
HAL Id: hal-00933179
https://hal.science/hal-00933179

Submitted on 20 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering Functional Requirements of Reactive
Systems using Synchronous Languages
Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

To cite this version:
Erwan Jahier, Nicolas Halbwachs, Pascal Raymond. Engineering Functional Requirements of Reactive
Systems using Synchronous Languages. International Symposium on Industrial Embedded Systems,
2013. SIES’13., Jun 2013, Porto, Portugal, France. pp.15. �hal-00933179�

https://hal.science/hal-00933179
https://hal.archives-ouvertes.fr

Engineering Functional Requirements

of Reactive Systems

using Synchronous Languages

Erwan Jahier∗ - Nicolas Halbwachs∗ - Pascal Raymond∗

∗CNRS/Verimag, 2 avenue de Vignate, Gières, France

Abstract—Automating the functional testing of reactive sys-
tems requires to provide a formal specification of the system
environment which defines the admissible test inputs. It also
requires a specification of the expected properties of the system in
order to decide whether a test succeeds or fails. Engineering these
formal specifications is a difficult task, as it is not part of the usual
manual testing process. In this paper, we report some experiments
that have been conducted within a project in collaboration with
industrial developers of nuclear power plant control systems. In
this project, automatic testing tools have been used for checking
the correctness of reactive systems developed incrementally, using
heterogeneous industrial engineering workbenches. But these
tools appeared to be useful also for elaborating and refining
formal, consistent, and accurate functional requirements.

I. INTRODUCTION

The functional testing of reactive systems raises specific
problems. In this paper, we adopt the usual point of view of
synchronous programming, considering that the behavior of
such a system is a sequence of atomic reactions — which can
be either time-triggered or event-triggered, or both —. Each
reaction consists in reading inputs, computing outputs, and
updating the internal state of the system. As a consequence,
a tester has to provide test sequences, i.e., sequences of
input vectors. Moreover, since a reactive system is generally
designed to control its environment, the input vector at a
given reaction may depend on the previous outputs. As a
consequence, input sequences cannot be produced off-line, and
their elaboration must be intertwined with the execution of the
system under test (SUT). Finally, in order to decide whether a
given test succeeds or fails, the sequence of pairs (input-vector,
output-vector) can be provided to an observer [1] which acts
as an oracle at each reaction.

Let us illustrate this process with a very simple example:
consider a device whose role is to regulate the water temper-
ature of a tank, by opening or closing a gate that controls
the arrival of hot water. A reaction consists in sampling the
water temperature, comparing it to the target temperature, and
sending an order to the gate. In a realistic input sequence,
the temperature is assumed to increase at some rate when the
gate in open, and to decrease when it is closed. Hence the
input at a given reaction depends on the output sent at the
previous reaction. The property to be checked could be that,
if the target temperature did not change during a given delay,
the temperature should belong to a given interval around the
target temperature. This global property of the combination
[system-environment] can be checked after each reaction by
an observer, which must have an internal memory to count

the delay from the last target change. Moreover, in order to
properly cover this property, we want to generate sequences
where the target temperature does not change too often.

In the past, we proposed languages and tools to automate
this testing process [2]. The system under test is a black box;
it can be any executable code, able to perform on demand a
reaction, i.e., read inputs; do a step; provide outputs. The en-
vironment is modeled using dynamically changing constraints
on inputs described using Lucky [3]; we now use a higher-
level language named Lutin [4]. The oracle is provided as
an observer in Lustre. The tool Lurette is then able to run
automatically any number of arbitrarily long test sequences.
Each step consists of (1) executing one (stochastic) reaction of
the environment that provides inputs to the SUT (2) executing
one reaction of the SUT with the chosen inputs, (3) executing
one reaction of the oracle observer with the SUT inputs and
outputs (and stopping the test if the checked property is
violated), and (4) looping to (1) using the SUT outputs as
environment inputs.

These tools have been applied in several projects. In this
paper we report on the experiments conducted during the
COMON project, which gathered Verimag with 3 industrial
partners, each of which using its own development tool for
designing specific parts of the control and supervision systems
of nuclear power plants. During the project, it appeared that the
methodology requires significant efforts to formalize both the
assumptions made on the system environment and the required
properties checked by the oracle. However, it appeared also
that this formalization process is valuable not only for automat-
ing the tests, but also as an actual engineering of requirements,
allowing early simulations and error detection. This is what is
reported in the present paper.

A. Model-based development of correct systems

In order to establish the correctness of a system, one
has to confront an implementation to a specification. When
the specification is formal, that conformity checking can be
mechanized.

Any formal specification is rooted on a natural language
document. This formalization step is the most delicate, since
it cannot be automated, and the most important, since all
verifications are based on it. Once the functional requirements
have been formalized, even the very first formal model of
the final system can be verified automatically. This process
is outlined in Fig. 1.

1) Analysis of the needs.
2) Specification of the functional requirements in natural

language and via informal drawings.
3) Formalization of these functional requirements.
4) Design of abstract, formal, and refinable models

from the requirements.
5) Design of a final implementation satisfying the re-

quirements.

Steps 1, 2, and 5 are the usual software engineering steps.
Steps 3 and 4 can be started in parallel by different teams.
The first executable model obtained in step 4 is not complete.
Typically, the hardware is abstracted away in the early stages.
Ideally, Step 5 is the result of iterative refinements of step 4.

Fig. 1. Model-based development of correct systems.

Two kinds of formal models. The difference between the
formal models obtained in steps Fig.1-3 and Fig.1-4 is that
the former is only concerned with the “what”, whereas the
latter is also concerned with the “how” – even if the “how”
is introduced step by step. More specifically, in step Fig.1-3,
we write a model that just decides if the system is correct by
observing a sequence of inputs and outputs. The models of step
Fig.1-4 are more difficult to set up, since they are computing
output sequences from input sequences. The advantage of
going through an intermediate formal model is to make easier
the (informal) demonstration of its correctness with respect
to the informal specification of step Fig.1-2. We present in
Sections II-A and II-B an automated test approach to check
the correctness of models of step Fig.1-4 with respect to the
one of step Fig.1-3.

