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ABSTRACT
We propose here a new, robust, methodology to estimate the errors on a magnetotel-
luric (MT) impedance tensor. This method is developed with the bounded influence
remote-reference processing (BIRRP) code in a single site configuration. The error
is estimated by reinjecting an electric field residual obtained after the calculation of
an impedance tensor into a tensor function calculation procedure. We show using
synthetic examples that the error tensor calculated with our method yields a more
reliable error estimate than the one calculated from Jackknife statistics. The modulus
of realistic error estimates can be used as a quality control and an accurate inversion
constraint of MT surveys. Moreover, reliable error estimates are necessary for new
applications of MT to dynamic subsurface processes such as reservoir monitoring.

Key words: Electromagnetics, Passive methods, Monitoring, Data processing, Signal
processing.

INTRODUCTION

Magnetotellurics (MT) uses natural electromagnetic field vari-
ations recorded at the Earth’s surface to image the electri-
cal resistivity of the ground subsurface. This is a prospecting
method for which sources are ionospheric currents due to
solar wind-magnetosphere interactions at frequencies under 1
Hz and lightning activity propagating through the atmosphere
at higher frequencies.

One can show (e.g., Vozoff 1987) that the horizontal
electric and magnetic fields are related through the so-
called impedance tensor Z. This tensor is estimated from the
recorded time-series as transfer functions between the mag-
netic H and electric E field horizontal components (Sims
1971). The impedance Z is also a function of the subsurface
resistivity.

The estimation of Z is arguably the most significant stage
of MT data processing. Most practitioners follow some form
of least-squares fitting procedure to subsets of data segments
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in the Fourier domain (e.g., Vozoff 1987). This approach to
estimate the MT impedance tensor relies on several assump-
tions:
� The incident wave is a plane wave, i.e., MT geomagnetic

sources are located far from the site of MT measurement.
� The signal is assumed to be stationary during the estimation

period.
� The subsurface resistivity is also assumed to be stationary

during the estimation period.
� The noise on the EM fields is Gaussian.

Obviously, these conditions are not always strictly met:
non-stationary phenomena exist on the magnetic field H and
long-term subsurface changes may induce a time variability
of Z. Moreover, the data are often affected by cultural noise
induced by power lines, moving vehicles or industrial infras-
tructure. In most estimation procedures, any departure from
these ideal conditions will be considered as noise and modelled
as Gaussian residuals of the electric field.

In order to address some of these noise problems, Gamble,
Goubau and Clarke (1979) introduced the remote reference
technique where a second MT site is used to remove the influ-
ence of noise included in the local MT site magnetic field that
may bias impedance estimates. Impedance tensor estimation
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remained however based on band-averaged and time-averaged
cross-correlations in the Fourier domain (Sims, Bostick and
Smith 1971).

Adaptative robust tensor estimation procedures were de-
veloped in the 1980′s, by downweighing high residuals and
singular data (Larsen 1980; Egbert and Booker 1986; Chave,
Thomson and Ender 1987). By comparing these different
approaches, Jones et al. (1989) illustrated the improvement
brought by the use of robust data processing methods.

On a more general level, a measurement is valid and can
be used for law fitting when one also gets a reliable measure
of its accuracy. Also error estimates on MT impedances are
often used as weighting factors in MT inversions. In standard
robust MT methods, errors are defined by the variance on the
population of Z estimates. Chave and Jones (1997) showed
that conventional distribution-based error estimates are of-
ten biased. Because they were considered to be less sensitive
to non-stationarity and depart from Gaussian error distribu-
tions, Chave and Thomson (1989) replaced standard vari-
ance by Jackknife variance (introduced by Efron 1982 and
Efron and Gong 1983). Improved robust methods should al-
low the MT user to obtain more stable and more reliable MT
impedance estimates.

The question of the stability of MT estimates and their as-
sociated errors has been discussed by Eisel and Egbert (2001).
They showed that Jackknife variance errors did not reliably
estimate the variability of the successive estimates over the
full range of MT frequencies. They suggest that day-to-day
variability is the best way to estimate impedance accuracy.
More recently, Hanekop and Simpson (2006) suggested that
deviations from the plane wave assumption used in the MT
method leads to errors on impedance estimates that will not
be reflected in the standard error bars.

In this article, we introduce in detail a new type of er-
ror estimate, the error tensor. It is based on a robust least-
squares regression between the horizontal magnetic field and
the residuals of the electric field obtained from the impedance
estimation.

For testing the reliability of the proposed error calcula-
tion, we first consider a synthetic data set, where a real time-
series of the magnetic field h is convolved with two synthetic
impedance models: a homogeneous half-space and a 1D lay-
ered resistivity. A real time-series of the magnetic field is used
instead of a synthetic superposition of pure or singular oscil-
lations because our aim is to comfort the robustness of the
method with realistic non-stationary behaviours. We com-
pare the true and estimated quantities to assess the accuracy
of the estimation method. We focus on the modulus of the

error tensor since the apparent resistivity is defined through
the modulus of the impedance tensor. Then, several levels of
Gaussian noise are added on electric field time series and the
error estimator is tested again.

