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Elephant modes and low frequency unsteadiness in a high Reynolds

number, transonic afterbody wake

Philippe Meliga," Denis Sipp,' and Jean-Marc Chomaz®
IONERA/DAFE, 8 Rue des Vertugadins, 92190 Meudon, France
2LadHyX, CNRS-Ecole Polytechnique, 91128 Palaiseau, France

(Received 15 February 2009; accepted 7 April 2009; published online 20 May 2009)

Experiments and large eddy numerical simulation of a fully turbulent afterbody flow in the high
subsonic regime, typical of that developing in the wake of a space launcher, exhibit a large-scale low
frequency oscillation of the wake. In the present paper, we investigate to what extent the existence
of the synchronized oscillations can be interpreted, at the high Reynolds numbers prevailing in this
class of flows, by a local stability analysis of the mean flow, as measured in experiments or
computed in numerical simulations. This analysis shows the presence of a pocket of absolute
instability in the near wake, slightly detached from the body. The global frequency is strikingly well
predicted by the absolute frequency at the upstream station of marginal absolute instability, this
frequency selection being in agreement with the theory of nonlinear global modes. This result
strongly suggests that a so-called elephant mode is responsible for the intense oscillations observed
in the lee of space launcher configurations. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3139309]

I. INTRODUCTION

Experimental and numerical studies have shown that
wake flows past axisymmetric bodies, such as spheres,l
disks,”” or axisymmetric blunt based bodies modeling an
ideal rocket shatpe,4 are dominated by an instability of helical
modes of azimuthal wavenumbers m= = 1, resulting in the
low frequency shedding of large-scale coherent structures.
The use of local stability to analyze such self-sustained syn-
chronized oscillations in free shear flows® at low Reynolds
numbers suggests that they are linked to the existence of a
region of local absolute instability in the near wake.*’

Recent studies have considered the fully nonlinear re-
gime associated with the existence of a pocket of absolute
instability when the streamwise variations of the base flow
are slow enough to apply the Wentzel-Kramers—Brillouin—
Jeffreys (WKBJ) theory of slowly developing flows.
Chomaz,8 Couairon and Chomaz,9 Tobias et al.,'0 Pier et
al.,"! analyzed the solutions of model equations in semi-
infinite and infinite domains and discussed the connection
between nonlinear global modes and front dynamics that
characterize the propagation of a saturated instability wave
into a quiescent region (see Ref. 12 for a review). If absolute
instability arises beyond a specific downstream position z,
the nonlinear global mode, the so-called elephant mode, con-
sists of a front pinned at the position z°® The front acts as the
wavemaker and separates an upstream region where pertur-
bations are evanescent, from a finite-amplitude wavetrain
downstream. The global frequency is then given by the linear
absolute frequency at the transition station z, i.e.,
wg=w(z%), and the spatial growth rate at the front location
is given by the absolute wavenumber —k%=—k(z%%). In the
case of an absolutely unstable inlet condition, the same fre-

“Present address: LadHyX, CNRS-Ecole Polytechnique. Electronic mail:
philippe.meliga@ladhyx.polytechnique.fr.

