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Abstract In vivo phage display can be used to simultaneously screen peptide repertoires for pep-

tides presenting specificity for certain interaction and recognition sites, and thus enable biomarker

identification. In this work we assume the hypothesis that certain small peptides mimic physio-

logical interactions of proteins that contain a sub-sequence similar to these peptides. A possible

solution then involves mapping of the peptide repertoire against the proteome of interest, which

is computationally challenging. We formulate this problem as simultaneous matching of multiple

patterns against multiple strings and propose an algorithmically efficient solution. It is currently

accessible at http://services.cbib.u-bordeaux2.fr/spack/pepteam.php.
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1 Introduction

The aim of this work is to streamline the biomarker discovery based on the hypothesis of mimed proteins

in the context of selection of phage displayed peptides. Phage display is an in vitro or in vivo technique used

to identify relevant protein interaction and recognition sites, first described in 1985 by Smith [1] ; it was later

shown that antibody fragments could be successfully displayed on phage [2]. The technique is based on the

insertion of DNA fragments into bacteriophage genes to create fusion proteins with the foreign sequence in

the middle. Viral particles contain the encoding DNA and display the encoded peptide on the surface of their

capsides. Combinatorial libraries of peptides can be produced with complexities of 109 and screened to isolate

peptides that bind to biological samples ranging from purified macromolecules to in vivo pathological tissues.

In vivo screening, with targets on endothelial cells or on tissues where the accessibility is the product of the

pathological condition (e.g. tumoral cells), produces large repertoires of peptides for which the use of NGS

technologies made possible a global overview. A typical setup for biomarker discovery study is the differential

analysis of two repertoires corresponding to two different conditions (say, healthy vs. pathological).

Previous studies for screening of peptide libraries for organ-specific binding [3] studied sequence composition

and similarity in this context. Arap et al. has shown that the distribution of the ligand-receptor pairs is non-

random regarding organ specificity [4]. However, in order to prevent the problem related to the sparce count of

the 207 possible 7-mers, they were broken into 3-mers. The work of Kolonin [5] is based on the presence of

those 3-mers inside the candidate peptide-bound receptors, which identifies these targeted receptors and sites of

ligands involved in receptor interaction.

In this paper we assume the working hypothesis that certain peptides mimic physiological interactions of

proteins that contain a sub-sequence similar to these peptides. However, sequence similarity of peptides with a

protein is a weak signal. Fine-tuned and efficient mapping of the complete peptides against the proteome of

interest and an appropriate scoring function are thus the central points of our solution. In this manuscript we

mainly focus on the mapping step.

http://services.cbib.u-bordeaux2.fr/spack/pepteam.php


The underlying assumption of our work is that small peptides mimic molecular interactions of larger proteins.

This assumption is based on a number of observations :

— Proteins containing similar sub-sequences tend to themselves be homologous ;

— These sub-sequences align at the same locations where homologous proteins align among themselves ;

— These locations are strongly preserved by the evolutionary process (and are mostly located within

functional domains) ;

Moreover, a recent study [7] shows that most of the energy in proteins’ interactions is located in short linear

segments, and most of these segments bind independently of their context, which further supports our working

hypothesis.

Given a peptide repertoire R = {r} where all peptides r have the same size s ∈ [7, 12] and proteome

P = {p}, each peptide r is mapped against P , which produces a set of mapping locations Lr. This mapping is

restricted to an ungapped alignment up to a certain similarity score threshold t. Once the peptides are mapped

on the proteins, each peptide r is scored by integrating its mapping scores for all locations Lr combined with

the scores of other peptides over the same Lr. Intuitively, it singles out those peptides that participate in those

locations that are mapped by many other peptides. Consequently, the scoring function is highly sensitive to the

detection of the complete set of peptides that map at a certain location Lr. This is why it is essential for a given

peptide to uncover all the mappings over the given threshold t.

2 Pipeline

Our solution is implemented as a pipeline with three major steps (see figure Fig. 1 here below).

Figure 1. Peptides scoring pipeline

1. Sequenced reads are preprocessed in order to obtain the repertoire of phage displayed peptides.

2. Given this repertoire and a subject database, each peptide is mapped on each protein of the database.

3. Given the list of mappings, a scoring function sorts the peptides.

In this manuscript we concentrate on the computationally challenging step : mapping of the peptide repertoire

against the proteome. We formulate this problem as simultaneous matching of multiple patterns against multiple

strings and propose an algorithmically efficient solution.

3 State of the art

The central computational problem concerns mapping of R over P , which is known as the string matching

problem. There exists a number of well-known algorithms for string matching 1. They can be classified in two

categories : exact and fuzzy matching.

1. In this section we only quote seminal works and citations are in no way exhaustive.



Exact matching can itself be subdivided in two major algorithmic classes.

— Matching a simple pattern against a single string.

These algorithms are of limited interest for our problem since we need to match multiple patterns against

multiple strings. However, they provide a complexity reference point where we would match each peptide

one by one against each protein. Classical examples are Boyer–Moore [8] and the text-partitioning

matching [9].

