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A direct PCA-based approach for real-time
description of physiological organ deformations

Baudouin Denis de Senneville, Abdallah El Hamidi, and Chrit Moonen

Abstract—Dynamic MR-imaging can provide functional and
positional information in real-time, which can be conveniently
used on-line to control a cancer therapy, e.g. using High Intensity
Focused Ultrasound or Radio Therapy. However, a precise real-
time correction for motion is fundamental in abdominal organs
to ensure an optimal treatment dose associated with a limited
toxicity in nearby organs at risk.

This paper proposes a real-time direct PCA-based technique
which offers a robust approach for motion estimation of ab-
dominal organs and allows correcting motion related artifacts.
The PCA was used to detect spatio-temporal coherences of the
periodic organ motion in a learning step. During the interven-
tional procedure, physiological contributions were characterized
quantitatively using a small set of parameters. Acoarse-to-fine
resolution scheme is proposed to improve the stability of the
algorithm and afford a predictable constant latency of 80 ms.

The technique was evaluated on 12 free-breathing volunteers
and provided an improved real-time description of motion related
to both breathing and cardiac cycles. A reduced learning step of
10 s was sufficient without any need for patient-specific control
parameters, rendering the method suitable for clinical use.

Index Terms—Motion analysis, Real-time system.

I. I NTRODUCTION

RECENT developments in rapid Magnetic Resonance
Imaging (MRI), associated with fast data processing

strategies, now allow acquiring functional and positionalin-
formation in real-time during an interventional procedure. Dy-
namic MRI is thereby a promising candidate to assess an on-
line retroactive control of the therapy. For example, real-time
processing of MR-images, combined with a High Intensity
Focused Ultrasound system (MR-HIFU) with rapid electronic
displacement of the focal point, can be used to achieve a
regional temperature control [1]. Similarly, the recent develop-
ment of integrated MRI linear accelerators (MR-LinAc), which
are designed for simultaneous irradiation and MR-imaging [2],
shows great potential for on-line radiotherapy guidance.

Although these new techniques appear well suited for cancer
therapy in vital organs such as kidney and liver, physiological
displacements induced by breathing and/or cardiac activities
require a precise real-time motion management to ensure:

1) A correction of motion-induced image artifacts (in par-
ticular, MR-susceptibility variations generate apparent
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de Bordeaux” (IMB), UMR 5251 CNRS/Université of Bordeaux, F-33400
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temperature perturbations in the case of MR-HIFU [3],
as well asgeometric image distortions in the case of
both MR-HIFU and MR-LinAc [2]).

2) An accurate calculation of the accumulated dose (based
on MR-thermometry for thermal dose assessment with
MR-HIFU [1] or dose simulations with MR-LinAc [2]).

3) A reliable beam targeting of the pathological tissue [4].

To this end, several techniques are actively developed to
assess motion informations in real-time: While surrogates of
physiological activities can be obtained by means of a respi-
ratory pressure belt [5] or a cardiac electrocardiogram (ECG)
[6], displacement measurements in the vicinity of the targeted
region can be provided by navigator echos [7] or ultrasonic
[8] echos.More recently, fast MR-acquisition protocols allow
acquiring dynamically 2D images with a respectable spatial
and temporal resolution and a good contrast with a clear
depiction of both targeted and healthy regions. These images
can be conveniently used to estimate organ displacements
during the therapy using image registration algorithms.

For this purpose, the optical flow formulation of Horn&
Schunck, initially proposed in the context of motion estimation
in video sequence [9], was recently shown to be well adapted
for the real-time estimation of elastic organ deformations[10]:

E(u, v) =

∫

Ω

(Ixu+ Iyv + It)
2
+α

(

‖ ∇u ‖22 + ‖ ∇v ‖22
)

dΩ

(1)
where Ω is the image coordinates domain,u and v the
displacement vector components,Ix,y,t the spatio-temporal
partial derivatives of the image pixel intensity, andα a
weighting factors designed to link both intensity variation (left
part of Eq. (1)) and motion field regularity (right part of Eq.
(1)). Combined with a multi-resolution scheme and a fast GPU
(Graphics Processing Unit) implementation, Eq. (1) is ableto
assess abdominal organ displacements with an update rate of
10 Hz for MR-images [11].

