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Approximation of Markov semigroups in total
variation distance

Vlad Bally 1

Clément Rey 2

Abstract
The first goal of this paper is to prove that, regularization properties of a Markov semigroup
enable to prove convergence in total variation distance for approximation schemes for the
semigroup. Moreover, using an interpolation argument we obtain estimates for the error in
distribution sense (at the level of the densities of the semigroup with respect to the Lebesgue
measure). In a second step, we build an abstract Malliavin calculus based on a splitting
procedure, which turns out to be the suited instrument in order to prove the above mentioned
regularization properties. Finally, we use these results in order to estimate the error in total
variation distance for the Ninomiya Victoir scheme (which is an approximation scheme, of
order 2, for diffusion processes).

1 Introduction
In this paper we study the total variation distance between two discrete time Markov semi-
groups and we give applications for the speed of convergence of approximation schemes. In
order to do it we use an abstract Malliavin type calculus based on a splitting procedure which
enables us to prove regularization properties of the semigroup - and it turns out that such
regularization properties are crucial in order to be able to deal with measurable test functions.
Moreover, we take a step further and we give estimates for the distance between the density
function of the Markov semigroup and the density function of the approximation scheme. At
this level we have to use an interpolation argument which has been recently obtained in [8].
Let us be more specific and describe the different steps of our approach. We consider the d
dimensional Markov chain

Xn
k+1 = ψk(X

n
k ,
Zk+1√
n

), k ∈ N, (1)

where ψk : Rd×RN → Rd is a smooth function such that ψk(x, 0) = x and Zk ∈ RN , k ∈ N is a
sequence of independent random variables. The semigroup of the Markov chain Xn
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by P n
k and the transition probabilities are µnk(x, dy) = P(Xn

k+1(x) ∈ dy|Xn
k = x). Moreover

we consider a Markov process in continuous time (Xt)t>0 with semigroup Pt and we denote
νnk (x, dy) = P(Xtk ∈ dy|Xtk = x) where tk = kδ = k

n
with δ = 1

n
. A first standard result is the

following: let us assume that there exists h > 0, p ∈ N such that for every f ∈ Cp(Rd), k ∈ N
and x ∈ Rd,∣∣µnkf(x)− νnk f(x)

∣∣ =
∣∣∫ f(y)µnk(x, dy)−

∫
f(y)νnk (x, dy)

∣∣ 6 C‖f‖p,∞δ1+h (2)

where ‖f‖p,∞ denotes the supremum norm of f and of its derivatives up to order p. Then, for
every T > 0,

sup
tk6T
‖Ptkf − P n

k f‖∞ 6 C‖f‖p,∞δh. (3)

It means that (Xn
k )k∈N is an approximation scheme of weak order h for the Markov process

(Xt)t>0. In the case of the Euler scheme for diffusion processes, this result, with h = 1, has
initially been proved in the seminal papers of Milstein [26] and of Talay and Tubaro [32] (see
also [17]). Similar results were obtained in various situations: diffusion processes with jumps
(see [31], [15]) or diffusion processes with boundary conditions (see [12], [11], [13]). See [16]
for an overview of this subject. More recently, approximation schemes of higher orders (e.g.,
h = 2), based on a cubature method, have been introduced and studied by Kusuoka [21],
Lyons [25], Ninomiya, Victoir [27], Alfonsi [1], Kohatsu-Higa and Tankov [18].

Another result concerns convergence in total variation distance: we want to obtain (3) with
‖f‖p,∞ replaced by ‖f‖∞ when f is a measurable function. In the case of the Euler scheme for
diffusion processes, a first result of this type has been obtained by Bally and Talay [6], [7] using
the Malliavin calculus (see also Guyon [14]). Afterwards Konakov, Menozzi and Molchanov
[19], [20] obtained similar results using a parametrix method. Recently Kusuoka [22] obtained
estimates of the error in total variation distance for the Victoir Ninomiya scheme (which
corresponds to the case h = 2). We will obtain a similar result using our approach. Moreover,
we give estimates of the rate of convergence of the density function and its derivatives.

Regularization properties. We first remark that the crucial property which is used in
order to replace ‖f‖p,∞ by ‖f‖∞ in (3), is the regularization property of the semigroup. Let
us be more precise: let η > 0, p ∈ N be fixed. Given the time grid tk = kδ, we say that a
semigroup (Pk)k∈N satisfies Rp,η, if

Rp,η ‖Pkf‖p,∞ 6
C

tηpk
‖f‖∞. (4)

We also introduce a dual regularization property: we consider the dual semigroup P ∗k (i.e.
〈P ∗k g, f〉 = 〈g, Pkf〉 with the scalar product in L2(Rd)) and we assume that

R∗p,η ‖P ∗k f‖p,1 6
C

tηpk
‖f‖1, (5)

where ‖f‖p,1 denotes the L1 norm of f and of its derivatives up to order p. Finally, we consider
the following stronger regularization property: for every multi-index α, β with |α|+ |β| = p,

Rp,η ‖∂αPk∂βf‖∞ 6
C

tηpk
‖f‖∞. (6)
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One notices that Rp,η implies both Rp,η and R∗p,η and that a semigroup satisfying Rp,η is
absolutely continuous with respect to the Lebesgue measure.
In addition to (2), we will also suppose that the following dual estimate of the error in short
time holds:

| 〈g, (µnk − νnk )f〉 | 6 C‖g‖p,1‖f‖∞δ1+h. (7)

Keeping these properties in mind, we can state the following result.

Theorem 1.1. We fix T, h > 0, p ∈ N and we assume that the short time estimates (2) and
(7) hold (with this p and h). Moreover, we assume that (4) holds for (Ptk)k∈N and that (5)
holds for (P n

k )k∈N . Then,

∀0 < S 6 T, sup
S6tk6T

‖Ptkf − P n
k f‖∞ 6

C

Sηp
‖f‖∞δh. (8)

Integration by parts formulae. Once we have this abstract result, the following step is
to give sufficient conditions in order to obtain Rp,η, R∗p,η and Rp,η. We will use Malliavin type
integration by parts formulae based on the noise Zk ∈ RN . In order to do it, we assume
that the law of each Zk is locally lower bounded by the Lebesgue measure: there exists some
z∗,k ∈ RN and r∗, ε∗ > 0 such that for every measurable set A ⊂ Br∗(z∗,k) one has

P(Zk ∈ A) > ε∗λ(A) (9)

where λ is the Lebesgue measure. If this property holds then a "splitting method" can be
used in order to represent Zk as

Zk√
n

= χkUk + (1− χk)Vk,

where χk, Uk, Vk are independent random variables, χk is a Bernoulli random variable and√
nUk ∼ ϕr∗(u)du with ϕr∗ ∈ C∞(RN). Then we use the abstract Malliavin calculus based on

Uk, developed in [5] and [3], in order to obtain integration by parts formulae. The crucial point
is that the density ϕr∗ of

√
nUk is smooth and we control its logarithmic derivatives. Using

this, we construct integration by parts formulae and obtain relevant estimates for the weights
which appear in these formulae. It is worth mentioning that, a variant of the Malliavin calculus
based on a similar splitting method has already been used by Nourdin and Poly [29] (see also
[28] and [23]). They use the so called Γ calculus introduced by Backry, Gentil and Ledoux
[2]. Roughly speaking the difference between the approach in our paper and the one in [2] is
the following: our construction is similar to the "simple functionals" approach in Malliavin
calculus and has the derivative operator as basic object. In contrast, in the Γ calculus, the
basic object is the Ornstein Uhlenbeck operator.
In order to state the main result of our paper, we introduce some additional assumptions:
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∀p ∈ N, sup
k∈N

E[|Zk|p] <∞, (10)

∀r ∈ N∗, sup
k∈N

∑
16|β|6r

∑
06|α|6r−|β|

‖∂αx∂βz ψk‖∞ <∞, (11)

∃λ∗ > 0, ∀k ∈ N, inf
x∈Rd

inf
|ζ|=1

N∑
i=1

〈∂ziψk(x, 0), ζ〉2 > λ∗. (12)

Moreover, we introduce the following regularized version of the approximation scheme Xn
k :

Xn,θ
k (x) =

1

nθ
G+Xn

k (x), (13)

with G a standard normal random variable independent from Xn
k and θ > h+ 1. Here Xn

k (x)
is the Markov chain which starts from x: Xn

0 (x) = x. We denote

P n,θ(x, dy) = P(Xn,θ
k (x) ∈ dy) = pn,θk (x, y)dy. (14)

Theorem 1.2. Consider a Markov semigroup (Pt)t>0 and the approximation Markov chain
(P n

k )k∈N defined in (1). We fix T, h > 0, p ∈ N and we assume that the short time estimates
(2) and (7) hold (with this p and h). Moreover, we assume (9), (10), (11) and (12).
A. For every 0 < S 6 T , we have

sup
S6tk6T

‖Ptkf − P n
k f‖∞ 6

C

Sp
‖f‖∞δh. (15)

B. For every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y)→ pt(x, y) belonging to C∞(Rd × Rd).

C. For every R, ε > 0 and every multi-index α, β, we have

sup
S6tk6T

sup
|x|+|y|6R

|∂αx∂βy ptk(x, y)− ∂αx∂βy p
n,θ
k (x, y)| 6 Cεδ

h(1−ε). (16)

We notice that (15) gives the total variation distance between the semigroups (Pt)t>0 and
(P n

k )k∈N. Once the appropriate regularization properties are obtained (using the abstract
Malliavin calculus), the proof of (15) is rather elementary. In contrast, the estimate (16) is
based on a non trivial interpolation result recently obtained in [8]. Notice, however, that the
estimate (16) is sub-optimal (because of ε > 0). We will illustrate (15) by taking Xn

k to be
the Ninomiya Victoir scheme of a diffusion process. This is a variant of the result already ob-
tained by Kusuoka [22] in the case where Zk has a Gaussian distribution (and so the standard
Malliavin calculus is available). Since in our paper Zk has an arbitrary distribution (except
the property (9)), our result may be seen as an invariance principle as well.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, we settle
the abstract Malliavin calculus based on the splitting method and we use it in order to prove
the regularization properties for the approximation scheme Xn

k (in fact for the regularization
Xn,θ
k ) and we prove Theorem 1.2. Finally, in Section 4, we use the previous results in order to

give estimates of the total variation distance for the Ninomiya Victoir approximation scheme.
In the Appendix, we prove some technical estimates concerning the Sobolev norms of Xn

k .
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2 The distance between two Markov semigroups
Throughout this section the following notations will prevail. We fix T > 0 the horizon of the
underlying processes and we denote n ∈ N∗, the number of time step between 0 and T . Then,
we set δ := δn = 1

n
and introduce the time homogeneous time grid tk = kTδ = kT/n. Notice

that, all the results from this paper remains true with non homogeneous time step but, for
sake of simplicity, we will not consider this case. First, we state some results for smooth test
functions.

2.1 Regular test functions

We consider a sequence of finite transition measures µk(x, dy), k ∈ N from Rd to Rd. This
means that for each fixed x and k, µk(x, dy) is a finite measure on Rd with the borelian σ field
and for each bounded measurable function f : Rd → R, the application

x 7→ µkf(x) :=

∫
Rd

f(y)µk(x, dy) (17)

is measurable. We also denote

|µk| := sup
x∈Rd

sup
‖f‖∞61

∣∣ ∫
Rd

f(y)µk(x, dy)
∣∣, (18)

and, we assume that all the sequences of measures we consider in this paper satisfies:

sup
k∈N
|µk| <∞. (19)

Although the main application concerns the case where µk(x, dy) is a probability measure, we
do not assume this here: we allow µk(x, dy) to be a signed measure of finite (but arbitrary)
total mass. This is because one may use the results from this section not only in order to
estimate the distance between two semigroups but also in order to obtain a development of
the error. To the sequence µk, k ∈ N we associate the discrete semigroup

P0f(x) = f(x), Pk+1f(x) = µk+1Pkf(x) =

∫
Rd

Pkf(y)µk+1(x, dy).

More generally, for r > k we define Pk,rf by

Pk,kf(x) = f(x), Pk,r+1f(x) = µr+1Pk,rf(x).

For f ∈ C∞(Rd) and for a multi-index α = (α1, · · · , αd) ∈ Nd we denote |α| = α1 + ... + αd
and ∂αf = ∂α1

x1
...∂αd

xd
f(x). We include the multi-index α = (0, ..., 0) and in this case ∂αf = f.

We use the norms

‖f‖p,∞ = sup
x∈Rd

∑
06|α|6p

|∂αf(x)|, ‖f‖p,1 =
∑

06|α|6p

∫
Rd

|∂αf(x)|dx.

