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1. Introduction

Many important phenomena occurring in polycrystalline mate-
rials depend on the mechanical fields that develop at the scale of
the microstructure. One can cite, for example, fatigue, rupture,
plasticity-environment interactions (stress corrosion cracking),
microtexture development at large strains or the nucleation of
phase transformations. It is generally recognized that the local
mechanical fields depend on several microstructural factors: the
single crystal behavior, the distribution of grain orientations,
and the polycrystal morphology. While the first two factors
mainly control the global behaviors, for example the macroscopic
stress–strain response or deformation texture development, a
representative polycrystal morphology is generally required for
the prediction of local phenomena.

In the last decade, several investigations have been reported on
the 3D experimental characterization of real polycrystal morphol-
ogies [1–3]. They have provided important information such as the
distribution of grain size, the number of first neighbors, and grain
boundary curvatures. Because the methods are lengthy and expen-
sive, they have been applied only to a few, relatively small samples,
made of 102 to 103 grains.
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In parallel, computational methods, notably the finite element
method (FEM), have been developed to simulate the mechanical
behavior of virtual polycrystals (see for example [4–7]). Many of
the studies based on 3D polycrystals have defined grains using reg-
ular morphologies that are straightforward to mesh, such as cubes,
dodecahedra or truncated octahedra [8–11]. The mechanical fields
that develop in the microstructure nevertheless appear very com-
plex. These results motivate not only the use of polycrystals with
larger numbers of grains, but also more representative grain mor-
phologies. Notably, an important step is to account for the inherent
variability in grain size and shape. Numerous applications can take
advantage of such improvements. Local phenomena such as crack
instantiation and propagation in brittle materials or the nucleation
of phase transformations depend on the maxima of the mechanical
fields. The size of the statistically representative volume element
needed for their prediction (in terms of the number of grains) is
much larger than for determining average macroscopic properties.
Such is also the case for the prediction of stress and strain localiza-
tion patterns. In particular, determining correct characteristics of
plastic strain bands will require of the order of 104 grains, because
such bands can expand over several grains in a given direction [12].
Similarly, low crystal-symmetry or multiphase materials, which
inherently show large variabilities of the mechanical fields, require
large numbers of grains for their global and local properties to be
determined accurately [13–15]. These realities argue for even lar-
ger virtual polycrystals as well as ones that are more representa-
tive of the features of the microstructures.



Several authors have proposed analytical and numerical meth-
ods to construct random polycrystal morphologies. These methods
can be rooted in the basic principles of phase transformations
(leading in some cases to Voronoi tessellations) [6,16], physi-
cally-driven simulations of annealing or recrystallization [17–19],
or algorithms that attempt to directly reproduce statistical data
coming from experimental characterizations [20]. To simulate
the deformation of such polycrystals, a number of approaches have
been reported that involve representing the microstructure on a
grid, including a finite element method with the mapped meshing
technique [7,14], fast Fourier transforms [21], and a level-set
approach [19]. The drawback of such simplified meshing schemes
is that the interfaces between grains (grain boundaries, triple lines
and quadruple points) are poorly described. The resulting strain
and stress fields may be affected, at least in the immediate vicinity
of the interfacial features. This can lead to strong artefacts in the
prediction of grain-scale surface roughening [22], grain boundary
sliding in nanocrystalline materials [23] or in local micromechanical
approaches of fracture in bainite [24]. Furthermore, more complex
applications, such as stress corrosion cracking associated with the
diffusion of species at grain boundaries [25] cannot be addressed
adequately without a conforming mesh. Direct, free meshing
algorithms (also called ‘‘unstructured meshing’’) in principle can
render a conforming mesh for any polycrystal morphology, but
doing so have proven to be difficult to implement for random
morphologies.

Among randomly generated morphologies, Voronoi tessella-
tions have the advantages of being defined analytically and having
straight triple lines and flat grain boundaries [26]. Voronoi tessel-
lations are sometimes considered as coarse models of microstruc-
tures [2], because they quite significantly underestimate the
variability in grain size and overestimate the number of grain first
neighbors. (It will be shown in Section 2.1.2 that this can be com-
pensated by correction schemes.) Still, Voronoi tessellations show
important variabilities in grain size and shape which are represen-
tative of real polycrystal morphologies, but that make them partic-
ularly challenging to mesh with good-quality elements.
Consequently, free meshing of Voronoi tessellations has been
applied almost exclusively to relatively small polycrystals (<103

grains) and used primarily in the context of small deformation
studies ([1%) [27,14,25,28,24]. In such configurations, element
quality is not as critical an issue as when the number of grains
becomes large or deformation severe.

In this article, a methodology is presented for generating viable
meshes for ‘‘large-scale’’ Voronoi tessellations, comprising several
thousand of grains. The aim is to obtain meshes that are comprised
of high-quality elements and are without regions that are overly or
inadequately resolved. Specifically, the elements must be equiaxed
in shape and uniform in size. Inevitable issues that affect the mesh-
ing of large-scale Voronoi tessellations are outlined in Section 2, to-
gether with methods to resolve these issues. The resulting meshes
are suitable for small-strain as well as large-strain studies (e ’ 0.5).
A remeshing strategy is also presented, which facilitates reaching
strains of between 1 and 2. The robustness of the random polycrys-
tal generation and meshing methodology is illustrated by their
application to the prediction of deformation textures and micro-
textures of an aluminium alloy (Section 3).
2. Polycrystal generation

The generation of a polycrystal mesh involves at least two
steps: (i) the generation of the polycrystal morphology, described
by sets of points, lines, surfaces and volumes, and (ii) the free
meshing of the morphology. An additional step, the ‘‘remeshing’’,
offers the possibility to reach higher deformations by reconstructing
2

a high-quality mesh from a deformed mesh comprising poor-quality
elements.