1070-6631/2009/21(5)/054105/7/$25.00

21, 054105-1

quency selection criterion remains valid only in the vicinity
of the global instability threshold, whereas above the thresh-
old, the front deforms to accommodate the inlet condition
and the global frequency shifts from the absolute value.
Many of the results pertaining to the model equations
have been shown to hold also in real flow situations, despite
the fact that the slow streamwise variation assumption is not
respected. In the case of the wake developing past a circular
cylinder, the von Karman vortex street presents a front lo-
cated at z** and its frequency, as observed in direct numerical
simulations, matches the absolute frequency w(,)(zca) within
10% accuracy over the range of Reynolds numbers
100=Re=180." Since then, several successful analyses
have been carried out in the context of swirling jets,14 hot
round jets,15 spiral vortex breakdown,'® or interdisk flows,'”
but all these cases pertain to moderate Reynolds numbers.
For large Reynolds numbers, Monkewitz'® suggested that the
low frequency oscillation of the wake of the sphere at Rey-
nolds numbers Re=6000 was due to the absolute instability
of the wake profile with sufficiently thin vorticity thickness.
For such large Reynolds numbers, the key idea is that the
leading convectively and absolutely unstable modes scale
differently and explain different features of the flow. On the
one hand, convective instability describes the spatially grow-
ing small-scale Kelvin—Helmholtz-like instability that devel-
ops in the separating shear layer and selectively amplifies the
background noise and is responsible for the generation of
turbulence in the wake. On the other hand, the absolute mode
scales on the diameter of the wake. It grows slowly in space
but is self-sustained in time. Because of this scale separation,
these modes are believed to interact mainly through base
flow modifications, the effect of the turbulent dissipation on
the large-scale absolute mode being not presently addressed.
A possible approach to address this question would be to
substitute the constant molecular viscosity used in the lami-
nar governing equations by a variable turbulent eddy viscos-

© 2009 American Institute of Physics
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ity modeling the interaction of the perturbations with the
background turbulence. The latter turbulent viscosity can be
deduced for instance from the mean velocity profiles issuing
from a large eddy simulation (LES): Such an approach was
proposed by del Alamo and Jiménez" to compute the linear
amplification of energy in turbulent channel flows, but its
extension to the present case deserves further investigation.

Recently, the stability analysis of compressible model
wakes™ with variable density has shown that the transition to
absolute instability is led essentially by a low frequency,
large-scale mode of azimuthal wavenumber m=1. These re-
sults have given credit to the interpretation of the large-scale
oscillation observed in the wake of axisymmetric bodies in
terms of a nonlinear global mode triggered by a local transi-
tion to absolute instability of this helical wake mode, since
its azimuthal wavenumber and absolute frequency match the
observations. However, agreement is only qualitative and can
be fortuitous since at the transition point, the model profiles
are far from representing the instantaneous or mean velocity
profiles. Therefore, the aim of the present study is to analyze
the stability of realistic velocity profiles, and so to investi-
gate to what extent the dynamics of an afterbody flow, com-
puted via a high resolution LES, in the fully turbulent and
compressible regimes, may be interpreted using the local sta-
bility theory. In the context of such “industrial” applications,
the steady axisymmetric base flow, i.e., the flow that would
be naturally observed if all perturbations were damped, is not
accessible and arclength continuation associated with New-
ton methods,”' widely used at low Reynolds numbers to
compute the base flow beyond the threshold of instability,
cannot be pursued to such large Reynolds numbers. Only the
mean flow, obtained by time and azimuth average, can be
used to assess the stability properties, keeping in mind that
this mean flow is not a solution of the steady axisymmetric
Navier—Stokes equations.

Il. UNSTEADY DYNAMICS AND MEAN FLOW

The afterbody retained for this numerical study is taken
from experiments carried out in ONERA’s S3Ch wind
tunnel,*” and was originally designed to model the first stage
of a space launcher vehicle. The general configuration,
shown in Fig. 1(a), is a cylindrical body of diameter
D=100 mm. The flow is subsonic, turbulent, of free-stream
velocity W, =235 m/s, the total pressure and temperature
being respectively of p;=1.01 X 10> Pa and T;=310 K. The
Mach and Reynolds numbers built from the diameter D and
the free-stream quantities are 0.7 and 1.2 X 10°, respectively.
The wind tunnel configuration is detailed in the upper half of
Fig. 1(b): A turbulent boundary layer develops on an up-
stream forebody of length 2.2 m. Its nondimensional thick-
ness was measured to be &yg99=0.2 at the nondimensional
upstream position z=-2.45, identified by the black circle in
Fig. 1(b). Figure 2(a) shows the power spectral density
(PSD) of wall pressure fluctuations G, measured experimen-
tally 35 mm away from the axis [point labeled A in Fig.
1(a)], plotted as St G(St) in log/linear axes, where St is the
Strouhal number defined as St=fD/W.,, so that the energy
contained in a peak is given by the area below that peak. In
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FIG. 1. Schematic of the axisymmetric afterbody model. (a) Three-
dimensional view: The point labeled A is located 35 mm away from the
revolution axis and corresponds to the experimental PSD shown in Fig. 2(a).
The point labeled B is located 14 mm away from the revolution axis and
corresponds to the numerical PSD shown in Fig. 2(b). (b) Side view: The
upper half shows the experimental setup with the upstream forebody of
length 2.2 m. The thickness of the turbulent boundary layer was measured
245 mm upstream from the base (black circle). The lower half shows the
numerical modelization used for the LES.