However, optical flow based algorithms rely on the assump-
tion of conservation of local intensity along the trajectory.
This can be unfavorable for the clinical applications described
above since intensity variations may arise from changes of
MR-tissue properties during the intervention [12]. Moreover,
several strategies for correcting motion artifacts necessitate
the quantitative and real-time characterization of individual
physiological contributions such as breathing and cardiac
activities [3] [11]. Therefore, it has been proposed in [13]
to analyze the spatio-temporal coherence of the estimated
displacement using a Principal Component Analysis (PCA),
in order to discard, during the intervention, in real-time,in-
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coherent motion patterns as follows:A reduced parameterized
flow model, initially computed during a preparative learning
step covering several breathing cycles, is characterized using
a PCA, which provides an orthonormal basis depicting the un-
derlying characteristic patterns of the motion. We denote by K
the spatial PCA compact, positive and self adjoint operator, on
W (Ω) = L2(Ω)×L2(Ω), associated to the optical flow(u, v)
during the learning step. The eigenvalues ofK, which are non-
negative, are sorted in decreasing order and repeated a number
of times equal to their multiplicity (λ1 ≥ λ2 ≥ · · · ≥ 0). The
technique seeks the motion descriptor(dk)k=1···M (M is the
number of employed eigenvectors) whichfulfills :

~Tt(x, y) =

(

u(x, y)
v(x, y)

)

=

M
∑

k=1

dk.

(

φk(x, y)
ψk(x, y)

)

∀(x, y) ∈ Ω

dk =

〈(

u

v

)

,

(

φk
ψk

)〉

W (Ω)

(2)

where(φk)k=1···M and(ψk)k=1···M are the horizontal and ver-
tical components of the eigenvector#k, respectively,~Tt(x, y)
denotes the spatial transformation between the new incom-
ing image and a reference image, and(x, y) are the pixel
coordinates. For this purpose, a minimization technique was
proposed in order to find the coefficients(dk)k=1···M that
produced a flow field~Tt minimizing the matching errorJ
expressed as[13] [14]:

J(d1, d2, · · · , dM ) =
∥

∥

∥Iref − ~Tt
−1

(I)
∥

∥

∥

2

(3)

whereIref is the reference andI the incoming image.
However, the functionJ has no convexity properties and

the number of its local minima is dictated by the content of
the imagesIref and I. The latter may induce poor estimates
of the coefficients(dk)k=1···M and hence the PCA sensitivity
phenomena (described in Appendix A) will arise if we try
to consider several eigenvectors in the basis computed in the
learning step for a good representation of the movement during
the interventional procedure. Another drawback rises fromthe
fact that the computation time depends on the image content:
The latency of the obtained information is thus unpredictable
which limits the application of the method, especially for
feedback control strategies [15].

The current paper aims at improving the real-time es-
timation and quantitative characterization of physiological
displacements as follows:A direct PCA-based method is
proposed, which extends the original minimization method of
Eq. (3) by formulating the determination of the coefficients
(dk)k=1···M with the optical flow metric of Eq. (1).A coarse-
to-fine scheme is proposed to improve the stability for organ
displacements of large amplitude. The proposed method was
evaluated on 12 free-breathing volunteers and its efficiency
was illustrated for real-time MR-thermometry applications. It
is shown that the technique provides an improved description
of motion related to both breathing and cardiac activities,with
a steady latency of 80 ms, during a period of 2 minutes.

II. M ETHOD DESCRIPTION

A. Estimation of organ displacement during the learning step

Each time a new incoming image was acquired during a
learning step of 10 s, an in-housedeveloped, freely available,
software provided a 2D motion estimate using the optical flow
metric of Eq. (1). The reader is referred to the Appendix B for
a discussion of the tool, the calibration of the input parameter
α and the accuracy of the estimated motion. The proposed
PCA-based approach is provided as an add-on for the tool.

B. Real-time characterization of physiological organ defor-
mations during the interventional procedure

Our proposed approach is to find, for each new incoming
image during the interventional procedure, a linear PCA-
decomposition which results in a motion field completing a
spatial regularity constraint. For this purpose, we suggest to
minimize the energyF given by:

F (d1, d2, · · · , dM ) = E

(

M
∑

k=1

dkφk ,

M
∑

k=1

dkψk

)

(4)

where the functionalE is given by Eq. (1). By applying the
Euler-Lagrange equations on a pixel-by-pixel basis, one can
derive the two equations for each(x, y) ∈ Ω, as follows:

{

∑M

k=1

(

I2xφk − α2∆φk − IxIyψk

)

.dk = −IxIt
∑M

k=1

(

IxIyφk − I2yψk − α2∆ψk

)

.dk = −IyIt
(5)

where ∆ denotes the Laplacian operator. We introduce the
following notations for simplification:















ak1(x, y) = I2xφk(x, y)− α2∆φk(x, y)− IxIyψk(x, y)
ak2(x, y) = IxIyφk(x, y)− I2yψk(x, y)− α2∆ψk(x, y)
b1(x, y) = −Ix(x, y)It(x, y)
b2(x, y) = −Iy(x, y)It(x, y)

At this point we have2 × Card(Ω) linear equations with
common unknowns(dk)k=1···M . The latter can be found
directly through the following overdetermined linear system:

(

A1

A2

)







d1
...
dM






=

(

B1

B2

)

(6)

with (j = {1, 2}):

(Aj) =









...
...

a1j (x, y) . . . aMj (x, y)
...