In particular ‖f‖0,∞ = ‖f‖∞ is the usual supremum norm.
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We will consider the following hypothesis: let p ∈ N and 0 6 k 6 r. If f ∈ Cp(Rd) then
Pk,rf ∈ Cp(Rd) and

sup
06tk6tr

‖Pk,rf‖p,∞ 6 C‖f‖p,∞. (20)

We consider now a second sequence of finite transition measures νk(x, dy), k ∈ N and the
corresponding semigroup Qk defined as above. Our aim is to estimate the distance between
Pkf and Qkf in terms of the distance between the transition measures µk(x, dy) and νk(x, dy),
so we denote

∆k = µk − νk.

Pk can be seen as a semigroup in continuous time considered on the time grid tk, k ∈ N, while
Qk would be its approximation discrete semigroup. Let p ∈ N, h > 0 be fixed. We introduce
a short time error approximation assumption: there exists a constant C > 0 (depending on p
only) such that for every k ∈ N, we have

En(h, p) ‖∆kf‖∞ 6 C‖f‖p,∞δh+1. (21)

Proposition 2.1. Let p ∈ N be fixed. Suppose that µk and νk satisfy (20) and (21) with
p = 0. Then for every f ∈ Cp(Rd),

sup
tm6T

‖Pmf −Qmf‖∞ 6 C‖f‖p,∞δh. (22)

Proof. We have

‖Pmf −Qmf‖∞ 6
m−1∑
k=0

‖Pk+1,mPk,k+1Qkf − Pk+1,mQk,k+1Qkf‖∞ (23)

=
m−1∑
k=0

‖Pk+1,m∆k+1Qkf‖∞.

Using (19) and (21), we obtain

‖Pk+1,m∆k+1Qkf‖∞ 6 C‖∆k+1Qkf‖∞ 6 Cδ1+h‖Qkf‖p,∞ 6 Cδ1+h‖f‖p,∞.

Summing over k = 0, ...,m− 1, we conclude.

2.2 Measurable test functions (convergence in total variation dis-
tance)

The estimate (22) requires a lot of regularity for the test function f. Our aim is to show that,
if the semigroups at work have a regularization property, then we may obtain estimates of
the error for measurable test functions. In order to state this result we have to give some
hypothesis on the adjoint semigroup. Let p ∈ N. We assume that there exists a constant
C > 1 such that for every measurable function f and any g ∈ Cp(Rd)

E∗n(h, p) | 〈g,∆kf〉 | 6 C‖g‖p,1‖f‖∞δ1+h. (24)
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where 〈g, f〉 =
∫
g(x)f(x)dx is the scalar product in L2(Rd).

Our regularization hypothesis is the following. Let p ∈ N, S > 0 and η > 0 be given. We
assume that there exists a constant C > 1 such that

Rp,η(S) ‖Pk,rf‖p,∞ 6
C

Sηp
‖f‖∞ for S 6 tr − tk. (25)

We also consider the "adjoint regularization hypothesis". We assume that there exists an
adjoint semigroup P ∗k,r, that is 〈

P ∗k,rg, f
〉

= 〈g, Pk,rf〉

for every bounded measurable function f and every function g ∈ C∞c (Rd). We assume that
P ∗k,r satisfies (20) and moreover

R∗p,η(S) ‖P ∗k,rf‖p,1 6
C

Sηp
‖f‖1 for S 6 tr − tk. (26)

Notice that a sufficient condition in order that R∗p,η(S) holds is the following: for every multi
index α with |α| 6 p

‖Pk,r∂αf‖∞ 6
C

Sηp
‖f‖∞ for S 6 tr − tk. (27)

Indeed:

‖∂αP ∗k,rf‖1 6 sup
‖g‖∞61

|
〈
∂αP

∗
k,rf, g

〉
| = sup

‖g‖∞61

| 〈f, Pk,r(∂αg)〉 |

6 ‖f‖1 sup
‖g‖∞61

‖Pk,r(∂αg)‖∞ 6
C

Sηp
‖f‖1.

Proposition 2.2. Let p ∈ N, η > 0, h > 0 and 0 < S 6 T/2 be fixed. We suppose that (20),
(21) and (24) hold for Pm and Qm. We also suppose that P satisfies Rp,η(S) (see (25)) and
Q satisfies R∗p,η(S) (see (26)). Then,

sup
2S6tm6T

‖Pmf −Qmf‖∞ 6
C

Sηp
‖f‖∞δh. (28)

Proof. Using a density argument we may assume that f ∈ Cp(Rd). Moreover, by (23), it is
sufficient to prove that

‖Qk+1,m∆k+1Pkf‖∞ 6
C

Sηp
‖f‖∞δ1+h. (29)

Since tm > 2S we have tk > S or tm − tk+1 > S. Suppose first that tk > S. Using (19) for Q,
(21) and (25) for P ,

‖Qk+1,m∆k+1Pkf‖∞ 6 C‖∆k+1Pkf‖∞ 6 C‖Pkf‖p,∞δ1+h 6 CS−ηp‖f‖∞δ1+h.
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Suppose now that tm − tk+1 > S. We take φε(x) = ε−dφ(ε−1x) with φ ∈ Cc(Rd), φ > 0.
Then, for a fixed x0, we define φε,x0(x) = φε(x− x0). By (20) Qk+1,m∆kPkf ∈ Cp(Rd) so it is
continuous. Then

|Qk+1,m∆kPkf(x0)| = lim
ε→0
| 〈φε,x0 , Qk+1,m∆kPkf〉 |.

Using (24), (26) and then (20), we obtain

| 〈φε,x0 , Qk+1,m∆k+1Pkf〉 | = |
〈
Q∗k+1,mφε,x0 ,∆k+1Pkf

〉
| 6 C‖Q∗k+1,mφε,x0‖p,1‖Pkf‖∞δ1+h

6 CS−ηp‖φε,x0‖1‖f‖∞δ1+h

and since ‖φε,x0‖1 = ‖φ‖1 6 C, the proof is completed.

In concrete applications the following slightly more general variant of the above proposition
will be useful.

Proposition 2.3. Let p ∈ N, η > 0, h > 0 and 0 < S 6 T/2 be fixed. We assume that (20),
(21) and (24) hold for P and Q with these p, η, h and S. Moreover, we assume that there
exists some kernels P k,r which satisfies Rp,η(S) (see(25)) and Qk,r which satisfies R∗p,η(S) (see
(26)). We also assume that for every 0 6 k 6 r, with tr − tk > S

‖Qk,rf −Qk,rf‖∞ + ‖Pk,rf − P k,rf‖∞ 6 CS−ηpδh+1‖f‖∞. (30)

Then,

sup
2S6tm6T

‖Pmf −Qmf‖∞ 6 C sup
k6n

(|µk|+ |νk|)S−ηpδh‖f‖∞. (31)

Remark 2.1. Notice that P k,r and Qk,r are not supposed to satisfy the semigroup property
and are not directly related to µk and νk.

Proof. The proof follows the same line as the one of the previous proposition. Suppose first
that tk > S. Then, (19) implies

‖Qk,m∆k+1Pkf‖∞ 6 ‖Qk,m∆k+1P kf‖∞ + ‖Qk,m∆k+1(Pk − P k)f‖∞
6 ‖∆k+1P kf‖∞ + ‖∆k+1(Pk − P k)f‖∞.

Since P k verifies Rp,η(S), we deduce from (21) that

‖∆k+1P kf‖∞ 6 Cδ1+h‖P kf‖p,∞ 6 CS−pη‖f‖∞δ1+h.

Using (30), it follows

|∆k+1(Pk − P k)f(x)| 6 |
∫

(Pk − P k)f(y)νk+1(x, dy)|+ |
∫

(Pk − P k)f(y)µk+1(x, dy)|

6 (|νk+1|+ |µk+1|)‖(Pk − P k)f‖∞
6 C(|νk+1|+ |µk+1|)S−ηp‖f‖∞δh+1.

Suppose now that tm − tk+1 > S. We write

‖Qk+1,m∆k+1Pkf‖∞ 6 ‖Qk+1,m∆k+1Pkf‖∞ + ‖(Qk+1,m −Qk+1,m)∆k+1Pkf‖∞.

In order to bound ‖Qk+1,m∆k+1Pkf‖∞ we use the same reasoning as in the proof of the previous
proposition. And the second term is bounded using (30).



2 THE DISTANCE BETWEEN TWO MARKOV SEMIGROUPS 9

2.3 Convergence of the density functions

In this section we will consider a Markov semigroup (Pt)t>0 and we will give an approximation
result and a regularity criterion for it. The regularization property that we assume for the
approximation processes is stronger than the one considered in the previous section and,
instead of Proposition 2.2 we will use a general approximation result based on an interpolation
inequality, proved in [8]. We recall that we have fixed T > 0 and that, δ = δn = 1/n
and we denote tnk = tk = kT

n
. For k ∈ N, we consider µnk(x, dy) = µn(x, dy) = Pδ(x, dy),

for all k ∈ N, the homogeneous sequence of finite transition measures which satisfy (20).
Moreover we introduce a sequence of transition probability measures νnk (x, dy), k ∈ N, and
the corresponding discrete semigroups P n(x, dy) defined by P n

k,k = Id and P n
k,r+1 = νnr+1P

n
k,r.

We recall that P n
k f = P n

0,kf . We assume that for f ∈ Cp(Rd), we have P n
k f ∈ Cp(Rd) and it

verifies (20) :
sup

06tnk6t
n
r

‖P n
k,rf‖p,∞ 6 C‖f‖p,∞. (32)

For h > 0 and p ∈ N, we assume that for all n ∈ N,

En(h, p) ‖(µn − νnk )f‖∞ 6 Cδ1+h‖f‖p,∞. (33)

and,
E∗n(h, p) | 〈g, (µn − νnk )f〉 | 6 C‖g‖p,1‖f‖∞δ1+h. (34)

We introduce now (P
n

k)k∈N, a modification of (P n
k )k∈N in the sense that for every measurable

and bounded function f : Rd → R, we have

sup
S6tnr−tnk

‖P n
k,rf − P

n

k,rf‖∞ 6
C

Sηp
δh+1‖f‖∞. (35)

We assume that (P
n

k)k∈N satisfies the following strong regularization property. We fix q ∈ N
S, η > 0, and we assume that for every multi-index α, β with |α| + |β| 6 q and f ∈ Cq(Rd)
one has

Rp,η(S) ‖∂αP n

k,r∂
βf‖∞ 6 CS−ηp‖f‖∞, tnr − tnk > S. (36)

Notice that if Rq+d,η(S) holds, then there exists pnk ∈ Cq(Rd × Rd) such that P n

k(x, dy) =
pnk(x, y)dy and, for every R > 1, tnk > S and |α|+ |β| 6 q, then

sup
|x|+|y|6R

|∂αx∂βy pnk(x, y)| 6 CS−ηq. (37)

Moreover, the regularization properties Rp,η(S) and R∗p,η(S) hold when Rp,η(S) is satisfied.

Theorem 2.1. A. We fix p ∈ N, p and h, η > 0, 0 6 S 6 T/2, and we assume that (20)
holds for P and that (32), (33), (34), (35) and (36) hold for this p, h, η and S, and for every
n ∈ N. Then

sup
2S6tnk6T

‖Ptnkf − P
n
k f‖∞ 6

CS−ηp

nh
‖f‖∞. (38)
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B. Suppose that (36) holds for every p ∈ N. Then, for every t > 0, Pt(x, dy) = pt(x, y)dy with
(x, y)→ pt(x, y) belonging to C∞(Rd × Rd).
C. For every R, ε > 0 and every multi-index α, β we have

sup
2S6tnk6T

sup
|x|+|y|6R

|∂αx∂βy ptnk (x, y)− ∂αx∂βy pnk(x, y)| 6 C

nh(1−ε) (39)

with a constant C which depends on R, S, T, ε and on |α| + |β| (and may go to infinity as
ε ↓ 0).

Remark 2.2. The inequality (38) is essentially a consequence of Proposition 2.3. However,
we may not use directly this result, because we do not assume that the semigroup (Pt)t>0 has
the regularization property (25). This is pleasant, because we have to check the regularization
property on the approximation scheme (P n

k )k∈N only.

Remark 2.3. The estimate (39) is sub-optimal because of ε > 0. One may wonder if opti-
mal estimates (with nh instead of nh(1−ε)) may be obtained - as it was the case in the paper
of Bally and Talay [6] concerning the Euler scheme. Notice that, in the above paper, spe-
cific properties related to the dynamics of the diffusion process which gives the semigoup are
used, and in particular properties of the tangent flow. For example, if Xt(x) denotes the
diffusion process starting from x then we have E[f ′(Xt(x))] = ∂xE[f(Xt(x))(∂xXt(x))−1] −
E[f(Xt(x))∂x(∂xXt(x))−1)]. Such properties are crucial in the above paper - but are difficult
to express in terms of general semigroups.

