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A direct PCA-based approach for real-time
description of physiological organ deformations

Baudouin Denis de Senneville, Abdallah El Hamidi, and Chritoien

Abstract—Dynamic MR-imaging can provide functional and temperature perturbations in the case of MR-HIFU [3],
positional information in real-time, which can be conveniently as well asgeometric image distortions in the case of
used on-line to control a cancer therapy, e.g. using High Intensjt both MR-HIFU and MR-LinAc [2]).

Focused Ultrasound or Radio Therapy. However, a precise real- .

time correction for motion is fundamental in abdominal organs 2) An accurate calculation of the accumulated dose (based
to ensure an optimal treatment dose associated with a limited on MR-thermometry for thermal dose assessment with
toxicity in nearby organs at risk. MR-HIFU [1] or dose simulations with MR-LinAc [2]).

This paper proposes a real-time direct PCA-based technique  3) A reliable beam targeting of the pathological tissue [4].
which offers a robust approach for motion estimation of ab- hi d | hni vely devel d
dominal organs and allows correcting motion related artifacts. 10 this end, several techniques are actively developed to

The PCA was used to detect spatio-temporal coherences of theassess motion informations in real-time: While surrogafes o
periodic organ motion in a learning step. During the interven- physiological activities can be obtained by means of a respi
tional procedure, physiological contributions were characterize  ratory pressure belt [5] or a cardiac electrocardiogramGEC

quantitatively using a small set of parameters. Acoarse-to-fine ; : i
resolution scheme is proposed to improve the stability of the [6], displacement measurements in the vicinity of the targe

algorithm and afford a predictable constant latency of 80 ms. ~ €gion can be provided by navigator echos [7] or ultrasonic
The technique was evaluated on 12 free-breathing volunteers [8] echos.More recently, fast MR-acquisition protocols allow
and provided an improved real-time description of motion related acquiring dynamically 2D images with a respectable spatial
to both breathing and cardiac cycles. A reduced learning step of znd temporal resolution and a good contrast with a clear
10 s was sufficient without any need for patient-specific control depiction of both targeted and healthy regions. These image
parameters, rendering the method suitable for clinical use. can be conveniently used to estimate organ. displacements

Index Terms—Motion analysis, Real-time system. during the therapy using image registration algorithms.
For this purpose, the optical flow formulation of Ho&n
I. INTRODUCTION Schunck, initially proposed in the context of motion estiima

ECENT developments in rapid Magnetic ResonandB video sequence [9], was recently shown to be ngl adapted
Imaging (MRI), associated with fast data processin@r the real-time estimation of elastic organ deformati¢h8]:
strategies, now allow acquiring functional and positioimel
formation in real-time during an interventional procedudy- B 2 9 9
namic MRI is thereby a promising candidate to assess an ob;](“’ v) = /(Imu + 1o+ L) +a (|l Va2 + [ Vo |l2) 42
line retroactive control of the therapy. For example, itgak Q )
processing of MR-images, combined With a High Intens“.%here Q2 is the image coordinates domain, and v the
F_ocused Ultrasound system (MR_HIFU) with rapid eleCt.romaisplacement vector components, , ; the spatio-temporal
dlsplacement of the focal point, can be used to aChIevepgrtial derivatives of the image ,gixel intensity, anrd a
:ﬁgﬁnoa;lirtﬁ;nF;g'[:éluli/TRcloli?ltgc:r[elil.ci;gg?grys’ E&?ﬁjﬁ;ﬁ%i weighting factors designed to link both intensity variatiteft
meg . I L part of Eqg. (1)) and motion field regularity (right part of Eq.
are designed for simultaneous irradiation and MR-imag#g | (2)). Combined with a multi-resolution scheme and a fast GPU

shows great potential for on-line radiotherapy guidance. égrraphics Processing Unit) implementation, Eq. (1) is able

Although these new techniques appear well suited for can . : .
therapy in vital organs such as kidney and liver, physiaabi assess abdominal organ displacements with an update rate of
Py g y » PIY 10 Hz for MR-images[11].

displacements induced by breathing and/or cardiac desvit . .
. : . . . However, optical flow based algorithms rely on the assump-
require a precise real-time motion management to ensure: . . . . !
tion of conservation of local intensity along the trajegtor

1) A correction of motion-induced image artifacts (in parryis can be unfavorable for the clinical applications dit
ticular, MR-susceptibility variations generate apparenf,,ye since intensity variations may arise from changes of