the following, the notation St* stands for Strouhal numbers
measured from experimental and numerical data, whereas St
denotes a value issuing from the local stability analysis. The
spectrum is the average of 64 overlapping subtime intervals,
the nondimensional frequency resolution being of 0.0085. In
this fully turbulent regime, small scales are energetic and
Fig. 2(a) shows a broad high frequency energy spectrum. We
note the well defined energetic peak at St*=0.20, correspond-
ing to a low frequency oscillation. Similar results have also
been reported in Ref. 23.

A LES of this configuration has been carried out using

o~ = s-_ } 9

sk St =0.2 Exp.

> 1 :

bt -

o5

+= -

w 0 1 L1 111 L1 11111
107 10" 10°

—~
QO
-
wn
PN

—~ - tf T

<is | St'=0.2, LES

H 1 F 1

N = 1

Q05 i

> - 1

m 0 L L L1111l 1 L i 0 o i
10° 10" 10°

(b) St

FIG. 2. PSD of the wall pressure fluctuations at the base. (a) Experimental
measurements. (b) LES.
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FIG. 3. (Color) LES mean flow obtained by time and azimuth average. (a)
Axial velocity field. The dashed line stands for the edge of the recirculating
bubble, marked by the streamline linking the separation point to the stagna-

tion point on the axis. The axial velocity profiles W(r) are superimposed for
three streamwise locations (z=1, 3, and 5). (b) Streamwise evolution of the
velocity ratio A(z) and of the steepness parameter D/ 6(z).

the FLU3M code developed by ONERA, which solves the
governing compressible Navier—Stokes equations on multi-
block structured grids. Details, including time and space dis-
cretization and turbulence modeling, can be found in Ref. 24,
where the agreement between numerical results and experi-
mental data is assessed, validating the use of the LES solver.
The retained configuration is shown in the upper half of
Fig. 1: An inlet condition directly injects at the nondimen-
sional upstream position z=-2.45 a turbulent boundary layer
around the cylinder shaped body, whose nondimensional
thickness 6=0.2 corresponds to that measured in the experi-
ments. Turbulence is forced by superimposing random fluc-
tuations to this leading-order inlet condition. Removing the
random fluctuations was found to have little influence on the
numerical results. Figure 2(b) shows the PSD of the wall
pressure fluctuations obtained from the numerical simulation,
14 mm away from the axis [point labeled B in Fig. 1(a)]. The
total duration of the numerical simulation is about 20 ms,
corresponding to about 10 low frequency cycles. The spec-
trum presented in Fig. 2 is obtained by averaging 15 over-
lapping samples, the frequency resolution being of 0.017.
Although the numerical simulation gives access only to short
time series, we obtain a good agreement between both spec-
tra, in particular, we retrieve a well defined energetic peak at
St*=0.20, corresponding to the experimentally observed
large-scale oscillation. Note that the high frequencies are
more energetic in the LES calculation, this being probably
due to the small difference in the location of the experimen-
tal and numerical measurements.

