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Abstract

Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass
cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed
pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack
host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative
proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human
foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular
lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and
24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins
with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host
response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and
reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also
allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in
parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey
also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.
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Introduction

More than half of life in ecosystems is parasite and, as a life

history strategy, parasitism has evolved more times than predation

[1,2]. A large part of the living organisms, at different times during

the evolution of life and in each Kingdom opted and/or were

under duress to invade other organisms, from their respective

Kingdom or not, at extra- or intra- cellular levels [2]. This allowed

them to reach an appropriate cellular niche (i.e. microhabitat), and

gave them access to the nutrients needed for their growth and their

survival. To achieve this, parasites need to hijack host cellular

functions. For a large number of host-parasite associations, the

arms race between partners has been ongoing for several hundred

million years [2,3], a struggle that has so far led to the selection of

different parasite cellular lifestyles until the intracellular-obligate

parasitic state. Although parasites exist in virtually every conceiv-

able host niche, no parasite lifestyle is as specialized as obligate

intracellular one. This parasite lifestyle influences access to nutrients,

interactions with host cells signaling pathways and detection by

parasite recognition systems. As such, intracellular life requires quite

a repertoire of adaptations in order to ensure entry-exit from the cell,

as well as to counter innate immune mechanisms and prevent

clearance. The deciphering of this kind of host-parasite cross-talk at

cellular and molecular levels is essential to the understanding of the

key molecular strategies shared by obligate intracellular parasites in

the hijacking of host cellular functions [2–5].

Microsporidia have been shown to cluster at the base of the

fungal kingdom, as a sister group to chytrid pathogen Rozella

allomycis [6]. They are all obligate intracellular parasites and 1,300

to 1,500 species in 187 genera were described that can infect a

wide range of hosts from insects to mammals [7]. With some of the

smallest eukaryotic genomes (from 2.3 to 24 Mb) and character-

ized by a strong host dependency the microsporidia phylum is
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therefore particularly interesting to study as a source of pioneer

data on the host-intracellular parasite cross-talk. This strong host

dependency is illustrated by an extensive gene loss and a genome

compaction (i.e. the lack of and/or reduction in the number of

genes coding for numerous metabolic pathways well conserved in

eukaryotes, and also simplification of cellular processes such as

transcription) [8–12]. Since their discovery in the 1850s as the

causative agent of the silkworm disease (works of Balbiani and

Pasteur) [10] which devastated the silk industry in Europe, many

studies have been conducted on these intracellular parasites

because of their major impact on animal farming, for instance in

beekeeping (Nosema ceranae and Nosema apis), in sericulture (Nosema

bombycis) and in aquaculture (Loma salmonae for salmonid or

Thelohania spp. for shrimp). Microsporidia have also been

considered as opportunistic parasites in human and listed as a

public health threat since the AIDS pandemic. The Microsporidia

had been added to the National Institute of Allergy and Infectious

diseases priority parasite list (category B, Biological Diseases, Food

and Waterborne Pathogens) [10]. Anncaliia algerae, was first isolated

from Anopheles stephensis at the aquatic larval stage. It is one of the

microsporidian species with the broadest known host range [13]

and can infect both immuno-competent and immuno-compro-

mised patients [13]. Furthermore, mosquitoes co-infected with A.

algerae and Plasmodium falciparum exhibit reduced P. falciparum

development, suggesting that A. algerae enforces a biological

defense against the causative agent of malaria [14]. Finally, A.

algerae is an appropriate parasite model to study host-intracellular

parasite cross-talk because of its ability to grow in vitro within a

large diversity of cells and temperatures [15], and of the

availability of its complete genome sequence harboring only

2,075 protein encoding genes [16].

Many scientists are heavily betting on ‘‘omics’’ tools to decode

cross-talk in host-parasite associations and, thus, to first under-

stand parasite molecular strategies to bypass host defenses.