Baudouin Denis de Sennevile and Chrit Moonen are with thIR-iSSue properties during the intervention [12]. Moreov
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coherent motion patterns as follows:reduced parameterized I[I. METHOD DESCRIPTION

flow model, initially computed during a preparative leamin o Estimation of organ displacement during the learningste
step covering several breathing cycles, is characterizatu Each time a new incoming image was acquired during a
a PCA, which provides an orthonormal basis depicting the up—

derlying characteristic patterns of the motion. We dengté&b seoe;:\?vlgrge Stfoe/izfecljoaszy[? r:ﬂ'g&g?]u:;yrﬁzgeﬂife%:\;a"tiﬂﬁlow
the spatial PCA compact, positive and self adjoint operator b 9 b

W(Q) = L2(Q) x L2(12), associated to the optical flogu, v) metric of Eq. (1). The reader is referred to the Appendix B for

) . . ; a discussion of the tool, the calibration of the input par@me
during the learning step. The eigenvalued@fwhich are non- ) :

; . h and the accuracy of the estimated motion. The proposed
negative, are sorted in decreasing order and repeated aenu A-based approach is provided as an add-on for the tool
of times equal to their multiplicity Xy > Ao > --- > 0). The PP P '
technique seeks the motion descriptdf,)y—1....s (M is the
number Of emp'oyed eigenvectors) Whrhhﬂ”s B. Real'time Characterization Of phySi0|Ogica| Ol’gan defO

mations during the interventional procedure

M Our proposed approach is to find, for each new incoming
Ti(w,y) = (U(I,y)> =Y dr. ((Zﬁk(x,y)) W(z,y) €0 image during the interventional procedure, a linear PCA-
v(zy)) Ui(z,y) decomposition which results in a motion field completing a

spatial regularity constraint. For this purpose, we sugtmes

u ok minimize the energy' given by:
w=((0) (%) @
w(2) M M
where(é)r=1..; and(¢x)r=1...as are the horizontal and ver- F(dy,dy, - ,dy) = E (Z dyoi, Y dlﬂ/)k) (4)
tical components of the eigenvectgik, respectivelyl;(z, y) k=1 k=1

denotes the spatial transformation between the new incowhere the functionaFE is given by Eq. (1). By applying the
ing image and a reference image, afy) are the pixel Euler-Lagrange equations on a pixel-by-pixel basis, ome ca
coordinates. For this purpose, a minimization technique weerive the two equations for ea¢h, y) € 2, as follows:
proposed in order to find the coefficientdy)i—1...as that

flow fieldl; minimizing th hi
podcss s fou T8GT, mimizing the MRGANG SO0 (S (1, o200~ Ligh) e = LI
' Sl (Lodydr — Iy, — oAy oy = —IL 1,
-1 2 . .
J(dy,da, -+ dar) = |[Iyes — T (I)H 3) where_A deno_tes the Lapquan_operator. We introduce the
following notations for simplification:

wherel,. is the reference and the incoming image.

However, the function/ has no convexity properties and [ a1 (z,y) = L ék(x,y) — o*A¢y(x,y) — L Ly (x,y)
the number of its local minima is dictated by the content of a5(z,y) = Llyéx(z,y) — [ivw(z,y) — * Ay (z,y)
the imagesl,..; and I. The latter may induce poor estimates| b1(z,y) = —I(z,y)li(z,y)
of the coefficientgd;.),_,...,, and hence the PCA sensitivity | b2(z,y) = —I,(2,y)Ii(z,y)
phenomena (described in Appendix A) will arise if we try a¢ his point we have2 x Card(€) linear equations with
to consider several eigenvectors in the basis computedein {1, mon unknowns(dy),_,..,, The latter can be found

learning step for a good representation of the movemenlnguridirecﬂy through the following overdetermined linear yst
the interventional procedure. Another drawback rises ftioen

k
1
k
2

fact that the computation time depends on the image content: dq

The latency of the obtained information is thus unpredietab ( Ay ) : _ < By > (6)
which limits the application of the method, especially for Az By