Formalization languages. In order to be convincingly faithful,
the formalization of Fig.1-3 has to be as concise and readable
as possible; ideally there should be a one-one correspondence
with the informal text. Of course concentrating only on the
“what” makes it easier. In any case, good formalization lan-
guages help. They should be well-suited to the kind of systems
under consideration. In particular, for reactive systems, we
need languages where time and concurrency are first class
concepts. A good set of libraries also makes a great difference.
We try to demonstrate our languages and their suitability to
define domain-specific libraries of timed properties in Sections
III and IV.

Requirements engineering. The first three steps are the result
of a human work that is impossible to automate. In Section
II-E, we explain how the proposed tools and methodology can
be used to complete the document of step Fig.1-2, and to detect
inconsistencies.

B. The COMON project and its outcomes

The COMON project1 consortium was made of Verimag
and 3 industrial partners playing complementarity roles in the
design of control and supervision systems for nuclear power
plants: Atos-Origin designs supervision rooms and human

1The COMON project (2009-2012) was supported by the “Pôle de com-
pétitivité” Minalogic, and funded by the French government, the city and the
metropolis of Grenoble.

interfaces; Rolls-Royce Civil Nuclear is in charge of critical
safety systems; and Corys-Tess designs plant simulators. Each
of these partners uses its own workbench: in-house tools
for Atos and Corys, and Scade [5] for Rolls-Royce. The
motivation for this consortium was to take advantage of the
partners complementary to set up a model-based development
framework based on early simulations, model refinements, and
continuous integration.

In this project, we have demonstrated the use of our tools
and languages, based on the synchronous paradigm [6], (1)
to check the correctness of reactive systems developed in-
crementally, using heterogeneous industrial engineering work-
benches (2) to elaborate consistent and accurate functional
requirements. We have performed experiments where Lurette is
controlling the 3 partners workbenches on a custom case study
designed to be representative of each partner’s usual activity.

It was our first experience with Lurette on such heteroge-
neous industrial systems. It was also the first time we used
Lutin and Lurette together on a case study. Lutin has been
extended with a new kind of modularity, which allows to
write more efficient and more readable programs. We have
also introduced in Lurette a simple concept of oracle coverage.
Both this notion of coverage and the enhanced version of
Lutin make Lurette a versatile tool to support model-based
(or just incremental) developments with early simulation and
validation.

C. Summary

The paper is organized as follows. In Section II, we
describe the Lurette languages and methodology, and their new
features. During the project, while formalizing requirements in
Lustre and Lutin, we sketched up a library of generic oracles
and stimulators. Most of those new library entries concerned
time lasting properties that are typical of real-time control-
command systems. Some of them are presented in Section III.
Finally in Section IV, we report the experiments conducted in
the COMON project, and give a few illustrative examples.

II. FROM AUTOMATIC TESTING TO REQUIREMENTS

ENGINEERING

The reactive systems testing tool Lurette automates the
SUT input data generation and the test decision using formal-
ized functional requirements [2]. After a recall of its main
components in Sections II-A and II-B, we propose a way
to deal with coverage issues in Sections II-C and II-D. The
introduction of this coverage mechanism, the use of Lutin, and
the experiments performed in the COMON project revealed
a new insight into the use of Lurette, as a tool to engineer
precise, complete, and coherent functional requirements. This
is argued in Section II-E, where we propose a complete tool-
assisted methodology to support step by step development of
correct reactive systems.

A. Formal outputs requirements (oracles)

Parts of the functional requirements deal with how the
system should behave in some particular situations, such as
raising an alarm when a threshold is exceeded. In our approach,
these formalized requirements will be used as oracles to
automate the test verdict, deciding if a sequence of inputs and

outputs conforms to the specification. This methodology can be
seen as a light-weight way of confronting 2 implementations
realized by 2 different teams. The advantage of using oracles
over a second implementation is that oracles are easier to set
up and maintain. Moreover, the fact that they use a different
level of abstraction encourages transverse views which limit
the risk that the same error is done twice.

With Lurette, oracles are written as observers in the syn-
chronous data-flow language Lustre [6]. Of course any other
synchronous language could be used [7], [8]. The concepts of
time and parallel composition are constitutive of synchronous
languages [9], and make them particularly suitable for the
modular description of reactive systems oracles [10].

B. Formal inputs requirements (environments)

Another part of the functional requirements concern the
assumptions made, sometimes implicitly, on the system en-
vironment. As a matter of fact, a reactive control system
is seldom supposed to work correctly in any environment.
A typical example is the one of a railway signaling system
whose environment is composed of trains and tracks: the
system cannot guarantee the absence of accidents without
assuming that the trains follow tracks and stop at red lights.
These assumptions, once explicitly expressed as constraints,
will enable Lurette to generate pseudo-random realistic input
sequences to the SUT.

oi
okOracles (step 3)

Model (step 4)

or final system (step 5)
Environnement (step 3)

Fig. 2. Lurette data-flow. The 3 entities run synchronously. At each (discrete)
instant, the environment model (step Fig.1-3) provides a (realistic) input vector
(i) to the model (step Fig.1-4) or system under test (step Fig.1-5), which in
turn provides an output vector (o) to its environment. Both vectors (i and o)
feed the oracles (step Fig.1-3) that produce a verdict (ok/nok).

The Lurette data-flow is summarized in Fig. 2. The feed-
back loop between the SUT and its environment is specific to
the test of reactive systems, that react to environments they
try to control. Because a realistic environment must react to
SUT commands, input sequences cannot be generated off-
line, as it is done for testing other kind of systems. The
language Lutin has been designed to program stochastic and
reactive stimulus generators (or stimulators). Lutin programs
are made of Lustre-like data-flow constraints assembled with
regular operators (sequence, loop, non-deterministic choice)
and exceptions that make easier the description of probabilistic
sequential scenarios. Some examples are given in Sections III
and IV.