...









(Bj) =









...
bj(x, y)

...









C. Proposed coarse-to-fine strategy

Since the Taylor approximation of the Horn& Schunck
formulation of Eq. (1) holds only for small displacements,
we adapted the warping theory proposed in [16] to the
resolution of Eq. (4) as follows: A multi-resolution scheme
was performed which iterated the registration algorithm from
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a 8-fold downsampled image step by step to the original
image resolution.An iterative refinement process was also
implemented in order to updateIx,y,t within each resolution
level: Default results obtained for one single iteration were
compared to those obtained for a full convergence of the
algorithm (the variation of‖d‖2 between two successive
iterations was compared to a maximal allowed tolerance of
10−2 in order to ensure the convergence).To achieve a global
motion regularisation (left part of Eq. (1)), we decomposed
the overall motion descriptor (notedd′k) as the sum of the
contribution within the currently processed resolution (dk)
and the global contribution already estimated from the lowest
resolution (dgk). The same decomposition was performed for
the calculation of the laplacian of the each overall motion
component (noted∆u′ and∆v′), so we have:







d′k = dk + d
g
k

∆u′ = d′k∆φk = dk∆φk + d
g
k∆φk

∆v′ = d′k∆ψk = dk∆ψk + d
g
k∆ψk

(7)

The system of Eq. (6) was thus rewritten as follows:

(

A1

A2

)







d1
...
dM






=

(

B1

B2

)

+

(

C1

C2

)

(8)

with

(Cj)j=1,2 =









...
cj(x, y)

...









,
c1(x, y) =

∑M

i=1 d
g
i∆φi(x, y)

c2(x, y) =
∑M

i=1 d
g
i∆ψi(x, y)

For each multi-resolution level, the coefficients(dk)k=1···M

were computed using a least square approximation. The final
motion descriptor was equal to the vector(d′k)k=1···M obtained
at the original image resolution.

D. Separation of physiological displacement from noise con-
tributions

The eigenvectors associated with theM largest eigenvalues
were conserved using the method proposed in [13]:The
temporal evolution of the PCA-based motion descriptor was
analyzed during the learning step in the spectral domain to
separate physiological motions from the noise contribution.
Typical periods of the respiratory and cardiac activities are
in the range of3 − 6 s and0.5 − 2 s, respectively, hence a
threshold of 4 Hz was employed to discard eigenvectors coding
for noise contributions. Possible values forM were iteratively
enumerated until the time course ofdM (i.e the coefficient in
the PCA-based motion descriptor associated to the eigenvector
#M ) depicts frequencies above 4 Hz exceeding 20% of the
main peak below 4 Hz.

E. Experimental validation

1) MR imaging protocol:Dynamic MR-imaging was per-
formed on a Philips Achieva 1.5 T (Philips Healthcare, Best,
The Netherlands) under real-time conditions. An imaging
frame-rate of 10 Hz was maintained on the abdomen of 12

healthy human volunteers under free-breathing conditions. The
method was evaluated in 2D and the effect of through plane
motion was reduced by setting the imaging plane direction
parallel to the principal axis of the organ displacement.The
MR-protocol was composed of a learning step of 10 s ded-
icated to the calculation of the eigenvectors, followed by 2
minutes devoted to mimic an interventional procedure. The
MR-sequence was a single-shot gradient recalled echo-planar
with the following parameters: one coronal slice, repetition
time (TR)=100 ms, echo time (TE)=26 ms, bandwidth in
readout direction=2085 Hz, flip angle=35◦, field of view
(FOV )=256×168 mm2, slice thickness=6 mm, matrix=128×
84, using a four element phased array body coil. MR-images
were processed with a dual processor Intel 3.1 GHz Penryn
(four cores) with 16 GB of RAM.Computational intensive
calculations (i.e image down&upsampling, application of a
spatial transformation, filling of matrices(Aj , Bj , Cj)j=1,2 in
Eq. (8)) benefited from the multi-threaded architecture.