However, although genomic tools can provide great insights in

such quests, the execution of the genetic plan is carried out for a

large part by the proteins activities [17] and that is why many

proteomics studies in the last decade have aimed at elucidating the

host-parasite interactions. The use of proteomics has been

promoted by the development of new user-friendly tools such as

free gel approaches [18,19]. Quantitative metabolic labelling

techniques such as SILAC (Stable Isotope Labelling by Amino

acids in Cell culture) have frequently been coupled to Mass

Spectrometry (MS) for acquisition of quantitative data on changes

in protein abundance between cells or experimental conditions

[18]. This powerful method was first used to identify and quantify

relative differential changes in complex protein samples [20]. As a

result, SILAC opens new opportunities for the elucidation of host-

parasite cross-talk involved in the hijacking of host cellular

functions by parasites [5,21], and has been successfully used in

similar studies on host-viruses interactions [21]. Our data deliver

for the first time a temporal view of the host-parasite cross-talk

during hijacking of host cellular functions in a minimal host-

parasite interaction model. Key insights are the host interferon

response against a microsporidia and the possible activation of

parasite transposable elements (i.e. lure parasite strategy against

host innate immune system).

Material and Methods

Workflow
We investigated a minimal host-parasite interaction model (i.e.

parasite with a strong host dependency) namely A. algerae while

infecting human foreskin fibroblasts (HFF) to figure out the specific

molecular cross-talk during the infection at two different time

scales: early (1 hour post-infection (hpi), 6 hpi, 12 hpi and 24 hpi)

and late (8 days post-infection (dpi)). In our experimental system,

we observed meront stages 24 hpi, and after a proliferative step,

mature spores are formed 3 dpi (figure S1). Finally, the majority of

HFF cells are infected 8 dpi as shown in figure S1. In proteomics

analysis several proteins have been shown to be modulated

whatever the stress source [22]. In order to be able to spot and

eliminate host proteins not being specifically modulated by the

infection condition, we decided to compare with the host response

when submitted to an abiotic stress (i.e. hypoxic) at two different

cell ages (24 h and 8 d). Proteomics analyses were led by the

labelling in cell culture of HFF with stable isotope (13C6
15N2-

lysine) amino acids before the infection (or hypoxic stress), then

followed by a tandem mass spectrometry analysis of the proteins

extracted at each time points (i.e. 1, 6, 12, 24 hpi and 8 dpi; 24 h

and 8 d for the hypoxia). Using this experimental design, we were

able to follow the specific kinetic response of both host and parasite

proteomes at five post-infection times. The use of three biological

replicates allowed a high sensitivity in the detection of weak

relative changes in the abundance between different experimental

conditions (Fig. 1).

Host and parasite material
Human foreskin fibroblasts (HFF)(ATCC SCRC-1041) cells

were grown in SILAC Dulbecco’s modified MEM (DMEM, PAA)

in a 5% CO2 incubator at 37uC. The A. algerae isolate used in this

study was kindly provided by Pr. W.A. Maier (University of

Sigmund-Freud, Bonn) and it is the same organism as in the

original description of the parasite in the paper of Vavra and

Undeen (1970) (reference ATCC PRA-339) [23].

Culture medium, reagents and incorporation test
HFF cells were cultured as monolayers in DMEM supplement-

ed with 10% heat inactivated dialyzed FBS (Invitrogen), 2 mM L-

glutamine, arginine 84 mg/L, antibiotics (penicillin 100 U/ml-

streptomycin 100 mg/ml, ampicillin 0.2 mg/ml) and fungicide

(amphotericin B 0.25 mg/ml). For the SILAC experiments, cells

were cultured in DMEM containing either 13C6
15N2-lysine (heavy

SILAC medium) or 12C6
13N2-lysine (light SILAC medium,

unlabeled lysine) at the concentration of 150 mg/L. After five

cell population doublings on 75 cm2 culture flask, proteins were

extracted from the heavy SILAC cells in 150 ml of Laemmli buffer

(2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.002%

bromophenol blue and 0.0625 M TrisHCl pH 6.8), boiled for

15 min and centrifuged at 16,0006g at 4uC for 5 min. The

protein concentrations of the cell lysates were determined with

Bio-Rad Bradford Assay. The degree of incorporation of
13C6

15N2-lysine was evaluated by mass spectrometry according

to Ong and Mann work [24]. The heavy HFF cells were

trypsinized and mixed with control cells at a 1:1 ratio. The

proteins were then extracted and quantified as described above.