C. Functional coverage

When performing functional testing, structural coverage
criteria are insufficient to give insights about whether or not
enough tests have been done. We also need coverage criteria
attached to requirements. Consider for instance the following
property, which expresses that, when a threshold is exceeded,
and when the system is in its nominal mode, then an alarm
must be raised:

(T>100 and nominal) => Alarm

There are several ways for the SUT to satisfy this property:
(1) T can be smaller than 100 or (2) the system can be in a
degraded (non-nominal) mode; (3) otherwise, Alarm must be
true. From the coverage point of view, it is obviously the latter
case that is interesting. Its seems fair to consider that this oracle
is not covered as long as no simulation has been run where
T>100 and both nominal and Alarm are true. The case
T<100 is also interesting to cover, but can be attached to a
property related to the absence of false alarms.

Hence, we define the coverage of an oracle as a set of
Boolean conditions. A run (or a trace) of the SUT is a
sequence of the SUT input/output vectors generated during
a simulation. The oracle coverage rate of a set of runs is the
rate of coverage conditions that have been true at least once
during those runs. The coverage of a property is arguably part
of its specification. If it is not the case, the persons in charge of
formalizing requirements into oracles are in the best position
to define the coverage at the same time.

In Lurette, in order to define the coverage of an oracle,
one just needs to add additional Boolean variables to its output
profile. By convention, the first output holds the oracle result,
and the following outputs define the oracle coverage. Lurette
updates the coverage rate from one execution to another (via
a file). This coverage rate is reset each time either the oracle
or the SUT is modified.

D. Better coverage via test scenarios

In order to cover the property of Section II-C, we need
to drive the SUT in such a way that T exceeds 100 while
maintaining it in nominal mode. More generally, achieving full
coverage of conditions that depend only on SUT inputs is easy.
This is more difficult when these conditions involve outputs or
internal states of the system. One must set up scenarios that put
the system in specific configurations, which generally requires
a good expertise of the SUT (expertise that is also necessary for
traditional testing methods). The design of Lutin was mainly
motivated by the need to easily express elaborated constrained
random and sequential scenarios; indeed, a purely data-flow
language such as Lustre, which was used in early versions
of Lurette, is not always convenient for describing sequential
scenarios and to assign them probabilities. We illustrate in
Section IV-D how Lutin can be used to increase the coverage.

E. The Lurette overall process

The design of the system, its oracles, and its stimulus gen-
erators is not a linear process. Several iterations are necessary,
which we describe below, and outline in Fig. 3.

Refining the SUT. When an oracle is violated, it can be, of
course, because of a design or coding error, which results in a
erroneous SUT. Detecting such incorrect behaviors of the SUT
is indeed the original motivation of all this infrastructure.

Refining oracles. An oracle violation can also be due to a
wrong formalization. Despite the fact that sequence recog-
nizers (oracles) are much simpler to develop than sequence
generators (SUT), they are still the result of a human work
and thus exposed to errors.

Refining ambiguous requirements. Lurette can also detect
ambiguous requirements, when they are interpreted differently
by the SUT and the oracle designers. It happened quite
frequently during the project.

Refining inconsistent requirements. Formalizing require-
ments in a language such as Lustre that is equipped with
a model-checker allows to detect inconsistencies, i.e., the
absence of correct behaviors.

Refining imprecise requirements. Another reason that results
in invalidated oracles is when they are based on imprecise
requirements. One typical case encountered in the project was
a requirement formulated as follows: “when x exceeds the
threshold t, the alarm a should be raised”. In a distributed
system like the one of COMON, where sub-systems commu-
nicate over buses and networks, such a requirement will be
immediately violated if interpreted literally. One should permit
some reaction delay, and specify its bounds.

Refining incomplete requirements. Another very common
source of oracle violations is a lack of completeness. A
typical example, also encountered during the project, is a
requirement that states that “the temperature of tank t should
never exceeds 100 degrees”, whereas the correct requirement
was “the temperature of tank t should never exceeds 100

degrees when the system is in the nominal mode and the
validity bit associated to its sensor is 1”.

One outcome of the project is that the Lurette tool and
methodology was actually helpful for debugging and refining
requirements.

Refining scenarios. When the coverage is not complete, we
must enrich the set of possible behaviors of the environment
with new scenarios. Note that new scenarios may lead to
properties violations, which lead to changes in the SUT (or
in oracles); and changes in the SUT may change the coverage
in turn.

refinement (scenario)

ok

100%

ok

ko

cov?

valid and nominal => T<100

valid => T<100

T < 100

Wrong or imprecise spec

bug

problem

Lurette

Oracles

Environnements

SUTSpecifications

extraction

(formalisation/translation)

Coverage

 design coding

Fig. 3. The Lurette iterative process loops. Oracles and environments of
the SUT are extracted from heterogeneous specifications. When an oracle is
invalidated, it can be due to a design error, a coding error, or to a wrong
or imprecise specification. Once the system is running without invalidating
oracles, in order to improve the coverage rate, the tester needs to refine test
scenarios.

F. Non-regression

The initial elaboration of fully formalized and covered
requirements imposes a significant work. But obtaining a fully
automatic testing is not the only advantage: it also provides
automatic non-regression tests (almost) for free, when the
first validated model is refined, or when the final system
implementation changes. Of course, during system evolutions,
the full coverage of requirements might be lost, requiring some
additional work at the stimulators side. Requirements are also
subject to changes, that need to be formalized and covered.
But oracles and stimulators dealing with unchanged parts of
the system can be reused as they are. Moreover it is unlikely to
be the case for minor changes, which can therefore be tested
automatically and continuously.