Proof. Let m = ζn, ζ ∈ N∗. Using (33), (34), we obtain ‖(P n
k,k+1 − Pm

ζk,ζ(k+1))f‖∞ 6
C‖f‖p,∞n−h−1 and |〈g, (P n

k,k+1 − Pm
ζk,ζ(k+1))f〉| 6 C‖g‖p,1‖f‖∞n−h−1. Then Proposition 2.3

implies that: ∀2S 6 tnk 6 T, ‖Pm
k f − P n

k f‖∞ 6 CS−ηpn−h‖f‖∞. So the sequence (P n)n∈N is
Cauchy and then converges with rate CS−ηpn−h‖f‖∞. It remains to identify the limit. By
Proposition 2.1, this limit is (Ptf)t>0 for f ∈ Cpb , so we conclude.

Let us prove B. We are going to use a result from [8]. First, we introduce some notations. Let
dp be the distance defined by

dp(µ, ν) = sup
{
|
∫
fdµ−

∫
fdν‖ : ‖f‖p,∞ 6 1

}
.

For q, l ∈ N, r > 1 and f ∈ Cq(Rd × Rd), we denote

‖f‖q,l,r =
∑

06|α|6q

(∫ ∫
(1 + |x|l + |y|l)|∂αf(x, y)|rdxdy

)1/r
.

We have the following result which is Theorem 2.11 from [8].

Theorem 2.2. Let q, p, l,m ∈ N and r > 1 be given and let r∗ be the conjugate of r. Consider
some measures µ(dx, dy) and µn(dx, dy) = gn(x, y)dxdy with gn ∈ Cq+2m(Rd × Rd). Suppose
that for some α > (q + p+ d/r∗)/m, we have

dp(µ, µn)‖gn‖αq+2m,2m,r 6 C ∀n ∈ N. (40)
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Then µ(dx, dy) = g(x, y)dxdy with g ∈ W q,r(Rd) and

‖g − gn‖W q,r(Rd) 6 C(d1/α
p (µ, µn) + d1−(q+p+d/r∗)/αm

p (µ, µn)). (41)

In particular, if (40) is satisfied for all m ∈ N∗ and any α > (q+ p+ d/r∗)/m, then for every
ε > 0 we have

‖g − gn‖W q,r(Rd) 6 Cd1−ε
0 (µ, µn). (42)

with a constant C which depends on ε and may go to infinity as ε ↓ 0.

We come back to our framework. We fix R > 0, 2S 6 t 6 T and choose k(n, t) ∈ N such that
tnk(n,t) = t. Let us consider a function ΦR ∈ C∞b (Rd×Rd) such that 1BR×BR

(x, y) 6 ΦR(x, y) 6
1BR+1×BR+1

(x, y) and denote

gn,Rk(n,t)(x, y) = ΦR(x, y)pnk(n,t)(x, y).

We use the result above for the sequence gn := gn,Rk(n,t), n ∈ N and µ(dx, dy) := Pt(x, dy)dx.
In our specific case (35) and (38) give d0(g, gn) 6 Cn−h and the hypothesis (36) ensures that
supn ‖gn‖q+2m,2m,r <∞ so (40) holds for every α ∈ R+ and r > 1. Using Sobolev’s embedding
theorem, for u 6 q − d/r we have

‖g − gn‖u,∞ 6 C‖g − gn‖W q,r(Rd) 6 Cn−h(1−ε)

and we conclude.

3 A class of Markov chains

3.1 Integration by parts using a splitting method

In this section we consider a sequence of independent random variables Zk = (Z1
k , · · · , ZN

k ) ∈
RN , k ∈ {1, · · · , n} and we denote Z = (Z1, ..., Zn). The number n is fixed throughout this
section (so there is no asymptotic procedure going on; but morally n is large because we are
interested in estimating the error as n → ∞). Our aim is to settle an integration by parts
formula based on the law of Z. The basic assumption is the following: there exists z∗,k ∈ RN

and ε∗, r∗ > 0 such that for every Borel set A ⊂ RN and every k ∈ {1, · · · , n}

Lz∗(ε∗, r∗) P(Zk ∈ A) > ε∗λ(A ∩Br∗(z∗,k)) (43)

where λ is the Lebesgue measure on RN . We also define

Mp(Z) := 1 ∨ sup
k6n

E[|Zk|p] (44)

and assume that Mp(Z) <∞ for every p > 1.
It is easy to check that (43) holds if and only if there exists some non negative measures µk
with total mass µk(RN) < 1 and a lower semi-continuous function ϕ > 0 such that P(Zk ∈
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dz) = µk(dz) + ϕ(z − z∗,k)dz. Notice that the random variables Z1, · · · , Zn are not assumed
to be identically distributed. However, the fact that r∗ > 0 and ε∗ > 0 are the same for all
k represents a mild substitute of this property. In order to construct ϕ we have to introduce
the following function: For a > 0, set ϕa : RN → R defined by

ϕa(z) = 1|z|6a + exp
(

1− a2

a2 − (|z| − a)2

)
1a<|z|<2a. (45)

Then ϕa ∈ C∞b (RN), 0 6 ϕa 6 1 and we have the following crucial property: for every
p, k ∈ N there exists a universal constant Cq,p such that for every x ∈ RN , q ∈ N and
i1, · · · , iq ∈ {1, · · · , N}, we have

ϕa(z)| ∂q

∂zi1 · ∂ziq
(lnϕa)(z)|p 6 Cq,p

apq
, (46)

with the convention lnϕa(z) = 0 for |z| > 2a. As an immediate consequence of (43), for every
non negative function f : RN → R+

E[f(Zk)] > ε∗

∫
RN

ϕr∗/2( z − z∗,k )f(z)dz. (47)

By a change of variable

E[f(
1√
n
Zk)] > ε∗

∫
RN

nN/2ϕr∗/2
(√

n(z − z∗,k√
n

)
)
f(z)dz. (48)

We denote
m∗ = ε∗

∫
RN

ϕr∗/2(z)dz = ε∗

∫
RN

ϕr∗/2(z − z∗,k)dz (49)

and
φn(z) = nN/2ϕr∗/2(

√
nz) (50)

and we notice that
∫
φn(z)dz = m∗ε

−1
∗ .

We consider a sequence of independent random variables χk ∈ {0, 1}, Uk, Vk ∈ RN , k ∈
{1, · · · , n} with laws given by

P(χk = 1) = m∗, P(χk = 0) = 1−m∗, (51)

P(Uk ∈ dz) =
ε∗
m∗

φn(z − z∗,k√
n

)dz,

P(Vk ∈ dz) =
1

1−m∗
(P(

1√
n
Zk ∈ dz)− ε∗φn(z − z∗,k√

n
)dz).

Notice that (48) guarantees that P(Vk ∈ dz) > 0. Then a direct computation shows that

P(χkUk + (1− χk)Vk ∈ dz) = P(
1√
n
Zk ∈ dz). (52)

This is the splitting procedure for 1√
n
Zk. Now on we will work with this representation of the

law of 1√
n
Zk. So, we always take

1√
n
Zk = χkUk + (1− χk)Vk.
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Remark 3.1. The above splitting procedure has already been widely used in the litterature: in
[30] and [24], it is used in order to prove convergence to equilibrium of Markov processes. In
[9], [10] and [33], it is used to study the Central Limit Theorem. Last but not least, in [29],
the above splitting method (with 1Br∗ (z∗,k) instead of φn(z− z∗,k√

n
)) is used in a framework which

is similar to the one in this paper.

In the following we denote χ = (χ1, · · · , χn), U = (U1, · · · , Un) and V = (V1, · · · , Vn) and we
consider the following class of random variables:

S = {F = f(χ, U, V ) : f is measurable and u→ f(χ, u, v) ∈ C∞b (Rn × RN),∀χ, v}. (53)

For a multi index α = (α1, · · · , αq) with αj = (kj, ij), kj ∈ {1, · · · , n}, ij ∈ {1, · · · , N}, we
denote |α| = q the length of α and

∂αuf(χ, u, v) =
∂q

∂ui1k1 · · · ∂u
iq
kq

f(χ, u, v).

We construct now a differential calculus based on the laws of the random variables Uk, k =
1, · · · , n which mimics the Malliavin calculus, following the ideas from [5], [3] and [4]. In order
to be self contained we shortly present the results that we need. For F = f(χ, U, V ) ∈ S we
define the Malliavin derivatives

D(k,i)F = χk
1√
n

∂F

∂U i
k

= χk
1√
n

∂f

∂uik
(χ, U, V ), k = 1, · · · , n, i = 1, · · · , N. (54)

We denote by 〈◦, ◦〉 the usual scalar product on RN × Rn. The Malliavin covariance matrix
for a multi dimensional functional F = (F 1, · · · , F d) is defined as

σi,jF =
〈
DF i, DF j

〉
=

n∑
k=1

N∑
r=1

D(k,r)F
i ×D(k,r)F

j, i, j = 1, · · · , d. (55)

The higher order derivatives are defined by iterating D:

DαF = Dα1 · · ·DαmF. (56)

Now we define the Ornstein Uhlenbeck operator L : S → S. We denote

Γk = lnφn(Uk −
z∗,k√
n

) ∈ S (57)

and we notice that

D(k,i)Γk =
1√
n
χk∂uik lnφn(Uk −

z∗,k√
n

)

= χk∂zi(lnϕr∗/2)
(√

n(Uk −
z∗,k√
n

)
)
.

Finally, we define

−LF =
n∑
k=1

N∑
i=1

D(k,i)D(k,i)F +
n∑
k=1

N∑
i=1

D(k,i)F ×D(k,i)Γk. (58)
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Remark 3.2. The basic random variables in our calculus are Zk, k = 1, · · · , n so we precise
the way in which the differential operators act on them. Since χkZk =

√
nχkUk it follows that

D(m,j)Z
i
k = χkδm,kδi,j, (59)

LZi
k = −χk∂zi(lnϕr∗/2)

(√
n(Uk −

z∗,k√
n

)
)
. (60)

In our framework, the duality formula in Malliavin calculus reads as follows: for each F,G ∈ S

E[FLG] = E[〈DF,DG〉] = E[GLF ]. (61)

This follows immediately using the independence structure and standard integration by parts
on RN : indeed, if f, g ∈ C1

b (RN) and k ∈ {1, · · · , n}, then

N∑
i=1

E[∂uikf(Uk)∂uikg(Uk)]

=
ε∗
m∗

N∑
i=1

∫
RN

∂uikf(u)∂uikg(u)φn(u− z∗,k√
n

)du

= − ε∗
m∗

N∑
i=1

∫
RN

f(u)(∂2
uik
g(u) + ∂uikg(u)

∂uikφn(u− z∗,k√
n

)

φn(u− z∗,k√
n

)
)φn(u− z∗,k√

n
)du

= −E
[
f(Uk)

N∑
i=1

∂2
i g(Uk) + ∂uikg(Uk)∂uik lnφn(Uk −

z∗,k√
n

)
]
.

It follows that

n∑
k=1

N∑
i=1

E[D(k,i)F ×D(k,i)G]

=
1

n

n∑
k=1

N∑
i=1

E[χk∂uikf(χ, U, V )× ∂uikg(χ, U, V )]

= −E
[
f(χ, U, V )

n∑
k=1

χk

N∑
i=1

1

n
∂2
uik
g(χ, U, V ) +

1√
n
∂uikg(χ, U, V )

1√
n
∂uik lnφn(Uk −

z∗,k√
n

)
]

= −E
[
f(χ, U, V )

n∑
k=1

χk

N∑
i=1

D(k,i)D(k,i)G+D(k,i)GD(k,i)Γk

]
= E[FLG],

which is exactly (61). We have the following standard chain rule: for φ ∈ C1(Rd) and F ∈ Sd

Dφ(F ) =
d∑
j=1

∂jφ(F )DF j. (62)
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Moreover, one may prove, using (62) and the duality relation (or direct computation), that

Lφ(F ) =
d∑
j=1

∂jφ(F )LF j +
d∑

i,j=1

∂i∂jφ(F )
〈
DF i, DF j

〉
. (63)

In particular for F,G ∈ S,

L(FG) = FLG+GLF + 2 〈DF,DG〉 . (64)

We are now able to give the Malliavin integration by parts formula:

Theorem 3.1. Let F ∈ Sd and G ∈ S be such that E[(detσF )−p] < ∞ for every p > 1. We
denote γF = σ−1

F . Then for every φ ∈ C∞c (Rd) and every i = 1, · · · , d

E[∂iφ(F )G] = E[φ(F )Hi(F,G)] (65)

with
−H(F,G) = GγFLF + 〈D(GγF ), DF 〉 (66)

and

Hi(F,G) = −
d∑
j=1

Gγi,jF LF
j +D(Gγi,jF )DF j. (67)

Moreover, for every multi index α = (α1, · · · , αm) ∈ {1, · · · , d}m

E[∂αφ(F )G] = E[φ(F )Hα(F,G)] (68)

with Hα(F,G) defined by the recurrence relation H(α1,··· ,αm)(F,G) = Hαm(F,H(α1,··· ,αm−1)(F,G)).

