Electric-Field Alignment of Chitin Nanorod-Siloxane Oligomer Reactive Suspensions - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Langmuir Année : 2013

Electric-Field Alignment of Chitin Nanorod-Siloxane Oligomer Reactive Suspensions

Résumé

Uniaxially anisotropic chitin-silica nanocomposite solids have been obtained thanks to the electric field-induced macroscopic alignment of liquid-crystalline reactive cosuspensions. We demonstrate how chitin nanorods (260 nm long, 23 nm thick) can be aligned upon the application of an alternating current (ac) electric field, and within water-ethanol suspensions containing reactive siloxane oligomers (D-h similar to 3 nm). The alignment at the millimeter length scale is monitored by in situ small-angle X-ray scattering (SAXS) and polarized light optical microscopy. The composition and state (isotropic, chiral nematic) of the cosuspensions are proven to be determining factors. For nematic phases, the alignment is preserved when the electric field is switched off Further solvent evaporation induces sol-gel transition, and uniaxially anisotropic chitin-silica nanocornposites, are formed after complete drying of the aligned nematic suspensions. Here, the collective response of colloidal mesophases to external electric fields and the subsequent formation of ordered nanocomposite solids would represent a new opportunity for materials design.

Domaines

Matériaux
Fichier non déposé

Dates et versions

hal-00870207 , version 1 (06-10-2013)

Identifiants

Citer

Maria Yu Boltoeva, Ivan Dozov, Patrick Davidson, Krassa Antonova, Laura Cardoso, et al.. Electric-Field Alignment of Chitin Nanorod-Siloxane Oligomer Reactive Suspensions. Langmuir, 2013, 29 (26), pp.8208-8212. ⟨10.1021/la401448e⟩. ⟨hal-00870207⟩
137 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More