III. CRAFTING A LIBRARY OF GENERIC ORACLES AND

STIMULATORS

Some properties, involving combinations of Boolean vari-
ables and time, can be tricky to define. However, most of
them are similar. This is why, in order to make easier the
formalization of functional requirements, it is important to rely
on a set of correct and well-documented libraries. We first
present here, among the oracles and stimulators we defined
to hold the COMON experiments, the ones that have a more
general scope and that are therefore likely to be part of a
library. The rationale is to show how such a library can be
built easily, and also to illustrate how our languages are good
at that. No prior knowledge of Lustre and Lutin should be
necessary, as we paraphrase every program. We’ve also tried
to start with simple programs in order to introduce language
concepts smoothly.

Lutin and Lustre share the same basic principles: data-flow,
logical time, stream operators, synchronous composition. They
share the same syntax, since Lutin has been designed as an ex-
tension of Lustre with probabilities and regular expressions, to
make easier the description of sequential stochastic scenarios.
Indeed, many properties are used both for the definition of
oracles and stimulators.

A. Formalizing quantitative-time properties

Many reactive systems properties involve time issues. Lus-
tre is based on a logical notion of time (i.e., the sequence
of program reactions), but in the COMON case study, many
properties make use of quantitative time. Since the various sub-
systems activations are supposed to be periodic, the connection
between logical and quantitative time is straightforward. How-
ever, it can be made easier thanks to a library of dedicated
operators (called “nodes” in Lustre). In order to ease the
formalization of such kind of temporal properties, a good set
of dedicated nodes, with carefully chosen names, can help to
convince that the formalization is faithful.

A first Lustre oracle. In order to convert quantitative time
into logical time when dealing with periodic tasks, one just
needs to know the activation period. For example, in order to
make more readable the formalization of properties that refer
to time intervals where Boolean signals remain true, one can
define this kind of Lustre node:

node true_since_n_seconds(n: real; signal: bool)

returns (res: bool)

var timer : real;

let
timer = n -> if not signal then n else

max(0.0, pre(timer)-1000.0*cycle_time);

res = (timer = 0.0);

tel

This node takes as input a real n that holds a number
of seconds (that typically never changes), and a Boolean
signal; the Boolean output res is set to true at all
instants where signal was continuously true during the
n preceding seconds. To define this node, we first define a
local variable timer that is set to n at the first instant (n
->), and reset to n at each instant where signal is false.
When signal is true, we simply decrease the timer of the
constant cycle_time, supposed to hold the activation period
in milliseconds. The pre operator gives access to the value of
a variable at the previous instant.

The advantage of going through the cycle_time con-
stant is to be able to express temporal properties regardless
of the activation rate. We could easily do the same for non-
periodic tasks, by passing time-stamp (t:real) as input, and
by subtracting to the timer the time elapsed since the previous
event (pre(timer)-(t-pre(t))).

Once declared, such an operator may be used in defining
properties as oracles: for instance, to specify that, whenever the
variable x has been invalid for 0.5 seconds, an alarm should
be emitted, one would write:

p = true_since_n_seconds(0.5,invalid_x) => alarm_x

A first Lutin stimulator. The Lutin language is based on
regular expressions. Literals are constraints expressed in a
Lustre-like syntax that relate inputs, outputs and memories
(pre). Constraints define the possible set of outputs for one
logical instant. Instants can be chained using the concatenation
(fby, standing for “followed by”) and the Kleene star (loop)
operators. The probabilistic (|) and the mandatory (|>) alter-
nations are used to describe different possible scenario. As in
Lustre, Lutin programs are structured into nodes that can be
run in parallel, and operate over flow of logical instants. The
following simple (and deterministic) Lutin node generates a
flow of 100 logical instants where the integer variable x is
equal to 42.

node main() returns(x:int) = loop [100] x=42

In contrast with a Lustre program which never terminates, a
Lutin program may stop since there is no implicit outer loop.
For stimulators also, it can be more convenient to think in
terms of quantitative time. Thus we define a macro minutes
that converts logical time into quantitative time, independently
of the underlying cycle rate.

let minutes(x:int):int = x*60*1000/cycle_time

node main() returns(x:int) = loop [minutes(5)] x=42

B. Stimulating numeric variables

Now we demonstrate how numeric value generators can
be defined in Lutin. We begin with a simple program that we
refine, to introduce the language concepts one by one.

node gen_x_v1() returns (x:real) =

loop 0.0<x and x<42.0

The node gen_x_v1 generates an infinite sequence of real
values uniformly distributed within the interval]0;42[. If it
is more appropriate to bound the derivative, one just need to
add the constraint abs(x-pre(x))<a_bound. Sometimes
it makes more sense to maintain the drawn value for a certain
amount of time:

node gen_x_v2() returns (x:real) =

loop { (0.0<x and x<42.0) fby loop [20] x = pre x }

The node gen_x_v2 generates a sequence of values such that:
the first value is chosen randomly within]0;42[; that value
is then maintained during 20 cycles. At instant 22, another
random value is chosen, and so on forever, thanks to the outer
loop.

node gen_x_v3() returns (target:real; x:real=0.0) =

run target := gen_x_v2() in

loop { x = (pre x + target) / 2.0 }

The node gen_x_v3 generates 2 flows of reals: target is
generated using the gen_x_v2 node; and x tries to follow
the value of target smoothly. The visualization of a run of
this node is shown in Fig. 4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
steps

Numeric variables
target

x

Fig. 4. Visualization of a 100 steps run of gen_x_v3 (and gen_x_v2 for
the target).

node gen_x_v4() returns (target:real; x:real=0.0) =

run target := gen_x_v2() in

exist px,ppx : real = 0.0 in

loop {

px = pre(x) and ppx = pre(px) and

x = (px+target)/2.0+inertia*(px-ppx)

}

The node gen_x_v4 is a variant of gen_x_v3 where x

follows its target with some inertia. To do that, we introduce 2
registers px and ppx (initialized to 0.0) to store the 2 previous
values of x. A run of this node is visualized in Fig. 5.