2.1. Polycrystal morphology

2.1.1. Voronoi tessellation
Mathematically, a Voronoi tessellation of an n-D space is a col-

lection of n-D entities that fills the space with no overlaps and no
gaps. These entities are polyhedra and are formally defined as
zones of influence of a particular set of points, corresponding to
their centres. Being given (i) a spatial domain D 2 Rn, (ii) a set of
points E = {Gi(xi)} within D, and (iii) a norm d(�,�), every point Gi

is associated a Voronoi polyhedron Ci as follows,

Ci ¼ fPðxÞ 2 DjdðP;GiÞ < dðP;GjÞ 8j–ig; ð1Þ

In the present work, the dimension n is equal to 3, the norm d is ta-
ken as the Euclidean distance, and the set of points E is considered
to be randomly distributed. In such a case, the tessellations are
sometimes referred to as ‘‘Poisson–Voronoi tessellations’’. By con-
struction, a Voronoi polyhedron is convex; hence the intersection
of two Voronoi polyhedra is a plane, called ‘‘tessellation face’’, the
intersection of three Voronoi polyhedra is a straight line, called
‘‘tessellation edge’’, and the intersection of four Voronoi polyhedra
is a point, called ‘‘tessellation vertex’’. From a physical point of view,
the generation of Voronoi tessellations corresponds to a process of
solidification or recrystallization where all grains nucleate at the
same time and grow isotropically at the same rate. An example of
a Voronoi tessellation is given in Fig. 1. Voronoi tessellations qual-
itatively reproduce the first-order properties of real polycrystal
morphologies: the distribution of grain size and the number of first
neighbors, as illustrated in Fig. 2.

The free-meshing technique draws on other statistical proper-
ties: the edge length and face diameter distributions, provided in
Fig. 3. The distributions show that Voronoi tessellations include
large numbers of relatively small entities (edges and faces). Such
geometrical details are particularly problematic for meshing be-
cause their lengths can be smaller than the target characteristic
length of the mesh elements. This results in a mesh that is overly
refined in the vicinity of those details relative to the desired target
(illustrations will be provided in Fig. 8). Without such refinement,
however, element quality suffers. Thus, a high degree of refine-
ment is necessary to assure convergence even though increased
refinement has little if any impact on the predictions. For classical
configurations, the mesh overrefinements can increase the total
number of elements by a factor of 2, and as a consequence signif-
icantly increase the computational resources needed (see Fig. 8).

2.1.2. Regularization
The Voronoi tessellations must be modified to be suitable for a

proper free meshing. In this section, an original approach called
‘‘regularization’’ is proposed, which consists in removing the small
entities (edges and faces). This idea has been suggested by Nygårds
and Gudmundson in 2002 [27].

The main principle of the geometry regularization is illustrated
in Fig. 4. It consists of removing the ‘‘small edges’’, whose length is
below a given threshold value. That corresponds to the maximum
length needed to avoid an overly refined mesh. The small edges of
a 9-grain polycrystal are highlighted on Fig. 4 (a). In the present
case, the threshold limit is set to 0.13 for grains of unit volume.
Deleting a small edge consists of replacing it and its two connected
vertices by a single vertex. This leads to topological modifications
of the tessellation: more than four grains may intersect at a single
vertex and more than three faces may intersect at a single edge.
Moreover, replacing two vertices by a single one results in distor-
tions of the faces to which it belongs: the new vertex has a position



Fig. 1. A 3000-grain Voronoi tessellation. (a) All grains are shown, (b) only the grains whose shape is not affected by the cubic domain boundary are shown (in this article, all
statistics are provided for such grains).

Fig. 2. Main statistics of polycrystal morphologies. (a) Distribution of grain size, (b) distribution of the number of grain faces. R is the equivalent sphere radius. The arrows
denote Dirac-type distributions.

Fig. 3. Particular statistics of Voronoi tessellations. (a) Edge lengths, (b) face diameters. The data are given for grains of unit volume on average. The face diameter is based on
the equivalent circle. Note the large number of small entities. Data collected on 105 grains.
different from those of its two parent vertices, and as a conse-
quence does not lie within the initial planes of its faces. Thus, such
a face has vertices and edges that are not within its initial plane
and that actually do not have any common plane. The face bound-
ary is still well defined from its set of straight edges, but its interior
is not and requires modification (see Fig. 4).
3

The different steps involved in an edge deletion are designed to
minimize the local geometric distortions. The steps are:

2.1.2.1. New vertex positioning. The new vertex is positioned so as
to minimize the distances to the initial face planes. The following
quantity is minimized (least-square criterion):



Fig. 4. Voronoi tessellation regularization: (a) original Voronoi tessellation and (b) equivalent regularized Voronoi tessellation. The small edges are surrounded and the face
interpolations triangles are marked in gray. Case of a 9-grain polycrystal.
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXnf

i¼1

d2
i

vuut ; ð2Þ

where di is the distance from the vertex to the initial plane of face i,
and nf the number of faces of the vertex.

2.1.2.2. New vertex face interpolation. Each vertex face is divided
into a set of triangles, which are based on the face edges, and a
‘‘master’’ point, which can be for example the face barycentre.
The triangles are shown through gray lines on Fig. 4 (b). The face
distortion is quantified by the maximum angle between the nor-
mals of any two of the triangular parts of the face and is referred
to as the face flatness fault, f. This angle must remain relatively
small to minimize the grain shape changes and can vary depending
on the position of the master point. In practice, several positions
are considered: the face barycentre and the face vertices. The posi-
tion for which the face flatness fault is the smallest is retained.

The geometry distortion resulting from the edge deletion is
then quantified by the maximum of the flatness faults of the new
vertex faces. If its value is below a given threshold value (typically
20�), the edge deletion is accepted. In practice, the values fre-
quently are higher than the threshold value when the new vertex
itself belongs to a small edge. In such a case, before the edge dele-
tion is rejected, the deletion process also is applied to the new
vertex small edges. The case having lower distortion is retained.
If the distortion is reduced below the threshold value, the two
edges are deleted. This process is applied to all the small edges,
Fig. 5. Influence of the geometry regularization on the (a) edge length and (b) face diame
On (a), the dotted line denotes the length under which the edges are considered to be ‘‘sm
on average. The face diameter is based on the equivalent circle. Data collected on 105 g
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from the smallest to the largest. As the local configurations may
change, several loops may be applied to delete as many small edges
as possible. This geometry regularization algorithm is also applica-
ble to periodic Voronoi tessellations which are often used as means
to reduce the size of the representative volume element [28,29],
and more particularly when the tessellation is not cut by the
domain boundary [29].

