
Publications Internes de l’IRISA
ISSN : 2102-6327
PI 2006 – July 2013

An Introductory Tutorial
to Concurrency-related Distributed Recursion

Sergio Rajsbaum* Michel Raynal**

Abstract: Recursion is a fundamental concept of sequential computingthat allows for the design of simple and ele-
gant algorithms. Recursion is also used in both parallel or distributed computing to operate on data structures, mainly
by exploiting data independence (independent data being processed concurrently). This paper is a short introduction to
recursive algorithms that compute tasks in asynchronous distributed systems where communication is through atomic
read/write registers, and any number of processes can commitcrash failures. In such a context and differently from
sequential and parallel recursion, the conceptual noveltylies in the fact that the aim of the recursion parameter is to
allow each participating process to learn the number of processes that it sees as participating to the task computation.

Key-words: Asynchrony, Atomic read/write register, Branching time, Concurrency, Distributed algorithm, Con-
current object, Linear time, Participating process, Process crash failure, Recursion, Renaming, Shared memory, Task,
Write-snapshot.

Une introduction à la récursion répartie liée à la concurrence

Résumé : Ce rapport constitue une introduction à la récursion répartie lorsque le paramètre de récursivité est
utilisé pour capturer le degré de concurrence.

Mots clés : Asynchronisme, Calcul réparti, Concurrence, Faute, Registre lire/écrire atomique,Récusrvité, Tâche.

* Instituto de Matemarticas, UNAM, Mexico
** Institut Universitaire de France & IRISA (équipe ASAP commune avec l’Université de Rennes 1 et Inria)

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 299 84 71 00 – www.irisa.fr



2 S. Rajsbaum & M. Raynal

1 Introduction

Recursion Recursion is a powerful algorithmic technique that consistsin solving a problem of some size (where
the size of the problem is measured by the number of its input data) by reducing it to problems of smaller size, and
proceeding the same way until we arrive at basic problems thatcan be solved directly. This algorithmic strategy is
often capture by the Latin terms “divide ut imperes”.

Recursive algorithms are often simple and elegant. Moreover, they favor invariant-based reasoning, and their time
complexity can be naturally captured by recurrence equations. In a few words, recursion is a fundamental concept
addressed in all textbooks devoted to sequential programming (e.g., [10, 14, 19, 25] to cite a few). It is also important
to say that, among the strong associations linking data structures and control structures, recursion is particularly well
suited to trees and more generally to graph traversal [10].

Recursive algorithms are also used since a long time in parallel programming (e.g., [2]). In this case, parallel re-
cursive algorithms are mainly extensions of sequential recursive algorithms, which exploit data independence. Simple
examples of such algorithms are the parallel versions of thequicksort and mergesort sequential algorithms.

Recursion and distributed computing In the domain of distributed computing, the first (to our knowledge) recur-
sive algorithm that has been proposed is the algorithm solving the Byzantine general problem [22]. This algorithm is
a message-passing synchronous algorithm. Its formulationis relatively simple and elegant, but it took many years to
understand its deep nature (e.g., see [7] and textbooks suchas [6, 24, 29]). Recursion has also been used to structure
distributed systems to favor their design and satisfy dependability requirements [28].

Similarly to parallelism, recursion has been used in distributed algorithms to exploit data independence or provide
time-efficient implementations of data structures. As an example, the distributed implementation of a store-collect
object described in [4] uses a recursive algorithm to obtainan efficient tree traversal, which provides an efficient
adaptive distributed implementation. As a second example, arecursive synchronous distributed algorithm has been
introduced in [5] to solve the lattice agreement problem. This algorithm, which recursively divides a problem of size
n into two sub-problems of sizen/2, is then used to solve the snapshot problem [1]. Let us noticethat an early formal
treatment of concurrent recursion can be found in [12].

Capture the essence of distributed computing The aim of real-time computing is to ensure that no deadline is
missed, while the aim of parallelism is to allow applicationsto be efficient (crucial issues in parallel computing are
related to job partitioning and scheduling). Differently, when considering distributed computing, the main issue lies
in mastering the uncertainty created by the multiplicity and the geographical dispersion of computing entities, their
asynchrony and the possibility of failures.

At some abstract level and from a “fundamentalist” point of view, such a distributed context is captured by the
notion of a task, namely, the definition of a distributed computing unit which capture the essence of distributed com-
puting [17]. Tasks are the distributed counterpart of mathematical functions encountered in sequential computing
(where some of them are computable while others are not).

At the task level, recursion is interesting and useful mainlyfor the following reasons: it simplifies algorithm design,
makes their proofs easier, and facilitates their analyze (thanks to topology [13, 26]).

Content of the paper: recursive algorithms for computable tasks This paper is on the design of recursive algo-
rithms that compute tasks [13]. It appears that, for each process participating to a task, the recursion parameterx is not
related to the size of a data structure but to the number of processes that the invoking process perceives as participating
to the task computation. In a very interesting way, it followsfrom this feature that it is possible to design a general
pattern, which can be appropriately instantiated for particular tasks.

When designing such a pattern, the main technical difficultycome from the fact that processes may run concur-
rently, and, at any time, distinct processes can be executing at the same recursion level or at different recursion levels.
To cope with such an issue, recursion relies on an underlying data structure (basically, an array of atomic read/write
registers) which keeps the current state of each recursion level.