-15
-10

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
steps

Numeric variables
target

x

Fig. 5. Visualization of a 100 steps run of gen_x_v4 with a 0.6 inertia.

IV. SOME EXAMPLES FROM THE COMON CASE STUDY

We now focus on oracles and stimulators that are specific
to the COMON case study. Since a detailed description of the
case study is not necessary to understand the examples, we
only give a brief overview to help to understand the context.

A. The COMON case study

This case study has been developed from scratch during
the project, with the objective to be representative of each
partner’s activity. It consists of a hydraulic circuit made of
a heating and a cooling source, pipes, tanks, sensors, and
actuators (cf Fig. 6). Some of these components are redundant.
This circuit is regulated by classified (safety-critical) and
unclassified control systems. The SUT monitors the system
internal behavior (tank levels, temperatures, alarms) and it
is driven by human operators (e.g., open a gate to produce
more power). We developed several versions of this case-
study, corresponding to different level of refinements. One is
entirely simulated using the Alices workshop of Corys [11].
Then we have different versions where the other sub-systems
are integrated one by one. The SCADA (Supervisory Control
And Data Acquisition) of Atos is meant to be embedded in the
control room of the power plant. The C code of Rolls-Royce
generated by the Scade compiler is also meant to be embedded
in the plant. At the end of this integration process, the only
simulated parts were the physical process of the plant, and the
unclassified automatisms (in the absence of partner specialized
in this part in the consortium). This SUT has 58 Boolean and
22 numeric inputs (24 of them being devoted to fault injection);
it has 748 Boolean and 108 numeric outputs. Note that they
are not all outputs of whole the system; lots of them are at the
interface of the 4 sub-systems (process, automata, classified
automata, operator interaction).

Connecting Lurette, Alices and Scade was not difficult,
since they share with Lurette the same logical (discrete) view
of time. The connection with the Atos workbench required
more work, since it only knows about real-time and reacting
to events. In order to connect a time-triggered system with
an event-triggered one, we have added a connection layer that
performs sampling in one way, and monitoring to generate
an event as soon as a value change in the other way. We
choose to set at 4 hertz the communication rate between the
4 workbenches (i.e., 4 steps per second), which is a standard

value in this domain. Hence, when the SCADA is connected
to the test-bench, each entities should be able to react at
this rate. Lutin generators can easily reach that rate, as the
Lutin programs presented in this section are able to work
at more than 2000 hertz on an ordinary PC. Lurette drives
this heterogeneous platform by simulating the human operator
behavior, and by injecting faults to circuit elements. Several
testing experiments have been conducted, from integration tests
to unit tests, going through sub-system tests2. The examples
below are all extracted from those experiments.

B. States exploration via constraint-based scenarios

Since the SUT is based on a power plant simulator de-
signed, among other things, to train operators, it is possible to
set component failures. For instance, the generic gate provided
by the Alices library can have more than 20 malfunctions.
Failure injections such as the leaking percentage of a pipe, can
be parametrized by numeric values, which can be controlled,
for instance, by the stimulators presented in Section III-B.

In order to illustrate how constraint-based formalizations
can be exploited to explore (pseudo-)randomly a large number
of realistic environment scenarios, we propose to describe a
subset of the failures generator used for the COMON case
study (in the case study, we implemented 24 possible faults;
but each Alices object could have several tens of faults, hence
we could have had several hundreds of faults in the case study).
It is a Lutin stimulator which aims at generating n possible
failures while avoiding as much as possible to trigger some
classified actions. Indeed, once a classified action is fired, the
SUT is set into a safe mode, and setting it back to its nominal
mode is a long and tedious process. A classified action must
be fired, e.g., when at least one redundant element is faulty, or
when at least three of quadruple-redundant element are faulty.

Let us consider for instance a dual-redundant and a
quadruple-redundant sensor, whose fault statuses are held
by 6 Boolean variables (F1 to F6). By default in Lutin,
the world is chaotic and unconstrained variables are chosen
randomly. Hence, this simple Lutin node tosses at each step
a value for each of the 6 possible faults:

node gen_failure() returns(F1,F2,F3,F4,P5,F6:bool)=

loop { true }

In order to be able to analyze the consequence of a failure,
it can be more convenient to make this stimulator less random,
by preventing it to change of failures at each step. For example,
we can force it to keep the chosen failures during between 2
and 5 minutes before performing another toss:

loop {

true -- failures toss step

fby loop [minutes(2),minutes(5)]

F1=pre(F1) and F2=pre(F2) and F3=pre(F3) and

F4=pre(F4) and F5=pre(F5) and F6=pre(F6)

}

Note that in Lutin, to state that a variable F should keep
its previous value, we need to explicitly write a constraint

2Public materials (in French) coming from the COMON project including
a video of the demonstration is available at http://comon.minalogic.net/.

http://comon.minalogic.net/

Fig. 6. The COMON case study hydraulic circuit, featuring pipes, tanks, gates, sensors, heating sources and heating sinks.

(F=pre(F)). In order to make easier the writing of such
constraints, we can use the following freezing combinator (the
ref keywords declares that the input have memory):

let frz(x: bool ref) = (x = pre(x))

In order to avoid as much as possible the firing of
classified actions, we use a formal version of the firing
conditions using the combinator at_least_1_on_2 (resp.
at_least_3_on_4) that is true if at least 1 (resp. 3) of its
2 (resp. 4) Boolean inputs is (are) true.

let classif_action = at_least_1_on_2(F1,F2) or

at_least_3_on_4(F3,F4,F5,F6)

in

Then we can use this constraint (instead of the true one)
to generate random failures without firing classified actions:

loop { (not classif_action) fby loop ... }

One may also wish to define interactive sessions where the
tester (or other Lutin programs) can choose the number n of
failures to generate. To do that, let’s add an integer input to
gen_failure, and write the following program:

node gen_failure(n:int)

returns(F1,F2,F3,F4,F5,F6:bool) =

let b2i(b:bool) = if b then 1 else 0 in

let f_nb = b2i(F1)+b2i(F2)+b2i(F3)+

b2i(F4)+b2i(F5)+b2i(F6)

in

loop {
{ |> f_nb = n and not classif_action

|> f_nb = n

}

fby loop ...