feedback control strategies [15]. M

The current paper aims at improving the real-time esvith (j = {1,2}):
timation and quantitative characterization of physiobadi
displacements as followsA direct PCA-based method is : : :
proposed, which extends the original minimization methbd ¢4;) = | aj(z,y) ... a}(z,y) | (B;)=| bi(z,y)
Eq. (3) by formulating the determination of the coefficients .
(dg)—,... 2, With the optical flow metric of Eq. (1)A coarse-
to-fine scheme is proposed to improve the stability for organ _
displacements of large amplitude. The proposed method viasProposed coarse-to-fine strategy
evaluated on 12 free-breathing volunteers and its effigienc Since the Taylor approximation of the Ho# Schunck
was illustrated for real-time MR-thermometry applicagoft formulation of Eq. (1) holds only for small displacements,
is shown that the technique provides an improved descriptive adapted the warping theory proposed in [16] to the
of motion related to both breathing and cardiac activitvesh) resolution of Eq. (4) as follows: A multi-resolution scheme
a steady latency of 80 ms, during a period of 2 minutes. was performed which iterated the registration algorithomnfr
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a 8-fold downsampled image step by step to the originhkalthy human volunteers under free-breathing conditibhs
image resolutionAn iterative refinement process was alsonethod was evaluated in 2D and the effect of through plane
implemented in order to updatk. , ; within each resolution motion was reduced by setting the imaging plane direction
level: Default results obtained for one single iterationreve parallel to the principal axis of the organ displacemérite
compared to those obtained for a full convergence of tiMR-protocol was composed of a learning step of 10 s ded-
algorithm (the variation of|/d||, between two successiveicated to the calculation of the eigenvectors, followed by 2
iterations was compared to a maximal allowed tolerance wiinutes devoted to mimic an interventional procedure. The
10~2 in order to ensure the convergenc®). achieve a global MR-sequence was a single-shot gradient recalled ech@iplan
motion regularisation (left part of Eqg. (1)), we decomposedith the following parameters: one coronal slice, repetiti
the overall motion descriptor (noted]) as the sum of the time (I’R)=100 ms, echo time(E)=26 ms, bandwidth in
contribution within the currently processed resolutiaf))( readout direction=2085 Hz, flip angle=35field of view
and the global contribution already estimated from the Biwe(FOV)=256 x 168 mm?Z, slice thickness=6 mm, matrix28 x
resolution ¢7). The same decomposition was performed fa4, using a four element phased array body coil. MR-images
the calculation of the laplacian of the each overall motiowere processed with a dual processor Intel 3.1 GHz Penryn

component (noted\u’ and Av’), so we have: (four cores) with 16 GB of RAM.Computational intensive
: ; calculations (i.e image dowrupsampling, application of a
dk/ = dfe + dj, ; spatial transformation, filling of matricesl;, B;,C;) =12 in
AU/ = A Ak = dpAdy + dpAgy, () Eqg. (8)) benefited from the multi-threaded architecture.
Av' = di Ay = dp Ay + dj Ay 2) Implementation of the minimization methotdhe pro-
The system of Eq. (6) was thus rewritten as follows: ~ posed direct method was compared to the existing mini-
mization technique in terms of computation time as well
dy as precision and accuracy of the PCA representation. To
< A ) : = ( By ) + ( 1 > (8) clarify the benefits on the final results, identical values fo
A ' Ba & M were employed for both the minimization and the direct

M methods (see section II-D). A Marquardt-Levenberg albarit

with [17] was employed for the minimization of the functional
J. The iterative process was stopped once the variation of
Cymrn= | esmy) a(z,y) = Z%\% dIAg;(z,y) l|d|\|2 between Ev;/o suc;cessive itergtions reached a user-defined
; J " ea(my) = M dIAy(,y) olerance ole . A S|_ngle resqlutlon_ scheme was t_amployed
: by default (a justification for this choice is provided in Sec
[II). The minimization method was set in optimal conditions in
For each multi-resolution level, the coefficierith,).—1...1  order to prevent the algorithm to get caught into local magim
were computed using a least square approximation. The ﬁT)ah'he reference imagd,.; was chosen in the middle of
motion descriptor was equal to the vectdf,).—. ..., obtained the respiratory cycle in order to limit the actual amount of
at the original image resolution. displacement to estimate ; ii) The motion estimation prsces
was restricted to a manually defined region of interest (ROI)
D. Separation of physiological displacement from noise-cowhich contains the full path of the targeted organ ; iii) The
tributions motion descriptor estimated for the previously acquiredgm

The eigenvectors associated with thelargest eigenvalues Was used as a preconditioning for the new motion estimation;
were conserved using the method proposed in [I3je iv) A spatial Gaussian filter (kern& x 3) was applied to the

temporal evolution of the PCA-based motion descriptor w&EwW incoming imagéd,. Note that tasks _dlsclosed in itergsl
analyzed during the learning step in the spectral domain %‘d #2 were _also performe_d for the d|rgct metho‘?" although
separate physiological motions from the noise contributiot réquired, in order to clarify the benefits on the final fessu
Typical periods of the respiratory and cardiac activities a_ ) Assessment of the quality of the estimated motion:
in the range of3 — 6 s and0.5 — 2 s, respectively, hence aFor .each image acquired dur_mg the mteyventpnal procze,c_iur
threshold of 4 Hz was employed to discard eigenvectors godiffiotion field vectors were estimated off-line using the agitic
for noise contributions. Possible values faf were iteratively 1OW metric of Eq. (1) and taken as a reference for the
enumerated until the time course &f; (i.e the coefficient in €valuation of the PCA representation. _ _ _
the PCA-based motion descriptor associated to the eigamvec 10 assess the quality of the estimated motion, the pixetwis
4 M) depicts frequencies above 4 Hz exceeding/20f the €ndpoint error (EE) was computed as follows:

main peak below 4 Hz.
EE = \/(u— thref)? + (0 — yep)? ©)