Proof. Using the chain rule Dφ(F ) = ∇φ(F )DF we have

〈Dφ(F ), DF 〉 = ∇φ(F ) 〈DF,DF 〉 = ∇φ(F )σF .

It follows that ∇φ(F ) = γF 〈Dφ(F ), DF 〉 . Then, using (64) and the duality formula (61),

E[G∇φ(F )] = E[GγF 〈Dφ(F ), DF 〉] =
1

2
E[GγF (L(φ(F )F )− φ(F )LF − FLφ(F ))]

=
1

2
E[φ(F )(FL(GγF )−GγFLF − L(GγFF ))].

We use once again (64) in order to obtain H(F,G) in (66).

We give now estimates of the weights Hα(F,G) which appear in the above integration by parts
formulas. We will work with the norms:

|F |21,m =
∑

16|α|6m

|DαF |2, |F |2m = |F |2 + |F |21,m, (69)

and

‖F‖1,m,p =
∥∥|F |1,m∥∥p = E[|F |p1,m]1/p (70)

‖F‖m,p = ‖F‖p +
∥∥|F |1,m∥∥p.
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Proposition 3.1. For each m, q ∈ N, there exists a universal constant C > 1 (depending on
d,m, q only) such that for every multi index α with |α| 6 q and every F ∈ Sd and G ∈ S on
has

|Hα(F,G)|m 6 C(1 ∨ (detσF )−1)q(q+m+1)(1 + |F |2dq(q+m+2)
1,m+q+1 + |LF |2qm+q−1)|G|m+q. (71)

The proof is long but straightforward so we skip it. The reader may find the detailed proof
in [5] and in [3], Proposition 3.3.
We finish this section with an estimate of ‖LZi

k‖q,p :

Lemma 3.1. A. For every k = 1, · · · , n and i = 1, · · · , N , we have

E[LZi
k] = 0. (72)

B. For every q ∈ N and p > 2 there exists a constant C depending on q, p only

‖LZi
k‖q,p 6

Cm
1/p
∗

r∗
(1 + r−q∗ ) (73)

Proof. A. Using the duality relation we have E[1 × LZi
k] = E[〈D1, DZi

k〉] = 0. In order to
prove B we recall (see (60)) that

LZi
k = −χk∂zi(lnϕr∗/2)

(√
n(Uk −

z∗,k√
n

)
)
.

Let Λk,q be the set of the multi-index α = (α1, · · · , αq) such that αj = (k, ij). Notice that
for a multi-index α of length q, such that α /∈ Λk,q, we have DαLZ

i
k = 0. Suppose now that

α ∈ Λk,q and let α = (i1, · · · , iq). It follows

DαLZ
i
k = −χk∂αz ∂zi(lnϕr∗/2)

(√
n(Uk −

z∗,k√
n

)
)
.

Using (46), we obtain

‖DαLZ
i
k‖pp =

ε∗‖χk‖pp
m∗

∫
|v|6r∗

nN/2
∣∣∂αz ∂zi(lnϕr∗/2)

(√
n(u− z∗,k√

n
)
)∣∣pϕr∗/2(√n(u− z∗,k√

n
)
)
du

=
ε∗‖χk‖pp
m∗

∫
r∗/26|v|6r∗

∣∣∂αz ∂zi(lnϕr∗/2)(v)
∣∣pϕr∗/2(v)dv

6
Cq+1,pm∗

r
p(q+1)
∗

.

and then

‖LZi
k‖q,p 6 C sup

l6q
sup
α∈Λk,l

‖DαLZ
i
k‖p 6

Cm
1/p
∗

r∗
(1 + r−q∗ ).
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3.1.1 Localizaton

In the following, we will not work under P, but under a localized probability measure defined
as follows. We fix M 6 n and we consider the set

ΛM = { 1

M

M∑
k=1

χk >
m∗
2
}. (74)

Using Hoeffding’s inequality and the fact that E[χk] = m∗, it can be checked that

P(Λc
M) 6 C exp(−CMm2

∗) (75)

We consider also the localization function ϕn1/4/2, defined in (45), and we construct the random
variable

Θ = ΘM,n = 1ΛM
×

n∏
k=1

ϕn1/4/2(Zk). (76)

Since Zk has finite moments of any order, the following inequality can be shown: for every
q ∈ N there exists C such that

P(ΘM,n = 0) 6 P(Λc
M) +

n∑
k=1

P(|Zk| > n1/4) 6 C exp(−CMm2
∗) +

M4(q+1)(Z)

nq
. (77)

We define the probability measure

dPΘ =
1

E[Θ]
ΘdP. (78)

Corollary 3.1. Let F ∈ Sd and G ∈ S be such that EΘ[(detσF )−p] <∞ for every p > 1. We
denote γF = σ−1

F . Then, for every φ ∈ C∞c (Rd) and every i = 1, · · · , d

EΘ[∂iφ(F )G] = EΘ[φ(F )HΘ
i (F,G)] (79)

with
−HΘ(F,G) = GγFLF + 〈D(GγF , DF 〉+GγF 〈D ln Θ, DF 〉 (80)

and

HΘ
i (F,G) = −

d∑
j=1

Gγi,jF LF
j +D(Gγi,jF )DF j +Gγi,jF

〈
D ln Θ, DF j

〉
. (81)

And for every multi index α = (α1, · · · , αm) ∈ {1, · · · , d}m,

EΘ[∂αφ(F )G] = EΘ[φ(F )HΘ
α (F,G)], (82)

with HΘ
α (F,G) defined by the recurrence relation HΘ

(α1,··· ,αm)(F,G) = HΘ
αm

(F,HΘ
(α1,··· ,αm−1)(F,G)).

Moreover there exists an universal constant C such that for every multi index α with |α| = q

EΘ[|HΘ
α (F,G)|pm] 6 C × Cq,Θ(F,G) (83)

with

Cq,Θ(F,G) = EΘ[(1 ∨ (detσF )−1)2pq(q+m+1)]1/2

× (1 + E[|F |8pqd(q+m+2)
1,m+q+1 ]1/4 + E[|LF |8pqm+q−1]1/4)E[|G|4pm+q]

1/4. (84)
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Proof. Using (66) with G replaced by GΘ we obtain E[∂iφ(F )GΘ] = E[φ(F )H] with

H = −ΘGγFLF − 〈D(ΘGγF ), DF 〉 = ΘHi(F,G)−GγF 〈DΘ, DF 〉 .

It follows that

EΘ[∂iφ(F )G] =
1

E[Θ]
E[∂iφ(F )GΘ] =

1

E[Θ]
E[φ(F )(ΘHi(F,G)−GγF 〈DΘ, DF 〉]

= EΘ[φ(F )(Hi(F,G)−GγF 〈D ln Θ, DF 〉)].

So (79) is proved and (82) follows by recurrence. Notice that by (46) we have

EΘ[|GγF 〈D ln Θ, DF 〉 |p] 6 CEΘ[|GγFDF |p].

Then (83) follows from (71).

3.2 Markov chains

Throughout this section, n ∈ N will still be fixed and will be the number of time step between
0 and T and also the number of increments that we consider in our abstract Malliavin calculus.
We consider two sequences of independent random variables Zk ∈ RN , κk ∈ R, k ∈ N and we
assume that Zk verifies (43). We also assume that Zk has finite moments of any order and we
recall that

Mp(Z) = 1 ∨ sup
k6n

E[|Zk|p].

We construct the Rd valued Markov chain

Xn
k+1 = ψ(κk, X

n
k ,
Zk+1√
n

), k ∈ N (85)

where
ψ ∈ C∞(R× Rd × RN ;Rd) and ψ(κ, x, 0) = x. (86)

We denote
‖ψ‖1,r,∞ =

∑
06|α|6r

∑
16|β|6r−|α|

‖∂αx∂βz ψ‖∞ (87)

and, for C, r > 1 we denote

Nψ(C, r) = (1 + ‖ψ‖1,r,∞) exp(C‖ψ‖2
1,3,∞). (88)

Since |β| > 1 in the above definition, we have at least one derivative with respect to z. All
our estimates will be done in terms of ‖ψ‖1,r,∞ so we may assume without loss of generality
that

E[Zi
k] = 0, k ∈ N, i = 1, · · · , N. (89)

Indeed, if this is not true, we denote by mk = (E[Z1
k ], · · · ,E[ZN

k ]) and we work with Z̃k =

Zk −mk instead of Zk and with ψ̃(x, z) = ψ(κ, x, z +mk) instead of ψ. Since ∇zψ = ∇zψ̃ all
the results remain true.
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Remark 3.3. The reason to consider the random variables κk is the following. In the Victoir
Ninomiya scheme, at each time step k, one throws a coin κk ∈ {1,−1} and employs different
form of the function ψ according to the fact that κk is equal to 1 or to −1.

In order to simplify the notation we denote

ψk(x, z) = ψ(κk, x, z).

Our aim is to give sufficient conditions under which the above Markov chain has the regular-
ization property (36). In order to do it, we consider the following new representation of Xk.
Let us introduce some notations. We denote

Hk =
Zk√
n

= χkUk + (1− χk)Vk. (90)

Using a Taylor development of order one, we write

Xn
k+1 = Xk +

N∑
i=1

∂ziψk(X
n
k , 0)H i

k+1

+
1

2

N∑
i,j=1

H i
k+1H

j
k+1

∫ 1

0

(1− λ)∂zi∂zjψk(X
n
k , λHk+1)dλ.

We denote

aik = ∂ziψk(X
n
k , 0), bi,jk =

∫ 1

0

(1− λ)∂zi∂zjψk(X
n
k , λ

Zk+1√
n

)dλ,

and then, we write

Xn
m = x+

N∑
i=1

m−1∑
k=0

aikH
i
k+1 +

1

2

N∑
i,j=1

m−1∑
k=0

bi,jk H
i
k+1H

j
k+1. (91)

Moreover we denote by Xn
m(x) the Markov chain which starts from x (i.e. Xn

0 (x) = x) and we
denote by ∂αXn

m the derivative with respect to the starting point x. We will use the results
from the previous section for Xn

m. In order to do it we have to estimate the Sobolev norms of
Xn
m :

Theorem 3.2. For every q, q′ ∈ N with q > q′, and p > 2 there exists some constants
C > 1, l ∈ N (depending on r∗, ε∗,m∗, q, p and the moments of Z, but not on n) such that

sup
tm6T

sup
06|α|6q−q′

‖∂αxXn
m(x)‖q′,p 6 C(1 + ‖ψ‖l1,q+2,∞) exp(C‖ψ‖2

1,3,∞), (92)

sup
tm6T

‖LXn
m‖q,p 6 C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2

1,3,∞). (93)

The proof is long and technical so we postpone it to the Appendix.
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3.2.1 The Malliavin covariance matrix

We turn now to the covariance matrix. We will work under the probability PΘ defined in
(78). We recall that M 6 n are given and we have denoted ΛM = { 1

M

∑M
k=1 χk > m∗

2
}. The

localization random variable Θ = ΘM,n is defined in (76) and we have proved in (77) that, for
every q ∈ N,

P(ΘM,n = 0) 6 C exp(−CMm2
∗) +

M4(q+1)(Z)

nq
.

We also have

{Θ 6= 0} ⊂ { 1

n

M∑
k=1

χk >
m∗
2

M

n
} ∩ {|Zk| 6 n1/4, k = 1, · · · , n}. (94)

Using the computational rules for k ∈ {0, · · · ,m− 1} and m 6 n, we obtain

D(k+1,i)X
n
m = Ik,i +

m−1∑
l=k+1

JlD(k+1,i)X
n
l (95)

with

Ik,i =
1√
n
χk+1(aik +

N∑
j=1

Hj
k+1b

i,j
k +

N∑
j,q=1

Hj
k+1H

q
k+1c

i,j,q
k ) and (96)

ci,j,qk =
1√
n
χk+1

∫ 1

0

λ(1− λ)∂zi∂zj∂zqψk(X
n
k , λ

Zk+1√
n

)dλ

and the d×N dimensional matrices Jl, defined by

Jp,rl =
N∑
j=1

Jp,rl (j) +
N∑

j,q=1

Jp,rl (j, q), (97)

with

Jp,rl (j) = χk+1H
j
l+1∂xp∂zjψ

r
l (X

n
l , 0),

Jp,rl (j, q) = χk+1H
j
l+1H

q
l+1

∫ 1

0

(1− λ)∂xp∂zj∂zqψ
r
l (X

n
l , λHl+1)dλ.