The combinator b2i allows to define the number of
failures f_nb. The mandatory choice operator (|>) states that
a constraint should be chosen in priority, if it is satisfiable.
Here, we try to generate n failures without firing classified
actions. But of course, if n is greater or equal to 5, the
constraint f_nb = n and not classif_action cannot
be satisfied. In such cases, we use the constraint f_nb = n,
which is always satisfiable.

If we sum-up the evolutions of the gen_failure node
we’ve just described, plus the possibility to reset at any time
the choice of failures (to make it more interactive) using an
additional input (reset:bool), we obtain the following
stimulator:

node gen_failure(n:int; reset:bool)

returns(F1,F2,F3,F4,F5,F6:bool) =

let classif_action = at_least_1_on_2(F1,F2) or

at_least_3_on_4(F3,F4,F5,F6)

in

let b2i(b:bool) = if b then 1 else 0 in

let f_nb = b2i(F1)+b2i(F2)+b2i(F3)+

b2i(F4)+b2i(F5)+b2i(F6) in

loop {

{

|> f_nb = n and not classif_action

|> f_nb = n

}

fby loop [minutes(0),minutes(5)] {

not reset and frz(F1) and frz(F2) and frz(F3)

and frz(F4) and frz(F5) and frz(F6)

}
}

Whenever reset is true, not reset becomes false, and
thus the inner loop constraint becomes false. Hence the control
goes back to the outer loop, where the first cycle is devoted
to another failures toss.

C. Monitoring the system stability

One of the most important properties of the system con-
cerns its stability when no new order is performed by the
operator: “In the nominal mode, after any order change, all
sensor values must be stable after five minutes”. One way of
formalizing this requirement is to define the following Lustre
node:

node check_stability(

system_is_stable,nominal,no_order_changes:bool)

returns(ok,C:bool);

let

C = true_since_n_seconds(300.0,no_order_changes)

and nominal ;

ok = (C => system_is_stable);

tel

This node has 3 Boolean inputs. The first one indicates
if the system is stable, which means that no sensor value
changed (too much) for a certain amount of time. The nu-
meric tolerance on sensors and the necessary amount of
time to consider the system as stable should be specified
somewhere in order to be able to define the is_stable

node (which is part of the library we’ve sketched up during
the project). The second Boolean indicates if the system is
in the nominal mode. The third one indicates if at least one
order changes at the current instant (Oi<>pre(Oi)). The
node true_since_n_seconds is the one of Section III-A.
Using this node, formalizing this stability property is straight-
forward, which illustrates that faithfulness of a formalization
relies on a good set of libraries.

As far as coverage is concerned, there are 2 ways to satisfy
this property. First, the premise of the implication could be
false; it suffices that the orders (controlled by Lurette) change
at each cycle, or to never be in the nominal mode. Another way
is to stimulate the system in such a way that no order change
for at least 5 minutes in the nominal mode. The latter case
is obviously more interesting, and the condition C is therefore

an evident candidate for coverage cases. The variable C is an
output of this oracle since is it the Lurette technical convention
for defining coverage. Another thing that is necessary to cover
this oracle is to check that at least one order changes during
a run. One could even want to check that each possible order
is changing at least once, and that after such a change, no
order changes during at least 5 minutes. In order to define this
coverage case for the order order1, one can proceed as in
the following Lustre specification:

oder1_changed = false ->

(pre(order1_changed) or (order1 <> pre(order1)));

Cov_order1 = true_since_n_seconds(300.0,

no_order_changes and order1_changed);

We define an auxiliary variable order1_changed that is
false at the first instant, and true if and only if order1

changes at the current instant, or has changed in the past.
Then we can define the coverage case Cov_order1

using the no_order_changes variable, and the
true_since_n_seconds node. This example illustrates
that a language with modularity and time as first-class concept
is necessary to define coverage cases conveniently. In order to
fully cover all those conditions, generating random data will
not be enough. Explicit scenarios, where some orders change
from time to time, but not too often, are necessary. This is
the purpose of the stimulator considered in next Section.

D. Specific scenarios to increase the coverage

In order to automatically test this open system, we need to
close it by simulating its environment, that is to say, we need
to model the behavior of the human operator. The operator
can set various orders such as a request for a particular tank
temperature, a pipe rate, or the opening percentage of a gate.
Here we propose to focus on a particular numeric order: the
temperature of a tank. When the operator performs such kind
of orders, the system automatically open gates, to augment the
heating temperature until the desired temperature is reached.
But operator requests should respect some constraints. In
particular, it is forbidden to request a too abrupt increase. The
temperature order should be driven step by step, by requesting
a bounded increase, waiting for the system stabilization, and
so on until the targeted temperature is reached.