Second, we consider a real data set on a site where the
resistivity does not change in time, so that any variation of the
impedance should be interpreted as a limit of the processing
method. We study the variability of successive estimates over
the day and compare it with error estimates. Reliable error
estimates ought to provide the upper and lower bounds of the
Z variability.

METHODOLOGY

Estimating the impedance tensor

In the time domain, ei(t) and hj(t) are related by a convolution
equation involving the impedance tensor zij(t):

ei (t) =
∑

j

zi j (t) ∗ hj (t) + μi (t), (1)

where i, j are direction indices (say, 1 = x, 2 = y) and the
asterisk * denotes the convolution product (in the time do-
main). While ei(t) and hj(t) can be considered as random but
observable variables, zij(t) is non-random and unobservable
and μi(t) is the noise.

In most processing techniques (e.g., Chave et al. 1987;
Egbert 1997), the electric and magnetic fields are transformed
into the Fourier domain (respectively Ei(f ) and Hj(f )) and
convolution equation (1) becomes, in discrete form:

Ei ( fk) =
∑

j

Zi j ( fk)Hj ( fk) + NEi ( fk), (2)

where NEi ( fk) is the electric field misfit and is assumed to
follow normal statistics with zero mean.

The approach introduced here can be used with any transfer
function estimation technique. Here we consider the bounded
influence remote-reference processing (BIRRP) code (Chave
and Thomson 2004), which solves equation (2) using weighted
least squares (LSQ) within a series of time windows (called
‘delete-ones’). BIRRP is used here in single site (SS) config-
uration. To improve the accuracy, the length of these time
windows is chosen to be inversely proportional to the target
frequency f k (meaning time-frequency resolution comparable
to that of the wavelet transform (Zhang et al. 1997)). Thus
solving equation (2) within all subsets yields a unique estimate
Zij(f k) and a series of residuals on the electric field � Ei(f k).
This population of residuals is considered and compared to
a reference statistical model in order to detect outliers, apply
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Jackknife filtering and define weighted factor for the LSQ.
One finally obtains a robust estimate for Zij(f k).

The error tensor

In addition to a robust estimate for Zij(f k), BIRRP also pro-
vides the user with the spreading parameter of the jackknife
estimates population (related to the variance). This is classi-
cally used as an estimate of the uncertainty on Zij(f k) but it
is biased in cases for which low geomagnetic activity or an-
thropic noise involves a population of Zij(f k) estimates with a
small variance but with a mean far from the true value. These
errors are mostly underestimated as they are physically related
to the variability of jackknife estimates.

To address this problem, we propose here the use of a new
estimator for errors on the MT impedance tensor: the error
tensor, defined on the basis of residuals of the electric field.

Let us call Zest
i j ( fk) the estimated impedance tensor at a

frequency f k. By product with the magnetic field this yields
to:

EP
i ( fk) =

∑
j

Zest
i j ( fk)Hj ( fk), (3)

where EP
i ( fk) is the predicted electric field in the Fourier do-

main.
By subtracting equation (3) from equation (2), we obtain

the following relation for the residuals:

�Ei ( fk) =
∑

j

�Zi j ( fk)Hj ( fk) + NEi ( fk). (4)

Here, �Ei(f k) is the difference between the observed and pro-
duced electric fields:

�Ei ( fk) = Ei ( fk) − EP
i ( fk), (5)

and the error tensor �Zij(f k) is a 2×2 tensor defined as the
difference between the true impedance Zij and the estimated
tensor:

�Zi j ( fk) = Zest
i j ( fk) − Zi j ( fk). (6)

The assumption of a normal distribution of �Ei is first
used to determine the impedance components Zij by solving
equation (2) and is moved to similar linear equation (4) to
be solved to determine impedance errors �Zij. The estimation
of the error tensor can be made with classical robust MT
impedance computation techniques by passing �Ei(f k) back
to the time domain and then using the time-series (�ei(t), hj(t))
as input to the transfer function estimation code. The error
tensor is computed in the same way as the MT tensor itself

and its components can be considered as error estimates on
Zest

i j ( fk).
The error tensor is defined by the residuals from the regres-

sion that yields to Zest
i j ( fk). For the presentation that follows,

we introduce three error notations:

1. �Zest
i j denotes the new robust error estimates (solution to

equation (4))
2. �Zbirrp

i j is BIRRP’s own error estimates based on the so-

called Jackknife variance of impedance estimates
3. �Zobs

i j is the true error observed in our synthetic tests (by
direct use of the definition in equation (6) with the true
impedance tensor)

Parameters of sliding windows

We consider successive runs of BIRPP, in a single station (SS)
processing configuration, on data acquired within a single day
to provide several estimates, each being relative to a record
duration D. This duration is related to the period T0 (in sec-
onds as for D), to the number of delete-ones (elemental sliding
windows for each estimate) N and to the number of periods
within each delete-one K:

D = cNKT0, (7)

where c is an overlapping factor (dimensionless and strictly
lower than unity).