The distributions of edge lengths and face diameters obtained
after geometry regularization are given in Fig. 5. As the allowed
maximum flatness fault is increased, more and more small edges
are deleted, and convergence is observed from a value of about
20�. It should also be noted that small faces are deleted as a conse-
quence of deleting small edges. This can be explained by the fact
that they are mostly made of small edges. An additional change
of the polycrystal morphology concerns the distribution of face
flatness faults (see Fig. 6), which now spread between 0 and 20�
(it should be noted, however, that 90% of them are smaller than
6�). The influence of geometry regularization on the distributions
of grain size and the number of grain faces are illustrated in
Fig. 7 for different values of the maximal length for which an edge
can be deleted (lmax). Grain size is almost unchanged by geometry
regularization. On the other hand, the distribution of the number of
grain faces is significantly modified. For a value of lmax = 0.13 for
grains of unit volume (case of Figs. 4 and 5), the average number
of faces per grain, which is also the number of first neighbors, is de-
creased from 15.1 to 13.7 (the average number of edges per grain is
decreased from 39.1 to 31.8). As lmax increases, the number of grain
faces decreases. For lmax = 0.26, the average number of grain faces is
ter distributions, for increasing values of the maximum allowed flatness faults, fmax.
all’’ and so are designated for deletion. The data are given for grains of unit volume

rains.



Fig. 6. Influence of the geometry regularization on the face flatness faults, for a
maximum allowed value of fmax = 20�. Note that most of the angles are much
smaller. Data collected on 105 grains (all faces).
12.3, which provides a good agreement with experimental values
(Fig. 2).

2.2. Meshing strategies

Voronoi tessellations (in their standard or regularized forms)
show an infinite variety of grain morphologies; a grain has a un-
ique shape, with between 4 and 36 faces and each face can have
between 3 and 16 edges [30]. Moreover, in some simulation config-
urations (for example [12]), one may want to use relatively few
elements per grain, which highly constraints the meshing process.
Generating a mesh of high-quality elements of sizes as close as
possible to a target value requires well-defined and robust algo-
rithms, which are detailed in the present section.

2.2.1. Meshing
The meshing approach is based on a widely-utilized bottom-up

flow that consists in meshing the 0D, 1D, 2D, and 3D entities (the
tessellation vertices, edges, faces, and polyhedra), successively.
The n-D mesh generation is constrained by the (n � 1)-D mesh
and the element lengths are interpolated from it. Here, we also
explicitly consider the target mesh characteristic length to
ensure mesh size homogeneity to the greatest extent possible.
Each entity is meshed independently of the other entities of same
dimension.

For a given polycrystal morphology, two quantities are consid-
ered for the meshing: the target characteristic length, cl, and a tol-
erance for its spatial evolution, called the progression factor, pl.
This value is the maximum ratio between the lengths of two
Fig. 7. Influence of the geometry regularization on the (a) distribution of grain size and (
length under which an edge is designated for deletion (with fmax = 20�). l0 is the value of lm
average values are 15.1, 13.7, 12.3, 11.1 and 10.2, respectively. Data collected on 105 gr
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adjacent elements and is used for the 0D and 1D meshings. The
meshing is applied as follow (examples are shown in Fig. 8):

2.2.1.1. 0D meshing. Each vertex is given a 0D element, which con-
tains only one node. The node is attributed a characteristic length
as follows: if the vertex does not have small edges, the node char-
acteristic length takes the value of cl, otherwise, it is set to the
length of the smallest edge multiplied by pl.

2.2.1.2. 1D meshing. Each edge is meshed into 1D elements. The
element lengths are derived from the value at the two vertices
and cl. If the vertex characteristic lengths are equal to cl, the edge
is divided into elements of length cl. If they are smaller than cl, then
the element lengths start from these values at the vertices and are
progressively increased by a factor pl until they reach cl (in the
body of the edge). Then, each new node is assigned a characteristic
length which will be used for 2D meshing, and is equal to the
length of its longest element.

2.2.1.3. 2D and 3D meshings. Each face is meshed into triangle ele-
ments. As for the 1D meshing, the element lengths are derived
from the characteristic lengths of the node of the boundary mesh,
together with the target value cl. The same process is applied for
the 3D meshing, each polyhedron being discretized into tetrahe-
dral elements. For both 2D and 3D meshing, external meshing li-
braries are used: the Gmsh and Netgen packages [31,32]. Gmsh
has been used previously for crystal plasticity studies [33]. The
main principle of the employed algorithms is to produce a mesh
with elements of as high quality as possible and of size as close
as possible to the target size, cl. Further details can be found in
Ref. [31].

In the case of a regularized tessellation, the faces are generally
not defined in a single plane, which is, however, mandatory for
2D meshing. A preliminary step is thus to project orthogonally
such faces in a plane. For each face, the plane normal is defined as,

n ¼
Pnt

i¼1Aini

j
Pnt

i¼1Ainij
; ð3Þ

where Ai and ni are the area and normal of the ith triangle part of
the face. nt is the number of triangle parts. jxj denotes the norm
of x. The face is then meshed in that plane. The last step is to project
the mesh back along the same direction, n, onto the face interpola-
tion triangles. It should be noted that, although the interpolation
triangles could be used to facilitate the meshing process, this would
introduce new 1D mesh constraints, which in turn would decrease
element quality.
b) distribution of number of grain faces. R is the equivalent sphere radius. lmax is the
ax considered in this article and is equal to 0.13 for grains of unit volume. For (b), the
ains.