2) Implementation of the minimization method:The pro-
posed direct method was compared to the existing mini-
mization technique in terms of computation time as well
as precision and accuracy of the PCA representation. To
clarify the benefits on the final results, identical values for
M were employed for both the minimization and the direct
methods (see section II-D). A Marquardt-Levenberg algorithm
[17] was employed for the minimization of the functional
J . The iterative process was stopped once the variation of
‖d‖2 between two successive iterations reached a user-defined
tolerance of10−2. A single resolution scheme was employed
by default (a justification for this choice is provided in section
III). The minimization method was set in optimal conditions in
order to prevent the algorithm to get caught into local minima:
i) The reference imageIref was chosen in the middle of
the respiratory cycle in order to limit the actual amount of
displacement to estimate ; ii) The motion estimation process
was restricted to a manually defined region of interest (ROI),
which contains the full path of the targeted organ ; iii) The
motion descriptor estimated for the previously acquired image
was used as a preconditioning for the new motion estimation;
iv) A spatial Gaussian filter (kernel3× 3) was applied to the
new incoming imageIt. Note that tasks disclosed in items#1
and#2 were also performed for the direct method, although
not required, in order to clarify the benefits on the final results.

3) Assessment of the quality of the estimated motion:
For each image acquired during the interventional procedure,
motion field vectors were estimated off-line using the optical
flow metric of Eq. (1) and taken as a reference for the
evaluation of the PCA representation.

To assess the quality of the estimated motion, the pixel-wise
endpoint error (EE) was computed as follows:

EE =
√

(u− uref )2 + (v − vref )2 (9)

where(u, v) and(uref , vref ) are the estimated and the refer-
ence motion estimates, respectively.

4) Illustration of the benefit of the direct PCA-based mo-
tion descriptor for real-time MR-thermometry:The MR-
acquisition protocol described in II-E1 is also compatiblewith
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real-time proton resonance frequency (PRF) thermometry: The
PRF is measured by obtaining the phaseϕ of the MR-
signal obtained with a gradient recalled sequences, which is
directly proportional to the local magnetic field strengthB0,
to the local proton resonance frequency, and thus to the local
temperature [18]. An estimate of temperature changes (∆Tt)
inside the human body can be obtained by evaluating phase
shifts between dynamically acquired phase images (ϕt) and a
reference non-heated data set (ϕref ) as follows:

∆Tt = (ϕref − ϕt) .k k = (γ.ω.B0.TE)
−1 (10)

whereγ is the gyromagnetic ratio (≈ 42.58 MHz/Tesla),ω is
the temperature coefficient (≈ 0.009 ppm/K). However, a reli-
able PRF-based temperature measurement on moving targets is
complicated since motion related phase variation betweenϕref

and ϕt in Eq. (10) may cause strong thermometry artifacts
which can bias, and even mask the true temperature evolution.
Several strategies have been proposed in the past to correcton-
line these motion related errors on thermal maps and a simple
technique relies on the calculation ofa motion descriptor as
follows: The overall phase variation can be approximated by
linear phase changes of the motion descriptor(dk)k=1···M on
a pixel-by-pixel basis [19]. In the present study, we compare
thermal maps corrected using the minimization and the pro-
posed direct methods. The temperature stability was assessed
by computing the temporal temperature standard deviation on
a pixel-by-pixel basis overa user defined ROI encompassing
the kidney and the liver.A paired t-test was performed to as-
sess the significance between temperature stabilities obtained
with the direct and the minimization approaches (assuming a
significance thresholdp = 0.05).

5) Robustness in the case of local grey level intensity vari-
ations: For the particular case of motion estimation based on
magnitude images during hyperthermia, tissue modifications
induced by the heating lead to a variation of the localT1
and T2 relaxation time and thus to local grey level intensity
modifications [18]. Consequently, the condition of energy
conservation in Eq. (1) is locally violated which may lead
to incorrect motion estimates. To analyze the impact on
the proposed direct method, a signal decrease, undergoing
a Gaussian spatial distribution, was simulated during the
complete interventional procedure in a region located around
an artery. The Gaussian signal decrease had a Full Width at
Half Maximum of 15 × 15 mm2 (100% of signal loss in the
central pixel) to mimic the typical in-plane lesion size achieved
during the HIFU procedure reported in [20]. The resulting bias
was quantified by calculating the averaged EE over time and
over a region of15 × 15 pixels (i.e 30 × 30 mm2 with the
employed pixel size) centered on the heated area, between
motion estimates obtained without and with the simulated
signal decrease.The significance between the averaged EE
obtained with the Horn& Schunck algorithm (Eq. (1)), the
minimization and the proposed direct method was evaluated
using an ANOVA (Analysis of Variances) in the form of a
F-test with a significance thresholdp = 0.05. If the test
was found significant, additional paired t-tests were applied

to the data of all pairs of criteria. A significance thresholdof
p = 0.05 was used and corrected with the Bonferroni method.