In the following, we use cylindrical coordinates (r, 0,z)
with origin taken at the center of the base. p is the density, p
is the pressure, T is the temperature, and U=(U,V, W) is the
three-dimensional velocity field with U, V, and W its radial,
azimuthal, and streamwise components. The fluctuating non-
axisymmetric three-dimensional field has been averaged in
time and azimuth on the fly, during the calculation. The re-

sulting mean flow Q:(E,U,\_/:O,W,T,ﬁ)T is therefore
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FIG. 4. (Color) (a) Instantaneous spatial structure of the m=1 axial velocity
coefficient Re(W,) extracted from the LES calculations. (b) Close-up on the
near wake area depicted in (a).

steady and axisymmetric. Figure 3(a) shows the mean axial
velocity component: The classical topology of wake flows is
retrieved, with a recirculation region of length ~1.33 devel-
oping in the wake of the afterbody, and negative values of
axial velocity reaching approximately 30% of the free-stream
velocity. Figure 3(b) depicts the streamwise evolution of the
velocity ratio A(z)=(W.(z)-W.)/(W.(z)+W.,) and of the
steepness parameter D/6(z), where 6 is the momentum
thickness defined as

6z) = fW(rz) W.(2) W, — W(rzd, W
W= W) W.—W.(2)

where subscripts ¢ and < refer to the centerline and to the
free-stream quantities, respectively. The velocity ratio gets
close to A=-2 in the recirculating bubble, whereas the steep-
ness parameter decays rapidly in the near wake and more
slowly in the far wake, indicating that the shear layer thick-
ens progressively as the flow develops. Note that the density
ratio defined as S(z)=p.(z)/p.. departs little from unity (not
shown here).

An instantaneous velocity field U(r, 6,z) is decomposed
into the azimuthal Fourier series

> U, (r,2)e™. )

m=—

U(r,0,2) =

The real part of the axial velocity coefficient Re(W;) of the
m=1 component is presented in Fig. 4(a). The large-scale
structure is visible downstream as an alternation of blue and
red hues. Though, it is strongly modulated by a sea of small-
scale turbulence close to the body, where the colored strips
are blurred, as seen in Fig. 4(b).

lll. LOCAL STABILITY

The cross-stream and streamwise directions are both in-
homogeneous directions for the mean flow, i.e., Q(r,z). At
this point, we make the classical weakly nonparallel approxi-
mation, and consider the stability of the parallel flow, gener-
ated by neglecting the cross-stream velocity and extending to
infinity the streamwise velocity proﬁles.25 Disturbances
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FIG. 5. Streamwise evolution of the Strouhal number St and of the absolute
growth rate w? obtained from the LES profiles. The solid horizontal lines
represent the threshold of marginal absolute instability w?:O. The dashed
horizontal line marks the global frequency of the observed large-scale oscil-
lations St*=0.20. The shaded areas correspond to convectively unstable do-
mains. The dashed-dotted line indicates the locus of the saddle point pre-
dicted by the linear global mode theory that turns out to be nearly real in the
present case.

q'=(p" ,u’,p',t')" to the parallel flow are chosen as normal
modes g’ (r)e*&*m0-¢) characterized by the complex axial
wavenumber k=k,.+ik;, the complex pulsation w=w,+iw;, w;
and —k; being the temporal and spatial growth rates, respec-
tively, and the azimuthal wavenumber m. The local stability
equations used to characterize the growth of such normal
modes are identical to that detailed in Ref. 20. In particular,
the viscosity of the fluid is considered constant, and no in-
teraction of the disturbances with the background turbulence
is considered here, as already mentioned for introductory
purposes. For each streamwise station, the Reynolds and
Mach numbers used in the perturbation equations are built