E. Experimental validation where (u, v) and (s, v..;) are the estimated and the refer-
1) MR imaging protocol:Dynamic MR-imaging was per- ence motion estimates, respectively.

formed on a Philips Achieva 1.5 T (Philips Healthcare, Best, 4) lllustration of the benefit of the direct PCA-based mo-

The Netherlands) under real-time conditions. An imagingpn descriptor for real-time MR-thermometryThe MR-

frame-rate of 10 Hz was maintained on the abdomen of B2quisition protocol described in II-E1 is also compativith
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real-time proton resonance frequency (PRF) thermometrg: Tto the data of all pairs of criteria. A significance threshofd
PRF is measured by obtaining the phaseof the MR- p = 0.05 was used and corrected with the Bonferroni method.
signal obtained with a gradient recalled sequences, wlsich i
directly proportional to the local magnetic field strendth,
to the local proton resonance frequency, and thus to the loca
temperature [18]. An estimate of temperature chang€g,) Fig. 1 shows an example on a healthy volunteer (referred to
inside the human body can be obtained by evaluating phasse Volunteer#3) of the characterization of abdominal organ
shifts between dynamically acquired phase image$ &nd a deformations using the proposed direct PCA-based motion
reference non-heated data sefd;) as follows: descriptor. Fig. 1a-d report the anatomical image of thedyd
and the liver in the reference position with superimposeaba s
set of eigenvectors estimated using the data set obtairr@tydu
ATy = (preg — 1) -k k= (y.w.BU.TE)’1 (10) the 10 s of learning step. The most important contribution
on the estimated motion is induced by the breathing activity
where~ is the gyromagnetic ratioq 42.58 MHz/Tesla)w is  which is thus mainly featured by the eigenvectat: A global
the temperature coefficient=(0.009 ppm/K). However, a reli- head-foot displacement with an amplitude increased fraen th
able PRF-based temperature measurement on moving tesget®itom of the kidney to the top of the liver can be observed
complicated since motion related phase variation betweep in Fig. 1a. The associated coefficiedit in the PCA motion
and ¢, in Eq. (10) may cause strong thermometry artifactdescriptor depicts a periodical temporal variation of 4{&e),
which can bias, and even mask the true temperature evolutiaumich results in a main peak in the spectral domain localized
Several strategies have been proposed in the past to correctaround 0.2 Hz (1g). While the eigenvect#?2 encodes for
line these motion related errors on thermal maps and a simplere local deformations in vicinity of the vertebral column
technique relies on the calculation afmotion descriptor as and the quadratus lamborum muscle (1b), the eigenvegior
follows: The overall phase variation can be approximated gatures the movement induced by an arterial pulsations (1c
linear phase changes of the motion descrigthr),_,...,, on  The coefficient in the PCA motion descriptd; associated
a pixel-by-pixel basis [19]. In the present study, we corepawvith the latter depicts a periodical temporal variation of 1
thermal maps corrected using the minimization and the preecond (1f), which results in a primary peak in the spectral
posed direct methods. The temperature stability was as$esgomain localized around 1 Hz (1h). Eigenvectors associated
by computing the temporal temperature standard deviation with the lowest eigenvalues encode for the noise of the motio
a pixel-by-pixel basis ovea user defined ROl encompassingsstimation, as shown in Fig. 1d.
the kidney and the liverA paired t-test was performed to as- Fig. 2 shows the averaged EE obtained in Voluntgdr
sess the significance between temperature stabilitiesneta for an incremental number of eigenvectors employed in the
with the direct and the minimization approaches (assumingnéotion characterization and a variable number of scales in-
significance thresholg = 0.05). cluded in the multi-resolution scheme. While the usage of
5) Robustness in the case of local grey level intensity vad- multi-resolution scheme hampered the performance of the
ations: For the particular case of motion estimation based oninimization method (see the decline between Fig. 2e and
magnitude images during hyperthermia, tissue modificatiofg), the opposite phenomenon was observed using the direct
induced by the heating lead to a variation of the lo€al method (see Fig. 2b, 2d, 2f and 2h). For this reason, a
and Ty relaxation time and thus to local grey level intensitgingle and a four resolution scheme were employed for the
modifications [18]. Consequently, the condition of energyemainder of the manuscript for the minimization and the
conservation in Eq. (1) is locally violated which may leadlirect approach, respectivelysing the minimization method,
to incorrect motion estimates. To analyze the impact dhe lowest averaged EE (equal @6 mm) was obtained for
the proposed direct method, a signal decrease, undergoiig= 4 (2a). ForM > 4, each additional eigenvectors deterio-
a Gaussian spatial distribution, was simulated during thates the quality of the PCA representation. In contrasitig
complete interventional procedure in a region located radouthe direct methodthe averaged EE was found to decrease
an artery. The Gaussian signal decrease had a Full Widthcahsistently toward 0 each time a new additional eigenvésto
Half Maximum of 15 x 15 mm? (100% of signal loss in the included in the PCA decomposition (2h). Identical behasgou
central pixel) to mimic the typical in-plane lesion size mtled were observed for images acquired during the learning step
during the HIFU procedure reported in [20]. The resultingsbi (black dashed line), as well as for images acquired during
was quantified by calculating the averaged EE over time atite first 40 s (red line), 80 s (green line) and 120 s (blue
over a region ofl5 x 15 pixels (i.e 30 x 30 mm? with the line) of the interventional procedure. An additional erwfr
employed pixel size) centered on the heated area, betwesty ~ 0.05 mm was introduced in the PCA representation
motion estimates obtained without and with the simulatetlring the interventional procedure, due to the fact that th
signal decreaseThe significance between the averaged Effeformation is expressed using eigenvectors optimized for
obtained with the Horr&s Schunck algorithm (Eq. (1)), the images acquired during the learning step. Fig. 3 confirms the
minimization and the proposed direct method was evaluatedperior efficiency of the proposed direct approach for all
using an ANOVA (Analysis of Variances) in the form of atested volunteersUsing the direct method, results obtained
F-test with a significance threshold = 0.05. If the test for a single iteration scheme within each resolution level
was found significant, additional paired t-tests were agpli were comparable to those obtained iterating until converge