III. R ESULTS

Fig. 1 shows an example on a healthy volunteer (referred to
as Volunteer#3) of the characterization of abdominal organ
deformations using the proposed direct PCA-based motion
descriptor. Fig. 1a-d report the anatomical image of the kidney
and the liver in the reference position with superimposed a sub-
set of eigenvectors estimated using the data set obtained during
the 10 s of learning step. The most important contribution
on the estimated motion is induced by the breathing activity,
which is thus mainly featured by the eigenvector#1: A global
head-foot displacement with an amplitude increased from the
bottom of the kidney to the top of the liver can be observed
in Fig. 1a. The associated coefficientd1 in the PCA motion
descriptor depicts a periodical temporal variation of 4-5 s(1e),
which results in a main peak in the spectral domain localized
around 0.2 Hz (1g). While the eigenvector#2 encodes for
more local deformations in vicinity of the vertebral column
and the quadratus lamborum muscle (1b), the eigenvector#4
features the movement induced by an arterial pulsations (1c).
The coefficient in the PCA motion descriptord4 associated
with the latter depicts a periodical temporal variation of 1
second (1f), which results in a primary peak in the spectral
domain localized around 1 Hz (1h). Eigenvectors associated
with the lowest eigenvalues encode for the noise of the motion
estimation, as shown in Fig. 1d.

Fig. 2 shows the averaged EE obtained in Volunteer#1
for an incremental number of eigenvectors employed in the
motion characterization and a variable number of scales in-
cluded in the multi-resolution scheme. While the usage of
a multi-resolution scheme hampered the performance of the
minimization method (see the decline between Fig. 2e and
2g), the opposite phenomenon was observed using the direct
method (see Fig. 2b, 2d, 2f and 2h). For this reason, a
single and a four resolution scheme were employed for the
remainder of the manuscript for the minimization and the
direct approach, respectively.Using the minimization method,
the lowest averaged EE (equal to0.6 mm) was obtained for
M = 4 (2a). ForM > 4, each additional eigenvectors deterio-
rates the quality of the PCA representation. In contrast,using
the direct method,the averaged EE was found to decrease
consistently toward 0 each time a new additional eigenvector is
included in the PCA decomposition (2h). Identical behaviours
were observed for images acquired during the learning step
(black dashed line), as well as for images acquired during
the first 40 s (red line), 80 s (green line) and 120 s (blue
line) of the interventional procedure. An additional errorof
only ≈ 0.05 mm was introduced in the PCA representation
during the interventional procedure, due to the fact that the
deformation is expressed using eigenvectors optimized for
images acquired during the learning step. Fig. 3 confirms the
superior efficiency of the proposed direct approach for all
tested volunteers.Using the direct method, results obtained
for a single iteration scheme within each resolution level
were comparable to those obtained iterating until convergence
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Fig. 1: Typical results obtained in the abdomen of a healthy
volunteer (Volunteer#3). Kidney and liver are delimited by
the white dashed line in (a) and indicated by arrows (1) and
(2), respectively. (a)-(d) show a subsample of eigenvectors ob-
tained with the displacement fields estimated during the 10 sof
learning step. For each pixel the amplitude of the displacement
vector was computed, and each map was individually normal-
ized between 0 and 1 for an easier visualization. Coefficients
of the motion descriptor associated to eigenvectors#1 and#4
are displayed in (e) and (g), respectively. Their corresponding
representation in the spectral domain are reported in (f) and
(h), respectively.

(5-10 iterations were typically necessary). This demonstrates
that, given a sufficient number of iterations in the direct
method, the above-mentioned comments remain valid.It is
also interesting to report that the superiority of the direct
method was observed whatever the number of eigenvectors
employed in the minimization method.

Fig. 4 details a real-time benchmarking of the proposed
method for the calculation of the PCA motion descriptor of
an image during the interventional procedure. The required
computation time logically increases with the number of
eigenvectors considered in the PCA representation for both
the minimization (4a) and the direct (4b) techniques. However,
only the proposed direct method provided reduced and regular
computation times for each image and each tested patient. It
must be noted that the computation time with the minimiza-
tion method was further increased in average by 60% when
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Fig. 2: Typical findings of the efficiency of the PCA represen-
tation obtained for different number of eigenvectors employed
in the motion characterization (Volunteer#1). The averaged
EE over time and over both the kidney and the liver is
displayed using the minimization (left column) and the direct
(right column) method. Results are reported for 1 (first row), 2
(second row), 3 (third row) and 4 (fourth row) scales employed
in the multi-resolution scheme.