After separation by SDS-PAGE, total proteins were divided in 3

bands according to their molecular weight (Fig 1) and were

processed for in-gel digestion with endoproteinase LysC. The

peptides were analyzed by MS/MS. The heavy/light ratios were

calculated for each protein.

SILAC experimental procedure
HFF labelled cells at confluence in 75 cm2 flasks were treated

with 1 ml of PBS, and exposed to two independent treatments

(Fig. 1): (i) infected with 16106 fresh spores of A. algerae (biotic

stress), or (ii) placed in hypoxia for 1 h (abiotic stress) before each

sampling (24 h and 8 d after the beginning of the experiment).

Host Hijacking by Anncaliia algerae
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The hypoxia condition was achieved by filling the flasks of control

HFF cells with N2, the flasks were then hermetically sealed with

parafilm for one hour. For the infection, the spores of A. algerae

were left 1 h in contact with host cells before 3 washing steps with

fresh medium. The light (unlabeled) HFF cells (control) were also

treated with 1 ml of PBS (control). Either heavy or light HFF cells

were then washed 3 times with fresh complete medium and

sustained in culture for 8 days. For each time points (1 h, 6 h,

12 h, 24 h and 8 d) used to decipher host responses, the labelled

and unlabeled HFF cells were dissociated with 0.05% trypsin-

EDTA (Gibco). They were washed three times in PBS and

manually counted. For each treatment (infection or hypoxia) and

for each time point, 3 replicates of heavy HFF cells were combined

at 1:1 ratio with light HFF cells, then centrifuged at 100 xg at 4uC
for 5 min. The pellets were immediately frozen in liquid nitrogen

and kept at 280uC until the end of the sampling procedure.

Afterwards, proteins were extracted and quantified as described

above.

Mass spectrometry data acquisition and processing
All time points of the A. algerae infection kinetics (1 hpi, 6 hpi,

12 hpi, 24 hpi and 8 dpi) and the two of the hypoxia samples

(24 h and 8 d) were resolved on 12%SDS PAGE using the protean

II xi cell system (Bio-Rad laboratories, Marnes-La-Coquette,

France). Gels were stained with PAGE-Blue protein staining

solution (Fermentas Vilnius, Lithuania) and scanned using a

computer-assisted densitometer (EPSON Perfection V750PRO).

Gel lanes were cut in 3 regular pieces and destained with two

washes in 50% acetonitrile/50 mM triethylammonium bicarbon-

ate. After protein reduction (10 mM dithiothreitol at 50uC for

1 h), and alkylation (55 mM iodoacetamide at room temperature

for 30 min), proteins were processed for in-gel digestion over night

at 25uC using LysC (2.2 mg/band, Wako, Osaka, Japan). Digested

products were extracted with 50% acetonitrile/50 mM triethy-

lammonium bicarbonate and then 5% formic acid. Peptide

solutions were dehydrated in a vacuum centrifuge. The generated

peptides were analyzed online by nano flowHPLC-nanoelectros-

pray ionization using an LTQ-Xl Orbitrap mass spectrometer

(Thermo Fisher Scientific) coupled to an Ultimate 3000 HPLC

(Dionex, Thermo Fisher Scientific). Desalting and pre-concentra-

Figure 1. Workflow to decipher the molecular cross-talk between human cells and the obligate intracellular parasite A. algerae
which is characterized by a strong host dependency. HFF cells labelled with 13C6