To define this virtual operator, we use a node that outputs
an order O that changes step by step scoring a target. It takes
as input a Boolean wire indicating if the system is stable, the
Target to score, and a variable O_init used to provide an
initial value to O.

node change_order_stepwisely(

is_stable:bool; O_init,Target:real)

returns (O:real=O_init) =

loop {

-- (1) Waiting for the stabilization

loop { not is_stable and O=pre(O) }

fby -- (2) Choosing a new order O

assert Abs(O-pre(O)) < a_bound in

{ |> O = Target

|> if Target < pre(O) then O < pre(O)

else O > pre(O) }

fby -- (3) Waiting for the change to take effect

loop { is_stable and O=pre(O) }

}

That node is made of an infinite loop that operates into
3 stages: (1) O keeps its previous value while waiting for
the system stabilization. Indeed, the semantics of the Lutin
loop construct is to loop as long as possible. Hence, when
is_stable becomes true, the constraint becomes unsatis-
fiable, and the control passes in sequence to the right-hand-
side of the first fby (2) Then O is chosen to get closer
to Target, but not too rapidly. To do that, we first state
that O should not change more than the constant a_bound
(using the assert/in construct that propagates a constraint
into a scope). Then we use the priority choice operator of
Lutin (|>) that forces the use of its left-hand side constraint
if it is satisfiable, and uses the right-hand-side otherwise.
Hence, if pre(O) is close enough to Target, the constraint
O=Target is used. Otherwise, O=Target is not satisfi-
able, and O will either increase (O>pre(O)) or decrease
(O<pre(O)) to score Target. (3) Then we wait for the
order change to be propagated into the system, which we detect
using the is_stable falling edge. Now we can define our
virtual operator, that chooses a new Target whenever the
order reaches it:

node operator(O_init:real; is_stable:bool)

returns(O:real=O_init) =

exist Target:real in

loop {

--Choose the next target order

0.0 <= Target and Target <= 100.0 and

O = pre(O)

fby -- try to reach the target step by step

run O := change_order_stepwisely(

is_stable, pre(O), pre(Target))

in

loop (Target=pre(Target) and O <> Target)

}

This node is made of an infinite loop repeating 2 stages.
The first stage lasts one instant and chooses a random value
between 0 and 100 for Target (O keeps its previous value).
During the second stage, Target keeps its previous value, and
the order is set by the change_order_stepwisely node
via the run statement. This statement creates a new reactive
machine, having its own memory. It runs in parallel until the
control exits its scope when the inner loop terminates, i.e.,
when O reaches the Target.

V. RELATED WORKS

An abundant literature deals with Model-based testing
(MBT) in general [12], on embedded systems in particular
[13]. The idea of MBT is to bypass the fact that complex
system are not analyzable by rooting their analysis on formal
models of the system. Then they use state-of-the art for-
mal verification techniques (theorem proving, model-checking,
constraint solving) to automate various kind of tests. Lurette
oracles somehow falls into this category, as we rely on a SUT
model. But this model is very abstract, and does not try to
model the behavior of the SUT at all. Lurette, in particular in
its current version featuring Lutin and oracle coverage, focuses
on environment modeling. Therefore in the following, we only
consider works that care about input generation and take into
account the feedback effect, which is mandatory for testing
reactive systems, thus also referred to as reactive testing.

The Model-Based Statistical Testing (MBST) approach
[14], [15] consists in modeling the SUT as a Markov chain to
describe its usage model. This model (an automaton labeled
with probabilities [16]) can be traversed to generate realistic
SUT inputs. Recent extensions of MBST [17] targets embed-
ded systems by taking time and concurrency into account via
the use of Petri-nets. Test input generation is not the primary
objective when setting-up a faithful usage model, and can only
generate a finite set of Boolean signals. Moreover, they are not
meant to test borderline cases. Note that Lutin can be seen as a
language to program stochastic processes, where the emphasis
is put on simulation, whereas Markov chains were invented
for system analysis (e.g., to figure out what are the transient
or the recurrent states).

Lutess [18] is similar to Lurette. The main differences are
that the environment is modeled in Lustre, and it requires
a Lustre model of the SUT (to guide the input generation).
Lutess also has a notion of property coverage [19], which
is not an explicit formalization of some requirements as in
our proposal. Lutess coverage is defined in terms of suspect
states of the automaton resulting from the product of the SUT
model, the environment model, and the property to check (i.e.,
the oracle). A state is suspect if there exists an outgoing
transition that would lead to a bad state (violating the property)
if the SUT does not behave correctly. Hence the coverage is a
semantic consequence of the property, that relies on the SUT
model faithfulness. More recently, members of the Lutess team
have defined some concepts of structural coverage for data-
flow Lustre/Scade programs [20], [21]. But note that, in the
present article, we do not specifically target systems designed
in Lustre/Scade and suppose that the SUT is a black-box.

GATeL [22] uses graph exploration and constraint solving
techniques to generate input sequences that target a (formal)
test objective. For SUT implemented in Lustre, GATeL should
be able to use our coverage conditions and generate the
SUT inputs sequences that cover them. Another manner to
use white-box technique to automatically generate inputs that
increase the coverage would be to do the same as in [23], where
a graph exploration tool based on abstract interpretation was
used in combination of Lucky (the predecessor of Lutin) to
reach a particular symbolic state.

In this work, we consider the functional coverage as a
part of the specification that should be explicitly defined.
Some works use metrics to generate such kind of coverage
automatically from requirements expressed in LTL [24].

Our approach fits particularly well with agile develop-
ment methods [25], [26]. Three teams - development, oracle,
stimulator - can work in parallel, from the initial stages
of development. Actually the whole idea of model-driven
development and virtual prototyping, where one tries to obtain
early executable models of the system to implement, is in the
spirit of agile methods.

VI. CONCLUSION

We propose a methodology, supported by synchronous
programming languages and tools, to check systems cor-
rectness, and to engineer consistent and accurate functional
requirements. The methodology particularly suits incremental
and model-based development. We have illustrated this with

examples extracted from a case study designed by industrial
partners to be representative of their concerns.

In some sense, this work justifies the relevance of formal
verification, as it makes formal specifications usable even when
the SUT is not analyzable because of state explosion. Hence
this work can be seen as a mean to get a foot in the door, and
encourage industry to use formal methods.

This work also demonstrates how synchronous technolo-
gies can be useful even when using non-synchronous work-
benches.

REFERENCES

[1] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous observers
and the verification of reactive systems,” in AMAST’93. Twente, The
Nederlands: Springer Verlag, jun 1993.