the motion descriptor computed for thepreviously acquired
image was not used as preconditioning for the current motion
estimation. It is also interesting to report that less than half
a second was mandatory at the end of the learning step for
the calculation of the eigenvectors using the truncated SVD
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Fig. 3: Comparison of the averaged EE over time and over
both the kidney and the liver obtained using the minimization
(black) and the proposed direct method for each tested vol-
unteer. The direct method was tested using a single iteration
scheme within each resolution level (dark grey) and iterating
until convergence (light grey), as described in section II-C. The
number of eigenvectorsM selected for the representation of
physiological displacements is reported for each patient above
the grey bars.
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Fig. 4: Boxplots of the computation time required to perform
the estimation of the PCA-based motion descriptor for one im-
age: Each box plot relates the distribution of the computation
time measured on each individual image over the 2 minutes
of acquisition and all tested volunteers. The boxplots are
reported for different number of eigenvectors conserved inthe
PCA representation. The results with the minimization method
(a) are compared to those obtained with the proposed direct
method (b). The median is shown by the central mark, the first
and the third quartile are reported by the edges of the box, the
whiskers extend to the most extreme time points which are not
considered as outliers, and outliers are individually plotted in
red.

method proposed in [21]. The interventional procedure could
thus be performed in direct succession to the learning step:
Since images were updated with a frequency of 10 Hz with the
employed MR-sequence, only 5 images had to be discarded
at the begining of the interventional procedure to prevent a
latency of 0.5 s.

Fig. 5 illustrates the benefit of the direct PCA-based motion
descriptor for real-time MR-thermometry: Thermometry arti-
facts caused by susceptibility variation with motion are com-
pensated on-line (see section II-E4). Typical results obtained
on Volunteer#1 are reported in Fig. 5a and 5b: Compared
to the minimization method, the direct technique improved the
correction of motion related errors on temperature maps forall

(a) (b) (c)

Fig. 5: Illustration of the benefit of the direct PCA-based mo-
tion descriptor for real-time MR-thermometry: Here, thermom-
etry artifacts caused by susceptibility variation with motion
are compensated on-line. The temperature stability is analyzed
by computing the temporal temperature standard deviation on
a pixel-by-pixel basis over the 2 minutes of the intervention
step. The obtained maps are compared when the minimization
(a) and the direct (b) PCA representations are employed for
the description of abdominal displacements in volunteer#1.
Although a moderate improvement was observed using the
proposed direct method in the kidney (arrow (1)), a reduction
of thermometry artifacts by up to3 ◦C could be obtained
in liver, especially in the upper part (arrow (2)) which is
subjected to elastic deformations. The upper bound of the
temperature precision for 75% of the liver is reported for each
tested volunteer in (c). Numbers above the grey bars recall the
number of employed eigenvectorsM .

tested volunteers, as shown in Fig. 5c:The paired t-test showed
that the direct approach performed significantly better than the
minimization approach in both the kidney (p < 0.001) and the
liver (p = 0.002). Although a moderate averaged improvement
of the temperature standard deviation of0.15◦C was achieved
in the kidney, this value reached0.4◦C in the liver which is
more prone to elastic deformations.

Fig. 6 analyzes the impact of a simulated local grey level
intensity variation (see the inserts of Fig. 6a), occuring during
the interventional procedure. The resulting averaged EE is
reported for each method and each tested volunteer in Fig.
6b. The ANOVA showed a statistically significant difference
in all volunteers between the averaged EE obtained with the
three tested methods (p < 0.001). It can be observed that the
poorest performer was constantly the optical flow metric of Eq.
(1). Additional paired t-tests showed that the direct approach
performed significantly better than the minimization approach
(p = 0.021).

IV. D ISCUSSION

Compared to the existing minimization technique, the pro-
posed direct approach brings the following advantages:

First, an inherent drawback of the minimization method
rises from the fact that the computation time is dictated by the
image content. This hampered the possibility to use the method
for real-time monitoring applications, in which all calculations
must be done whithin the interval of time available between
successive acquisitions (i.e. 100 ms in the presented results).
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Fig. 6: Evaluation of the impact of a local grey level intensity
variation, occuring during the interventional procedure,in
the estimated motion. (a): Anatomical image obtained for
volunteer#3 after the simulation of a strong signal decrease
applied in the vicinity of an artery. The two inserts show
the area of interest before (upper-left) and after (down-right)
the application of the signal decrease. (b): Averaged EE over
time and over a region of15 × 15 pixels centered on the
simulated heated region, for each tested volunteer. The results
obtained with the proposed direct method are compared to
those obtained with the minimization method as well as the
Horn& Schunck algorithm (Eq. (1)). Numbers above the grey
bars recall the number of employed eigenvectorsM .