15N2-lysine (dark gray) were submitted to either infection by
A. algerae or hypoxic stress. For each time point of both kinetics the labeled cells were combined at 1:1 ratio with unlabeled HFF cells (light gray) and
proteins were extracted. For each sample a three biological replicate was made. The proteins samples were resolved on SDS-PAGE and total proteins
lanes were cut in 3 regular pieces (A, B, C) and processed for in-gel digestion with endoproteinase LysC. LC-MS/MS analysis was then performed and
mass spectra were analyzed with the MaxQuant software to achieve the relative protein quantification.
doi:10.1371/journal.pone.0100791.g001

Host Hijacking by Anncaliia algerae
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tion of samples were performed on-line on a Pepmap pre-column

(0.3 mm610 mm, Dionex). A gradient consisting of 0–40% B in A

for 60 min, followed by 80% B/20% A for 15 min (A = 0.1%

formic acid, 2% acetonitrile in water; B = 0.1% formic acid in

acetonitrile) at 300 nL/min was used to elute peptides from the

capillary reverse-phase column (0.075 mm6150 mm, Pepmap,

Dionex). Eluted peptides were electrosprayed online at a voltage of

2.2 kV into an LTQ Orbitrap mass spectrometer. A cycle of one

full-scan mass spectrum (400–2000 m/z) at a resolution of 60,000

(at 400 m/z) in the orbitrap, followed by 5 data-dependent MS/

MS spectra (LTQ) was repeated continuously throughout the

nanoLC separation.

Raw data analysis was performed using the MaxQuant software

(V.1.3.0.5) [25]. Retention time-dependent mass recalibration was

applied with the aid of a first search implemented in the

Andromeda software [26] and peak lists were searched against

the UniProt human database (release2013_04; http://www.

uniprot.org) for the host response analysis and a local A. algerae

database (supplementary data) for the parasite proteins detection,

255 frequently observed contaminants as well as reversed

sequences of all entries. The following settings were applied:

spectra were searched with a mass tolerance of 7 ppm (MS) and

0.5Th (MS/MS). Enzyme specificity was set to LysC. Up to two

missed cleavages were allowed and only peptides with at least six

amino acids in length were considered. Oxidation on methionine

was set as a variable modification. Peptides identifications were

accepted based on their false discovery rate (,1%). Accepted

peptide sequences were subsequently assembled by MaxQuant

into proteins, to achieve a false discovery rate of 1% at the protein

level. Relative protein quantifications in samples to be compared

were performed based on the median SILAC ratios, using

MaxQuant with standard settings. Significance thresholds were

calculated by using Perseus (www.maxquant.org) based on

significance A with a p-value of 0.01 for normalized peptide

ratios. Graphical representations were generated using the R

statistical environment (V.3.0.1)[27].

Bioinformatics analysis
A biological process Gene Ontology analysis was performed for

each kinetic time points of the host. Differentially expressed

proteins of the host at each time point were annotated with their

Gene Ontology Biological Process terms [28] (Table S1). The

annotation of the parasites proteome was conducted using

Blast2Go (V.2.7.1)[29] with a BlastP algorithm using an e-value

of 0.01 followed by an InterproScan step against the entire

databases. The GO analysis was then finalized by merging the

biological processes terms obtained after these two steps. The

prediction of signal peptide cleavage sites was performed using the

SignalP program, version 4.1 [30] set with the default parameters

for eukaryotes.

Results

Host and parasite monitored proteins and incorporation
rate of 13C6

15N2-lysine
Heavy/light ratios were calculated for each detected protein.