We first aim to express D(k+1,i)X
n
m using the variance of constants method. We consider the

tangent flow Ym = ∇xX
n
m(x) which is the d× d dimensional matrix solution of

Ym = I +
m−1∑
l=0

JlYl, (98)

where I is the identity matrix. The explicit solution of the above equation is given by
Ym =

∏m
k=1(I + Jk). If each of the matrices I + Jk, k = 1, · · · ,m, is invertible then, Ym

is also invertible. On the set {Θ 6= 0}, we have |Hk| = |n−1/2Zk| 6 n−1/4 so that ‖Jk‖∞ :=
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supi,j6d ‖J
i,j
k ‖∞ 6 2‖ψ‖1,3,∞n

−1/4. It follows that, if ‖ψ‖1,3,∞n
−1/4 6 1

4
, then the lower eigen-

value of I + Jk is larger then 1
2
, so we have the invertibility property. We denote by Ŷm the

inverse of Ym and it is easy to check that Ŷm solves the equation:

Ŷm = I −
m−1∑
l=0

Ŷl(I + Jl)
−1Jl. (99)

The following representation of the Malliavin derivative, known as the "variance of constants
method", is given by

D(k+1,i)X
n
m = YmŶk+1Ik,i. (100)

We will use the following estimate.

Lemma 3.2. Let p > 1. There exists some constants C1 > 1, C2 > 2, and C3 > 1 which
depends on M8(Z) and ‖ψ‖1,3,∞, such that the following holds. Suppose that M and n are
sufficiently large in order to have

2‖ψ‖1,3,∞

n1/4
+
M8(Z)

n
+ C1 exp(−C1Mm2

∗) 6
1

C2

. (101)

Then
EΘ[ sup

tm6T
‖Ym‖p] + EΘ[ sup

tm6T
‖Ŷm‖p] 6 C3, (102)

with
‖Ym‖ := sup

i,j6d
|Y i,j
m |.

Proof. Step 1. We notice that on the set {Θ 6= 0} we have Hl = H l := Hl1{|Zl|6n1/4}.

Consequently Jl = J l := Jl1{|Zl+1|6n1/4} and Ŷl = Y l where Y l is the solution of the equation

Y m = I −
m−1∑
l=0

Y l(I + J l)
−1J l.

It follows that

EΘ[ sup
tm6T

‖Ŷm‖p] 6
1

E[Θ]
E[ sup

tm6T
‖Y m‖p] 6 CE[ sup

tm6T
‖Y m‖p]

, the last inequality is a consequence of (77). Indeed

E[Θ] > 1− P(Θ = 0) > 1− C exp(−CMm2
∗)−

M8(Z)

n
> 1− 1

C2

.

The last inequality is true under the hypothesis (101). So, our task is now to estimate
E[suptm6T ‖Y m‖p].
Step 2. Let

Fl = σ(χi, Ui, Vi, i = 1, · · · , l}.
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We have

|E[J
p,r

l (j) | Fl]| 6
C√
n
‖ψ‖1,2,∞E[|Zj

l+1|1{|Zl+1|>n1/4} | Fl]

6
C

n
‖ψ‖1,2,∞E[|Zj

l+1|
3] 6

C‖ψ‖1,2,∞M3(Z)

n
.

Moreover, using the Hölder inequality, we obtain

|E[J
p,r

l (j, q) | Fl]| 6
CM

1/2
4 (Z)‖ψ‖1,3,∞

n
.

Since Y l is Fl measurable, we obtain

‖E[Y lJ l | Fl]‖ 6 ‖Y l‖
CM4(Z)‖ψ‖1,3,∞

n
. (103)

Step 3. Using the above estimate we write

‖E[Y l(I + J l)
−1J l | Fl]‖ 6 ‖E[Y l((I + J l)

−1 − I)J l | Fl]‖+ ‖Y l‖
C

n
.

We write (I + J l)
−1 − I = −J l(I + J l)

−1 and we notice that, ‖(I + J l)
−1‖ 6 2 (because the

lower eigenvalue of (I + J l) is larger than 1 − C−1
2 > 1

2
). It follows that ‖Y l((I + J l)

−1 −
I)J l‖ 6 2‖Yl‖‖J l‖2 and consequently

‖E[Y l((I + J l)
−1 − I)J l | Fl]‖ 6 2‖Yl‖E[‖J l‖2 | Fl].

The same reasoning as above shows that E[‖J l‖2 | Fl] 6 C
n
M8(Z)‖ψ‖2

1,3,∞ so, finally, we obtain

‖E[Y l(I + J l)
−1J l | Fl)‖ 6

CM8(Z)‖ψ‖2
1,3,∞

n
‖Y l‖. (104)

Step 4. We are now ready to start our proof. We write

Y
i,j

m = δi,j −
m−1∑
l=0

θi,jl (105)

with
θi,jl = (Y l((I + J l)

−1J l)
i,j.

We denote
θ̂l = E[θl | Fl], θ̃l = θl − θ̂l

and we write

Y m = Mm + Am with

Mm = −
m−1∑
l=0

θ̃l, Ai,jm = δi,j −
m−1∑
l=0

θ̂i,jl .
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By (104) we have ‖nθ̂k‖ 6 C‖Y k‖ and using the triangle inequality, we deduce that

sup
tk6tm

‖Ak‖ 6 1 +
C

n

m−1∑
l=0

‖Y l‖.

So that,

E[ sup
tk6tm

‖Ak‖p]1/p 6 1 +
C

n

m−1∑
l=0

‖Y l‖p.

We notice that that
‖θ̃l‖ 6 ‖θk‖+ ‖θ̂l‖ 6

C

n1/2
‖Y l‖(|Zl+1|+ 1),

and then,

‖θ̃l‖2
p 6

CM
2/p
p (Z)

n
‖Y l‖2

p.

Moreover, Mm is a martingale so, using Burkholder’s inequality (see (144)), we have

E[ sup
tk6tm

‖Mk‖p]1/p 6 C(
m−1∑
l=0

‖θ̃l‖2
p)

1/2.

We conclude that

E[ sup
tk6tm

‖Y k‖p]1/p 6 CM1/p
p (Z)(

1

n

m−1∑
l=0

‖Y l‖2
p)

1/2.

Now, we are going to use the Gronwall’s lemma. We put Ql = ‖Y l‖2, so that, ‖Y l‖2
p = ‖Ql‖p/2.

It follows that

E[ sup
tk6tm

Q
p/2
k ]1/p 6 C + (

C

n

m−1∑
l=0

‖Ql‖p/2)1/2,

which gives,

‖ sup
tk6tm

Qk‖p/2 6 C +
C

n

m−1∑
l=0

‖Ql‖p/2 6 C +
C

n

m−1∑
l=0

‖sup
tk6tl

Qk‖p/2.

Then, by Gronwall’s lemma,

‖ sup
tk6tm

Qk‖p/2 6 CeC ,

where C depends on ‖ψ‖1,3,∞ and the moments of Z. The estimate of EΘ[‖Ym‖p] is similar
but simpler, so we leave it out.

We have the following estimate for the covariance matrix of Xn
m :
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Proposition 3.2. Suppose that there exists λ∗ > 0 such that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈∂ziψ(κ, x, 0), ξ〉2 > λ∗ (106)

Assume also that M and n are sufficiently large in order that (101) holds and that

n1/2 >
2N+4

λ∗
‖ψ‖2

1,3,∞. (107)

Let σXn
M

be the Malliavin covariance matrix of Xn
M defined in (55). There exists a universal

constant C such that
EΘ[(detσXn

M
)−p]1/p 6 C

C2
3

λ∗m∗

n

M
. (108)

with C3 defined in (102).

Proof. By (100), σXn
m

= YM σ̂Y
∗
M , with σ̂ =

∑M
k=1(ŶkIk−1) × (ŶkIk−1)∗ so that detσXn

M
=

(detYM)2 det σ̂. It follows that

EΘ[(detσXn
M

)−p] 6 EΘ[(detYM)−4p]1/2EΘ[(det σ̂)−2p]1/2.

Since (detYM)−1 = det ŶM , we use (102) and we obtain EΘ[(detYM)−4p]1/2 6 C3. We estimate
now the lower eigenvalue of σ̂ given by

λ̂ = inf
|ξ|=1

M∑
k=1

N∑
i=1

〈
(ŶkIk−1,i)× (ŶkIk−1,i)

∗ξ, ξ
〉

= inf
|ξ|=1

M∑
k=1

N∑
i=1

〈
(Ik−1,iIk−1,i)

∗Ŷ ∗k ξ, Ŷ
∗
k ξ
〉
. (109)

Recall that, Ik,i is given in (96):

Ik,i =
1√
n
χk+1(aik +

N∑
j=1

Hj
k+1b

i,j
k +

1√
n

N∑
j=1

Hj
k+1H

q
k+1c

i,j,q
k ).

Then, for η ∈ Rd and k ∈ {0, · · · ,M − 1} we have

N∑
i=1

〈(Ik,iIk,i)∗η, η〉 =
N∑
i=1

〈Ik,i, η〉2

>
1

2n

N∑
i=1

χk+1 〈ak, η〉2

−2N

n

N∑
i,j=1

χk+1

〈
Hj
k+1b

i,j
k , η

〉2 − 2N

n

N∑
i,j,q=1

χk+1

〈
Hj
k+1H

q
k+1c

i,j,q
k , η

〉2
.

Since we are on the set {Θ 6= 0}, we have supk∈{1,·,n−1} |Hk| 6 n−1/4. We also have |bi,jk | +
|ci,j,qk | 6 2‖ψ‖1,3,∞, for all k ∈ {0, · · · , n− 1}, so that

|
〈
Hj
k+1b

i,j
k , η

〉
|+ |

〈
Hj
k+1H

q
k+1c

i,j,q
k , η

〉
| 6 2

n1/4
‖ψ‖1,3,∞|η|.
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Moreover by our hypothesis (106)

N∑
i=1

〈
aik, η

〉2
=

N∑
i=1

〈∂ziψk(Xn
k , 0), η〉2 > λ∗|η|2.

Using (107), we have λ∗
2
− 2N+2‖ψ‖21,3,∞

n1/2 > λ∗
4
, and we obtain

N∑
i=1

〈(Ik,iIk,i)∗η, η〉 >
χk+1

n
(
λ∗
2
−

2N+2‖ψ‖2
1,3,∞

n1/2
)|η|2 > χk+1

1

4n
λ∗|η|2

We come back to (109) and we take η = Ŷ ∗k ξ. Since on the set {Θ 6= 0} we have 1
M

∑M
k=1 χk >

1
2
m∗, it follows that

λ̂ >
λ∗
4

1

n
inf
|ξ|=1

M∑
k=1

χk‖Ŷ ∗k ξ‖2 >
λ∗
4n

M∑
k=1

χk inf
|ξ|=1
‖Ŷ ∗k ξ‖2

>
λ∗m∗M

8n
min

k=1,··· ,n
inf
|ξ|=1
‖Ŷ ∗k ξ‖2 >

λ∗m∗M

8n
( sup
k=1,··· ,n

‖Yk‖)−2

Since we have (101), (102) follows and we conclude that

EΘ[λ̂−p]1/p 6
8n

λ∗m∗M
EΘ[sup

tk6T
‖Yk‖2p]1/p 6 C

C2
3n

λ∗m∗M
.

3.2.2 The regularization property

We still fix n and we consider the Markov chain Xn
M ,M ∈ N, defined in (85). We also recall

that ΘM,n is defined in (76) and we introduce

PΘ,n
M f(x) := EΘM,n

[f(Xn
M(x))] =

1

E[ΘM,n]
E[ΘM,nf(Xn

M(x))], M ∈ N. (110)

Notice that PΘ,n
M ,M ∈ N, is not a semigroup, but this is not necessary. We will not be able

to prove the regularization property for P n
M but for PΘ,n

M .

Proposition 3.3. A.Assume that (106) holds true. There exists some constants C1 > 1, C2 >
2 such that the following holds: suppose that n and M are sufficiently large in order to have
(101) :

2‖ψ‖1,3,∞

n1/4
+
M8(Z)

n
+ C1 exp(−C1Mm2

∗) 6
1

C2

,

and (107).Then for every q ∈ N and multi index α, β with |α| + |β| 6 q, there exists l ∈ N∗
and C which depends on m∗, r∗ and Ml(Z) such that

‖∂αPΘ,n
M ∂βf‖∞ 6 Cψ,l‖f‖∞

( Cn

λ∗m∗M

)q with (111)

Cψ,l = C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2
1,3,∞).
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In particular, PΘ,n
M (x, dy) = pΘ,n

M (x, y)dy with (x, y) 7→ pΘ,n
M (x, y), a function that belongs to

C∞(Rd × Rd).
B. For every l ∈ N there exists C > 1 such that

‖P n
Mf − P

Θ,n
M f‖∞ 6 ‖f‖∞(C exp(−CMm2

∗) +
M4(l+1)(Z)

nl
). (112)

Remark 3.4. Recall that tM = MT
n
. Then (111) means that the strong regularization property

Rq,η, with η = 1, holds for PΘ,n
M .