The latency of the obtained information is also an essential
condition for feedback control strategies such as for example
target tracking or automatic temperature control [15]. Over
the tested volunteers, a maximal number of 8 eigenvectors
were selected for the characterization of physiological organ
deformations using the method detailed in section II-D. An
upper bound of 30 ms on the computation time required for
the calculation of the PCA-based motion descriptor was thus
constantly ensured using the proposed direct approach. In
practice, the image acquisition duration and the required data
transport time must also be taken into account to compute
the latency of the obtained information. For the employed test
platform, a latency of 80 ms is achievable, composed by the
sum of half of the image acquisition duration (≃ 50 ms),
the required data transport time (≃ 10 ms) and the image
processing time (≃ 30 ms). In particular, this latency is in
accordance with the requirement for real-time target tracking
during an MR-guided thermal ablation, for which an upper
bound of 100 ms is mandatory as shown in [7]. It is interesting
to note that, for each image acquired during the learning step,
the calculation of various motion descriptors with a number
of eigenvectors ranged from 1 to 8 could be achieved within
the interval of time available before the next image update.
Therefore, no additional time consumming processings were
mandatory before the interventional procedure to compute the
optimal number of eigenvectorsM using the method described
in section II-D.

Secondly, the minimization approach, which relies on an
iterative process, imposes in practice several restrictions to
stabilize the convergence: Possible fold-over MR-artifacts as
well as mixtures of static/dynamic parts of the entire field-
of-view and/or complex motion paterns may lead to local

minima. As a consequence, the motion estimation process has
to be restricted to a ROI, manually set at the beginning of the
intervention, which contains the full path of the targeted organ.
The proposed direct approach gets rid of this requirement. In
addition, using the minimization method, motion descriptor
estimated for the previously acquired image had to be used as
a preconditioning for the new motion estimation. Any error in
the estimation process of one image could consequently have
a potential impact on the motion descriptors calculated during
the rest of the intervention. This is not the case anymore with
the proposed direct method where all processings are done
individually for each image.

Finally, the minimization method seeks the(dk)k=1···M

optimizing a Mean Square Error (MSE) criterion between
the reference and the transformed incoming image: In other
words, the image matching is in this case similar to a “visual”
assessment of the quality of the registration. Using the direct
approach, the estimation process during the interventional
procedure is consistent with the model employed during the
learning step, which leads to an improved PCA representation
(Fig. 2). This allows improving in turn the correction of motion
related errors on functionnal images (Fig. 5) and brings an
improved robustness to possible grey level intensity variations
not attributed to motion (Fig. 6).

The usage of a multi-resolution scheme had an opposite
impact on the performance for the minimization and for
the direct methods:Since basis flows at coarse scales are
subsampled versions of the eigenvectors computed at the
original scale, they may deviate slightly from orthogonality
and thus be inadequate to solve the minimization problem
of Eq. (3) (see Fig. 2g), as reported by Black et al in [14].
This drawback is reduced using the direct approach since, in
this case, the spatial motion regularization constraint prevents
such numerical instabilities (see Fig. 2h).The usage of the
multi-resolution scheme was vital for the direct method in
order to address the fact that the Taylor approximation of
the Horn&Schunck formulation of Eq. (1) holds only for
small displacements. Using a single resolution scheme, the
direct method could not cope with the maximum amplitude of
the observed organ displacements (see Fig. 2a), which were
substantially bigger than the pixel size (10 mm± 4.5 and
11 mm ± 4.5 were observed in the kidney and the liver,
respectively).

It is interesting to note that such a real-time characterization
of physiological motion contributions opens great perspectives
for the correlation of the motion descriptor with external
sensors [5], [6], [22]: The efficiency of the estimated organ
deformation may be assessed by evaluating the coherence of
the PCA descriptors with those independent motion informa-
tions. That way, the interventional procedure may immediately
be stopped once incoherent patterns are identified in order to
ensure the security of the patient.

It must be pointed out that several shortcomings persist for
both minimization and direct methods: First, the evaluation
was conducted on healthy subjects and the potential exten-
sion must still be assessed for patients whose physiological
activities are likely to be less periodic and reproducible.It
must be underlined that the proposed correction is not entirely
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constrained to positions present in the collection, as it can also
interpolate intermediate positions. However, the observation
of a significant deviation of the learned motion pattern may
lead to a complete re-calibration when the change is not
reversible.Moreover, the proposed technique is clearly limited
in case of new observed positions during the interventional
process, for which the learned motion pattern is insufficient.
A combination of the method with a correction adapted for
spontaneous motion (such as that described in [19]) should
thus be investigated in future work.Secondly, the effect of
through plane motion is a serious limiting factor: Although
the motion trajectory of the kidney and the lower part of
the liver can be approximated in first order by a linear shift,
the true trajectory in the upper part of the liver is a curve
in 3D space. A dynamic 3D imaging would be optimal but
the MR-acquisition is currently not fast enough to achieve the
temporal resolution required to avoid intra-scan motion. Two
strategies may be investigated: 1) Additional informationin
the third dimension, such as navigator echoes, may be used
in combination with adaptive slice tracking as proposed in
[7], [22]; 2) 3D trajectories may be estimated from 2D MRI
using one or several volumetric scans obtained before the
intervention as shown in [4], [23], [24].