Fig. 8. An illustration of the effect of geometry regularization and meshing properties. (a) Standard Voronoi tessellation meshed with pl ?1, (b) standard Voronoi
tessellation with pl = 1.5, (c) regularized Voronoi tessellation with pl = 1.5. The zones of interest are marked with circles. Note the poor-quality elements in (a) and the mesh
overrefinements in (b) near the small edges; (c) shows high-quality elements and no mesh overrefinements.

Fig. 9. Mesh quality: (a–b) element qualities and (c–d) relative element sizes for different meshing strategies. Data collected on 105 grains.
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Fig. 10. Influence of the multimeshing strategy on mesh quality. Distributions of O in (a) linear and (b) logarithmic scales. Mesher 1 is the Netgen mesher + the Gmsh
optimization; mesher 2 is the Netgen mesher + both the Netgen and Gmsh optimizations. Data collected on 105 grains.
In this study and unless stated otherwise, the value of cl is held
constant and equal to 0.25 for grains of unit volume (which leads
to about 600 elements per grain for regularized morphologies).
We focus on the effect of the progression factor, pl, and the geom-
etry regularization, as illustrated in Fig. 8. As stated previously, for
standard Voronoi tessellations, high values of pl will lead to a mesh
quite homogeneous in size, but with elements of low quality near
the small edges (Fig. 8 (a)). In contrast, a typical value of pl of 1.5–2
avoids poor-quality elements, but severely over-refines the mesh
around the small edges (Fig. 8 (b)). The improvements associated
to regularized Voronoi tessellations are illustrated on Fig. 8 (c).
With a proper value of pl (1.5–2), the mesh does not possess
poor-quality elements nor is it overly refined locally. The corre-
sponding statistical data on element quality and element size are
given in Fig. 9. In this article, the element quality is quantified by
the radius ratio, a common measure that goes from 0 for poor-
quality (flat or elongated) elements to 1 for high-quality (equilat-
eral) elements [31]. The element size is quantified by the average
of the element edge lengths. It is shown that the geometry regular-
ization results in a much better mesh, in terms of both element
quality and element size distributions. It should be noted that, on
Fig. 9, both linear and logarithmic scales are provided for the dis-
tributions. Although most of the elements are of high quality
(Fig. 9 (a)), there are some elements of very poor quality (Fig. 9
(b)). This is important since such elements limit the level of defor-
mation that can be applied to the mesh before the first degenerate
element appears.

2.2.2. Multimeshing
The infinite variety of grain shapes provided by Voronoi tessel-

lations makes them challenging for the meshing software packages
to provide high-quality meshes in a systematic way. Moreover, in
some configurations, a given meshing software package simply
may fail. Even for regularized Voronoi tessellations, a single mesh-
ing algorithm can return some number of poor-quality elements,
as can be seen on Fig. 9. Free meshing methods typically involve
two steps: a preliminary meshing and mesh optimization, during
which topological operations are applied to improve element qual-
ity [31,32,34,35]. As pointed out in Ref. [31], the topological oper-
ations are well-known (element swapping and smoothing), but
there is no known best way to combine them. From the user point
of view, several algorithms and software packages are available,
each one being able to provide the best-quality mesh in specific
situations.

The proposed approach, called multimeshing, consists of using
simultaneously several meshing algorithms. It is applied to the
2D and 3D meshings in similar ways, so only the 3D case will be
detailed in the following. The principle is that, for each polyhedron
7

of the tessellation, a mesh is generated from each meshing algo-
rithm and the best one is retained. This has the benefit of generat-
ing the best mesh for each polyhedron and optimizes the
polycrystal mesh quality subject to the limitations of the suite of
meshing codes.

To apply this method, the quality of a polyhedron mesh must be
quantified. A criterion, O, is introduced to account for both the ele-
ment distortions and the element sizes,

O ¼ f ðOdis;OsizeÞ: ð4Þ

We choose a function of the form:

O ¼ O1�a
dis O

a
size ð5Þ

with a 2 [0,1]. Low values of a favor low element distortions while
high values favor high element size homogeneity. A value of a = 0.2
provides an effective balance.

For Odis, we choose a function of the form,

Odis ¼
Yne

i¼1

ri where if qi < 1; ri ¼ q
exp

qb
i

qb
i
�1

� �
i with b ¼ 0:1;

if qi ¼ 1; ri ¼ 1;

8><
>:

ð6Þ

where qi is the radius ratio of element i and ne is the number of ele-
ments. Odis is defined on the interval [0,1], where high values mean
low element distortions. This expression of ri produces values very
close to 1 for acceptable values of qi (qi 2 [0.1,1]) and small values if
the mesh includes poor-quality elements (low qi). The multiplica-
tive form of Odis penalizes a mesh more heavily as the number of
poor-quality elements accumulates.

For Osize, we choose a function of the form,

Osize ¼
1
ne

Xne

i¼1

mi

 !3

where
if li < cl; mi ¼ li=cl;

if li P cl; mi ¼ cl=li;

�
ð7Þ

where li is the equivalent length of element i (taken as the average
of the element edge lengths). Osize is defined on the interval [0,1],
where high values mean high element size homogeneity. The effect
of multimeshing on O is illustrated on Fig. 10. Two meshing algo-
rithms are used: the Netgen mesher [32] + the Gmsh optimization
[31] and the Netgen mesher + both the Netgen and Gmsh optimiza-
tions (these combinations are also considered in Ref. [31]). For con-
venience, they will be considered as two distinct algorithms
(referred to as ‘‘mesher 1’’ and ‘‘mesher 2’’, respectively). From
Fig. 10 and for the considered mesh refinement level, it should be
noticed that mesher 1 provides on average lower values of O than
mesher 2, but also fewer poor-quality elements by nearly an order
of magnitude. In other words, mesher 1 is less efficient on average,