The median of the incorporation rate for each protein was above

90% for the HFF cells, which is efficient for a good quantification

of the host protein changes in abundance (Fig. 2). A total of 1,190

proteins were identified in the three biological replicates during the

cross-talk between human cells and the microsporidian parasite:

1,041 for were quantified and corresponded to proteins from HFF

cells. The 148 other proteins were from A. algerae and were

probably detected because they were the most abundant parasite

proteins (Tables S2, S3). Analysis of the host proteome response to

the hypoxic treatment revealed a total of 1,194 human proteins in

the three biological replicates during the kinetics (Table S4). The

correlation of the heavy/light protein abundance ratios showed a

high reproducibility of protein quantification in the three

biological replicates for each time points and for both stress

conditions (i.e. parasite infection and hypoxia; Table S5).

Host proteome modulation
During the HFF cells-A. algerae cross-talk, 87 proteins of HFF

cells significantly varied in expression ratio in at least one of the

five time points (Fig. 3). Forty-three HFF proteins were

differentially expressed after the hypoxic stress (Fig. 4) while only

nine proteins were shared between infection and hypoxic

treatments. These common proteins corresponded to three

proteins of the cytoskeleton and the extracellular matrix

(COL6A1, COL6A2, CNN1), two proteins involved in detoxifi-

cation process (GSTM, NQO1), two involved in transcription/

translation regulation (RALY, IGF2BP2), one HSP related protein

(DNAJB11) and one protein of unknown function (GPNMB).

These nine proteins were discarded for further interpretation of

the kinetics of infection by A. algerae. For each kinetic time point,

differentially expressed host proteins were annotated with GO

Biological Process terms [28]. The percentage of dysregulated

proteins annotated to each GO term is reported in Table S1.

Parasite proteome
Among the 148 parasite proteins detected during the HFF cells-

A. algerae temporal cross-talk (Table S3). Most of these proteins

were only detected for the 8 dpi time point, except for three: the

26S proteasome regulatory subunit 10 (detected at 6 hpi, 12 hpi,

24 hpi and 8 dpi), the endoplasmic reticulum membrane protein

(detected at 6 hpi) and the glutamine amidotransferase (detected at

1 hpi, 24 hpi and 8 dpi). From the 148 A. algerae proteins, 20

showed no significant similarity with proteins in the RefSeq non-

redundant database (nr) [31], even with an e-value threshold of

0.01. This suggests that these sequences are quite divergent from

other known organism sequences. The SignalP program predicted

the presence of a N-terminal signal peptide for 18 A. algerae

proteins (Table S3). Interestingly Fisher’s exact test confirms the

over-representation of predicted secreted proteins among the 148

identified proteins (p-value = 3.46761024) when compared to the

predicted secreted proteins from the whole A. algerae proteome.

Discussion

To date, the available proteomics data on host-parasite

interactions are mainly about the host’s response to the parasite

[4,5,32,33]. Both the low parasite size of intracellular parasites and

the low amount of parasite proteins compared to their host cells

can explain the difficulty to extract enough parasite proteins from

host cells suitable for detection during the kinetics of the host-

parasite cross-talk. For the first time the host-parasite cross-talk

was investigating in the context of an eukaryotic intracellular

parasite using the highly sensitive and quantitative SILAC

approach. We identified 148 parasite proteins most of them being

detected at 8 dpi. The parasite proteins with known functions were

mostly involved in fundamental biological processes and reflect the

successfully multiplication of the parasite inside the host.

Regarding the host dialogue during the kinetics of A. algerae

infection, since our model was produced in cell culture, the host

cells response to A. algerae mainly involved in the innate immune

response split in two parts: first the oxidative stress and then the

type I interferon response.

Host Hijacking by Anncaliia algerae
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Antioxidant proteins involved in the protection against
the oxidative stress induced by the infection

Glutathione-S-Transferase (GST), Superoxide Dismutase 2

(SOD2), and ferritin were strongly modulated in A. algerae-infected

HFF cells. GST is overexpressed and is part of the classical

response to oxidative stress due to the production of reactive

oxygen species (ROS) to counter an infection. This had already

been observed following an infection of Aedes aegypti by the

microsporidian species Vavraia culicis and Edhazardia aedis [34,35].