After having introduced the general recursion pattern, the paper instantiates it to solve two tasks, namely, the write-
snapshot task [8] and the renaming task [3]. Interestingly,the first instantiation of the pattern is based on a notion of
linear time (there is single sequence of recursive calls, and each participating process executes a prefix of it), while

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 3

the second instantiation is based on a notion of branching time (a process executes a prefix of a single branch of the
recursion tree whose branches individually capture all possible execution paths).

In addition to its methodological dimension related to the new use of recursion in a distributed setting, the paper
has a pedagogical flavor in the sense that it focuses on and explains fundamental notions of distributed computing.
Said differently, an aim of this paper is to provide the reader with a better view of the nature of fault-tolerant distributed
recursion when the processes are concurrent, asynchronous,communicate through read/write registers, and are prone
to crash failures.

Road map The paper is made up of 6 sections. Section 2 presents the computation model and the notion of a task.
Then, Section 3 introduces the basic recursive pattern in which the recursion parameter of a process represents its
current approximation of the number of processes it sees as participating. The next two sections present instantiations
of the pattern that solve the write-snapshot task (Section 4)and the renaming task (Section 5), respectively. Finally,
Section 6 concludes the paper. (While this paper adopts a programming methodology perspective, the interested reader
will find in [26] a topological perspective of recursion in distributed computing).

2 Computation Model, Notion of a Task,
and Examples of Tasks

2.1 Computation model

Process model The computing model consists ofn processes denotedp1, ...,pn. A process is a deterministic state
machine. The integeri is called the index ofpi. The indexes can only be used for addressing purposes. Each process
pi has a name –or identity–idi. Initially a processpi knows onlyidi, n, and the fact that no two processes have the
same initial name. Moreover, process names belong to a totally ordered set and this is known by the processes (hence
two identities can be compared).

The processes are asynchronous in the sense that the relative execution speed of different processes is arbitrary and
can varies with time, and there is no bound on the time it takes for a process to execute a step.

Communication model and local memory The processes communicate by accessing atomic read/write registers.
Atomic means that, from an external observer point of view, each read or write operation appears as if it has been
executed at a single point of the time line between it start andend events [18, 20].

Each atomic register is a single-writer/multi-reader (SWMR) register. This means that, given any register, a single
process (statically determined) can write in this register,while all the processes can read it. LetX [1..n] be an array
of atomic registers whose entries are the process indexes. Byconvention,X [i] can be written only bypi. Atomic
registers are denoted with uppercase letters. All shared registers are initialized to a default value denoted⊥ and no
process can write⊥ in a register. Hence, the meaning of⊥ is to state that the corresponding register has not yet been
written.

A process can have local variables. Those are denoted with lowercase letters and sub-scripted by the index of the
corresponding process. As an example,aaai denotes the local variableaaa of processpi.

Failure model The atomic read/write registers are assumed to experience nofailure. (For the interested reader, the
construction of atomic reliable registers from basic atomic registers which can fail –crash, omission, or Byzantine
failures- is addressed in [30]).

A process may crash (halt prematurely). A process executes correctly until it possibly crashes, and after it has
crashed (if ever it does), it executes no step. Given a run, a process that crashes isfaulty, otherwise it isnon-faulty.

Any number of processes may crash (wait-freemodel [15]). Let us observe that the wait-free model prevents
implicitly the use of locks (this is because a process that owns a lock and crashes before releasing it can block the
whole system). (Locks can be implemented from atomic read/write registers only in reliable systems [30].)

Collection des Publications Internes de l’Irisac©IRISA



4 S. Rajsbaum & M. Raynal

2.2 The notion of a task

Informal definition As indicated in the Introduction, a task is the distributed counterpart of a mathematical function
encountered in sequential computing.

In a task each processpi has a private input valueini and, given a run, then input values constitute the input vector
I of the considered run. each process knows initially only its input value, which is usually calledproposed value. Then,
from an operational point of view, the processes have to coordinate and communicate in such a way that each process
pi computes an output valueouti and then output values define an output vectorO, such thatO ∈ ∆(I) where∆ is
the mapping defining the task. An output value is also calleddecidedvalue. The way a distributed task extends the
notion of a sequential function is described in Figure 1, where the left side represents a classical a sequential function
and the right side represents a distributed task.

As in sequential computing (Turing machines) where there are computable functions and uncomputable functions,
there are computable tasks and uncomputable tasks. As we will see later write-snapshot and renaming are computable
in asynchronous read/write systems despite asynchrony and any number of process failures, while consensus is not [11,
15, 23].

ini
pi outi

fx y = f (x)

Output vectorO[1..n]Input vectorI [1..n]

Task∈ ∆(I)

Task∆()

O[i]I [i]

Functionf ()

Figure 1: Function (left) and task (right)

Formal definition A task is a triple〈I,O, ∆〉 where

• I is the set of allowed input vectors,

• O is the set of allowed output vectors, and

• ∆ is a mapping ofI intoO such that(∀I ∈ I) ⇒ (∆(I) ∈ O).

Hence,I[i] andO[i] are the values proposed and decided bypi, respectively, while∆(I) defines the set of output
vectors that can be decided from the input vectorI. (More developments on the definition of tasks and their relation
with topology can be found in [16, 17]).

If one or several processespi, ...,pj , do not participate or crash before deciding an output value, we haveO[i] =
. . . = O[j] = ⊥, and the vectorO has then to be such that there is a vectorO′ ∈ ∆(I) that coversO, i.e., (O[i] 6=
⊥) ⇒ (O′[i] = O[i]).

A simple example: the binary consensus task In this task, a process proposes a value from the set{0, 1}, and all
the non-faulty processes have to decide the same value which has to be a proposed value. LetX0 andX1 be the vector
of sizen containing only zeros and only ones, respectively.