For simplicity in this paper, we focus on 3 values of T0:
5 s, 0.5 s and 0.05 s. These periods are used for all syn-
thetic and real data cases; they are related to the skin depth
δ ≈ 503

√
T0ρa (where δ is in metres, T0 is in seconds and the

apparent resistivity ρa is �.m) so they address a significant
range of depth samplings. They are considered for the esti-
mates of both the MT and error tensors (Zest

i j ( fk) and �Zest
i j ( fk)

respectively).
For each frequency of interest, the data are decimated to a

new sampling rate f s. We use the BIRRP code with elemental
windows or delete-ones of 3 different lengths (see Table 1),
respectively increasing the number K of periods T0 per elemen-
tal window. The parameter N is not systematically tested: this
is the number of elemental windows (delete-ones) for each
BIRRP estimate. After a few tests (N = 125, 250, 500), we
noted that the most important sensitivity is on parameter K so
for all cases considered we will use N = 250. Tests using dif-
ferent values of K (and corresponding values of D) are shown
for the synthetic homogenous case; for all other applications
(synthetic 1D case and the real data case), we use a fixed K of
6 periods per elemental window.
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Table 1 Duration of the windows for Z and �Z estimates in function
of the number K of periods To contained in each delete-one (columns),
for each period T0 of interest (lines) and for a fixed number N of 250
delete-ones

T0[s] f S[Hz] K D[s]

0.05 213.33 3 38
6 77
12 154

0.5 21.33 3 384
6 768
12 1536

5 2.13 3 3840
6 7680
12 15360

TEST ON SYNT H ET I C M ODELS

To test the validity of the error estimation method, we pro-
duced a hybrid data set consisting in a real magnetic data (MT
source) but a synthetic electric field based on a well-defined
impedance model. We chose this approach because:
� if we use a real (e, h) data set, we will not have full knowl-

edge of the true impedance Zij which is necessary to com-
pute the true errors to be compared to estimated errors;

� if we use a purely synthetic data set, we will be able to know
exactly the true impedance Zij but the time fluctuations and
instabilities will not be representative of the complexity
and realism of the geomagnetic external variations. Actual
non-stationarities, including unknown natural, anthropic
noise and deviation from the plane wave assumption of
MT sources are required in the synthetic data because they
can be a significant cause of errors on impedance estimates.
Thus, we use a hybrid data set, i.e. ‘semi-synthetic’: we use

an observed magnetic field hj(t) but we compute a synthetic
electric field es

i (t) based upon a simple analytic impedance
model in the frequency domain ZM

i j , which is convolved with
the observed magnetic field (equation (3)). The real magnetic
data set is a 24-hour time-series acquired at 1024Hz on August
5th 2009, during a magnetotelluric survey on the granitic
area of Avrillé (Vendée, France). A first set of synthetic data
uses a homogeneous resistivity model and a second uses a
layered resistivity model. The quality of the impedance tensor
and error tensor estimates obtained on one synthetic time-
series is obtained by comparing the statistical behaviour and
time variability of the relative errors over the day: true errors
�Zobs

i j ( fk), our new error tensor �Zest
i j ( fk) and the errors given

by BIRRP �Zbirrp
i j ( fk). This approach assumes correlated noise

between the electric and magnetic fields, which is supposed to
not be the case for the tensor estimation procedure.

The homogeneous case

First we consider a simple hybrid data set, using an impedance
ZM

i j corresponding to a homogeneous medium of resistivity
ρM = 750 �.m. The wavenumber kM is defined as:

kM =
√

ωμM

2ρM
(1 − I), (8)

where I = √−1, ω = 2π f and μM = μ0 is the magnetic perme-
ability in the medium classically set to be equal to the free-air
permeability (the relative change in the electrical resistivity
ρM is much greater than in μM). The impedance tensor is a
simple antisymmetric tensor with zero diagonal and opposite
off-diagonal terms ZM

i, j = (−1)i+1 ZM where i, j are direction
indices and ZM is the medium complex impedance:

ZM = ωμ0

kM
=

√
ρM

2ωμ0
(1 + I). (9)

Statistical behaviour of true and estimated relative errors

Let us focus on the results obtained on the xy component
(figs 1, 2 and 3); from a statistical point of view, its be-
haviour is similar to that of the other off-diagonal element
(yx), while the diagonal elements are negligible. We consider
both histograms of the error estimates normalized to true er-
rors (|�Zbirrp

i j |/|�Zobs
i j | and |�Zest

i j |/|�Zobs
i j |) and relative true

errors |�Zobs
i j |/|Zobs

i j |. We focus on the histogram maximum,
providing the most likely value, respectively Xbirrp

0 , Xest
0 and

X0:
� For the true errors �Zobs

xy , X0 (see Fig. 1) decreases with
increasing K at periods T0 = 0.5 s and 5 s. This dependency
on K shows that the longer the delete-ones windows, the
better the impedance tensor estimates are. To the contrary,
at the shortest period (T0 = 0.05 s), the longest estimates
(K = 12) display larger errors than the others. This could be
due to the occurrence of short-lived transient noise-sources.

� To analyse their accuracy, one can compare the BIRRP
error estimates �Zbirrp

xy to the true errors �Zobs
xy (see Fig. 2):

a large proportion of the Jackknife estimates population
�Zbirrp

xy (red in Fig. 2) underestimates the errors. Errors
�Zbirrp (or �Zest) cannot be considered as reliable when
they are lower than the true errors �Zobs. Xbirrp

0 ranges
from 0.3 to 3.08.