Conversely, the mitochondrial SOD2 protein was strongly

downregulated until 24 hpi, hence questioning its role in the

antioxidant system. However, this modulation could also be

caused by a strong disturbance of the host mitochondria

consecutive to cell infection, as it is known that microsporidia

are highly dependent on their host pertaining to their ATP supply

[8,10]. A SILAC experiment focusing on mitochondria fraction of

infected cells (vs. healthy cells) could be helpful to understand how

microsporidia can hijack the host mitochondria metabolism.

Another well-known ROS implicated in the innate response is

the inducible nitric oxide (iNOS). This ROS is produced by the

nitric oxide synthase (NOS) through the L-arginine and L-

ornithine pathways which are tightly regulated by different

enzymes including the ornithine aminotransferase (OAT) [36].

In our experiment, the OAT but also the N(G),N(G)-dimethy-

larginine dimethylaminohydrolase 1 (DDAH1, a NOS inducer)

[37] proteins were less abundant during the infection suggesting

that the NOS regulation is altered by the infection as it has been

observed in several parasitic infections [34,35]. This modulation

could be linked to the strong upregulation of the ubiquitin

carboxyl-terminal hydrolase isozyme L1 (UCHL1) observed in our

experiment. Indeed, it is known that the NOS synthesis is

regulated through the activation of the extracellular signal-

regulated protein kinase (ERK) and the UCHL1 protein has been

shown to drastically decrease the activation of ERK [38], arguing

for an inactivation of the NOS system in A. algerae-infected HFF

cells.

Interferon response specific to A. algerae
In A. algerae-infected cells, the IFIT1 (IFIT for Interferon-

induced protein with tetratricopeptide repeats), IFIT2, IFIT3 and

the interferon-inducible MX1 proteins were dramatically upregu-

lated after 8 dpi, with a log2 ratio upper to 2.5 (Fig. 3, Fig. 5).

These four proteins are known to be induced by type I and type III

interferons, especially IFN-a/b [39]. Interferons (IFNs) are a

family of proteins secreted by host cells in response to infection by

various intracellular pathogens such as viruses, bacteria, fungi or

protozoa, and involved in the innate immunity. This mechanism is

well documented in the case of viral infections, but few studies

have described type I interferon production in response to

intracellular parasites, as it has been the case for P. falciparum

[40] or Listeria monocytogenes [41]. Once IFN is produced and

secreted by the cell, it acts in an autocrine and paracrine loop to

stimulate its receptor on both the infected and neighbouring cells

(Fig. 5). To explain the late detection of IFN response, the critical

mass of infected cells required to detect this auto activation loop

might need more than 48 h of infection in our experimental

conditions. Proteins involved in cell signaling were also detected as

modulated during the infection, especially the proto-oncogene Ras

and proteins involved in the JAK-STAT pathway. This pathway

has already been shown to be modulated in the case of mice

infection by L. monocytogenes as a direct consequence of the IFIT-

induced system [39]. Following this first step, the extracellular-

Figure 2. Incorporation rate of stable isotope 13C6
15N2-lysine by HFF cells after five cell population doublings. Each hexagon is

colored according to the number of proteins in its area of incorporation and intensity. Most of proteins present an incorporation rate above 90%,
which is efficient for a good quantification of the protein changes in abundance for both infection and hypoxia treatments.
doi:10.1371/journal.pone.0100791.g002
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Figure 3. Clusters of the host proteins significantly modulated during the kinetics of infection. HFF cells at confluence were infected by
16106 spores of A. algerae and samples were taken 1 hour post infection (H1), 6 hour post infection (H6), 12 hour post infection (H12), 24 hour post
infection (H24) and 8 day post infection (D8). Log2 Protein ratio were measured using the SILAC workflow and were relative to the uninfected cells.
Genes were selected for this analysis if their expression level differed significantly from the control for at least one time point. The color scale ranges
from saturated green for log ratios 23.15 and below to saturated red for log ratios 3.15 and above. Each gene is represented by a single row of
colored boxes and each time point is represented by a single column.
doi:10.1371/journal.pone.0100791.g003
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produced IFN-b can bind to the Janus Kinase receptor (JAK)

