm robust-
enough and has a significant curve to prevent mutually seeess to illumination condition following [6] and its rotafi
features from the beginning and the end of the parking. Thiadependence. The algorithm presents a certain robusimess
demonstrates that detection is linked to the intrinsiccéte  rotation due to the sliding window reducing the environment
associated to the parking area and not to the observatisansed, but the spherical harmonics spectrum is not indepen
of same objects along the sequence of views. This behavident to any rotation. De-rotation mechanism can be applied
perfectly fits what we aimed by giving an original topolodica as rotations can be estimated from spectra.
place definition. Globally, the changes between the builelin  In a longer term, the segmentation algorithm could be
and the vegetation areas are also well detected (229, 3Zdupled with a loop closure detection algorithm in order

V. CONCLUSION AND FUTURE WORK

B. Outdoor experiment analysis



Fig. 7.

Outdoor experiment in the INRIA campus with the spteriarmonics feature. Detected change-points are markedblighcrosses.

to improve change-point localization stability and with g12] M. Meilland, A.l. Comport, and P. Rives. Dense visual magp
semantic level by adding place classification and labelling
Finally, experiments with drones could test rotation inelep
dence and validate the generic approach elaborated.
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