� Now comparing the ‘error tensor’ estimates �Zest
xy to the

true errors �Zobs
xy (see Fig. 3), one remarks that most
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Figure 1 Homogeneous case: synthetic
data. Histogram of relative true errors
�Zobs

xy for 3 periods of estimation (T0 =
0.05 s, 0.5 s, 5 s) and several values of K (K =
3, 6, 12). X0 is the most likely value and nb
is the number of estimates.

Figure 2 Homogeneous case: synthetic
data. Same as Fig. 1 for BIRRP er-
rors normalized by true errors |�Zxybirrp|/
|�Zxyobs|. Red curves: part of the his-
togram with values under unity, indicating
an underestimate of errors (associated % of
the population shown); blue curves: values
above unity, overestimate.

Figure 3 Homogeneous case: synthetic
data. Same as Fig. 2 for our proposed er-
ror tensor |�Zxyest|/|�Zxyobs|.

probable values Xest
0 range from 1.55–2: this is an accept-

able overestimation of errors (considering the low relative
errors �Zobs

xy shown on figure 1). So |�Zest
xy | can be used as

a diagnostic/quality control (QC) tool during a survey.

One can discuss the ‘best’ K that leads to both reliable Z

and �Z estimates. For the present case, using K = 3 would
be the best choice, because for all periods, all errors �Zest

xy

are larger than the true errors so we avoid the pitfall of using

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Table 2 Homogenous case: synthetic data. Correlation coefficients
between the true and estimated error time-series for several values of
K (number of periods T0 contained in each delete-one) at different
periods T0 of estimation. Cobs/est

i j and Cobs/birrp
i j explained in the text

T0 [s] K Cobs/est
xy Cobs/est

yx Cobs/birrp
xy Cobs/birrp

yx

0.05 3 0.83 0.61 0.41 0.46
6 0.20 0.17 0.27 0.48
12 −0.17 0.2 0.18 0.52

0.5 3 0.99 0.88 0.89 0.78
6 0.99 0.89 0.84 0.62
12 0.99 0.91 0.68 0.37

5 3 0.98 0.97 0.7 0.66
6 0.97 0.93 0.57 0.54
12 0.97 0.92 0.1 0.17

unrealistically small errors in the interpretation. However, this
also yields to the largest true errors on the tensor itself (since
�Zobs

xy decreases with K). Thus we would prefer to use K = 6
for a balance between the error tensor quality (overestimate of
errors except 2% of underestimate for T0 = 0.05s) and Tensor
quality (lowest true errors). Moreover, we obtain a better time
resolution than for the case with K = 12: for instance for T0 =
0.5 s (2 Hz frequency), one is able to correctly get one value
for each tensor component and its uncertainty every 12 min
(D ≈ NKT0) with K = 6 or 25 min with K = 12.

Time variability

Let us now extend our discussion to both xy and yx compo-
nents of the impedance tensor. In addition to the histograms of
the ratios |�Zbirrp

i j |/|�Zobs
i j | or |�Zest

i j |/|�Zobs
i j |, we also char-

acterize the quality of error estimates by the correspondence
between the time fluctuations of estimated errors to the true
errors (�Zbirrp

i j or �Zest
i j to �Zobs

i j ). We define correlations, for
each component ij of the tensor, between observed and new
robust errors time series as Cobs/est

i j and between observed and
classical Jackknife errors time series as Cobs/birrp

i j . We use these
correlation values (Cobs/est

i j or Cobs/birrp
i j ) to show the accuracy

of the estimates in terms of variability (Table 2). Similitude
between variability and correlation can be seen by comparing
the strong correlation values of Cobs/est

xy to the shape of the
time fluctuations of the true �Zobs

i j and the estimated errors
in Fig. 4.
� Let us consider the values of Cobs/birrp

i j (Table 2) and the cor-
responding plots of error time-series (see Fig. 4). Whatever
the value of K, �Zbirrp

i j shows in most cases little correlation
with �Zobs

i j .

� We note that the accuracy of the variability of the error
tensor is evident whatever the parameter settings: at the ex-
ception of the shortest periods (T0 = 0.05 s; for K = 6, 12),
�Zest

i j time-series are strongly correlated with �Zobs
i j (values

reach 0.99 in some cases). Practically, for the case where
one would like to select the best estimate of Z at a fixed pe-
riod T0 over a whole day, choosing the estimate associated
with the lowest value of |�Zest

i j | would be reasonable. As
the error tensor is based on a regression on the electric field
residuals �e of the MT tensor estimation, we suggest that
this is probably more representative of the fluctuations of
the true magnitude of the error on �Zest

i j .
For all T0, the best correlations between �Zest

i j and �Zobs
i j

are obtained for K = 3 (see Table 2). This case also cor-
responds to the worst Z estimates (largest true errors, see
Fig. 1).

The plots of both true and estimated errors versus time
(Fig. 4) display two regimes associated with daytime and
nighttime data. Compared to those from the daytime data,
the (T0 = 0.5 s, K = 6) estimates based on the night time data
are characterized by an increase of errors on the xy element
and to a lesser extent on the yx element. Because this case is
actually a ‘semi-synthetic’ data case (real h field + synthetic Z

impedance), these patterns are essentially due to internal vari-
ability in the properties of h (non-stationarity of the sources,
noise and possible deviation from the plane wave hypothesis
of MT sources).