leading to the activation of STAT1 (which is upregulated in our

experiment) and STAT2. These two proteins form a complex with

IRF9 (interferon regulatory factor 9), which translocate into the

nucleus and promotes the expression of the IFIT family genes. As

previously mentioned, proteins involved in Ras signal transduction

were modulated by the infection, suggesting an activation of the

pathway. Moreover, Ras signaling impacts numerous functions in

the cell including actin cytoskeletal integrity, proliferation,

differentiation, cell adhesion, apoptosis, and cell migration.

Among the different altered functions which are linked to the

interferon response, a cluster of proteins responsible for transcrip-

tion and translation is shown to be downregulated at any time of

the infection (consistent with a Type I interferon response).

Indeed, IFIT1 and IFIT2 are known to directly bind to the EIF3

complex resulting in a suppression of more than 60% of

translation in cells [42]. Interestingly, in our experiment, EIF3-l

and EIF3-k, two components of the EIF3 complex are downreg-

ulated until 6 hpi. We also observed that the 60 S ribosomal

protein is strongly down-regulated during the experiment

confirming a decrease in protein translation activity.

Nine proteins associated to the cytoskeleton were modulated

during the infection suggesting a reorganization of the host cell.

Such a cell structure reorganization is well known in the case of

red blood cells infected by P. falciparum [43]. According to its

obligatory parasitic nature, A. algerae is highly dependent of its host

especially for energy supply [10]. A. algerae may be tightly

associated with the host mitochondria and a relocalization of

mitochondria around the parasitophorous vacuole has been

already observed after infection of mammal cells by the

microsporidian species Encephalitozoon cuniculi [44]. Interestingly,

one of our modulated proteins, the microtubule-associated protein

1B (MAP1B), is responsible for the mitochondria transport

through the microtubule web [45]. As IFIT2 can interact and

modulate the microtubule network [46] we hypothesized that

IFIT2 could be implicated in cell reorganization during A. algerae

infection.

Apoptosis is a classical response to intracellular pathogens

especially after viral infection; this phenomenon could also be

induced through the IFN response. IFN-induced proteins have the

ability to block the cell cycle, promote apoptosis or lead to cell

proliferation [47–49]. In our experiment, the effects of infection on

the apoptosis process remain unclear given that no direct effector

Figure 4. Clusters of the host proteins significantly modulated during the hypoxia treatment. HFF cells at confluence were submitted to
an abiotic stress (i.e. hypoxic) at two different cell ages 24 hours (H24) and 8 days (D8). Proteins expression levels were clustered by using methods
described here before in Fig S1.
doi:10.1371/journal.pone.0100791.g004
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of apoptosis has been detected. Nevertheless, IFIT3 and HINT1,

which are tightly upregulated in our experiment, have been shown

to induce apoptosis through the mitochondria pathway [48] and

an upregulation of P53 and Bak transcription, respectively [50].

Our results therefore suggest an activation of the apoptotic

signalization, however, the direct detection of apoptotic processes

would be necessary to conclude on this aspect. Despite the

oxidative stress and the interferon response are induced during the

infection of HFF cells by A. algerae, the parasite succeeds in its

infection process, meaning that these two arms of the immune

system are inefficient or not sufficient enough to counter A. algerae.

Predictive host-parasite crosstalk
Among the parasite proteins, we found that 12% are predicted

to be secreted. This is intriguing since secreted proteins represent

only 5% of the complete A. algerae predicted proteome. The over-

representation of these proteins can have a biological significance

as they can be found at the host-parasite interface and may

interfere directly with host cellular components. However we

cannot exclude that this could be the result of an extraction bias

since these secreted proteins are more easily extracted. Unfortu-

nately, the functions of most of these proteins are unknown, and

further investigation is still needed to demonstrate their role as

potential parasite effectors. To protect itself against host defenses

(ROS), the parasite may have an antioxidant system since we

detected proteins involved in ROS detoxification (ferritin,

thioreductase and superoxide dismutase) (Table S3).