Fig. 11. Influence of the multimeshing strategy on mesh quality. Distributions of the (a–b) element qualities and (c–d) relative element sizes, in linear and logarithmic scales.
Mesher 1 is the Netgen mesher + the Gmsh optimization; mesher 2 is the Netgen mesher + both the Netgen and Gmsh optimizations. Data collected on 105 grains.
but is much more effective for the more problematic cases. The
multimeshing distribution selects the mesher 2 distribution at
high-quality levels and the mesher 1 distribution at low-quality lev-
els and, as a result, provides a final mesh more favorable than the
ones provided by the two meshers taken individually. The effect
of multimeshing on the element quality and size distributions is
illustrated in Fig. 11. As expected, the multimeshing strategy pro-
vides better distributions than those of the meshers taken individ-
ually, which is especially the case at low element quality levels.
These statistical measures indicate that a relatively low number
of poor-quality elements will exist in the final mesh. For example,
the proportion of elements with q < 0.01 is about 1 per million
and the proportion of elements with q < 0.05 is approximately 5–
10 per million. In practice, the resulting meshes are suitable for
large-strain studies of large-scale polycrystals, as will be illustrated
in Section 3. Strains of the order 0.5 can be applied to polycrystals
with 103 or 104 grains (with 106 elements or more), with few
poor-quality elements present to cause early element degeneracies.

2.3. Remeshing

Applications such as industrial forming operations involve
strains of the order 1–2 that are not attainable with a single poly-
crystal mesh. Even with an initial mesh of perfect quality, the glob-
ally imposed shape change together with the additional strain
localizations would result in a degenerated element appearing be-
fore the target strain is attained. The maximum strain that can be
imposed depends on the material properties, the type of deforma-
tion, and the polycrystal morphology, but can reasonably be con-
sidered of the order 0.7 [10]. To reach higher deformations, the
mesh must be reconstructed, which is well-known as ‘‘remeshing’’.
This involves the generation of a new mesh and the transfer of the
nodal and elemental variables of the old, deformed mesh onto the
new mesh (see Fig. 12).
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The generation of a new mesh from an old mesh is based on the
same rules as for the meshing of an undeformed Voronoi tessella-
tion (Section 2.2.1). It is also applied in a bottom-up flow, from the
0D to the 3D meshing, with the same two parameters controlling
the mesh size: cl and pl. The difference is that the edges, faces
and polyhedra are now described by their respective deformed
meshes (the tessellation topology is not changed). The remeshing
is applied as follow:

2.3.1. 0D remeshing
Each vertex is assigned an element which contains one node

only. The node is assigned a characteristic length in the same
way as was done for the 0D meshing.

2.3.2. 1D remeshing
The polycrystal edges no longer are straight, which is manda-

tory for 1D meshing. So, the equivalent straight configuration is
constructed where the nodes are placed according to their curvilin-
ear coordinates in the deformed configuration. The straight config-
uration is meshed and the new mesh is mapped to the initial
configuration through simple geometrical considerations. This en-
sures a proper description of the edge.

2.3.3. 2D and 3D remeshings
The 2D remeshing involves the same steps as the 2D meshing of

non-plane faces: a projection in a mean plane, the meshing in that
plane, and the projection back to the face. The difference is that the
interpolation of the face is not defined by the triangle parts (see
Section 2.2.1), but by the old face mesh. The 3D remeshing is ap-
plied in the same way as the 3D meshing.

For very deformed polycrystals, problematic configurations
sometimes appear, which cannot be handled by the rules defined
previously. First, some faces can be very distorted, so that it is
impossible to project them onto a plane for 2D meshing without



Fig. 12. Remeshing with transport of microstructural variables. Case of a plane strain compression of e = 1: (a) e = 0.4, (b) e = 0.4 after remeshing, (c) e = 0.8, (d) e = 0.8 after
remeshing, (e) e = 1.0. The element colors are related to the critical resolved shear stress ga.
the projection resulting in an inadmissible geometry that is charac-
terized by self-intersections. In these very rare cases, the old face of
the mesh is copied to the new mesh. Second, the solid angle at a
vertex or edge of a polyhedron can become very small as strain in-
creases. In such a case, the element will be nearly flat on reme-
shing, and will degenerate even under small deformations. The
present method cannot resolve this problem, which limits the
maximum attainable deformation to strains between 1 and 2,
depending on the material behavior.

The second step is to transfer the microstructural and mechan-
ical fields from the old mesh onto the new mesh. In a typical large-
strain study, these fields are: the crystal orientations, the critical
shear strengths on the slip systems, the strains and the stresses.
9

For the microstructural and strain variables, a 0-order transport
is applied: each 3D element is assigned the values of the old
element in which its centroid lies. The transport is illustrated in
Fig. 12, and it can be noted that the state variables mapped rela-
tively smoothly. Nodal values can be transfered by determining
the old element in which a node resides, and then calculating its
new value from the old nodal values and the element interpolation
functions.

Such a 0-order transport cannot be applied to the stresses,
because the new configuration would not be in mechanical equilib-
rium. Our alternative approach is to consider that all stresses are
zero after remeshing. They are recomputed upon reloading in the
subsequent finite element simulation, with the new mesh and



Fig. 13. Influence of remeshing on the crystal rotation of single grains, during a plane strain compression of e = 1. (a, b) and (c, d) represent two different grains of the
polycrystal of Fig. 12. (a, c) Infrequent remeshing (every 0.4 strain), (b, d) frequent remeshing (every 0.1 strain). The dots represent the initial orientation, the thick line its
trajectory with strain, and the colour density plots the final orientation spreads.
based on the remapped microstructural variables. From the physi-
cal point of view, this corresponds to a full relaxation of the inter-
nal stresses during the remeshing, which are relative to the elastic
strains. This assumption is motivated by the fact that, for the
considered cases of large deformations of single phase polycrystals,
the elastic strains are very small when compared to their plastic
counterparts. On reloading after remeshing, the crystal stresses
return to a vertex of the yield surface in an amount of strain of typ-
ically 0.002 whereas the total applied amount of plastic strain is
more than two orders of magnitude bigger (about 0.5). The influ-
ence of this assumption is investigated by comparing two configu-
rations that differ by the frequency of remeshing: every 0.4 strain
or every 0.1 strain. This is illustrated on Fig. 13 for the case of two
grains (taken from Fig. 12). No significant differences arise in either
the rotation paths or final orientations. Of the nine grains investi-
gated, the final average orientations differ only by 0.8� in average,
which is small compared to the rotations involved by the plastic
deformation (16� in average). This confirms that, for the case
undertaken of a cubic-symmetry polycrystal, the remeshing
10
strategy and (in particular) the assumption on the stress transfer
are valid for microstructure evolution studies.