The setI of input vectors is the set of all the vectors of zeros and ones. The setO of output vectors is{X0, X1}.
The mapping∆ is such that (i)∆( any vector exceptX0, X1) = O, (ii) ∆(X0) = X0, and (iii) ∆(X1) = X1.

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 5

Solving a task In the context of this paper, a distributed algorithmA is a set ofn local automata (one per process)
that communicate through atomic read/write registers.

The algorithmA solve a taskT if, in any run in which each process proposes a value such that the input vector
belongs toI, each non-faulty process decides a value, and the vectorO of output values belongs to the set∆(I).

Tasks vs Objects A task is a mathematical object. From a programming point of view, a concurrent object can be
associated with a task (a concurrent object is an object that can be accessed by several processes). Such an object is
a one-shot object that provides the processes with a single operation (“one-shot” means that a process can invoke the
object operation at most once).

To adopt a more intuitive presentation, the two tasks that are presented below use their object formulation. This
formulation expresses the mapping∆ defining a task by a set of properties that the operation invocations have to
satisfy. These properties can be more restrictive than∆. This comes from the fact that there is no notion of
time/concurrency/communication pattern in∆, while the set of properties defining the object can implicitly refer
to such notions.

2.3 The write-snapshot task

The write-snapshot task was introduced in [8] (where it is called immediate snapshot). A write-snapshot object pro-
vides processes with a single operation denotedwrite_snapshot(). When a processpi invokes this operation, it sup-
plies as input parameters its identityidi and the value it wants to deposit into the write-snapshot object. Its invocation
returns a setviewi composed of pairs(idj , vj).

As previously indicated, the specification∆ is expressed here a set of properties that the invocations ofwrite_snapshot()
have to satisfy.

• Self-inclusion.∀ i: (idi, vi) ∈ viewi.

• Containment.∀ i, j: (viewi ⊆ viewj) ∨ (viewj ⊆ viewi).

• Simultaneity.
∀ i, j: [((idj , vj) ∈ viewi) ∧ ((idi, vi) ∈ viewj)] ⇒ (viewi = viewj).

• Termination.
Any invocation ofwrite_snapshot() by a non-faulty process terminates.

A write-snapshot combines in a single operation the write of a value (here a pair(idi, vi)) and a snapshot [1] of
the set of pairs already or concurrently written. Self-inclusion states that a process sees its write. Containment states
the views of the pairs deposited are ordered by containment. Simultaneity states that if each of two processes sees the
pair deposited by the other one, they have the same view of thedeposited pairs. Finally, the termination property states
that the progress condition associated with operation invocations is wait-freedom, which means that an invocation
by a non-faulty process terminates whatever the behavior of the other processes (which can be slow, crashed, or not
participating). An iterative implementation of write-snapshot can be found in [8, 30].

2.4 The adaptive renaming task

This task has been introduced in [3] in the context of asynchronous crash-prone message-passing systems. Thereafter,
a lot of renaming algorithms suited to read/write communication have been proposed. An introduction to shared
memory renaming, and associated lower bounds, is presented in [9].

While there are onlyn process identities, the space name is usually much bigger thann (as a simple example this
occurs when the name of a machine is the IP address). The aim of the adaptive renaming task is to allow the processes
to obtain new names from a new name space which has to depend only on the numberp of processes that want to
obtain a new name (1 ≤ p ≤ n), and be as small as possible. It is shown in [17] that2p − 1 is a lower bound on the
size of the new name space.

When considering the adaptive renaming task from the point of view of its associated one-shot object, a processpi

that wants to acquire a new name invokes an operation denotednew_name(idi). The set of invocations has to satisfy
the following set of properties.

• Validity. The size of the new name space is2p − 1.

• Agreement. No two processes obtain the same new name.

Collection des Publications Internes de l’Irisac©IRISA



6 S. Rajsbaum & M. Raynal

• Termination.
Any invocation ofnew_name() by a non-faulty process terminates.

As for the write-snapshot task, the termination property states that a non-faulty process that invokes the operation
new_name() obtains a new name whatever the behavior of the other processes. Agreement states the consistency
condition associated with new names. Validity states the domain of the new names: if a single process wants to
obtain a new name, it obtains the name1, if only two processes invokenew_name() they obtain new names in the set
{1, 2, 3}, etc. This show that the termination property (wait-freedom progress condition) has a cost in the size of the
new name space: while onlyp new names are needed, the new name space needs(p − 1) additional potential new
names to allow the invocations issued by non-faulty processes to always terminate.

3 A Concurrency-related Recursive Pattern
for Distributed Algorithms

The recursion parameter As already announced, the recursion parameter (denotedx) in the algorithms solving the
tasks we are interested is the number of processes that the invoking process perceives as participating processes. As
initially a process has no knowledge of how many processes areparticipating, it conservatively considers that all other
processes participate, and consequently issues a main callwit x = n.

Atomic read/write registers and local variables The pattern manages an arraySM [n..1], where eachSM [x] is a
sub-array of sizen such thatSM [x][i] can be written only bypi. A processpi starts executing the recursion levelx by
depositing a value inSM [x][i]. From then on, it is a participating process at levelx.

Each process manages locally three variables whose scope is arecursive invocation.smi[n..1] is used to save a
copy of the current value ofSM [x][1..n]; parti keeps the number of processes thatpi sees as participating at levelx;
andresi is used to save the result returned by the current invocation.

operation recursive_pattern(x, input) is
(01) SM [x][i]← input;
(02) for each j ∈ {1, ..., n} do smi[j]← SM [x][j] end for;
(03) parti ← |{smi[j] 6= ⊥}|;
(04) if (parti = x) then statements specific to the task, possibly including a recursive call;
(05) computation ofresi

(06) else resi ← recursive_pattern(x− 1, input)
(07) end if
(08) return(resi)
end operation.