The 1D case

The second family of synthetic data sets is built by using lay-
ered (1D) models. The true impedance is computed using clas-
sical iterative formulas (e.g., Ward and Hohmann 1987) and
accounts for a half-space of resistivity ρM = 1 �.m overlain
by two layers: the top layer has a fixed resitivity ρ1 = ρM =
1 �.m equal to that of the half-space and the intermediate
layer resistivity ρ2 is allowed to vary and will be used as a
sensitivity parameter. Impedance in each layer is defined sim-
ilarly to that of the homogeneous case (equations (8) and (9)),
using the wavenumbers k1 = kM and k2 =

√
ωμ0
2ρ2

(1 − i), and

scalar impedances Z1 = ZM and Z2 = ωμ0/k2.
The first two layers have bottom depths of h1 and h2 re-

spectively. In order to minimize the frequency dependence
with depth, we choose thickness values in relation to the
skin depths. To emphasize the effect of the second layer
resistivity, we put layer 2 at a depth of one and a half skin
depths and gave it a thickness of one skin depth: h1 = 1.5δ

and h2 = 2.5δ and we use six different values of layer 2

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Robust error on MT impedance estimates 7

Figure 4 Homogeneous case: synthetic
data, K = 6. Relative estimated and true
�Zxy (left column) and �Zyx (right col-
umn) time-series for 3 periods T0 of estima-
tion (T0 = 0.05 s, 0.5 s, 5 s): i) blue = true
errors, ii) red = error tensor, iii) green =
Birrp error.

Figure 5 1D case: synthetic data corresponding to one tabular model.
Classical MT sounding realized with 3 periods per decade plus 3
additional periods of estimation (T0 = 0.05 s, 0.5 s, 5 s). Error bars
based on the error tensor are present but very small.

resistivity ρ2: 10−2, 10−1, 1, 101, 102 and 103 �.m. We fixed
the ‘binning’ parameters K and N to 6 and 250, i.e., the best
parameters obtained for the homogeneous case. Among the
18 models created, we show on Fig. 5 a typical MT resis-
tivity sounding curve, computed with the synthetic data and
associated with one 1D model. The quality of the soundings
(very low errors) obtained from the other models is similar to
this one.

Statistical behaviour of true and estimated relative errors

As in the homogeneous case, the statistical point of view is
discussed using the xy component only.

� Most probable values X0 associated with the distribution
of true relative errors of |�Zobs

xy | decrease with increasing
period T0 (Fig. 6). All errors are small, less than a few
percent.

� Values of Xbirrp
0 show that the population of �Zbirrp

xy un-
derestimates �Zobs

xy (see Fig. 7). Looking at histograms
of |�Zbirrp

xy |/|�Zobs
xy |, one can observe that for T0 = 0.5

s, 94−96% of all the associated population is less than
unity (i.e., indicating that error estimates are lower than
true errors), for To = 5 s, it is 60−71% of the popula-
tion while for T0 = 0.05 s, 15−40% of the population
is concerned. As in the homogeneous case, a consider-
able proportion of Jackknife errors underestimate the true
errors.

� Histograms of |�Zest
xy |/|�Zobs

xy | and associated values of
Xest

0 show that, in all cases, error tensor estimates |�Zest
xy |

are larger than the true errors |�Zobs
xy | (see Fig. 8). For

T0 = 5 s and T0 = 0.5 s, 100% of all the histograms
population is superior to unity. Concerning T0 = 0.05 s,
96−98% of the error population overestimate the true er-
rors. Now, examining in more detail the values of Xest

0

at T0 = 0.5 s and T0 = 5 s, the error tensor overesti-
mates the true errors by factors of 1.75–1.95. For T0 =
0.05 s, the overestimates are even higher, ranging from
2.21 to 4.
Thus, for all frequencies, the error tensor brings a sig-

nificant improvement of error estimation: true errors are
overestimated by a factor 1.7–4 while they were under-
estimated with Jackknife estimates. However the results
for the highest frequency must be used with caution: the
overestimate of errors reaches a factor of 4, a very high
value.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 6 1D case: synthetic data. K
is 6. Histogram of relative true errors
|�Zxyobs|/|Zxyobs| for 3 periods of estima-
tion (0.05 s, 0.5 s, 5 s), and 5 resistivity mod-
els (ρ2 = 10−2, 10−1, 1, 101, 102, 103�.m).
X0 is the most likely value.

Figure 7 1D case: synthetic data. Same as
Fig. 5 for BIRRP errors normalized by true
errors |�Zxybirrp|/|�Zxyobs|. Red and blue
curves as above in Fig. 2.

Time variability

As in the homogeneous case, let us consider the correlation
values between true and estimated errors (see Table 3):
� For the shortest period T0 = 0.05 s, both Cobs/birrp

i j values
are very low (−0.08 to 0.78). The longer periods show
higher correlations but never higher than 0.83. As for the
homogeneous case, the variability of the true errors on the
MT tensor is unsatisfyingly represented by �Zbirrp.