from the mean velocity W,,(z)=[W.+W.(z)]/2, the length

scale I(z) defined as W[I(z)]=W,,(z) and the free-stream den-
sity and temperature. The Prandtl number remains constant
and equal to unity. ¢’ is solution of the classical generalized
eigenvalue problem for either k or w. This eigenvalue prob-
lem is solved using the Chebyshev collocation method dis-
cussed in Ref. 20. The local mean flow velocity, temperature,
and density profiles, measured on the mesh of the LES simu-
lation, are first interpolated on the collocation points of the
stability solver using cubic spline interpolation. Complex
pairs (k°, @°) corresponding to modes of zero group velocity
(i.e., dw/ Ik=0) are then computed by the iterative technique
described in Ref. 20. All results are ultimately rescaled and
presented using the afterbody diameter and the free-stream
velocity as reference scales. For all streamwise positions, we
find that the transition to absolute instability is led by a large-
scale m=1 mode. This is consistent with the results pre-
sented in Ref. 20, in which the absolute instability has been
shown to be led by the large-scale m=1 wake mode for
velocity ratios similar to that of the present LES velocity
profiles. The streamwise variations of the Strouhal number
based on the absolute frequency St=w(r)/277 and that of the
absolute temporal growth rate w? are presented in Fig. 5. The
solid and dashed horizontal lines stand for the threshold of
marginal absolute instability w?:O and for the global fre-
quency of the observed large-scale oscillations St*=0.20, re-
spectively. The variations of the absolute wavelength
N0=27/k" and of the absolute spatial growth rate —k are
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FIG. 6. Streamwise evolution of the absolute wavelength \° and of the
absolute spatial growth rate —k?. The shaded areas correspond to convec-
tively unstable domains.

shown in Fig. 6. The mean flow is convectively unstable in
an upstream region extending from the base to z*=0.23.
Owing to the high rates of reverse flow at the centerline,
absolute instability prevails in the domain 7 <z<<z*=1.14.
Downstream of z%, the thickening of the shear layer and the
decrease in magnitude of the counterflow induce a decrease
in w? to negative values, and thus the mean flow is convec-
tively unstable. The observed global frequency St*=0.20 is
predicted with excellent accuracy, by the absolute frequency
@?(z%)=1.25 corresponding to the same frequency St=0.20
than that evidenced in the experimental and numerical spec-
tra. The absolute wavelength and spatial growth rate at the
transition station are A’(z°")=5.21 and k?(z*%) =—2.41, respec-
tively. The absolute wavelength N\°(z°9) is shown in Fig. 4(a),
and compares favorably with the spatial distribution of the
large-scale m=1 component. A more precise measure of the
spatial wavelength associated to the St=0.20 mode is pres-
ently not accessible since it would require the storage and
processing of a time series of three-dimensional flow fields
that would be far too glutton with the available computer
resources. For the same reason, the spatial envelop of the
St*=0.2 oscillation cannot be retrieved from the numerics
and comparison of the front location and slope as in the
studies of Gallaire et al. '® or Lesshafft er al. " is not
possible.

IV. DISCUSSION

This study shows the existence of a pocket of absolute
instability of the mean flow in the near wake of the after-
body, detached from the base. Although the large-scale con-
tribution is partially overwhelmed by the small-scale turbu-
lence at the high Reynolds number under consideration, the
global frequency is well predicted by the absolute frequency
at the upstream station of marginal absolute instability,
which is located at the origin of the growing part of the m=1
fluctuations. These results agree with the theory of nonlinear
global modes, and make probable that a so-called elephant
mode develops in the wake of the afterbody and is respon-
sible for the large-scale synchronized oscillations.

In contrast, previous studies on the cylinder wake
have shown that up to the large Reynolds number Re=4600,
the global frequency wg is well predicted by the linear sta-

13,25,26
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bility theory of slowly varying flows, also applied to the
mean flow. In that case, the frequency wg is given by the
saddle point condition

Ja°
wg=0'(2%), a—z(z‘v) =0. (3)