2.4. Implementation: the Neper polycrystal generator

The algorithms and numerical methods presented in this article
have been implemented in a free (open-source) software package:
Neper [36]. Neper uses as libraries the Gmsh [31] and Netgen [32]
meshing packages, the libScotch mesh partitioning library [37],
and the Povray ray-tracing software package [38]. Neper can be
used to produce a wide variety of microstructures and mesh prop-
erties. In addition to the standard, cubic tessellations presented
previously in this article, particular definitions of the domain or
geometric transformations of the tessellations make it highly
versatile. For example, it can be used to mesh microstructures
representative of a thin sheet of recrystallized material or to
account for morphological texture, as shown on Fig. 14 (a, b). Using
two-dimensional distributions of polyhedron centres, one can
produce columnar grains, representative of directionally-solidified



Fig. 14. Various polycrystal morphologies generated by Neper. (a) A recrystallized thin sheet of material, (b) a polycrystal with a morphological texture, (c) a mixed
columnar/equiaxed grain ensemble representative of solidification microstructures, (d) a set of truncated octahedra. All polycrystals are made of about 1000 grains. (c–d) are
cut for the illustration.
microstructures (see Fig. 14 (c)). It may also be noticed that
commonly-used, regular morphologies can be obtained by using
regularly-spaced centre distributions: a cubic array provides cubes,
the centres on the sites of a face-centred cubic structure provides
truncated octahedra, while the body-centred structure provides
dodecahedra, see Fig. 14 (d).

Different levels of discretization (cl value) can easily be used, as
illustrated in Fig. 15 (a–c). Another capability is the ability to spec-
ify different levels of discretization for different grains of the same
polycrystal. This facilitate coarsening of the boundary grains,
which are usually disregarded in the simulation results (due to
boundary effect). An example is given in Fig. 15 (d). It is also pos-
sible to obtain different element sizes in the three directions of
space, by scaling appropriately the geometry prior to meshing,
and scaling back the mesh afterwards. This is particularly useful
during polycrystal remeshing for large strain applications, where
one may want to keep a constant spatial resolution in a given
direction, as the polycrystal is deformed. This will be illustrated
in Fig. 17.

Typical Neper computation times and memory needs are pro-
vided in Table 1. Neper can readily generate and mesh random
polycrystals containing several thousands of grains. The robustness
of the implementation is illustrated in Fig. 16 by the meshing of a
105-grain polycrystal.

3. Application to texture and microtexture analysis

Deformation textures and microtextures have been the subjects
of a large number of studies in the last few decades. Texture and
microtexture development is of general interest for important
industrial forming operations (rolling, etc.). In particular, there
has been interest around the role that textures play on the
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mechanical properties and subsequent thermomechanical treat-
ments, such as phase transformations or recrystallization. The sim-
ulation by finite elements of such operations can be of major
interest, but is particularly challenging because of the magnitude
of the strains involved (e = 1 to 2), which inevitably leads to exces-
sive element distortions.

In this section, the meshing tools introduced in the preceding
sections are applied to the prediction of textures and microtextures
in an aluminium alloy deformed in plane strain compression to
large strains (e = 1.4). This example demonstrates the ability to
model texture evolution over strains typical of an industrial forming
process using (i) a large-scale random polycrystal (more particu-
larly a Voronoi tessellation), and (ii) a direct free meshing/reme-
shing methodology. The results are compared, on the one hand, to
the predictions from the Taylor model, and on the other hand, to ori-
ginal experimental data obtained by ‘‘microtexture tracking’’
[39,40]. The latter consists of following individual grains on an
internal surface of a split sample deformed in plane strain compres-
sion. Detailed orientation measurements have been carried out by
Electron Backscatter Diffraction (EBSD) on 182 grains (approxi-
mately 3000 measurements per grain), at the successive (logarith-
mic) strains of e = 0, 0.42, 0.77 and 1.2, enabling detailed analyses.

3.1. Simulation

The simulation is carried out on the 3000-grain polycrystal
illustrated on Fig. 1. The polycrystal has initial grain orientations
randomly chosen from a uniform distribution. The polycrystal is
subjected to plane strain compression to a strain e = 1.4 (75% thick-
ness reduction). The deformed microstructure is illustrated in
Fig. 17. Remeshing was applied at e = 0.4, 0.8, and 1.0. Orthotropic
meshing was used, so that the element density remained constant



Fig. 15. Various levels of mesh refinements. (a–c) Coarse, medium and fine discretization meshes of a 100-grain polycrystal. (d) Heterogeneous mesh refinement of a 2000-
grain polycrystal: inner grains with fine meshes and outer grains with coarse meshes.
in the compression and transverse directions, while the element
size remained constant in the rolling direction (this can be noticed
on Fig. 17 by a mesh denser in the compression direction than in
the other directions). The mesh was comprised of 407,000 10-node
elements/563,000 nodes at the beginning of the simulation (e = 0)
and 973,000 elements/1,336,000 nodes at the end (e = 1.4).

The plastic deformation is accommodated by slip on specific
crystallographic systems. The twelve octahedral {111}h110i sys-
tems are considered to be potentially active (FCC crystal structure).
Slip is assumed to follow a viscoplastic behavior, where the slip
rate _ca on a system a is related to the resolved shear stress sa

through the power law:

_ca ¼ _c0
sa

ga

����
����

1
m

sgnðsaÞ ð8Þ

with

_ga ¼ h0
gs � ga

gs � g0

� �
_c where _c ¼

X
a
j _caj: ð9Þ
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By definition, sgn (x) = 1 if x P 0 and �1 if x < 0. The numerical val-
ues of the material parameters have been derived from the experi-
mental measurements: _c0 ¼ 1, m = 0.12, h0 = 4 MPa, g0 = 8 MPa, and
gs = 12 MPa. At e = 0, all ga are taken equal to g0. In such a case, it
can be noticed from Eq. (9) that all ga increase equally with strain.