[2] E. Jahier, P. Raymond, and P. Baufreton, “Case studies with Lurette
V2,” STTT, vol. 8, no. 6, pp. 517–530, 2006.

[3] P. Raymond, E. Jahier, and Y. Roux, “Describing and executing random
reactive systems,” in SEFM’06, 4th IEEE International Conference on

Software Engineering and Formal Methods, Pune, India, sep 2006.

[4] P. Raymond, Y. Roux, and E. Jahier, “Lutin: a language for specifying
and executing reactive scenarios,” EURASIP Journal on Embedded

Systems, vol. 2008, 2008.

[5] SCADE, http://www.esterel-technologies.com/scade/.

[6] N. Halbwachs, Synchronous programming of reactive systems. Kluwer
Academic Pub., 1993.

[7] P. Caspi, G. Hamon, and M. Pouzet, Real-Time Systems: Models and

verification — Theory and tools. ISTE, 2007, ch. Synchronous
Functional Programming with Lucid Synchrone.

[8] L. Mandel and M. Pouzet, “ReactiveML, a reactive extension to
ML,” in Proceedings of 7th ACM SIGPLAN International conference

on Principles and Practice of Declarative Programming (PPDP’05),
Lisbon, Portugal, Jul. 2005.

[9] A. Benveniste and G. B. (Ed.), “Another look at real-time program-
ming,” Special Section of the Proceedings of the IEEE, vol. 79, no. 9,
Sep. 1991.

[10] G. Durrieu, H. Waeselynck, and V. Wiels, “Leto - a lustre-based
test oracle for airbus critical systems,” in FMICS’08, L Aquila, Italy,

September 15-16, 2008, Revised Selected Papers, ser. LNCS, D. D.
Cofer and A. Fantechi, Eds., vol. 5596. Springer, 2008, pp. 7–22.

[11] ALICES, http://www.corys.com/ALICES-Workshop--462.html.

[12] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems: Advanced Lectures (LNCS).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[13] J. Zander, I. Schieferdecker, and P. J. Mosterman, A Taxonomy of Model-

based Testing for Embedded Systems from Multiple Industry Domains.
CRC Press, 2011, ch. 1, pp. 3–22.

[14] W. Dulz and F. Zhen, “Matelo - statistical usage testing by annotated
sequence diagrams, Markov chains and TTCN-3,” in QSIC’03. IEEE
Computer Society, 2003, pp. 336–342.

[15] J. Carter, L. Lin, and J. Poore, “Automated functional testing of
Simulink control models,” in Proceedings of 1st Workshop on Model-

based Testing in Practice (MoTiP 2008), T. Bauer, H. Eichler, and
A. Rennoch, Eds. Fraunhofer IRB Verlag, 2008.

[16] S. Prowell, “TML: A description language for Markov chain usage
models,” Information and Software Technology, vol. 42, no. 12, pp.
835–844, September 2000.

[17] F. Böhr, “Model based statistical testing of embedded systems,” in IEEE

Fourth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW’11), march 2011, pp. 18 –25.

[18] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon,
“Lutess: a specification-driven testing environment for synchronous
software,” in Proceedings of the 21st international conference on

Software engineering, ser. ICSE’99. New York, NY, USA: ACM,
1999, pp. 267–276.

[19] I. Parissis and J. Vassy, “Thoroughness of specification-based testing
of synchronous programs,” IEEE 21st International Symposium on

Software Reliability Engineering, vol. 0, p. 191, 2003.

[20] A. Lakehal and I. Parissis, “Structural coverage criteria for Lustre/Scade
programs,” Softw. Test., Verif. Reliab., vol. 19, no. 2, pp. 133–154, 2009.

[21] V. Papailiopoulou, A. Rajan, and I. Parissis, “Structural test coverage
criteria for integration testing of lustre/scade programs,” in Proceedings

of the 16th international conference on Formal methods for industrial

critical systems, ser. FMICS’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 85–101.

[22] B. Marre and B. Blanc, “Test selection strategies for lustre descriptions
in gatel,” Electr. Notes Theor. Comput. Sci., vol. 111, pp. 93–111, 2005.

[23] E. Jahier, B. Jeannet, F. Gaucher, and F. Maraninchi, “Automatic state
reaching for debugging reactive programs,” in AADEBUG’03 – Fifth

International Workshop on Automated Debugging, Ghent, Sep. 2003.

[24] M. Staats, M. W. Whalen, A. Rajan, and M. P. Heimdahl, “Coverage
metrics for requirements-based testing: Evaluation of effectiveness,” in
Proceedings of the Second NASA Formal Methods Symposium. NASA,
April 2010.

[25] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New
directions on agile methods: a comparative analysis,” in Proceedings

of the 25th International Conference on Software Engineering, ser.
ICSE’03. Washington, USA: IEEE Computer Society, 2003, pp. 244–
254.

[26] H. Baumeister, “Combining formal specifications with test driven devel-
opment,” in XP/Agile Universe, ser. LNCS, C. Zannier, H. Erdogmus,
and L. Lindstrom, Eds., vol. 3134. Springer, 2004, pp. 1–12.

http://www.esterel-technologies.com/scade/
http://www.corys.com/ALICES-Workshop--462.html

	Introduction
	Model-based development of correct systems
	The COMON project and its outcomes
	Summary

	From automatic testing to requirements engineering
	Formal outputs requirements (oracles)
	Formal inputs requirements (environments)
	Functional coverage
	Better coverage via test scenarios
	The Lurette overall process
	Non-regression

	Crafting a library of generic oracles and stimulators
	Formalizing quantitative-time properties
	Stimulating numeric variables

	Some examples from the COMON case study
	The COMON case study
	States exploration via constraint-based scenarios
	Monitoring the system stability
	Specific scenarios to increase the coverage

	Related Works
	Conclusion
	References