— Matching multiple patterns against a single string.

These algorithms make it possible to map R (our multiples patterns) against the proteins of the proteome

one by one. A classical example of this class of algorithms is the Aho–Corasick [10].

Fuzzy matching approaches can also be classified in two major classes, both relying on the notion of metric

space.

— Approximate matching

These algorithms use the metric space to find the set of similar words. A well-known example of the

underlying distance measure is the Damerau–Levenshtein distance [11] used in many spell-checkers.

— Sequence alignment

These algorithms are particularly widespread in bioinformatics. Indeed, in this context, character

mismatch or insertion/deletion are often seen as mutation points in the evolutionary process. Metric

space usually relies on a substitution score matrix rather than on a fixed score in the case of mismatch.

Classical examples are Smith–Waterman [12] and BLAST [13] for local alignment and Needleman–

Wunch [14] for global alignment.

On one hand, our application case requires fuzzy matching, since we are looking for similarity between

peptides and protein sequences. Moreover, we rely on a substitution matrix for sequence similarity. On the other

hand, this is not a classical fuzzy matching problem since we are interested in the ungapped alignments. It is also

important to obtain all the positions where peptides match on the proteins. Consequently, neither probabilistic

(e.g, BLAST) nor best-match (e.g, Needleman–Wunsch) approaches can be used.

4 Mapping

First we preprocess the proteome P = {p}. Since we are interested in the ungapped alignments, this can

be seen as fragmenting each p by a sliding window of size s, which gives us F = {f}, where f are proteic

sub-sequences, that we call fragments, of size s. The problem can be now seen as matching R against F .

However, this would be computationally inefficient.

To overcome this problem, we encode P in a compact way by constructing the keyword tree [15] S of F .

Information on the positions Lf of each fragment and the proteins where it belongs is stored in the leaves of the

tree. Another keyword tree Q is constructed for the repertoire R. To be efficient, the construction of S involves

the intermediate construction of a suffix tree (over a finite alphabet, see [16]) where only the prefixes of size s of

each suffix are kept.

Given a keyword tree Q (S, respectively), we denote by Qn (Sn, respectively) any node of this tree. Each

node contains a 〈letter, node〉 map that represents a tree edge. Given a node Qn and a letter l, Qn[l] denotes

following the corresponding edge and reaching the child of Qn ; Sn.data denotes the 〈protein, position set〉 map.

The problem can then be formulated as mapping the two keyword trees one against another. The general

matching scheme is presented in the algorithm 1 here below.

This algorithm can be trivially used to perform exact matching by replacing the scoring function by an

equality comparison between l1 and l2. The thresholding function then becomes a placeholder present only to

check the validity of the boolean score.

4.1 Similarity score

Since our mapping is ungapped, in order to compute the similarity between a peptide r and a fragment f , it

is sufficient to compute the letter-wise substitution cost based on a substitution matrix M , namely :



Algorithm 1 Recursive mapping of Q onto S

function M A P F U N C T I O N(Qn, Sn, word, score, depth = 0)

W ← empty set of 〈word, data〉 pairs

for each letter l1 ∈ Qn do

for each letter l2 ∈ Sn do

new score← S I M I L A R I T Y F U N C T I O N(l1, l2, score)

if T H R E S H O L D I N G(new score, depth) then

new word← C O N C AT(word, l1)

if Qn is a leaf node then ⊲ Sn is necessarily a leaf too

add (new word, Sn.data) pair to W
else

W ←W ∪M A P F U N C T I O N(Qn[l1], Sn[l2], new word, new score, depth+ 1)

end if

end if

end for

end for

return W
end function

scorer/f =
2
∑

lr∈r,lf∈f
M(lr, lf )

∑
lr∈r M(lr, lr)

∑
lf∈f

M(lf , lf )
.

Using this formula, similarity of two exact same words is 1.0 and the similarity score drops with each

substitution involved.

Algorithm 1 is recursive, consequently, both similarity score computation and the thresholding have to

respect the recursivity.

— For the similarity this implies to maintain through the recursive call both the numerator and the denomi-

nator independently. And it is within the thresholding function that the fraction is computed.

— For the thresholding this implies that the threshold value has to be defined as function of the number

of letters that have been processed, which means that it is different for each tree depth. Were this

computation done naively, it would require to check for the threshold only when all of the letters have

been processed. Indeed, the first processed letters may drop the score below the threshold even if the

similarity score can increase after that. In the recursive solution we can compute at each tree depth, given

the word size s and the maximal value in the substitution matrix max(M), the maximal similarity score

with respect to the letters that have already been processed.

Resulting functions can be seen in the algorithm 2.

Algorithm 2 Recursive scoring and thresholding

function S I M I L A R I T Y F U N C T I O N(l1, l2, score : (num, den))

n← 2M(l1, l2)
d← M(l1, l1) +M(l2, l2)
return pair (num+ n, den+ d)

end function

function T H R E S H O L D I N G(score : (num, den), depth)

k ← 2(s− depth− 1)max(M)
return (num+ k)/(den+ k) > t

end function
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