IIl. RESULTS
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Fig. 1: Typical results obtained in the abdomen of a healthy’ o

volunteer (Volunteer#3). Kidney and liver are delimited by
the white dashed line in (a) and indicated by arrows (1) and
(2), respectively. (a)-(d) show a subsample of eigenveatbr
tained with the displacement fields estimated during thed0 s **
learning step. For each pixel the amplitude of the displaggm **

vector was computed, and each map was individually normabe !
ized between 0 and 1 for an easier visualization. Coeffisient:s|

of the motion descriptor associated to eigenvectorsaand+#4
are displayed in (e) and (g), respectively. Their correspamn

representation in the spectral domain are reported in @ an™}

0.0

(h), respectively.

(5-10 iterations were typically necessary). This demass
that, given a sufficient number of iterations in the dire
method, the above-mentioned comments remain vétids

also interesting to report that the superiority of the dire(f:_
method was observed whatever the number of eigenvecta
employed in the minimization method.
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Fig. 2: Typical findings of the efficiency of the PCA represen-
ttion obtained for different number of eigenvectors eryptb

in the motion characterization (Volunteeé41l). The averaged
E over time and over both the kidney and the liver is
Eplayed using the minimization (left column) and the dire
(right column) method. Results are reported for 1 (first rdwv)

Fig. 4 details a real-time benchmarking of the proposgdecond row), 3 (third row) and 4 (fourth row) scales emptbye
method for the calculation of the PCA motion descriptor afy the multi-resolution scheme.

an image during the interventional procedure. The required
computation time logically increases with the number of
eigenvectors considered in the PCA representation for both

the minimization (4a) and the direct (4b) techniques. Hawev the motion descriptor computed for theviously acquired
only the proposed direct method provided reduced and regulamage was not used as preconditioning for the current motion
computation times for each image and each tested patientedtimation. It is also interesting to report that less thaitf h
must be noted that the computation time with the minimiza second was mandatory at the end of the learning step for
tion method was further increased in average by:60hen the calculation of the eigenvectors using the truncated SVD
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Fig. 3: Comparison of the averaged EE over time and over
both the kidney and the liver obtained using the minimizatioFig. 5: lllustration of the benefit of the direct PCA-based-mo
(black) and the proposed direct method for each tested vtibn descriptor for real-time MR-thermometry: Here, them:
unteer. The direct method was tested using a single iteratietry artifacts caused by susceptibility variation with oot
scheme within each resolution level (dark grey) and itagati are compensated on-line. The temperature stability isyaedl
until convergence (light grey), as described in sectio@.IFhe by computing the temporal temperature standard deviation o
number of eigenvectord/ selected for the representation ot pixel-by-pixel basis over the 2 minutes of the intervemtio
physiological displacements is reported for each patibov@ step. The obtained maps are compared when the minimization
the grey bars. (a) and the direct (b) PCA representations are employed for
the description of abdominal displacements in voluntgér
Although a moderate improvement was observed using the
1 proposed direct method in the kidney (arrow (1)), a reductio
of thermometry artifacts by up t8°C could be obtained
in liver, especially in the upper part (arrow (2)) which is
subjected to elastic deformations. The upper bound of the
e temperature precision for 750f the liver is reported for each
iii-*‘l‘_i_ 1 tested volunteer in (c). Numbers above the grey bars rdeall t
= number of employed eigenvectols.
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Fig. 4 Boxol fth . . ired ; tested volunteers, as shown in Fig. 5be paired t-test showed
Ig. 4: Boxplots of the computation time required t0 periorm, i e direct approach performed significantly betten tine