Figure 2: Concurrency-related recursive pattern

The recursion pattern The generic recursive pattern is described in Figure 2. The invoking processpi first deposits
its input parameter value inSM [x][i] (line 1), and read the content of the shared memory attached to its recursion level
x (line 2). Let us notice that the entries of the arraySM [x][1..n] are read in any order and asynchronously. Then,pi

computes the number of processes it sees as participating inthe recursion levelx (line 3), and checks if this number is
equal to its current recursion levelx.

• if x = parti (lines 4-5),pi discovers thatx processes are involved in the recursion levelx. In this case,
it executes statements at the end of which it computes a local result resi. These local statements are task-
dependent and may or not involve a recursive call with recursion levelx − 1.

• if x 6= parti, pi sees less thanx processes participating to the recursion levelx. In this case, it invokes the
recursion pattern at levelx − 1 with the same input parameterinput, and continues until it attains a recursion
levelx′ ≤ x − 1 at which it sees exactlyx′ processes that have attained this recursion levelx′.

A processpi starts with its recursion parameterx equaln, and then its recursion parameter decreases until the invoking
process returns a result. Hence, a process executes at mostn recursive calls before terminating. The correctness proof
of this recursive pattern is the same as the one of Theorem 1 which considers its write-snapshot instantiation.

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 7

Linear time vs branching time If line 4 does not include a recursive call, the recursive pattern is a linear time
pattern. Each participating process executes line 6 until its stops at line 4 (or crashes before). Hence, each process
executes a prefix of the same sequence of recursive calls, each with its initial input parameterinput. The algorithm,
whose instantiation from the recursive pattern is describedin Section 4, is a linear time implementation of write-
snapshot.

If there are recursive calls at line 4, the recursive patternis a branching time pattern. Such a recursion pattern
is characterized by a tree of recursive calls, and a participating process executes a prefix of a single branch of this
tree. In this case, eachSM [x] is composed of several sub-arrays, each of them being an array of n SWMR atomic
registers. The algorithm, whose instantiation from the recursive pattern is described in Section 5, is a branching time
implementation of renaming.

4 Linear Time Recursion

4.1 A recursive write-snapshot algorithm

An instantiation of the recursive pattern which implements write-snapshot is described in Figure 3. This recursive
implementation has been introduced in [13], and the representation adopted here is from [30]. This instantiation is
nearly the same as the original recursive pattern. More precisely, the input parameterinput of a processpi is the pair
(idi, vi).

The line numbering is the same as in the recursive pattern. As there is no specific statement to instantiate at line 4
of the recursive pattern, its lines 4 and 5 are instantiated by a single line denoted 4+5.

A processpi invokes firstwrite_snapshot(n, (idi, vi)) wherevi is the value it wants to deposit in the write-snapshot
object.

operation write_snapshot(x, (idi, vi)) is
(1) SM [x][i]← (idi, vi);
(2) for each j ∈ {1, ..., n} do smi[j]← SM [x][j] end for;
(3) parti ← |{smi[j] 6= ⊥}|;
(4+5) if (parti = x) then resi ← {smi[j] 6= ⊥}
(6) else resi ← write_snapshot(x− 1, (idi, vi))
(7) end if
(8) return(resi)
end operation.

Figure 3: A recursive write-snapshot algorithm [13]

As already said, the recursion of this algorithm is a linear time recursion. This appears clearly from the arrays of
atomic read/write registers accessed by the recursive callsissued by the processes: each process accesses firstSM [n],
thenSM [n − 1], etc., until it stops atSM [x] wheren ≥ x ≥ 1.

4.2 Proof of the algorithm

Theorem 1 [13] The algorithm described in Figure 3 implements a write-snapshot object. For a processpi, The
step complexity (number of shared memory accesses) for a processpi is O(n(n − |resi| + 1)), whereresi is the set
returned by the invocation ofwrite_snapshot() issued bypi.

Proof This proof is from [30]. While a process terminates an invocation when it executes thereturn() statement at
line 8, we say that it terminates at line 4+5 or line 6, according to the line where the returned valueresi has been
computed.

Claim C. If at mostx processes invokewrite_snapshot(x,−), (a) at most(x−1) processes invokewrite_snapshot(x−
1,−), and (b) at least one process stops at line 4+5 of its invocation ofwrite_snapshot(x,−).
Proof of claim C. Assuming that at mostx processes invokewrite_snapshot(x,−), letpk be the last process that writes
into SM [x][1..n] (as the registers are atomic, the notion of “last” is well-defined). We necessarily havepartk ≤ x. If
pk findspartk = x, it stops at line 4+5. Otherwise, we havepartk < x andpk invokeswrite_snapshot(x − 1,−) at
line 6. But in this case, aspk is the last process that wrote into the arraySM [x][1..n], it follows from partk < x

Collection des Publications Internes de l’Irisac©IRISA



8 S. Rajsbaum & M. Raynal

that fewer thanx processes have written intoSM [x][1..n], and consequently, at most(x − 1) processes invoke
write_snapshot(x − 1,−). End of the proof of claim C.