Proof. We fix M and n, and we denote Θ = ΘM,n.
A. We have

∂αP
Θ,n
M ∂βf(x) =

1

E[Θ]

∑
|β|6|γ|6q

EΘ[∂γf(Xn
M(x))Qγ(X

n
M)], (113)

where Qγ(X
n
m) is a universal polynomial of ∂ρxXn

m(x), 0 6 |ρ| 6 |α|. Using the integration by
parts formula (79) and the estimate (83) we obtain

|EΘ[∂γf(Xn
M(x))Qγ(X

n
M(x))]| = |EΘ[f(Xn

M(x))HΘ
γ (Xn

M(x), Qγ(X
n
M(x))]| (114)

6 ‖f‖∞EΘ[|HΘ
γ (Xn

m(x), Qγ(X
n
M(x))|]

6 ‖f‖∞ × A1 × A2 × A3

with

A1 = 1 ∨ EΘ[((detσXn
M (x))

−1)2q]1/2

A2 = 1 + E[|Xn
M(x)|16qd

1,q+2]1/4 + E[|LXn
M(x)|4qq ]1/4

A3 = E[|Qγ(X
n
M(x))|4q]1/4.

Using the results from Theorem 3.2, we obtain

A2 × A3 6 C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2
1,3,∞).

We use now (108) and we obtain

A1 = EΘ[(detσXn
M (x))

−2q]1/2 6 C

(
C2

3n

λ∗m∗M

)q
.

So we have proved that

|∂αPΘ,n
M ∂βf(x))| 6 C

(
n

λ∗m∗M

)q
(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2

1,3,∞).

B. We have

|P n
Mf(x)− PΘ,n

M f(x)| 6 |P n
Mf(x)||1− 1

E[Θ]
|+ 1

E[Θ]
|E[f(Xn

m)(1−Θ)]|

6 2‖f‖∞
E[|1−Θ|]

E[Θ]
6 2‖f‖∞

P(Θ = 0)

1− P(Θ = 0)
.

By (77) we have, for every l ∈ N, P(Θ = 0) 6 C exp(−CMm2
∗) +M4(l+1)(Z)n−l.
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We give now an alternative way to regularize the semigroup P n
k (by convolution). We consider

a d dimensional standard normal random variable G which is independent from Zk, k ∈ N,
and for θ > 0, we introduce

Xθ,n
k (x) =

1

nθ
G+Xn

k (x). (115)

We denote by pθ,nk (x, y) the density of the law of Xθ,n
k (x) and we define

P θ,n
k f(x) := E[f(

1

nθ
G+Xn

k (x))]. (116)

Corollary 3.2. Under the hypothesis of the previous proposition we have:
A. For every multi index α, β with |α|+ |β| 6 q, and every q′ ∈ N∗, there exists C, l > 1 such
that

‖∂αP θ,n
M ∂βf‖∞ 6 ‖f‖∞C

(
Cψ,l(

n

λ∗m∗M
)q + nqθ/2(exp(−CMm2

∗) +
M4(q′+1)(Z)

nq′
)
)

(117)

with Cψ,l given in (111).
B. For every q′ ∈ N∗, there exists C, l > 1, such that

‖P n
Mf(x)− P θ,n

M f(x)‖∞ 6
1

nθ
Cψ,l‖f‖∞

Cn

λ∗m∗M
+ 2‖f‖∞(C exp(−CMm2

∗) +
M4(q′+1)(Z)

nq′
).

(118)

Proof. We fix M and n, and we denote Θ = ΘM,n.
A. As in (113), we write

∂αP
θ,n
M ∂βf(x) =

∑
|β|6|γ|6q

E[(∂γf)(n−θG+Xn
M(x))Qγ(X

n
M(x))],

where Qγ(X
n
m) is a universal polynomial of ∂ρxXn

m(x), 0 6 |ρ| 6 |α|. We decompose

E[(∂γf)(n−θG+Xn
M(x))Qγ(X

n
M(x))] = I + J

with

I = E[Θ]EΘ[∂γf(n−θG+Xn
M(x))Qγ(X

n
M(x))],

J = E[∂γf(n−θG+Xn
M(x))Qγ(X

n
M(x))(1−Θ)].

The reasoning from the previous proof shows that

I 6 Cψ,l‖f‖∞
( Cn

λ∗m∗M

)q
.

And since G follows the standard normal law, standard integration by parts give

|J | 6 Cn|γ|θ/2‖f‖∞E[1−Θ] 6 Cn|γ|θ/2‖f‖∞(exp(−CMm2
∗) +

M4(q′+1)(Z)

nq′
)
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the last inequality being a consequence of (77).
B. Let q′ ∈ N∗. Using (77) and (111), there exists C, l > 1 such that

|P n
Mf(x)− P θ,n

M f(x)| 6 E[Θ]|EΘ[f(Xn
M(x))− f(Xn

M(x) + n−θG)]|+ 2‖f‖∞E[1−Θ]

6 n−θ
d∑
j=1

∫ 1

0

|E[∂jf(Xn
M(x) + λn−θG)Gj]|dλ+ 2‖f‖∞E[1−Θ]

6 n−θCψ,l‖f‖∞
Cn

λ∗m∗M
+ 2‖f‖∞(C exp(−CMm2

∗) +
M4(q′+1)(Z)

nq′
).

3.3 Approximation result

In this section we give the approximation result for a Markov semigroup (Pt)t>0. For T > 0 and
n ∈ N, we denote δn = 1

n
, tk = kTδn and µnk(x, dy) = PTδn(x, dy) for all k ∈ N. We consider

now an approximation scheme based on the Markov chain introduced in the previous section.
So we consider two sequences of independent random variables Zk ∈ RN , κk ∈ R, k ∈ N. We
assume that Z1, · · · , Zn verifies (43) and have finite moments of any order: for every p > 1,

Mp(Z) = 1 ∨ sup
k6n

E[|Zk|p] <∞. (119)

Moreover, we take ψ ∈ C∞(R × Rd × RN ;Rd) such that ψ(κ, x, 0) = x and we construct
Xn
k+1(x) = ψ(κk, X

n
k (x), Zk+1√

n
) with Xn

0 (x) = x. We denote νnk+1(x, dy) = P(Xn
k+1 ∈ dy |

Xn
k = x) and we construct the discrete semigroup P n

k+1 = νnk+1P
n
k . We recall that the notation

‖ψ‖1,r,∞ is introduced in (87) and we assume that, for every r ∈ N,

‖ψ‖1,r,∞ <∞. (120)

We also assume that there exists λ∗ > 0 such that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈∂ziψ(κ, x, 0), ξ〉2 > λ∗. (121)

Now we are able to prove our main result.

Theorem 3.3. A. Consider a Markov semigrop Pt, t > 0, and the approximation Markov
chains P n

k , k ∈ N, defined above. We fix 0 < S 6 T/2, p ∈ N and h > 0, and we assume
that (20) holds for P and that (32), (33), (34), (119), (120) and (121) hold for this p and h,
and for every n ∈ N. There exists l, n∗ ∈ N and C which depends on ‖ψ‖1,p+3,∞, m∗, r∗ and
Ml(Z) such that, for n > n∗, we hace

sup
2S6tk6T

‖Ptkf − P n
k f‖∞ 6

C

S p
‖f‖∞

1

nh
. (122)

B. Moreover, for every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y)→ pt(x, y) belonging to C∞(Rd×
Rd).
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C. We recall the PΘ,n
k is defined in (110) and verifies PΘ,n

k (x, dy) = pΘ,n
k (x, y)dy. For every

R, ε > 0 and every multi-index α, β we have

sup
2S6tk6T

sup
|x|+|y|6R

|∂αx∂βy ptk(x, y)− ∂αx∂βy p
Θ,n
k (x, y)| 6 C

nh(1−ε) , (123)

with a constant C which depends on R, S, ε and on |α|+ |β| (and may go to infinity as ε ↓ 0).
D. Let θ > h+1. We recall the P θ,n

k is defined in (116) and verifies P θ,n
k (x, dy) = pθ,nk (x, y)dy.

For every R, ε > 0 and every multi-index α, β we have

sup
2S6tk6T

sup
|x|+|y|6R

|∂αx∂βy ptk(x, y)− ∂αx∂βy p
θ,n
k (x, y)| 6 C

nh(1−ε) (124)

Proof. A-B. We use Proposition 2.3: we have proved in Proposition 3.3 that PΘ,n
k verifies

the regularization properties. The proof of (122) and (123) is an immediate consequence of
Theorem 2.1. C. In order prove (124) one employs Corollary 3.2 instead of Proposition 3.3.

Remark 3.5. The simulation of an approximation scheme given by PΘ,n may be cumbersome,
so the estimate obtained in (123) is not very useful. This is why we propose the regularized
scheme Xθ,n

k which is easier to simulate.

4 The Ninomiya Victoir scheme
We illustrate this theorem when Xn is the Ninomiya Victoir scheme for a diffusion process.
This is a variant of the result already obtained by Kusuoka [22] in the case where Zk has
a Gaussian distribution (and so the standard Malliavin calculus is available). Since in our
paper Zk has an arbitrary distribution (except the property (43)) our result may be seen as
an invariance principle as well. We consider the d dimensional diffusion process

dXt =
N∑
i=1

Vi(Xt) ◦ dW i
t + V0(Xt)dt (125)

with V0, Vi ∈ C∞b (Rd;Rd), i = 1, · · · , N and W = (W 1, · · · ,WN) a Brownian motion and
◦dW i

t denotes the Stratonovich integral with respect to W i. The infinitesimal operator of this
Markov process is

A = V0 +
1

2

N∑
k=1

V 2
k (126)

with the notation V f(x) = 〈V (x),∇f(x)〉. Let us define exp(V )(x) := ΦV (x, 1) where ΦV

solves the deterministic equation

ΦV (x, t) = x+
∫ t

0
V (ΦV (x, s))ds. (127)

By a change of variables one obtains ΦεV (x, t) = ΦV (x, εt) so we have

exp(εV )(x) := ΦεV (x, 1) = ΦV (x, ε).
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We also notice that the semigroup of the above Markov process is given by P V
t f(x) =

f(ΦV (x, t)) and has the infinitesimal operator AV f(x) = V f(x). In particular the relation
P V
t AV = AV P

V
t reads

V f(ΦV (x, t)) = AV P
V
t f = P V

t AV f = 〈V (x),∇x (f(ΦV (x, t))〉 .

Using m times Dynkin’s formula P V
t f(x) = f(x) +

∫ t
0
P V
s AV f(x)ds we obtain

f(ΦV (x, t))) = f(x) +
m∑
r=1

tr

r!
V rf(x) +

1

m!

∫ t

0

(t− s)mV m+1P V
s f(x)ds. (128)

We present now the Ninomiya Victoir scheme. We consider a sequence ρk, k ∈ N of inde-
pendent Bernoulli random variables and we define ψk : Rd × RN+1 → Rd in the following
way

ψk(x,w) = exp(w0V0) ◦ exp(w1V1) ◦ · ◦ exp(wNVN) ◦ exp(w0V0)(x), if ρk = 1, (129)
ψk(x,w) = exp(w0V0) ◦ exp(wNVN) ◦ · ◦ exp(w1V1) ◦ exp(w0V0)(x), if ρk = −1. (130)

Here w = (w0, w1, · · · , wN). with w0
k = T/2n, wik =

√
TZi

k/
√
n, for i = 1, · · · , N . Moreover

Zi
k, i = 1, · · · , d, k ∈ N are independent random variables which verify (43) and moreover

satisfy the following moment conditions:

E[Zi
k] = E[(Zi

k)
3] = 0, E[(Zi

k)
2] = 1, E[(Zi

k)
4] = 6. (131)

In the original paper of Ninomiya Victoir, the random variables Zi
k are standard normal

distributed, and then verify (43). The new point here is that we do not require that Zk follows
this particular law anymore but only the weaker assumptions (43) and (131). We also denote
tk = Tk/n. One step of our scheme is given by

Xn
k+1 = ψk(X

n
k , wk+1). (132)

We have the first following result.

Theorem 4.1. Suppose that Vi ∈ C∞b (Rd;Rd), i = 0, · · · , N . There exists some universal
constants C, q > 1 such that for every f ∈ C6

b (Rd) one has

sup
tk6T
|E[f(Xtk))− E[f(Xn

k )]| 6 C

n2
C6(N+1)(V )‖f‖6N,∞ (133)

with Ck(V ) := supi=0,·,N ‖Vi‖k,∞.