A complete description of the constitutive model and the FEM
implementation can be found in Refs. [4,5]. The full simulation,
including the initial meshing, the remeshings, and the FEM solu-
tions (run on 128 cores of a cluster running the Linux kernel), took
100 h. In the analysis, only the inner grains of the polycrystal are
taken into consideration to avoid boundary effects (1972 grains).
3.2. Textures

The FEM texture obtained at e = 1.2 is compared to the experi-
mental data and to the Taylor model predictions in Fig. 18. The tex-
tures are described by orientation distribution functions
represented over a fundamental region of Rodrigues’ space [41].



Fig. 16. Free meshing of a 105-grain Voronoi tessellation. The mesh contains 19,600,000 10-node elements and 26,400,000 nodes.
The experimental and simulated textures show a well-developed
b-fiber, characteristic of FCC metals deformed in plane strain com-
pression [42,43]. The Taylor model overestimates significantly the
average intensity of the texture. Particularly, it overestimates the
intensity of the Copper component and underestimates the inten-
sity of the Brass component, a typical observation [42,43]. The fi-
nite element formulation predicts a weaker texture with respect
to the Taylor predictions, thus providing better agreement with
the experiments. Similar observations have been made from
level-set simulations [19].

3.3. In-grain orientation spreads

The crystal rotations can also be compared at grain level. In this
section, we focus on the orientation distributions, or spreads,
developed within the individual grains (the Taylor model does
not produce such distributions, and so will not be considered in
the following). In Fig. 19, an experimental and an FEM in-grain
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orientation spread are illustrated for two grains of approximately
the same final orientation (e = 1.2). The comparison illustrates
the ability of the finite element method for reproducing trends
observed in the experiments.

Before going further, it should be noted that the FEM polycrystal
reproduces the experimental one only in a statistical sense (it
exhibits similar metrics for the distributions of lattice orientation,
grain shape and grain size), which does not allow a grain-by-grain
comparison. As a consequence, in the following the experimental
and simulated in-grain orientation spreads will be compared only
in terms of distribution over all grains.

An orientation spread can be described by several metrics asso-
ciated with the moments of a distribution. The average size (mean)
is deduced from the average disorientation angle with respect to
the average orientation. The average orientation is calculated by
quaternion averaging [44–47] and the disorientations are then cal-
culated in the standard manner by taking the cubic crystal symme-
try into account. Implementations are provided in Orilib [48]. The



Fig. 17. A 3000-grain Voronoi tessellation deformed in plane strain compression to e = 1.4 (75% thickness reduction). The mesh contains 973,000 elements and 1,336,000
nodes. The undeformed polycrystal is illustrated in Fig. 1. Color is related to crystal orientation: v being the Rodrigues vector representing the orientation, the RGB color levels
are 255� ðv i þ

ffiffiffi
2
p
� 1Þ=½2� ð

ffiffiffi
2
p
� 1Þ�.

Table 1
Typical CPU times and memory needs for the generation and meshing of random polycrystals with the Neper software package. The values of cl are given for grains of unit volume
in average. Simulations performed on a 2.40 GHz Intel� Xeon� processor of a computer running the Linux kernel.

Grain number Meshing with cl = 0.50 Meshing with cl = 0.25

CPU (sec.) RAM (Mb) Elts/Nodes (�1000) CPU (sec.) RAM (Mb) Elts/Nodes (�1000)

100 43 20 18/27 68 35 65/93
300 113 33 58/82 209 78 190/269

1000 444 82 194/270 790 230 639/887
3000 1840 219 582/798 3006 658 1907/2621

10000 7350 1455 1953/1455 17160 2142 6332/8640
distributions of the average disorientations over all grains are illus-
trated on Fig. 20. While the average disorientations are zero at
e = 0, they have experimental values of 5.1�, 6.4�, and 7.0� at
e = 0.42, 0.77 and 1.2, respectively. That is, they develop quickly
at the beginning of the deformation, then tend to stabilize. The fi-
nite element method provides the same tendencies, with average
values of 4.1�, 5.5� and 6.5�, successively, and distributions similar
to the experimental ones.

Further comparisons between experiment and simulation are
provided with the correlation between the orientation spreads that
an individual grain can show from one strain level to the next. They
are illustrated in Fig. 21. For both the experimental and FEM cases,
the individual orientation spreads tend to increase as deformation
increases, with quite strong correlations from one deformation to
the next. The correlations can be quantified using linear correlation
coefficients, a value of 0 denoting no correlation and a value of 1
denoting a perfect correlation. From e = 0.42 to 0.77, they have val-
ues of 0.78 and 0.82, for the experiments and FEM, respectively.
From e = 0.77 to 1.2, they have values of 0.88 and 0.89, respec-
tively. The size evolution of the orientation spreads obtained by
FEM is consequently in good agreement with the experiments.

4. Discussion

Accurate predictions of the local mechanical fields developing
in polycrystalline materials require the use of representative
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polycrystal morphologies. In the last few decades, experimental
and numerical efforts have been made to characterize and
reproduce the main morphological properties of polycrystalline
microstructures [1–3,6,16–20]. From any polycrystal morphology,
material behavior and boundary conditions, the finite element
method coupled with a free meshing technique provides the capa-
bility to determine accurately the mechanical and microstructural
fields which develop in the polycrystal.