Since derivatives of w’(z) are known only along the real
z-axis, the location of the saddle point z* is found through the
use of the Cauchy—Riemann equations and analytic continu-
ation of @(z) in the complex z-plane.27 Applying this linear
global mode prediction to the present case, we obtain a
saddle point at z°=0.735-0.022i, nearly on the real z axis,
close to the position of the maximum absolute growth rate
(see Fig. 5), associated with a Strouhal number St=0.15,
different from that found in the experimental and numerical
spectra. We interpret this result in the following manner: in
the weakly nonlinear approximation, Sipp and Lebedev®®
showed that in the case of the cylinder wake, resonance with
the harmonics is weak, i.e., the leading-order nonlinear ef-
fects are restricted to base flow modifications. In this particu-
lar case, the mean flow is then approximately marginally
stable and the global frequency predicted by the linear sta-
bility analysis of the mean flow approximates well the ob-
served frequency, which explains the success of the saddle
point condition (3). Though, this is not true anymore if reso-
nance occurs with the harmonics of the global mode. In that
more generic case, the linear stability analysis of the mean
flow fails, i.e., the mean flow is no more marginally stable,
and its frequency differs from the observed one. Figure 5
shows that the saddle point z*° is associated with a large
growth rate w?(zs)=0.19. This result indicates that the mean
flow is presently strongly linearly unstable, and suggests that
this configuration exhibits strong resonance with the harmon-
ics of the global mode. The elephant mode theory, which
predicts with amazing precision the observed frequency, does
not suffer similar restrictions since harmonics forcing is at
work in the saturated wave region downstream of the front
so that departure from criticality can be arbitrary. It has been
derived assuming only the flow to be weakly nonparallel, in
order to use the WKBJ approximation.

The validity of this slowly varying approximation may
be questioned, owing to the streamwise development of the
mean flow. This can be done by considering the parameter 7
measuring the nonparallelism of the mean flow, defined as
the ratio

1 1de

= -, 4
7 e 012 W
where k., is the wavenumber of the most amplified tempo-

ral instability mode and 6 is the momentum thickness of the

velocity profile W(r,z) so that the ratio §'d6/dz character-
izes the streamwise variations of the mean flow.”> The
streamwise evolution of 7 is shown in Fig. 7. Although #
remains smaller than 5% for x>2.5, we find that the nonpar-
allel effects are quite important close to the stagnation points.
As already observed in other conﬁgurations,ls’17 the elephant
mode theory, which is solely an asymptotic theory in 7,
gives strikingly precise predictions of the frequency and spa-
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FIG. 7. Streamwise evolution of the parameter 7 measuring the nonparal-
lelism of the spatially developing LES mean flow.

tial distribution of the nonlinear fluctuations, even in com-
plex situations where high Reynolds numbers prevail, when
it is outside its validity domain, in particular when the WKBJ
approximation is not legitimate. It represents a guideline to
understand the physical origin and eventually propose con-
trol strategies of the large-scale synchronized oscillations de-
veloping in the wake of realistic afterbodies.

Such a control may be achieved through base flow modi-
fications, for instance, base bleed.** In this context, the
implementation of optimization procedures would be consid-
erably eased if predictions of the absolute frequency as a
function of the streamwise position z could be obtained using
the known stability properties of analytical profiles. Such an
analysis is carried out in the Appendix, using the model wake
profiles introduced by Monkewitz and Sohn.*® We find that

the associated predicted Strouhal number St=0.22 overesti-
mates only by 10% that issuing from the experimental and
numerical spectra. In this context of flow control, the use of
fitted profiles hence provides with decent estimates of the
global frequency that may be refined when needed by carry-
ing out the stability analysis on the actual profiles.
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APPENDIX: FITTING OR NOT FITTING,
ABOUT THE INFLUENCE OF THE MEAN FLOW
PROFILES

Many experimental or numerical identification of abso-
lutely unstable regions rely on the stability properties of ana-
lytical model profiles on which the actual mean flow mea-
surements are systematically fitted."**® The aim of the
present appendix is to investigate, in the present case, to
what extent such a fitting procedure alters the results of the
stability analysis. For clarity, all results pertaining to the fit-
ted profiles are noted with a ~ symbol. We have used the

two-parameter (A,N) model velocity profiles taken from
Ref. 30, where the axial velocity profile reads
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FIG. 8. Streamwise evolution of the fitted parameter A and of the fitted

steepness parameter D/ 6 (dashed lines). The values already shown in Fig.
3(b) are reported as solid lines for comparison.