Remark 4.1. A slightly more precise estimate has already been proved by Alfonsi [1] : he
obtained (133) with ‖f‖6,∞ instead of ‖f‖6N,∞. Since in the following Theorem we will replace
it by ‖f‖∞, the estimate in (133) is sufficient for us (and the proof is simpler).

Under an ellipticity condition we are able to give an estimate of the total variation distance
between a diffusion process of the form (125) and its Ninomiya Victoir scheme.
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Theorem 4.2. Suppose that Vi ∈ C∞b (Rd;Rd), i = 0, · · · , N , and moreover

N∑
i=1

〈Vi(x), ξ〉2 > λ∗ > 0 ∀x ∈ Rd. (134)

Then for every 0 < S 6 T/2 and every bounded and measurable function f : Rd → R

sup
2S6tk6T

|E[f(Xtk)]− E[f(Xn
k )]| 6 C

S1/2

1

n2
‖f‖∞ . (135)

Remark 4.2. This estimate has already been proved by Kusoucka [22] (with a different ap-
proach). He considers a much more general non degeneracy assumptions (of Hörmander type)
and uses Malliavin calculus in order to prove his result. Here the noise Zi

k is no more Gaus-
sian so the standard Malliavin calculus does not work anymore, but, since we have the property
(43), we may use the abstract integration by parts formula introduced in the first section.

Proof of Theorem 4.1. In order to simplify the notation, we fix T = 1 without loss of gener-
ality. We denote

Tif(x) = f(exp(
Zi

√
n
Vi)(x)) i = 1, · · · , N

= f(exp(
1

2n
V0)(x)) i = 0 and i = N + 1.

Notice that, with the notation introduced in the beginning of this section, Tif(x) = PUi
1 f(x)

with Ui = n−1/2ZiVi, i = 1, · · · , N . so that, using (128) with t = 1 and V = Ui we obtain

Tif(x) = f(x) +
m∑
r=1

(Zi)r

nr/2
1

r!
V r
i f(x) +

(Zi)m+1

n(m+1)/2
Rm,if(x) (136)

with

Rm,if(x) =
1

m!

∫ 1

0

(1− s)mV (m+1)
i PUi

s f(x)))ds (137)

and we recall that PUi
s f(x) = f(exp( sZ

i
√
n
Vi)). For i = 0 or N+1, we have a similar development

with U0 = UN+1 = 1
2n
V0. Our aim is to give a development of order 3 (with respect to T ) for

E[T0T1 · · · .TN+1f(x)] (see (138) bellow). We replace each Ti with the development of order
m = 5 given above and calculate the products. All the terms containing 1

nr , r > 3 go in the
remainder. Moreover one notices that E[(Zi)r] = 0 for odd r so a lot of terms cancel. Finally
E[(Zi)2] = 1 and E[(Zi)4] = 6 and this permits to achieve the computation and to obtain:

E[T0T1 · · · .TN+1f(x)] (138)

= f(x) +
1

n
(V0f(x) +

1

2

N∑
i=1

V 2
i f(x)) +

1

2n2
V 2

0 f(x) +
1

8n2

N∑
i=1

V 4
i f(x)

+
1

4n2

∑
i<j

V 2
i V

2
j f(x) +

1

4n2

N∑
i=1

(V0V
2
i f(x) + V 2

i V0f(x)) +
1

n3
Rf(x).
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The remainder R is a sum of terms of the following form:

C

n|α|−3
T0,α0T1,α1 · · ·TN+1,αN+1

f(x) (139)

with α = (α0, · · · , αN+1) ∈ {1, · · · , 6}N+2, |α| = α0 + · · ·+αN+1 and for all i ∈ {0, · · · , N+1},

Ti,k = V k
i , k = 1, · · · , 5, (140)

=

∫ 1

0

(1− s)5V 6
i P

Ui
s f(x)))ds k = 6.

It is easy to check that for every g ∈ Ck+p(Rd), one has

‖Ti,kg‖p,∞ 6 CCq
k+p(V )‖g‖k+p,∞

for some constants C, q > 1. So

‖Rf‖∞ 6 CCq
6(N+1)(V )‖f‖6(N+1),∞. (141)

We turn now to the diffusion process Xt. We have the development

E[f(Xt(x))] = f(x) + tAf(x) +
1

2
t2A2f(x) +

t3

6
R′tf(x).

with

R′tf(x) = t−1

∫ t

0

PsA
3f(x)(1− s

t
)2ds. (142)

We take t = δ and we compute Af and A2f. Then we make the difference between (142) and
(138). All the terms cancel except for the remainders so we obtain

∀k ∈ {0, · · · , n− 1}, E[f(Xtk+δ(x))]− E[f(Xn
k+1) | Xtk = Xn

k = x] = δ3(
1

6
R′δf(x)−Rf(x)).

We clearly have ‖R′f‖∞ 6 C × Cq
6(V )‖f‖6,∞. This together with (141) proves that the hy-

pothesis (21) is verified. So (133) is a consequence of Proposition 2.1 with p = 6(N + 1) and
constant C × Cq

6(V ).

Proof of Theorem 4.2. This will be a consequence of Theorem 3.3 as soon as we check that
the ellipticity assumption (106) holds true. We fix k and we look at ψk(x,w) defined in (130).
We supose that ρk = 1 (the proof for ρk = −1 is similar). We denote w = (w1, · · · , wN} and
Tk = k and we consider the process xt(w), 0 6 t 6 TN+2 solution of the following equation:

xt(w) = x+
1

2n

∫ t

T0

V0(xs(w))ds, T0 6 t 6 T1,

xt(w) = xTk(w) + wk

∫ t

Tk

Vk(xs(w))ds, Tk 6 t 6 Tk+1, k = 1, · · · , N,

xt(w) = xTN+1
(w) +

1

2n

∫ t

TN+1

V0(xs(w))ds, TN+1 6 t 6 TN+2.



5 SOBOLEV NORMS 33

Then, ψk(x,w) = xTN+2
(w) and consequently for r ∈ {1, · · · , N}, we have ∂wrψk(x,w) =

∂wrxTN+2
(w). Moreover ∂wrxt(w) = 0 for t 6 Tr and

∂wrxt(w) = ∂wrxTr+1(w) +
N+1∑
i=r+1

wi

∫ Ti+1∨t

Ti∨t
∇Vi(xs(w))∂wrxs(w)ds,

for t > Tr+1, in particular for t = TN+1. For Tr < t 6 Tr+1, ∂wrxt(w) solves the equation

∂wrxt(w) =

∫ t

Tr

Vr(xs(w))ds+ wr

∫ t

Tr

∇Vr(xs(w))∂wrxs(w)ds.

It follows that

∂wrxt(w) |w=0=

∫ t

Tr

Vr(xs(0))ds = Vr(xT1(0))(t− Tr).

Notice that Tr+1 − Tr = 1. Then, we have

∂wrxTN+1
(w) |w=0= ∂wrxTr+1(w) |w=0= Vr(xT1(0)).

and then, by (134),

N∑
r=1

〈∂wrxTN+1
(0), ξ〉2 > λ∗|ξ|2.

Notice that

|∇zψk(x, 0)− ∂wrxTr+1(0)| = |∂wrxTr+2(0)− ∂wrxTr+1(0)|

6
C

n
C2(V ).

So, for n sufficiently large, we obtain

N∑
r=1

〈∂wrxTN+2
(0), ξ〉2 > λ∗

2
|ξ|2.

5 Sobolev Norms
We consider a separable Hilbert space U , we denote |a|U the norm of U and, for a random
variable F ∈ U, we denote ‖F‖U,p = (E[|F |pU)]1/p. Moreover we consider a martingale Mn ∈
U, n ∈ N and we recall Burkholder’s inequality in this framework: for each p > 2 there exists
a constant bp > 1 such that

∀n ∈ N, ‖Mn‖U,p 6 bpE[(
n∑
k=1

|Mk −Mk−1|2U)p/2]1/p. (143)
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As an immediate consequence

‖Mn‖U,p 6 bp(
n∑
k=1

‖Mk −Mk−1‖2
U,p)

1/2. (144)

Indeed

‖Mn‖2
U,p 6 b2

pE[(
n∑
k=1

|Mk −Mk−1|2U)p/2]2/p = b2
p‖

n∑
k=1

|Mk −Mk−1|2U‖p/2

6 b2
p

n∑
k=1

‖|Mk −Mk−1|2U‖p/2 = b2
p

n∑
k=1

‖Mk −Mk−1‖2
U,p.

We consider the scheme defined in the previous sections (see (91)) :

Xn
k+1 = Xn

k +
N∑
i=1

H i
k+1a

i
k(X

n
k ) +

1

2

N∑
i,j=1

H i
k+1H

j
k+1b

i,j
k (Xn

k , Hk+1) (145)

with Hk = n−1/2Zk and

aik(x) = ∂ziψ(κk, x, 0), bi,jk (x, z) =

∫ 1

0

(1− λ)∂zi∂zjψ(κk, x, λz)dλ.

We also denote

Ak =
N∑
i=1

H i
k+1∇xa

i
k(Xk) +

1

2

N∑
i,j=1

H i
k+1H

j
k+1∇xb

i,j
k (Xk, Hk+1).

Notice that Xk, a
i
k, b

i,j
k ∈ Rd and Ak is a d× d dimensional matrix.

Our aim is to obtain estimates of the Sobolev norms of Xk. Before doing it, we give some
abstract estimates. As before, U is a separable Hilbert space. We say that, a U valued
random variable F belongs to S(U) if for every h ∈ U we have 〈h, F 〉 ∈ S (see (53)) and we
define DF by 〈h,DF 〉 = D 〈h, F 〉 . Then, we define the norms (see (69) and (70))

|F |2U,m =
∑

06|α|6m

|DαF |2U , ‖F‖U,m,p =
∥∥|F |U,m∥∥p = (E[|F |mU,m)]1/p.

The Hilbert space U being given, we denote V = Ud (recall that Xn
k ∈ Rd so, in this case,

U = R and V = Rd). We consider now some processes (αk)k∈N, (βk)k∈N, (Γk)k∈N with αk =
(α1

k, · · · , αNk ) ∈ V N , βk = (β1
k , · · · , βNk ) ∈ V N , Γk ∈ V. We assume that αik = αik(Z1, · · · , Zk)

and 〈h, αik〉 ∈ C∞b (RkN) for every h ∈ V, i = 1, · · · , N (we recall that Zk ∈ RN). So αk ∈ S(V ).
The same is assumed on βk and Γk. We look at a process Yk ∈ V = Ud, k ∈ N which satisfies
the equation

Ym = Y0 +
m−1∑
k=0

AkYk +
N∑
i=1

m−1∑
k=0

H i
k+1α

i
k +

N∑
i=1

m−1∑
k=0

LH i
k+1β

i
k + Γm. (146)
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Notice that we do not discuss about existence and uniqueness of the solution of such an
equation. We just suppose that, the process Y at hand satisfies this equation (which naturally
appears in our calculus). Our aim is to estimate the Sobolev norms of Ym. Let q ∈ N and
p > 2. We denote

Cq,p(α, β,Γ) = sup
06m6n−1

sup
i=1,·,N

(1 + ‖αim‖V,q,p + ‖βim‖V,q,p + ‖Γm+1‖V,q,p) (147)

Proposition 5.1. For every q ∈ N and p > 2 there exists some constants C > 1, l ∈ N
(depending on q and p) such that

sup
m6n
‖Ym‖V,q,p 6 C(M

1/l
l (Z) +

m
1/l
∗

r∗
(1 + r−q∗ ))lM

1/l
l (Z)N l

ψ(CM
4/l
l (Z), q+ 2)Cq,l(α, β,Γ). (148)

with Nψ(C, l) and Ml(Z) defined in (88) and (44).

Proof. Step 1. Let q = 0, so that ‖Ym‖V,q,p = ‖Ym‖V,p. We will check that

sup
m6n
‖Ym‖V,p 6 C(M1/p

p (Z) +
m

1/p
∗

r∗
)C0,p(α, β,Γ) exp(CM

2/p
2p (Z)‖ψ‖2

1,3,∞). (149)

We study the terms which appear in the right hand side of (146). Notice that βik is σ(Z1, · · · , Zk)
measurable and E[LH i

k+1] = 0 (see (72)). It follows that,Mm =
∑m−1

k=0 LH
i
k+1β

i
k is a martingale

and consequently, by (144)

‖Mm‖V,p 6 bp(
m−1∑
k=0

‖LH i
kβ

i
k‖2

V,p)
1/2.

Since LH i
k and βik are independent, using (73) we obtain

‖LH i
kβ

i
k‖2

V,p = ‖LH i
k‖2

p‖βik‖2
V,p 6

Cm
2/p
∗

r2
∗

1

n
‖βik‖2

V,p.