To prove termination, let us consider a non-faulty processpi that invokeswrite_snapshot(n,−). It follows from
Claim C and the fact that at mostn processes invokewrite_snapshot(n,−) that eitherpi stops at that invocation or
belongs to the set of at most(n − 1) processes that invokewrite_snapshot(n − 1,−). It then follows, by induc-
tion from the claim C, that ifpi has not stopped during a previous invocation, it is the only process that invokes
write_snapshot(1,−). It then follows from the text of the algorithm that it stops atthat invocation.

The proof of the self-inclusion property is trivial. Beforestopping at recursion levelx (line 4+5), a processpi has
written vi into SM [x][i] (line 1), and consequently we have then(idi, vi) ∈ viewi, which concludes the proof of the
self-inclusion property.

To prove the self-containment and simultaneity properties, let us first consider the case of two processes that
return at the same recursion levelx. If a processpi returns at line 4+5 of recursion levelx, let resi[x] denote the
corresponding value ofresi. Among the processes that stop at recursion levelx, letpi be the last process which writes
into SM [x][1..n]. As pi stops, this means thatSM [x][1..n] has exactlyx entries different from⊥ and (due to Claim
C) no more of its entries will be set to a non-⊥ value. It follows that, as any other processpj that stops at recursion
levelx readsx non-⊥ entries fromSM [x][1..n], we haveresi[x] = resj [x] which proves the properties.

Let us now consider the case of two processespi and pj that return at line 6 of recursion levelx and y, re-
spectively, withx > y (i.e., pi returnsresi[x] while pj returnsresj [y]). The self-containment follows then from
x > y and the fact thatpj has written into all the arraysSM [z][1..n] with n ≥ z ≥ y, from which we conclude that
resj [y] ⊆ resi[x]. Moreover, asx > y, pi has not written intoSM [y][1..n] while pj has written intoSM [x][1..n], and
consequently(idj , vj) ∈ resi[x] while (idi, vi) /∈ resj [y], from which both he containment and immediacy properties
follow.

As far as the number of shared memory accesses is concerned we have the following. Letres be the set returned
by an invocation ofwrite_snapshot(n,−). Each recursive invocation costsn + 1 shared memory accesses (lines 1
and 2). Moreover, the sequence of invocations, namelywrite_snapshot(n,−), write_snapshot(n − 1,−), etc., until
write_snapshot(|res |,−) (wherex = |res | is the recursion level at which the recursion stops) containsn − |res | + 1
invocations. It follows that the step complexity for a processpi is O(n(n − |resi | + 1)) accesses to atomic registers.

2Theorem 1

4.3 Example of an execution

This section described simple executions wheren = 5 and processp5 crashes before taking any step (or –equivalently–
does not participate). These executions are described in Table 1 and Table 2. In these tableswrite_snapshot() is
abbreviated asws().

p1 p2 p3 p4 p5

τ1 ws(5, (id3, v3))
τ2 ws(4, (id3, v3))
τ3 crashes
τ4 ws(5, (id4, v4))
τ5 ... ws(1, (id4, v4))
τ6 {(id4, v4)}
τ7 ws(5, (id1, v1)) ws(5, (id2, v2))
τ8 ws(4, (id1, v1)) ws(4, (id2, v2))
τ9 res1 res2

Table 1: Write-snapshot execution: an example

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 9

A first execution
1. At timeτ1, p3 invokeswrite_snapshot(5, (id3, v3)). This triggers at timeτ2 the recursive invocationwrite_snapshot(4, (id3, v3))

Then,p3 crashes after it has writtenid3 into SM [4][3] at timeτ3.

2. At a later timeτ4, p4 invokeswrite_snapshot(5, (id4, v4)), which recursively ends up with the invocation
write_snapshot(1, (id4, v4)) at time τ5, and consequentlyp4 returns the singleton set{id4, v4)} at time τ6.

3. At timeτ7, processesp1 andp4 start executing synchronously:p1 invokeswrite_snapshot(5, (id1, v1)), whilep2

invokeswrite_snapshot(5, (id2, v2)), which entails at timeτ8 –always synchronously– the recursive invocations
write_snapshot(4, (id1, v1)) andwrite_snapshot(4, (id2, v2)). As SM [4] contains four non-⊥ entries, bothp1

andp2 returnsres1 andres2 which are such thatres1 = res2 = {(id1, v1), (id2, v2), (id3, v3), (id3, v4)}.

p1 p2 p3 p4 p5

τ10 ws(3, (id3, v3))
τ11 ws(2, (id3, v3))
τ12 res3

Table 2: Write-snapshot execution: continuing the example

Continuing the example Let us assume that instead of crashing at timeτ3, p3 paused for an arbitrary long period
starting after it has readSM [4][1..5] (hence it has seen only two non-⊥ values inSM [4]).

1. At time τ10, p3 wakes up and, aspart3 6= 4, it it issues the recursive invocationwrite_snapshot(3, (id3, v3)),
which entails at timeτ11 the invocationwrite_snapshot(2, (id3, v3)).

2. As at timeτ12, the shared arraySM [2] contains two non-⊥ values, processp4 returnsres3 = {(id3, v3), (id3, v4)}.

The reader can check that, if before pausing at timeτ3, p3 has read onlySM [4][4] andSM [4][5], it will read the
other entriesSM [4][1], SM [4][2], andSM [4][3], when it wakes up, and its invocationwrite_snapshot(4, (id3, v3))
will stop the recursion and returnres3 = res1 = res2.

5 Branching Time Recursion

5.1 A recursive renaming algorithm

An instance of the recursive pattern implementing adaptive renaming is described in Figure 4. This recursive imple-
mentation, inspired from the sketch of an algorithm skeleton succinctly described in [13], has been introduced in [27],
where it is proved correct. As for the previous recursive algorithm, the representation adopted here is from [30]. The
core of this recursive algorithm is the instantiation of line 4 of the recursive pattern, where appears branching time
recursion.