The present work aims at providing a complete and robust
methodology for the generation of high-quality meshes of large-
scale Voronoi tessellations, that is, comprising several thousand
of grains. The method consists of removing the small edges of
the geometry, thereby eliminating the features responsible to
mesh overrefinement. This operation leads to local geometry dis-
tortions: the boundary of the faces (made of the vertices and
edges) can leave their original planes, and consequently an inter-
polation method is needed to define their interiors. A simple
remedy is proposed which consists in dividing such a face into
triangle parts, allowing the distortion of the face to be quantified
by its ‘‘flatness fault’’ (the maximum angle between the normal
at two locations of the face). The algorithm tends to minimize
the geometry distortions, so that the face flatness faults are
retained under a given threshold value (typically 20�). This method
avoids the local mesh overrefinements and ensures element
quality. It should also be noted that geometry regularization
improved the morphological properties of the polycrystal: the



Fig. 18. Macrotextures in an aluminium alloy deformed in plane strain compres-
sion. (a) Experiments, (b) finite element model, (c) Taylor model. Note the different
color scales between (a and b) versus (c). The positions in Rodrigues’ space of the b-
fiber components are: S = (0.254,�0.235,�0.291), (�0.254,0.235,0.291),
(�0.254,�0.235,0.291) and (0.254,0.235,0.291); Brass = (�0.414,�0.132,0.318)
and (0.414,0.132,0.318); Copper = (�0.132,�0.318,0.414) and (0.132,0.318,0.414)
[41].
average number of grain first neighbors, typically overestimated by
Voronoi tessellations (value of 15), can be significantly reduced,
and even made coincide with the experimental values (between
12 and 14). Changes in tessellation topology are also involved:
more than four grains can intersect at a single vertex and more
than three faces can intersect at a single edge.
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To ensure meshing robustness and, at the same time, improve
element quality needed for large strain applications, an additional,
very pragmatic approach has been introduced, called ‘‘multime-
shing’’. It is motivated by the fact that a number of 2D and 3D
meshing software packages are available to the user, each with
its own strengths and weaknesses. Multimeshing consists of mesh-
ing each entity (face or volume) with several meshers, and then
using the mesh of best quality. This gives improved mesh quality
of the whole polycrystal (see Fig. 11).

The meshes obtained with the meshing and multimeshing
strategies have been used in simulations to reach strains of the or-
der 0.5, which is close to what can be attained with ‘‘perfect’’
meshes (regular morphologies meshed into regular tetrahedral ele-
ments), typically 0.7 [10]. Applications such as industrial forming
operations involve strains of the order 1–2, which as a conse-
quence cannot be attained with a single polycrystal mesh. To solve
this problem, a remeshing strategy has been presented, which in-
cludes mesh regeneration and data remapping onto the new mesh.
The mesh generation itself is very similar to the meshing of unde-
formed regularized Voronoi tessellations. Concerning data remap-
ping, a 0-order transport has been proposed: the values at a given
element of the new mesh are taken from the element of the old
mesh in which its centroid lies. Higher-order schemes have been
deployed in the context of adaptive Lagrangian Eulerian (ALE)
codes [49]. Such a transfer methodology cannot be applied to
stress, because the new configuration would not be in mechanical
equilibrium. A simple method has been employed, which consists
of setting all stresses equal to zero after remeshing. The stresses
are recomputed in the subsequent finite element simulation, with
the new mesh and based on the remapped microstructural vari-
ables. The influence of remeshing has been evaluated quantita-
tively by comparing the crystal rotations of individual grains
between simulations having more or less frequent remeshing
(every 0.4 strain against every 0.1 strain). Of the nine grains inves-
tigated, only a minor influence has been noticed on the average ori-
entations at e = 1 (disorientation < 0.8�), as well as on the in-grain
orientation spreads (see Fig. 13). Thus, the presented remeshing
approach proved effective not only for the prediction of textures,
but also for the in-grain orientation spreads at large strains.

All the methods presented in this study has been implemented
into a free (open-source) software package: Neper [36]. Examples
of meshes have illustrated the ability and robustness of the
proposed methodology and its implementation for generating
high-quality meshes of large polycrystals. Typical CPU times and
memory needs have been provided, which show that the poly-
crystal generation and meshing are much faster than the FEM
simulation itself.

To demonstrate the capabilities of the polycrystal generation
and meshing methodology, a large-strain application has been pre-
sented: the simulation of texture and microtexture development in
an aluminium polycrystal submitted to plane strain compression.
It combines: (i) a large-scale Voronoi tessellation (3000 grains),
(ii) strain levels representative of industrial forming operations
(e = 1.4), and (iii) direct free meshing/remeshing strategies for a
conventional FEM solution. The simulation has been shown to
reproduce satisfactorily experimental data on the textures and,
more interestingly, on the microtexture properties. In particular
the size and evolution of the in-grain orientation spreads are
shown to compare well.
5. Conclusions

A methodology for the generation and good-quality meshing of
large-scale random polycrystals have been presented. The poly-
crystals are represented by Voronoi tessellations. The latter have
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Fig. 19. Examples of (a) experimental and (b) finite element in-grain orientation spreads at e = 1.2, for two grains of approximately the same average orientation.

Fig. 20. Distributions of the in-grain average orientation spreads in an aluminium polycrystal submitted to plane strain compression. (a) Experiments, taken from [39], (b)
finite elements. Note that only the grains that show unimodal rotations as described in Ref. [39] are considered.

a b

Fig. 21. Correlation between the orientation spreads at different strains, in an aluminium polycrystal submitted to plane strain compression. (a) Experiments, (b) finite
elements. The right-hand side data clouds have been shifted 6� along the x-axis for clarity.
been shown to include a large number of geometrical details,
which make it particularly challenging to render a mesh of good-
16
quality elements, especially when the number of grains becomes
large (several thousand). Different, complementary strategies have



been merged to solve this problem. Geometry regularization
diminishes the number of small features of the geometry (edges
and faces), which are problematic for meshing. It also improves
the morphological properties of the polycrystal with regard to real
polycrystal morphologies, notably by decreasing the average
number of grain first neighbors. Once the geometry has been
regularized, the multimeshing strategy constructs a mesh simulta-
neously using several meshing algorithms. Finally, a remeshing
method is implemented for large strain applications (strains of
1–2). The presented methods and algorithms have enabled us to
generate a wide variety of microstructures. The robustness of the
methodology and its implementation in the free (open-source)
software package Neper are illustrated by a texture and micro-
texture simulation study involving a 3000-grain Voronoi tessella-
tion deformed up to a strain of e = 1.4.
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