� For the shortest period T0 = 0.05 s, most Cobs/est
i j values

are low (−0.09 to 0.74). For periods T0 = 0.5 s and T0 =

5 s, correlations values are high (≥0.81). At these peri-
ods, one can say that error tensor estimates �Zest behave
similarly to the true errors �Zobs. Besides, we note a sig-
nificant difference between the components: the xy values
range from 0.95–0.99, while the yx values are systemati-
cally lower (half of them between 0.81–0.89).

Behaviour of error estimates with Gaussian noise

In order to test the behaviour of error estimates with electric
noise, different levels of noise is injected on synthetic electric

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 8 1D case: synthetic data. Same as
Fig. 6 for our proposed error tensor nor-
malized by true errors |�Zxyest|/|�Zxyobs|.

Table 3 1D CASE: as for Table 2 but for synthetic data with K fixed
to 6

T0 [s] ρ2 [�.m] Cobs/est
xy Cobs/est

yx Cobs/birrp
xy Cobs/birrp

yx

0.05 10−2 0.15 0.05 0.06 0.13
10−1 0.74 0.67 0.78 0.78
10−1 0.20 0.17 0.27 0.48
100 −0.08 0.04 −0.05 −0.08
101 −0.09 0.05 −0.05 −0.08
102 −0.09 0.05 −0.05 −0.08

0.5 10−2 0.99 0.88 0.83 0.63
10−1 0.99 0.88 0.84 0.63
100 0.99 0.89 0.84 0.62
101 0.99 0.92 0.83 0.60
102 0.99 0.92 0.83 0.58
103 0.99 0.92 0.83 0.58

5 10−2 0.99 0.97 0.75 0.72
10−1 0.99 0.98 0.72 0.65
100 0.97 0.94 0.57 0.54
101 0.95 0.83 0.31 0.45
102 0.95 0.81 0.25 0.46
103 0.95 0.81 0.25 0.45

field es
i (t) time series such as

eN
i (t) = es

i (t) + N(t, σN), iso; (10)

where σ N is the standard deviation of the noise, which we set
proportional to the electric field standard deviation σes

i
such

as σN = aσes
i

and a is defined as the noise level. Comparison
between the 3 types of errors are made as for the noise-free

data case. As the discussion on the statistical nature of EM
noise is still open, we choose to inject simple Gaussian noise
on the electric field time series.

Different noise levels were injected on the electric field, re-
spectively corresponding to values of a (equal to 0.2, 0.5, 0.1,
0.15, 0.2, 0.25, 0.3 or 0.5). First, the statistical behaviour of
the estimates is briefly synthetized by standard deviations and
median values of observed and estimated quantities. Values
associated with relative true error populations |�Zobs

i j |/|Zobs
i j |

increase with the noise level (see Fig. 9). For a = 0, one can
find the results observed in the noise-free case. At T0 = 0.05s,
relative observed errors increase strongly with the noise level.
Again, error tensor estimates are overestimated by a reason-
able factor while BIRRP error estimates can be strongly un-
derestimated (not represented here).

Second, Cobs/birrp
i j values are very low at all periods (T0 =

0.05 s, 0.5 s, 5 s) for both non-diagonal components and varies
with a. Cobs/est

i j increase as a function a at different rates. For
T0 = 0.5 s, 5 s, values are always superior to 0.85. At T0 =
0.05s, Cobs/est

i j are very low on the yx component for val-
ues of a lower than 0.1 and increase strongly with increasing
noise a. A possible explanation for this correlation is that
when a low noise level is added to the electric field, errors are
principally caused by bias in the magnetic field, propagated
to the electric field with maximum correlation. When higher
levels of Gaussian noise are present, the scatter becomes dom-
inated by synthetic noise. While BIRRP’s own error estimates
fail to correlate with the true errors, the higher the noise level,
the more �Zest

i j correlates with �Zobs
i j .

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 9 Homogeneous case: synthetic data
with a different noise level injected, con-
trolled by parameter a (noise/signal ratio),
on the electric field. Left: correlation coef-
ficients between the true and estimated er-
ror time-series as a function of a at differ-
ent periods T0 of estimation. Cobs/est

i j and

Cobs/birrp
i j explained in the text. Right: me-

dian values and standard deviation of the
relative observed error population as a func-
tion of a.

REAL DATA APPL I C A T I ON

Let us now show tests of the error estimation methodology on
a real data set acquired at a site in Vendée (Western France)
where subsurface resistivity is reasonably assumed to be con-
stant in time. Time series were recorded for a whole day (with
a 1024 Hz sampling frequency), a sufficiently long record for
estimates at periods shorter than 5s. Consecutive values of Z

and �Z, were computed over the whole (e,h) time-series using

K = 6 and N = 250 for the sliding windows in BIRRP. The
comparison between the variability and the error estimates is
a more useful way to estimate the quality in the real data case,
without any a priori knowledge of the subsurface resistivity
structure. Besides, the behaviour of �Zest/�Zobs cannot be
reached on real data since the true error �Zobs is unknown;
this can only be discussed by comparison with the tests on
synthetic data.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 10 Real data case: noisy MT sounding. Presentation of MT re-
sults at the 3 periods of interest and other additional periods: apparent
resistivities and associated error bars obtained with the error tensor
estimator. Values are obtained with a real observed MT time-series
over one day of data. Daily medians of successive values are repre-
sented. K (the number of periods To contained in each delete-one) is
fixed to 6.