V. CONCLUSION

This paper proposes a real-time PCA-based method which
provides an efficient quantitative description of physiological
organ deformations, with an improved steady latency, during
a period of 2 minutes.The effectiveness of the method was
demonstrated for real-time MR-thermometry application: An
improved correction of motion related artifacts was obtained
with an increased robustness to local grey level intensity
variations not attributed to motion. For this purpose, a reduced
learning step of 10 s was mandatory and no patient-specific
control parameters needed to be set, which renders the method
suitable for clinical use.

APPENDIX A
PCA ANALYSIS AND BASIS SENSITIVITY

In this appendix, we will denote byKℓ (resp.Ki) the
spatial PCA compact associated to the optical flow obtained
during the learning step ofN images (uℓ(x, y), vℓ(x, y))
and the interventional step(ui(x, y), vi(x, y)), respectively.
Similarly, we denote by

(

ϕℓ
k, ψ

ℓ
k

)

k≥1
(resp.

(

ϕi
k, ψ

i
k

)

k≥1
) the

orthonormal basis of the operatorKℓ (resp.Ki). The error
estimates of the PCA representation during the learning (εl)
and the interventional (εi) steps can be computed using:










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∥

∥

∥
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∥

∥

∥
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∥
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∥
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with εℓ −→ 0 andεi −→ 0 asN −→ +∞.
However, in our context, we would like to expand the

use the learning step basis
(

ϕℓ
k, ψ

ℓ
k

)

k≥1
to the interventional

procedure. The error of the PCA representation during the
interventional procedure (ε) can be expressed as follows:
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,
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In this case we still have an error decrease with respect to
the number of termsN (εi −→ 0 as N −→ +∞), but the
estimate

ε ≤
∑

k≥N+1

λik

does not hold true and consequently the convergence speed
of the approximation (11) is lost. On the other hand, the
sensitivity of the PCA basis

(

ϕℓ
k, ψ

ℓ
k

)

k≥1
, due to the clustering

of the corresponding eigenvalues, can lead to bad estimatesof
the coefficientsdi,ℓk in the following expansion:
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More precisely, the authors showed recently in [25] the
following result: For everyk ≥ 1, it holds:

|λℓk − λik| ≤ ‖Kℓ −Ki‖ (13)

and
∥

∥

∥

∥
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)

−
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∥

∥

∥

≤
‖Kℓ −Ki‖

min
(

|λℓk − λℓk|, |λ
ℓ
k − λℓk|

) (14)

where λℓk (resp. λℓk) is the closest eigenvalue among all
eigenvalues which are smaller (resp. larger) thanλℓk. Note
that this result is very classical when the eigenvalueλℓk is
simple and we can refer the interested reader to [26], [27].
The general case of multiple eigenvalues is studied in [25],
[28]. The estimate of Eq. (14) is optimal in the sense that
equality holds true in general situations. Moreover, when the
eigenvaluesλℓn, λℓn andλℓn cluster, the eigenvector

(

ϕℓ
k, ψ

ℓ
k

)

is very sensitive and its use in the approximation of(ui, vi)
requires an acute computation of the corresponding coefficient.

In the current paper, it is shown that local minima in the
minimization method employed in [13], [14] will induce bad
estimates of the coefficients

(

d
i,ℓ
k

)

k=1···N
and hence sensitiv-

ity phenomena, described by Eq. (14), will arise if we try to
consider several eigenvectors in the basis(ϕℓ

k, ψ
ℓ
k)k=1···N , for

a good representation of the movement.

APPENDIX B
ESTIMATION OF ORGAN DISPLACEMENT USING

OPTICAL-FLOW

The RealTITracker toolbox1 provided 2D motion estimates
using the optical flow metric of Eq. (1). A multi-resolution
scheme was employed. To ensure the convergence of the

1http://bsenneville.free.fr/RealTITracker/
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algorithm, the averaged variation of the estimated motion am-
plitude was compared to a maximal allowed tolerance of10−3

pixels. The reader is referred to [29] for a complete analysis of
the impact of theα value on the outcome of the optical flow
metric: While an increasedα value intrinsically improves the
robustness against low SNR values, it also limits the estimation
of elastic deformations. A compromise must consequently be
found. In [29], the accuracy of the motion estimates was
assessedex-vivousing gold standard displacements provided
by external sensors, andin-vivo using gold standard landmark
points manually positioned and tracked by a staff scientist. For
the employed implementation and the used MR-acquisition
sequence, it was shown that any value in the range of 0.3
and 0.5 forα provided tracking performances within the gold
standard precision forSNR of 10-15. A fixed value of 0.4
was consequently employed in the current paper.
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