the estimation of the PCA-based motion descriptor for one img.; i 4o approach in both the kidney € 0.001) and the
age. Each box plot relate_s thg dlstrl_butlon of the COMPOIRAL o (p = 0.002). Although a moderate averaged improvement
time measured on each individual image over the 2 minut Pthe temperature standard deviation0of5°C was achieved

of acquisition and all tested volunteers. The boxplots afe . kidney, this value reached4°C in the liver which is
reported for different number of eigenvectors conservetthén prone to elastic deformations

PCA representation. The results with the minimization mdth Fig. 6 analyzes the impact of a simulated local grey level

ﬁﬁ%nsity variation (see the inserts of Fig. 6a), occuringry
% interventional procedure. The resulting averaged EE is
orted for each method and each tested volunteer in Fig.
. The ANOVA showed a statistically significant difference
in all volunteers between the averaged EE obtained with the
three tested methodp & 0.001). It can be observed that the
poorest performer was constantly the optical flow metricef E
1). Additional paired t-tests showed that the direct appho
erformed significantly better than the minimization aguio
"= 0.021).

method (b). The median is shown by the central mark, the fi
and the third quartile are reported by the edges of the bex,
whiskers extend to the most extreme time points which are
considered as outliers, and outliers are individually teldtin
red.

method proposed in [21]. The interventional procedure a¢to
thus be performed in direct succession to the learning st
Since images were updated with a frequency of 10 Hz with the
employed MR-sequence, only 5 images had to be discarded
at the begining of the interventional procedure to prevent a
latency of 0.5 s. Compared to the existing minimization technique, the pro-
Fig. 5 illustrates the benefit of the direct PCA-based motigrosed direct approach brings the following advantages:

descriptor for real-time MR-thermometry: Thermometryi-art  First, an inherent drawback of the minimization method
facts caused by susceptibility variation with motion areneo rises from the fact that the computation time is dictatedHey t
pensated on-line (see section II-E4). Typical resultsiobth image content. This hampered the possibility to use the odeth
on \Volunteer#1 are reported in Fig. 5a and 5b: Comparetbr real-time monitoring applications, in which all calatibns

to the minimization method, the direct technique improvesl t must be done whithin the interval of time available between
correction of motion related errors on temperature mapalfor successive acquisitions (i.e. 100 ms in the presentedtsgsul

IV. DISCUSSION
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minima. As a consequence, the motion estimation process has
to be restricted to a ROI, manually set at the beginning of the
intervention, which contains the full path of the targetegem.

The proposed direct approach gets rid of this requirement. |
addition, using the minimization method, motion descripto
estimated for the previously acquired image had to be used as
a preconditioning for the new motion estimation. Any erior i
the estimation process of one image could consequently have
a potential impact on the motion descriptors calculatedndur

@ (0) the rest of the intervention. This is not the case anymorh wit
the proposed direct method where all processings are done

[
@

Averaged EE [mm]
-
5

e
@

0.0

1 2 3 4 5 6 7 8 9 10 11 12
Volunteer #

Fig. 6: Evaluation of the impact of a local grey level intépsi individually for him
variation, occuring during the interventional proceduie, Finalljla %hg ri?r?imizaa':%i method seeks the
the estimated motion. (a): Anatomical image obtained for Y Her)r=1...a

volunteer#3 after the simulation of a strong signal decrea\s,t%m'm'?mg a Mee:jnthSql:are fErrod\éSE) cr.|ter|<.)n bet.vvleenth
applied in the vicinity of an artery. The two inserts sho € reference and the fransformed incoming image. n other

the area of interest before (upper-ieft) and after (dovght) words, the image match'ing is in this f:ase.similar.to a “vaan
the application of the signal decrease. (b): Averaged EE o ssessment of the'qualllty of the reg|str§\t|on. Us!ng thecdy
time and over a region of5 x 15 pixels centered on the approach, the estimation process during the intervertiona

simulated heated region, for each tested volunteer. Thms;esproce_dure s con;istent with the_ model employed during t_he
obtained with the proposed direct method are comparedI rning step, which leads to an improved PCA representatio

those obtained with the minimization method as well as tf‘ Ig. 2). This allows improving in turn the correction of riut

Horn & Schunck algorithm (Eq. (1)). Numbers above the grer lated errors on functionnal images (Fig. 5) and brings an

bars recall the number of employed eigenvectufs improved robustness to possible grey level intensity tiaria
not attributed to motion (Fig. 6).