Typical magnetotelluric (MT) sounding

First, we present a typical MT sounding realized with periods
going from 3.9 ms to 8 s from our real data set, including the 3
periods used in our synthetic tests (T0 = 0.05 s, 0.5 s and 5 s).
These sounding quantities are obtained from the rotation of
impedance tensor estimates in geo-electrical directions. Typi-
cal apparent resistivities ρxy et ρyx are shown with associated
error bars computed from the median values of error tensor
estimates over the daily estimates.

Resistivities are of a hundred �.m at short periods and
both ρxy and ρyx are similar. Both decrease at longer periods
(T0 > 0.5 s) while xy and yx components differ. This sounding
has been done on a fractured granitic area with conductor
inclusions.

Statistical behaviour of impedance estimates

We discuss the median daily relative errors computed for T0 =
0.05 s, 0.5 s and 5 s (see Table 4). First, at T0 = 5 s, all
components of the tensor show large relative errors, equal or
superior to 100%. This reflects the great variability shown on
tensor component time series at this period. Both periods T0 =

Table 4 Real data case. Standard deviations of the absolute
impedance estimates |Zest| time-series T0 compared to the median
of absolute associated errors �Zest for the three periods T0 of obser-
vation (respectively 5, 0.5 and 0.05 s). Both values are normalized to
the median values of impedance estimates

T0 [s] 0.05 0.5 5

median(|�Zest
xx |/|Zest

xx |) 18% 13% 137%

median(|�Zest
xy |/|Zest

xy |) 34% 20% 91%

median(|�Zest
yx |/|Zest

yx |) 41% 60% 144%

median(|�Zest
yy |/|Zest

yy |) 25% 15% 97%

std(|Zest
xx |)/|Zest

xx | 10% 8.5% 30%

std(|Zest
xy |)/|Zest

xy | 28% 5% 50%

std(|Zest
yx |)/|Zest

yx | 13% 187% 280%

std(|Zest
yy |)/|Zest

yy | 7% 7% 34%

0.05 s and T0 = 0.5 s have relative errors reaching several tens
of percents. �Zyx shows the highest values.

Daily variation

As proposed by Eisel and Egbert (2001), day-to-day variabil-
ity would be the best way to estimate impedance estimate
precision for a real data set with very long time-series. We
apply this variability criterion on a consequently shorter time
scale: we study the variability of successive estimates (each
one is associated with a duration D of signal) over a day
and compare it with the error estimates based upon resid-
uals. Reliable error estimates must provide the upper and
lower bounds of the Z estimate time variations. We know
that the subsurface geo-electrical structure does not change
during the period of analysis, so that the daily variation is
uniquely due to anthropic EM noise, measurement errors and
non-stationarity of the source. We define the lower and up-
per bounds Z− and Z+ of the confidence interval (see the
Appendix). We will consider the errors �Zest to be reliable
when their associated confidence interval ([Z−: Z+]) allows
the MT user to take a single value that will remain valid for the
whole day.

We will now observe if this condition is respected by com-
paring the whole-day median and the standard deviation of
the Z estimates for all components (as an example, Fig. 11
shows the variations of Zxx bounds over the duration of the
dataset). Our results (see Table 4) show that one of the three
period’s T0, strictly meets this condition: for T0 = 0.05 s,
median values of errors overestimates the standard deviation
of Z estimates. Similarly, for T0 = 0.5 s and T0 = 5s, the

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 11 Real data case. Time series of the
modulus of the confidence bounds of com-
ponent Zxx (in black ) for 3 periods T0 of
estimation (0.05 s, 0.5 s, 5 s).

condition is met on components xx, xy and yy and confidence
intervals can be used as the actual bounds of Z over the day.
However, errors underestimates the standard deviations on
yx for these periods.

We also observe this condition on apparent resistivities es-
timates. Tensor estimates Z and associated error tensor �Z

are now rotated into the Z principal axis and become Z′ and
�Z′ (see Appendix for details). From antidiagonal compo-
nents of Z′ and �Z′, the upper and lower bounds are defined
(see Appendix for details) and are transformed in resistivity
bounds ρ+ and ρ−. Moreover, from Z′ and �Z′, a resitivity
tensor ρ̂ and an error tensor of resistivity �ρ are deduced.
Then values of the standard deviation of resistivity estimate
time series are compared with the median value of �ρ for xy

and yx components.
For T0 = 0.05 s, standard deviations of estimated resistiv-

ities are slightly equal to the median of resitivity errors, time
series of ρ+

xy and ρ−
xy and ρ+

yx and ρ−
yx values can be used as

resistivity bounds at this period. In contrary, for T0 = 0.5 s
and T0 = 5 s, standard deviations are significantly larger than
the median of resitivity errors (see Table 5). Figure 12 shows
that at these periods, confidence bounds do not allow to take
one single daily resitivity value.