Interestingly, among the parasite proteins, a transposable

element was detected (TE)(POL polyprotein), supporting a recent

study showing that A. algerae genome harbors numerous TEs [16].

Usually the activity of these elements is under regulation of the

host, via pre- and post-transcriptional mechanisms [51] which thus

makes their proteins difficult to detect. We found one specific

microsporidian regulation signal within the putative promoter of

this TE, i.e. a GGG-motif before the start codon [16], suggesting a

domestication of the TE by the microsporidia, that may have

provided an advantage in the evolutive history of A. algerae. The

domestication of TEs in order to fulfill particular functions for the

host organism has been a recurrent event throughout evolution

and concerns any type of TEs [52,53]. Host organisms have thus

repeatedly recruited both the regulatory and the coding sequences

of TEs. These co-optations can be very ancient like the telomere

maintenance by TART and HeT-A retrotransposons in Drosophila

[54], the programmed genome rearrangements of Paramecium by a

DNA transposon [55]. Ancient co-optation were also showed for

the syncitin proteins, derived from the envelope gene of an

endogenous retrovirus, which are implied in the placenta

formation in mammals [56], or the RAG1 and RAG2 proteins

promoting the V(D)J recombination to generate the diversity of

immunoglobulins in vertebrates that both derived from a DNA

transposon [57]. In the last two cases, the structure of the TE is no

more recognizable and the recruited TE sequence has become a

new host gene. More recent cases of domestication have also been

described like the ENS1/ERNI protein which is specifically

Figure 5. Schematic illustration of the proposed IFN host response against infection with A. algerae. Proteins that have been shown to
be upregulated during the experiment are indicated in red, the downregulated ones are in green. The dsDNA produced by the TE is recognized by
the Toll-like receptor TLR9 which senses CpG DNA. This leads to the activation of IRF3 and IRF7 by phosphorylation, which can bind host genome to
stimulate IFN expression. The secreted IFN would then activate the JAK-STAT signaling pathway. The phosphorylated STAT1, STAT2, and IRF9 form
the ISGF3 complex, which is translocated into the host nucleus, and thus stimulates IFIT family genes expression. IFIT1 and IFIT2 directly bind eIF3 and
suppress transcription. IFIT2 interacts with MITA (Mediator of IRF3 activation), and induces apoptosis via the mitochondrial pathway that is induced
by the innate immune response. IFIT2 can also interact with microtubules and could be responsible of cytoskeleton reorganization.
doi:10.1371/journal.pone.0100791.g005

Host Hijacking by Anncaliia algerae

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e100791



produced in the embryonic stem cells of chicken and controls the

timing of the neural plate emergence, which function is probably

restricted to the galliform species and which structure still mainly

corresponds to that of a LTR retrotransposon [58,59]. The

adaptive advantages of some TE insertions have also been shown

to occur quite often in Drosophila, some of these events being

particularly recent since they took place less than 10,000 years ago

[60].

In the case of type 1 IFN response to L. monocytogenes infection

[41], the detection seems to be mediated by the direct recognition

of cytosolic bacterial dsDNA by Toll like receptor 9, which is

activated by CpG DNA. Considering this, we hypothesize that this

TE could be the cause of the interferon response activation by

leading to DNA release, since this protein still has the ability to

synthetize dsDNA from RNA with its reverse transcriptase/

ribonuclease H (RT) activities. One possible assumption is that the

gene coding the POL polyprotein could have been selected during

the co-evolution of mammals and A. algerae permitting the parasite

to invade and grow in mammal host. The interferon response

could then be detrimental to the host as it has been observed for

intracellular pathogenic bacteria [61], and this could make the

case that the interferon response is a parasitic lure strategy against

host innate immune system.
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