A
F(r,z),

1-A

W(r,z) =1+ (A1)

with

F(r,z)=—F—"=". (A2)

(2 - 1)1\/(2)
Since we consider here compressible flows, the temperature
field is deduced from the fitted velocity profile through the
Crocco-Busemann relation® and from the density ratio
S=p./ p» computed at each streamwise station from the LES
calculations. Finally, the density is obtained from the perfect
gas state equation (see Ref. 20 for details).

For each streamwise position, the fitting parameters Az)
and N(z) have been determined using a standard least square
method. The momentum thickness 6 of the fitted profile im-
plicitly depends on N(z) as

o(z) =f F(r,2)[1 - F(r,z)ldr. (A3)
0

Figure 8 depicts the streamwise evolution of A(z) and of the

steepness parameter D/ 6(z) (dashed lines). The values of the
LES parameters A(z) and D/#6(z) introduced in Sec. II are
also reported for comparison (solid lines). We observe a
good agreement between the real and fitted velocity ratios,
although the fitting procedure slightly underestimates the
magnitude of the counterflow. However, the evolution of the
shear parameter shows discrepancies, as the fitted momen-
tum thickness of the developing wake overestimates (resp.
slightly underestimates) that of the real profiles in the near
wake (resp. in the far wake). Confirmation comes from Fig. 9
that shows a comparison between the LES profile and the
corresponding fitted profile at the position z=0.05, within the
recirculating bubble. We notice that the fitted profiles ac-
count neither for the small velocity overshoot existing just

4
: |
— 2 4 - :
14 W(r ==
[ W(r
0 / T 1 ()

T
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FIG. 9. Comparison between the LES (solid line) and the fitted (dashed line)
velocity profiles at the streamwise station z=0.05.
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FIG. 10. Streamwise evolution of the Strouhal number St and of the abso-
lute growth rate E)? obtained using fitted velocity profiles (dashed lines). The
shaded areas correspond to convectively unstable domains. The solid lines
refer to the results (St,w?) presented in Fig. 5 for the real profiles. The solid
horizontal line represents the threshold of marginal absolute instability w?
=0. The dashed horizontal line marks the global frequency of the observed
large-scale oscillations St*=0.20.

outside of the shear-layer region, nor for the deformation of
the velocity field close to the axis.
Figure 10 shows the streamwise variations of the Strou-

hal number based on the absolute frequency S~t=c59/277 and
that of the absolute growth rate (I)? obtained using the fitted
profiles (dashed lines). The solid lines refer to the Strouhal
number St and to the absolute growth rate wio shown in Fig.
5 for the exact LES profiles. The frequencies obtained from
the fitted profiles match reasonably well with that obtained
from the LES profiles. We find that absolute instability pre-
vails in the domain z*=0.01 <z<<7*°=1.34, the amplifica-
tion rates 5? being significantly overestimated in the whole
absolute domain. As a result, using fitted profiles, the posi-
tion of the upstream transition station that predicts the loca-
tion of the front in the elephant mode theory, is slightly
shifted upstream. In the range of parameters (A,D/6,S) pre-
vailing in the near wake region, this can be explained by the
fact that a higher steepness parameter results in a higher
absolute growth rate w?.zo The global frequency selected at
7%, 5(,)(2“)=1.39, corresponds to a Strouhal number of St
=0.22 that moderately overestimates the global frequency
obtained for the real profiles by 10%. Thus, the results ob-
tained by fitting the actual LES profiles by model analytical
profiles (A1) and (A2) agree reasonably well with the experi-
mental observations and with the results issuing from the
stability analysis of the exact LES profiles. In this specific
case, this result therefore demonstrates the validity of the use
of model profiles to estimate the global frequency with lim-
ited discrepancy.
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