Underlying idea: the case of two processesThe base case is whenn = 2. A processpi first writes its identityidi

in the shared memory, and then reads the content of the memory.
• If, according to what it has read from the shared memory, a process sees only itself, it adopt the new name1.

• Otherwise it knows its identity and the one of the other process (idj). It then compares its identityidi andidj ,
and does the following: ifidi > idj, it adopts the new name 3, ifidi < idj , it adopts the new name 2.

The new name space is consequently[1..2p− 1] wherep (number of participating processes) is1 or 2.

The underlying shared memory The shared memorySM [n..1] accessed by processes is now a three-dimensional
arraySM [n..1, 1..2n − 1, {up, down}] such thatSM [x ,first , dir ] is a an array ofn atomic read/write registers.
SM [x ,first , dir ][i] can be written only bypi but can be read by all processes.

From a notational point of viewup = 1 = down, anddown = −1 = up.

Collection des Publications Internes de l’Irisac©IRISA



10 S. Rajsbaum & M. Raynal

When more than two processes participate The algorithm is described in Figure 4. A process invokes first
new_name(n, 1, up, idi). It then recursively invokesnew_name(x, 1, up, idi), until the recursion levelx is equal
to the number of processes thatpi sees as competing for a new name.

As we are about to see, given a pair(first , dir), the algorithm ensures that at mostx processes invokenew_name(x ,first , dir ,−).
These processes compete for new names in a space name of size2x − 1 which is the interval[first ..first + (2x − 2)]
if dir = up, and[first − (2x − 2)..first ] if dir = down. Hence, the valueup is used to indicate that the concerned
processes are renaming “from left to right” (as far as the newnames are concerned), whiledown is used to indicate
that the concerned processes are renaming “from right to left” (this is developed below when explaining the splitter
behavior of the underlying read/write registers.) Hence, a processpi considers initially the renaming space[1..2n−1],
and then (as farpi is concerned) this space will shrink at each recursive invocation (going up or going down) untilpi

obtains a new name.

operation new_name(x , first , dir , idi ) is
(1) SM [x ,first , dir ][i]← idi;
(2) for each j ∈ {1, ..., n} do smi[j]← SM [x,first , dir ][j] end for;
(3) parti ← |{smi[j] 6= ⊥}|;
(4+5).1if (parti = x) then last ← first = dir(2x − 2 );
(4+5).2 if (idi = max(smi)
(4+5).3 then resi ← last

(4+5).4 else resi ← new_name(x− 1, last + dir, dir, idi))
(4+5).5 end if
(6) else resi ← new_name(x− 1, first , dir , idi ))
(7) end if
(8) return(resi)
end operation.

Figure 4: A recursive adaptive renaming algorithm [13]

The recursive algorithm The lines 1-3 and 6-8 are the same as in the recursive pattern whereSM [x] is replaced by
SM [x,first , dir]. The lines which are specific to adaptive renaming are the statements in thethen part of the recursive
pattern (lines 4-5). These statements are instantiated by the new lines (4+5).1-(4+5).5, which constitute an appropriate
instantiation suited adaptive renaming.

For each triple(x, f, d), all invocationsnew_name(−, x, f , d) coordinate their respective behavior with the help
of the sizen array of atomic read/write registersSM [x, f, d][1..n]. At line (4+5).”,max(smi) denotes the greatest pro-
cess identity present insmi. As a processpi deposits its identity inSM [x,first , dir][i] before readingSM [x,first , dir][1..n],
it follows thatsmi contains at least one process identity when read bypi.

Let us observe that, if onlyp processes invokenew_name(n, 1, up,−), p < n, then all of them will invoke the algo-
rithm recursively, first withnew_name(n−1, 1, up), thennew_name(n−2, 1, up), etc., untilnew_name(p, 1, up,−).
Only at this point, the behavior of a participating processpi depend on the concurrency pattern (namely, it may or may
not invoke the algorithm recursively, and with eitherup or down).

Splitter behavior associated withSM [x,first , dir] (The notion of a splitter has been informally introduced in [21].)
Considering the (at most)x processes that invokenew_name(x,first , dir,−), the splitter behavior associated with the
array of atomic registersSM [x,first , dir] is defined by the following properties. Letx′ = x − 1.

• At mostx′ = x−1 processes invokenew_name(x−1,first , dir,−) (line 6. Hence, these processes will obtain
new names in an interval of size(2x′ − 1) as follows:

– If dir = up, the new names will be in the “going up” interval[first ..first + (2x′ − 2)],

– If dir = down, the new names will be in the “going down” interval[first − (2x′ − 2)..first ].

• At mostx′ = x − 1 processes invokenew_name(x − 1, last + dir, dir) (line (4 5).4), wherelast = first +
dir(2x − 2) (line (4 5).1). Hence, thesex′ = x − 1 processes will obtain their new names in a renaming space
of size(2x′ − 1) starting atlast + 1 and going from left to right ifdir = up, or starting atlast − 1 and going
from right to left if dir = down. Let us observe that the valuelast ± 1 is considered as the starting name
because the slotlast is reserved for the new name of the process (if any) that stopsduring its invocation of
new_name(x,first , dir) (see next item).

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 11

• At most one process “stops”, i.e., defines its new name aslast = first + dir(2x − 2) (lines (4 5).2 and (4 5.3).
Let us observe that the only processpk that can stop is the one such thatidk has the greatest value in the array
SM [x,first , dir][1..n] which contains then exactlyx identities.