CONCLUSION

As an alternative to classical error estimates on MT
impedances, we propose a new ‘robust’ MT error tensor es-
timate �Z, computed from transfer functions from magnetic
time-series h(t) and the electric field residuals time-series �e(t),
resulting from the impedance tensor estimate. They are com-
puted with the same robust processing code as the impedance
Z itself, which allows for easy calculations. Tested on two

Table 5 Real data case. Standard deviations of the absolute resistivity
estimates ρest

i j time-series T0 compared to the median of the absolute
associated errors �ρest

i j for the three periods T0 of observation (re-
spectively 5, 0.5 and 0.05 s). All values are normalized to the median
values of resistivity estimates

T0 [s] 0.05 0.5 5

median(|�ρest
xy |/|ρest

xy |) 12% 11% 83%

median(|�ρest
yx |/|ρest

yx |) 14% 8% 73%

std(|ρest
xy |)/|ρest

xy | 11% 81% 128%

std(|ρest
yx |)/|ρest

yx | 13% 63% 99%

synthetic homogeneous and 1D synthetic data sets, this pro-
cedure yields more reliable estimates on the modulus than
the errors based on the Jackknife variance. This is clear on
synthetic data sets:
� First, the error tensor ‘method’ overestimates true errors in

reasonable proportions (of factor 2).
� Second, with the exception of the shortest period studied

here, all correlations between the true and the new ‘ro-
bust’ errors time-series are quite high (0.9). The variability
displayed by error tensor estimates reflects the time varia-
tions of true errors, which was not the case with Jackknife-
based error estimates. Moreover, we injected several levels
of Gaussian noise on the electric field and obtained the fol-
lowing results: new ‘robust’ error estimates become highly
correlated for moderate amounts of noise for all tested peri-
ods. This feature is really important for the development of
time-lapse MT, where successive estimates are made con-
tinuously in time: time variations of error estimates must re-
flect the true fluctuations in the quality of the tensor. This is
a clear improvement compared to previous Jacknife-based
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Figure 12 Real data case. Time series of the
confidence interval associated with rotated
apparent resistivities ρxy and ρyx for 3 peri-
ods T0 of estimation (0.05 s, 0.5 s, 5 s) rep-
resented in different grey levels.

error estimates. This is important in MT for rapid quality
control (QC) and to optimize data collection durations.
In a real data case, in order to test the error tensor es-

timates, one should observe a different condition: consid-
ering one time-series of successive impedance estimates, re-
liable error estimates should englobe their time variations.
The ‘robust’ error tensor values are strictly higher than the
daily variation of successive impedance estimates on 1 of
our 3 periods of study. In order to compare our results
with classical MT apparent resitivities, impedance errors were
converted into apparent resistivity errors. The resulting resi-
tivity confidence intervals does not englobe resistivity time
variations.

The necessary condition for the development of imaging (in
space and time) using MT monitoring of the subsurface (such
as volcanoes, hydrocarbon reservoirs or geothermal fields) is
the reliability and robustness of both impedances and asso-
ciated error estimates. The proposed ‘robust’ errors can be
used for such applications, because they provide good corre-
lations with the time variation of the true errors of successive
estimates. In addition to the new error estimator, we also pro-
pose a methodology to test the transfer function estimator in
MT. This procedure can be applied with any MT impedance
estimation method. Robustness of the error tensor was shown,
at least on its modulus. One valuable addition to this study
would be to run the same test with the use of a magnetic re-
mote reference, which can improve results obtained with real
data.

Besides, we only used the modulus of the error tensor in
this paper but a reliable phase error estimator should be an
improvement to the method. As the phase of the impedance

tensor is less sensitive to near-surface distortions, it is often
necessary to use it for inversion. Phase errors could also be
used as a weighting factor in the inversion process. This will
be the subject of a future article.
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APPENDIX

As only the module of the error tensor is defined, one should
consider all phase values in order to define confidence intervals
on rotated impedances. First, we define a family Z∗

i j of Zij

components, covering the full range of possible phases, such
as:

Z∗
i j = {

Zi j + ∣∣�Zi j

∣∣ eiα
}
, (A1)

where i = √−1 and where α covers 0 to 2π . Thus, the bounds
of the confidence interval for each component Zij (respectively
Z−

i j and Z+
i j ) are defined by minimum and maximum modulus

values in the family of Z∗
i j . In addition, with these bounds, we

define two matrices of dimension 2 × 2 of confidence intervals
Z− and Z+.

We now consider the case where the tensor is rotated
through its principal axes. Let θ be the strike angle deter-
mined on the basis of the impedance estimate Z, from which
we define a rotation matrix:

Rθ =
⎡
⎣ Rθ

xx Rθ
xy

Rθ
yx Rθ

yy

⎤
⎦ . (A2)

Then, the tensor is rotated with Rθ and each rotated com-
ponent is associated with a family of values :

Zxx,θ = Rθ
xxZ∗

xx + Rθ
xy Z∗

yx (A3)

Zxy,θ = Rθ
xxZ∗

xy + Rθ
xy Z∗

yy (A4)

Zyx,θ = Rθ
yxZ∗

xx + Rθ
yy Z∗

yx (A5)

Zyy,θ = Rθ
yxZ∗

xy + Rθ
yy Z∗

yy. (A6)

From the maximum and minimum values of the modulus
of each family component, the tensors of upper and lower
bounds of confidence interval Z+

θ and Z−
θ are defined. Thus,

they are transformed in the resistivity bound matrix from
which values ρ+

i j and ρ−
i j are taken.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14