The usage of a multi-resolution scheme had an opposite
impact on the performance for the minimization and for
The latency of the obtained information is also an essentiple direct methodsSince basis flows at coarse scales are
condition for feedback control Strategies such as for exam%ubsamp|ed versions of the eigen\/ectors Computed at the
target tracking or automatic temperature control [15]. Oveyiginal scale, they may deviate slightly from orthogotali
the tested volunteers, a maximal number of 8 eigenvectegd thus be inadequate to solve the minimization problem
were selected for the characterization of physiologicghaor of Eq. (3) (see Fig. 2g), as reported by Black et al in [14].
deformations using the method detailed in section II-D. Anhjs drawback is reduced using the direct approach since, in
upper bound of 30 ms on the computation time required f@iis case, the spatial motion regularization constraiat@nts
the calculation of the PCA-based motion descriptor was thdgch numerical instabilities (see Fig. 2fhe usage of the
constantly ensured using the proposed direct approach. piyiti-resolution scheme was vital for the direct method in
practice, the image acquisition duration and the requiigd d order to address the fact that the Taylor approximation of
transport time must also be taken into account to compui®& Horr&:Schunck formulation of Eqg. (1) holds only for
the latency of the obtained information. For the employetl tesmall displacements. Using a single resolution scheme, the
platform, a latency of 80 ms is achievable, composed by t@gect method could not cope with the maximum amplitude of
sum of half of the image acquisition duratior: (50 ms), the observed organ displacements (see Fig. 2a), which were
the required data transport time- (10 ms) and the image supstantially bigger than the pixel size (10 mi4.5 and
processing time~ 30 ms). In particular, this latency is in11 mm + 4.5 were observed in the kidney and the liver,
accordance with the requirement for real-time target trark respectively).
during an MR-guided thermal ablation, for which an upper |t js interesting to note that such a real-time charactéitna
bound of 100 ms is mandatory as shown in [7] Itis interestir& physio|ogica| motion contributions opens great perﬁpes
to note that, for each image acquired during the learning, st¢or the correlation of the motion descriptor with external
the calculation of various motion descriptors with a numbegensors [5], [6], [22]: The efficiency of the estimated organ
of eigenvectors ranged from 1 to 8 could be achieved withfieformation may be assessed by evaluating the coherence of
the interval of time available before the next image updatéye PCA descriptors with those independent motion informa-
Therefore, no additional time consumming processings wefgns. That way, the interventional procedure may immedjat
mandatory before the interventional procedure to comphete the stopped once incoherent patterns are identified in ocder t
optimal number of eigenvectof using the method describedensure the security of the patient.
in section II-D. It must be pointed out that several shortcomings persist for
Secondly, the minimization approach, which relies on dmwth minimization and direct methods: First, the evaluatio
iterative process, imposes in practice several restristitd was conducted on healthy subjects and the potential exten-
stabilize the convergence: Possible fold-over MR-artfears sion must still be assessed for patients whose physiolbgica
well as mixtures of static/dynamic parts of the entire fieldactivities are likely to be less periodic and reproducibite.
of-view and/or complex motion paterns may lead to locahust be underlined that the proposed correction is notedwntir
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constrained to positions present in the collection, asritalao procedure. The error of the PCA representation during the
interpolate intermediate positions. However, the obsema interventional procedures) can be expressed as follows:

of a significant deviation of the learned motion pattern may

lead to a complete re-calibration when the change is not u? al o [k

reversible Moreover, the proposed technique is clearly limited <= < v? > B de ( ot > 11

in case of new observed positions during the interventional k= w(©)

process, for which the learned motion pattern is insufficien y Ul o

A combination of the method with a correction adapted for dy = << vt ) ) ( 14 >>

spontaneous motion (such as that described in [19]) should : W)

thus be investigated in future worlSecondly, the effect of In this case we still have an error decrease with respect to
through plane motion is a serious limiting factor: Althougfthe number of termév (¢ — 0 as N — +o0), but the

the motion trajectory of the kidney and the lower part ogstimate _

the liver can be approximated in first order by a linear shift, e< Z Ak

the true trajectory in the upper part of the liver is a curve k>N+1

in 3D space. A dynamic 3D imaging would be optimal bu§ses not hold true and consequently the convergence speed
the MR-acquisition is currently not fast enough to achiwe t ¢ tpe approximation (11) is lost. On the other hand, the
temporal resolution required to avoid intra-scan motionoT gensitivity of the PCA basiést, L), ,, due to the clustering
s;ratigigsd_may be investri]gated: 1) Additiolr:al informa'gnn of the corresponding eigenvalues,kEaln lead to bad estirnates

the third dimension, such as navigator echoes, may be u i il i ion-

in combination with adaptive slicg tracking as progosed ?ﬁg coefficientst;” In the following expansion:

[7], [22]; 2) 3D trajectories may be estimated from 2D MRI u? io [ ok

using one or several volumetric scans obtained before the ( v ) - de ( Wy ) (12)

intervention as shown in [4], [23], [24]. =t

More precisely, the authors showed recently in [25] the

V. CONCLUSION following result: For everyk > 1, it holds:

This paper proposes a real-time PCA-based method which NN < | K - K (13)
provides an efficient quantitative description of physgial S
organ deformations, with an improved steady latency, guri@nd

a period of 2 minutesThe effectiveness of the method was ot o | K¢ — K|
. ) . . k _ k < — (14)
demonstrated for real-time MR-thermometry applicatiom A . " - , Y -

¢ b0 min (1AF = A 13— A1)

improved correction of motion related artifacts was oledin
with an increased robustness to local grey level intensi\%/ p 7y .

variations not attributed to motion. For this purpose, aicedl WHere Ay (Tesp. A;) is the closest eigenvalue among all
learning step of 10 s was mandatory and no patient-specfigenvalues which are smaller (resp. larger) thdn Note

control parameters needed to be set, which renders the chetHtit this result is very classical when the eigenvaljeis
suitable for clinical use. simple and we can refer the interested reader to [26], [27].

The general case of multiple eigenvalues is studied in [25],
[28]. The estimate of Eq. (14) is optimal in the sense that
equality holds true in general situations. Moreover, whea t
eigenvalues\!, X! and X! cluster, the eigenvectofyy,, 1})

In this appendix, we will denote by<* (resp. K') the is very sensitive and its use in the approximation(af, v*)
spatial PCA compact associated to the optical flow obtaineguires an acute computation of the corresponding coaftici
during the leamning step ofV images (u‘(z,y), v*(z,y)) In the current paper, it is shown that local minima in the
and the interventional stepu’(z,y),v'(x,y)), respectively. minimization method employed in [13], [14] will induce bad
Similarly, we denote b)(@iﬂbﬁ)kzl (resp.(%,y;;)@l) the  estimates of the coefficien{ss’.”* and hence sensitiv-
orthonormal basis of the operatdf’ (resp. K'). The error ity phenomena, described by Ed. (14), will arise if we try to

estimates of the PCA representation during the learnif (consider several eigenvectors in the basis, v!)x—1...v, for
and the interventionak() steps can be computed using: 3 good representation of the movement.

APPENDIXA
PCA ANALYSIS AND BASIS SENSITIVITY

ol — ut SN g Pk -y A APPENDIXB
vt AN w(Q) k2N+1 7k ESTIMATION OF ORGAN DISPLACEMENT USING
OPTICAL-FLOW

i_ u' N i P . i
&= ) 2= d i = A , . .

H( vt ) k=1 ( Vi, )HW(Q) 2z M The RealTITracker toolbdxprovided 2D motion estimates
using the optical flow metric of Eqg. (1). A multi-resolution

L, .
with ¢* — 0 ande’ — 0 asN — +oo.. scheme was employed. To ensure the convergence of the
However, in our context, we would like to expand the

use the learning step basfgyf, (), ., to the interventional  hitp://bsenneville free.fr/RealTITracker/
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algorithm, the averaged variation of the estimated motion a[14]

plitude was compared to a maximal allowed toleranceof®
pixels. The reader is referred to [29] for a complete analgsi

[15]

the impact of thex value on the outcome of the optical flow

metric: While an increased value intrinsically improves the
robustness against low SNR values, it also limits the egitma
of elastic deformations. A compromise must consequently

found. In [29], the accuracy of the motion estimates was
assesse@x-vivousing gold standard displacements provide

be’

by external sensors, anavivo using gold standard landmark[1s]

points manually positioned and tracked by a staff scierfist

the employed implementation and the used MR-acquisitiJ)lng]
sequence, it was shown that any value in the range of 0.3
and 0.5 fora provided tracking performances within the gold

standard precision fo6 N R of 10-15. A fixed value of 0.4
was consequently employed in the current paper.
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