5.2 Example of an execution

A proof of the previous algorithm can be found in [30]. This section presents an example of an execution of this
algorithm. It considers four processesp1, p2, p3, andp4.

First: processp3 executes alone Processp3 invokesnew_name(4, 1, up, id1) while (for the moment) no other pro-
cess invokes the renaming operation. It follows from the algorithm thatp3 invokes recursivelynew_name(3, 1, up, id1),
thennew_name(2, 1, up, id1), and finallynew_name(1, 1, up, id1). During the last invocation, it obtains the new
name1. This is illustrated in Figure 5. As, during its execution,p3 sees onlyp = 1 process (namely, itself), it decides
consistently in the new name space[1..2p− 1] = 1.

p3 obtains the new name1

it decides the new name2p − 1 = 1
As p3 has seenp = 1 process (itself)

SM [4, 1, up]

p3 invokesnew_name(4, 1, up, id3)

p3 invokesnew_name(2, 1, up, id3)

p3 invokesnew_name(3, 1, up, id3)

p3 invokesnew_name(1, 1, up, id3)

p1 andp4 invoke concurrentlynew_name(4, 1, up,−)

After p3 has obtained the new name1

which entail their concurrent invocations ofnew_name(3, 1, up,−)

Figure 5: Recursive renaming: first,p3 executes alone

Then: processesp1 andp4 invokenew_name() After p3 has obtained a new name, bothp1 andp4 invokenew_name(4, 1, up,−)
(See Figure 6). As they see only three processes that have written their identities intoSM [4, 1, up], both concurrently
invokenew_name(3, 1, up,−) and consequently both computelast = 1 + (2 ∗ 3 − 2) = 5. Hence their new name
space is[1..5].

Now, let us assume thatp1 stops executing whilep4 executes alone. Moreover, letid1, id4 < id3. As it has not
the greatest identity among the processes that have accessed SM [3, 1, up] (namely, the processesp1, p3 andp4), p4

invokes firstnew_name(2, 4, down, id4) and then recursivelynew_name(1, 4, down, id4), and finally obtains the new
name4.

After processp4 has obtained its new name,p1 continues its execution, invokesnew_name(2, 4, down, id1) and
computeslast = 4 − (2 × 2 − 2) = 2. The behavior ofp1 depends then on the values ofid1 andid4. If id4 < id1,
p1 decides the namelast = 4− (2 × 2 − 2) = 2. If id4 > id1, p1 invokesnew_name(1, 3, 1, id1) and finally decides
the name3.

Finally, if laterp2 invokesnew_name(4, 1, up, id2), it sees that the splitterSM [4, 1, up] was accessed by four pro-
cesses. Hencep2 computeslast = 1+(2×4−2) = 1, and consequently invokes recursivelynew_name(3, 6, down, id1),

Collection des Publications Internes de l’Irisac©IRISA



12 S. Rajsbaum & M. Raynal

new_name(2, 6, down, id1), new_name(1, 6, down, id1), at the end of which it computeslast == 6+(2×1−2) = −
and decides the name6.

The multiplicity of branching times appears clearly on thisexample. As an example, the branch of time ex-
perienced byp3 (which is represented by the sequence of accesses toSM [4, 1, up], SM [3, 1, up], SM [2, 1, up], and
SM [1, 1, up]), is different from the branch of time experienced byp4 (which is represented by the sequence of accesses
to SM [4, 1, up], SM [3, 1, up], SM [2, 4, down], andSM [1, 4, up]).

Firstp4 executes alone and

computelast = 1 + (2 ∗ 3 − 2) = 5 ⇒ their new name space =[1..5]

last = 4 − (2 ∗ 1 − 2) = 4 andp4 decides4

Let id1, id4 < id3

If id4 < id1; p1 decideslast = 4 − (2 ∗ 2 − 2) = 2

p1 andp4 invokenew_name(3, 1, up,−), they seep = 3 processes and both

invokesnew_name(2, 4, down, id4)

Then,p4 invokesnew_name(1, 4, down, id4)

Laterp1 invokesnew_name(2, 4, down, id1)

If id1 < id4: p1 invokeesnew_name(1, 3, 1, id1) and decides3

p2 computeslast = 1 + (2 ∗ 4 − 2) = 7 and invokes
new_name(3, 6,−1, id2), new_name(2, 6,−1, id2), new_name(1, 6,−1, id2)
p2 then computeslast = 6 − (2 ∗ 1 − 2) = 6 and decides6

Laterp2 invokesnew_name(4, 1, up, id2) and seesp = 4 processes

Figure 6: Recursive renaming:p1 andp4 invokenew_name(4, 1, up,−)

Let us observe that the new name space attributed to thep = 3 processesp1, p3, andp4 (the only ones that, up to
now, have invokednew_name(4, 1, up)()) is [1..2p− 1] = [1..5].

Finally processp2 invokesnew_name() Let us now assume thatp2 invokesnew_name(4, 1, up, id2). Moreover, let
id2 < id− 1, id2, id3. Processp2 sees thatp = 4 processes have accessed the splitterSM [4, 1, up], and consequently
computeslast = 1 + (2 × 4 − 2) = 7. The size of its new name space is[1..2p − 1] = [1..7]. As it does
not have the greatest initial name among the four processes,p2 invokesnew_name(3, 6, down, id2), and recursively
new_name(2, 6, down) andnew_name(1, 6, down, id − 2), and finally obtains6 as its new name.

6 Conclusion

The aim of this paper is to be an introductory tutorial on concurrency-related recursion in asynchronous read/write
systems where any number of processes may crash. The paper hasshown that a new type of recursion is introduced
by the net effect of asynchrony and failures, namely the recursion parameter is used to allow a process to learn the
number of processes with which it has to coordinate to compute its local result. This recursion has been illustrated
with two task examples, write-snapshot and adaptive renaming. Interestingly, the first example is related to a linear
time notion, while the second one is related to a branching time notion.

Acknowledgments

A special acknowledgment to E. Gafni, whose seminal work on recursive distributed renaming contributed to this
presentation.

Collection des Publications Internes de l’Irisac©IRISA



Concurrency-related Distributed Recursion 13

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared memory.Journal of the ACM,
40(4):873-890, 1993.

[2] Akl S.G., The design and analysis of parallel algorithms. Prentice-Hall Int’l Series, 401 pages, 1989.

[3] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an asynchronous environment.Journal of the ACM,
37(3):524-548, 1990.

[4] Attiya H., Fouren A., and Gafni E., An adaptive collect algorithm with applications.Distributed Computing, 15(2): 87-96,
2002.

[5] Attiya H., Herlihy M. and Rachman O., Atomic snapshots using lattice agreement.Distributed Computing, 8(3):121-132,
1995.

[6] Attiya H. and Welch J.L.,Distributed computing: fundamentals, simulations and advanced topics, (2d Edition), Wiley-
Interscience, 414 pages, 2004 (ISBN 0-471-45324-2).

[7] Bar-Noy A., Dolev D., Dwork C. and Strong R., Shifting gears: changing algorithms on the fly to expedite Byzantine
agreement.Information and Computation, 97(2):205-233, 1992.

[8] Borowsky E. and Gafni E., Immediate atomic snapshots and fast renaming.Proc. 12th ACM Symposium on Principles of
Distributed Computing (PODC’93), pp. 41-51, 1993.

[9] Castañeda, Rajsbaum S., and Raynal M., The renaming problem in shared memory systems: An introduction.Computer
Science Review, 5(3):229-251, 2011.

[10] Dahl O.J., Dijkstra E.W., and Hoare C.A.R.,Structured programming. Academic Press, 220 pages, 1972 (ISBN 0-12-200550-
3).

[11] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.Journal of the
ACM, 32(2):374-382, 1985.

[12] Francez N., Hailpern B., and Taubendfeld G., Script: a communication abstraction mechanism and its verification.Science of
Computer Programming, 6:35-88, 1986.

[13] Gafni E. and Rajsbaum S., Recursion in distributed computing. Proc. 12th Int’l l Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS ’10), Springer LNCS 6366, pp. 362-376, 2010.

[14] Harel D. and Feldman Y.,Algorithmics: the spirit of computing(third edition). Springer, 572 pages, 2012 (ISBN 978-3-642-
27265-3).

[15] Herlihy M.P., Wait-free synchronization.ACM Transactions on Programming Languages and Systems, 13(1):124-149, 1991.

[16] Herlihy M.P., Rajsbaum S., and Raynal M., Power and limitsof distributed computing shared memory models. To appear
Theoretical Computer Science, (http://dx.doi.org/10.1016/j.tcs.2013.03.002), 2013.

[17] Herlihy M.P. and Shavit N., The topological structure of asynchronous computability.Journal ACM, 46(6):858-923, 1999.

[18] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects.ACM Transactions on Program-
ming Languages and Systems, 12(3):463-492, 1990.

[19] Horowitz E. and Shani S.,Fundamentals of computer algorithms. Pitman, 626 pages, 1978 (ISBN 0-273-01324-0).

[20] Lamport. L., On Interprocess Communication, Part 1: Basic formalism, Part II: Algorithms.Distributed Computing, 1(2):77-
101,1986.

[21] Lamport L., Fast mutual exclusion.ACM Transactions on Computer Systems, 5(1):1-11, 1987.

[22] Lamport L., Shostak E., and Pease M.C., The Byzantine general problem.ACM Transactions on Programming Languages
and Systems, 4(3):382-401, 1982.

[23] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous processes.Advances in
Computing Research, 4:163-183, JAI Press, 1987.

Collection des Publications Internes de l’Irisac©IRISA



14 S. Rajsbaum & M. Raynal

[24] Lynch N.A.,Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[25] Mehlhorn K. and Sanders P.,Algorithms and data structures. Springer, 300 pages, 2008 (ISBN 978-3-540-77977-3).

[26] Onofre J.-C., Rajsbaum S., and Raynal M., A topological perspective of recursion in distributed computing.Tech report,
UNAM (Mexico), 12 pages, 2013.

[27] Rajsbaum S. and Raynal M., A theory-oriented introduction to wait-free synchronization based on the adaptive renaming
problem.Proc. 25th Int’l Conference on Advanced Information Networking and Applications (AINA’11), IEEE Press, pp.
356-363, 2011.

[28] Randell B., Recursively structured distributed computing systems.Proc. 3rd Symposium on Reliability in Distributed Software
and Database Systems, IEEE Press, pp. 3-11, 1983.

[29] Raynal M.,Fault-tolerant agreement in synchronous distributed systems. Morgan & Claypool, 167 pages, 2010 (ISBN 978-
1-608-45525-6).

[30] Raynal M.,Concurrent programming: algorithms, principles and foundations.Springer, 515 pages, 2013 (ISBN 978-3-642-
32026-2).

Collection des Publications Internes de l’Irisac©IRISA