We conclude that

sup
m6n
‖Mm‖V,p 6

C

r∗
(
1

n

n−1∑
k=0

‖βik‖2
V,p)

1/2 6
Cm

1/p
∗

r∗
sup
k6n−1

‖βik‖V,p.

Since H i
k+1 is independent of αik and E[H i

k] = 0, it follows that Mm =
∑m−1

k=0 H
i
k+1α

i
k is a

martingale. We have ‖H i
k‖p 6 n−1/2M

1/p
p (Z) so the same reasoning as above proves that the

previous inequality holds for Mm (with m1/p
∗ r−1

∗ replaced by M1/p
p (Z) and ‖βik‖V,p replaced by

‖αik‖V,p).
We use the same reasoning for Mm =

∑m−1
k=0 H

i
k∇xa

i
k(Xk))Yk ∈ V and we obtain

‖Mm‖V,p 6 bp(
m∑
k=1

‖H i
k+1∇xa

i
k(X

n
k ))Yk‖2

V,p)
1/2 6 CM1/p

p (Z)‖ψ‖1,2,∞(
1

n

m∑
k=1

‖Yk‖2
V,p)

1/2.
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Finally, using the triangle inequality

‖
m−1∑
k=0

H i
k+1H

j
k+1∇xb

i,j
k (Xn

k , Hk+1)Yk‖V,p 6
m−1∑
k=0

‖H i
k+1H

j
k+1∇xb

i,j
k (Xn

k , Hk+1)Yk‖V,p

6 CM
1/p
2p (Z)‖ψ‖1,3,∞

1

n

m−1∑
k=0

‖Yk‖V,p.

We gather all the terms and we obtain

‖Ym‖V,p 6 ‖Y0‖V,p + CM
1/p
2p (Z)‖ψ‖1,3,∞(

1

n

m−1∑
k=0

‖Yk‖2
V,p)

1/2

+C(M1/p
p (Z) +

m
1/p
∗

r∗
) sup
k6n−1

(‖αik‖V,p + ‖βik‖V,p) + ‖Γm‖V,p

Using Gronwall’s lemma we obtain (149).
Step 2. Let

H = {h : {1, · · · , n} × {1, · · · , N} → R : |h|2H =
n∑
k=1

N∑
i=1

h2(k, i) <∞}.

so that DXn
m ∈ Hd. We prove that

sup
m6n
‖DXn

m‖Hd,p 6 C(M1/p
p (Z) +

m
1/p
∗

r∗
)M1/p

p (Z)‖ψ‖1,3,∞ exp(CM
2/p
2p ‖ψ‖2

1,3,∞). (150)

For h ∈ H we denote

DhF = 〈DF, h〉 =
n∑
k=1

N∑
i=1

h(k, i)Dk,iF.

Since
Dr,jH

i
k =

1√
n
δr,kδj,iχk,

we use (145) to obtain

DhX
n
k+1 = DhX

n
k + AkDhX

n
k +

1√
n

N∑
i=1

χkh(k + 1, i)aik(X
n
k )

+
1√
n

∑
i6j

χkh(k + 1, i)Hj
k+1b

i,j
k (Xn

k , Hk+1)

+
1√
n

∑
i6j

χk+1H
i
k+1H

j
k+1

〈
∇zb

i,j
k (Xn

k , Hk+1), h(k + 1, ◦)
〉
.
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Iterating this formula over k we obtain

DhX
n
m =

m−1∑
k=0

AkDhX
n
k +

2√
n

N∑
i=1

m−1∑
k=0

χk+1h(k + 1, i)aik(X
n
k )

+
1√
n

N∑
i,j=1

m−1∑
k=0

χk+1H
j
k+1

(
h(k + 1, i)bi,jk (Xn

k , Hk+1) +H i
k+1

N∑
l=1

∂zlb
i,j
k (Xn

k , Hk+1)h(k + 1, l)
)

=
m−1∑
k=0

AkDhX
n
k + 〈h,Γm〉

with Γm(k, i) = 0 for k > m and, for k 6 m

Γm(k, i) =
χk√
n

(
aik(X

n
k−1) +

N∑
j=1

Hj
kb
i,j
k (Xn

k−1, Hk) +
∑

16j,l6N

Hj
kH

l
k∂zib

l,j
k (Xn

k−1, Hk)
)
.

One has

|Γm|2H =
n∑

k=m

N∑
i=1

|Γm(k, i)|2 6 N‖ψ‖2
1,3,∞

1

n

n∑
k=1

(1 + |Zk|2)

so, using (149) (with V = Hd, αk = βk = 0), we obtain

sup
m6n
‖DXn

m‖Hd,p 6 C(M1/p
p (Z) +

m
1/p
∗

r∗
) sup
m6n
‖Γm‖H×U,p exp(CM

2/p
2p ‖ψ‖2

1,3,∞)

6 C(M1/p
p (Z) +

m
1/p
∗

r∗
)M1/p

p (Z)‖ψ‖1,3,∞ exp(CM
2/p
2p ‖ψ‖2

1,3,∞).

Step 3. We estimate the derivatives of Ym, solution of (146). We have

DYm = AkDYm +
N∑
i=1

m−1∑
k=0

H i
k+1α

i
k +

N∑
i=1

m−1∑
k=0

LH i
k+1β

i

k + Γm

with

αik = ∇x∇xa
i
k(Xk)DX

n
k Yk +Dαik,

β
i

k = Dβik

and

Γm =
m−1∑
k=0

∇xa
i
k(X

n
k )YkDH

i
k+1 +

1

2

N∑
i,j=1

m−1∑
k=0

D(H i
k+1H

j
k+1∇xb

i,j
k (Xn

k , Hk+1))Yk

+
N∑
i=1

m−1∑
k=0

αikDH
i
k+1 +

N∑
i=1

m−1∑
k=0

βikDLH
i
k+1 +DΓm.
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Notice that DYm is a process with values in H × V. We will prove that

C0,p(α, β,Γ) = sup
m6n

sup
i=1,N

(1 + ‖αim‖H×V,p + ‖βim‖H×V,p + ‖Γm‖H×V,p) (151)

6 C(M
1/2p
2p (Z) +

m
1/2p
∗

r∗
(1 + r−1

∗ ))2M
1/2p
2p (Z)C1,2p(α, β,Γ)

×(1 + ‖ψ‖4
1,4,∞) exp(CM

1/p
4p ‖ψ‖2

1,3,∞)

Once (151) is proved, the whole proof is concluded. Indeed, using (151) and the result from
the first step (that is (148) with q = 0 and Ym replaced by DYm), we obtain (148) with q = 1.
And using recursively the same reasoning we obtain (148) for every q ∈ N.
We estimate each of the terms which appear in the right hand side of (151). To begin we write

‖∇x∇xa
i
k(X

n
k )DXn

k Yk‖H×V,p 6 ‖ψ‖1,3,∞‖DXn
k Yk‖H×V,p = ‖ψ‖1,3,∞

∥∥|DXn
k |H×Rd |Yk|V

∥∥
p

6 ‖ψ‖1,3,∞‖DXn
k ‖H×Rd,2p‖Yk‖V,2p

6 C(M
1/2p
2p (Z) +

m
1/2p
∗

r∗
)2M

1/2p
2p (Z)C0,2p(α, β,Γ)

×‖ψ‖3
1,3,∞ exp(CM

1/p
4p ‖ψ‖2

1,3,∞),

the last inequality being a consequence of (149) and (150). It follows that

‖αik‖H×V,p 6 C(M
1/2p
2p (Z) +

m
1/2p
∗

r∗
)2M

1/2p
2p (Z)C0,2p(α, β,Γ)‖ψ‖3

1,3,∞ exp(CM
1/p
4p ‖ψ‖2

1,3,∞)

+ ‖Dαik‖H×V,p.

And
‖βik‖H×V,p = ‖Dβik‖H×V,p.

We conclude that

sup
m6n

(‖αik‖U,p + ‖βik‖U,p) 6 C1,p(α, β,Γ)

+ C(M
1/2p
2p (Z) +

m
1/2p
∗

r∗
)2M

1/2p
2p (Z)C0,2p(α, β,Γ)‖ψ‖3

1,3,∞ exp(CM
1/p
4p ‖ψ‖2

1,3,∞).

We analyse now Γm.We treat first Im :=
∑m−1

k=0 β
i
kDLH

i
k+1. Since βikDp,jLH

i
k+1 = 0 if p 6= k+1,

we obtain

|Im|2H×V 6
N∑
j=1

m−1∑
k=0

|Dk+1,jLH
i
k+1|2|βik|2V
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so that, using (73), and the independency of LHk+1 and βk, we have

‖|Im|H×V ‖p =
∥∥|Im|2H×V ∥∥1/2

p/2
6 (

N∑
j=1

m−1∑
k=0

∥∥|Dk+1,jLH
i
k+1|2|βik|2V

∥∥
p/2

)1/2

= (
N∑
j=1

m−1∑
k=0

∥∥|Dk+1,jLH
i
k+1||βik|V

∥∥2

p
)1/2 = (

N∑
j=1

m−1∑
k=0

‖Dk+1,jLH
i
k+1‖2

p

∥∥|βik|V ∥∥2

p
)1/2

6
Cm

1/p
∗

r∗
(1 + r−1

∗ ) sup
k6m−1

∥∥|βik|V ∥∥p =
Cm

1/p
∗

r∗
(1 + r−1

∗ ) sup
k6m
‖βik‖V,p.

Since DH i
k has properties which are similar to the ones of DLH i

k, the same reasoning as above
gives

‖
m−1∑
k=0

αikDH
i
k+1‖H×V,p 6 C sup

k6m−1
‖αik‖V,p

and we have

|
m−1∑
k=0

∇xa
i
k(X

n
k )YkDH

i
k+1|2H×V 6 ‖ψ‖2

1,2,∞

m−1∑
k=0

N∑
j=1

|Yk|2V |Dk+1,jH
i
k+1|2

6
N

n
‖ψ‖2

1,2,∞

n−1∑
k=0

|Yk|2V .

Using (149), we obtain

‖
m−1∑
k=0

∇xa
i
k(X

n
k )YkDH

i
k+1‖H×V,p 6

C

n
‖ψ‖1,2,∞

n−1∑
k=0

‖Yk‖V,p

6 C(M1/p
p (Z) +

m
1/p
∗

r∗
)C0,p(α, β,Γ)

×‖ψ‖1,2,∞ exp(CM
2/p
2p (Z)‖ψ‖2

1,3,∞).

We write now
m−1∑
k=0

D(H i
k+1H

j
k+1∇xb

i,j
k (Xk, Hk+1))Yk = I + J

with

I =
m−1∑
k=0

(H i
k+1DH

j
k+1 +Hj

k+1DH
i
k+1)∇xb

i,j
k (Xn

k , Hk+1)Yk,

J =
m−1∑
k=0

H i
k+1H

j
k+1D∇xb

i,j
k (Xn

k , Hk+1)Yk.
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We have

|I|H×V 6 ‖ψ‖1,3,∞
1

n

m−1∑
k=0

(|Zi
k+1|+ |Z

j
k+1|)|Yk|V

so that

‖I‖H×V,p 6 CM1/p
p (Z)(M1/p

p (Z)+
m

1/p
∗

r∗
(1+r−1

∗ ))C0,p(α, β,Γ)‖ψ‖1,3,∞ exp(CM
2/p
2p (Z)‖ψ‖2

1,3,∞).

And using the estimates ofDXk we obtain in a similar way the same inequality for ‖J‖H×V,p. So
a similar estimate holds for

∑m−1
k=0 D(H i

k+1H
j
k+1∇xbi,j(Xk))Yk.We put all these terms together

and we obtain (151).

Theorem 5.1. For every q, q′ ∈ N, q′ 6 q, and p > 2 there exists some constants C > 1, l ∈ N
(depending on r∗, ε∗,m∗, q, p and the moments of Z but not on n) such that

sup
m6n

sup
06|α|6q−q′

‖∂αxXn
m(x)‖q′,p 6 C(1 + ‖ψ‖l1,q+2,∞) exp(C‖ψ‖2

1,3,∞), (152)

sup
m6n
‖LXn

m‖q,p 6 C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2
1,3,∞). (153)

Proof. . We estimate first ‖Xn
m‖q,p. We have already checked that

DXn
m =

m−1∑
k=0

AkDX
n
k + Γm

with

Γm(k, i) = 1{k6m}
χk√
n

(
aik(X

n
k−1) +

N∑
j=1

Hj
kb
i,j
k (Xn

k−1, Hk) +
N∑

j,l=1

Hj
kH

l
k∂zib

l,j
k (Xn

k−1, Hk)
)
.

So, in view of (148), the only thing to prove is that ‖Γm‖q−1,p 6 C(1+‖ψ‖l1,q+2,∞) exp(C‖ψ‖2
3,∞).

We have already done this for the first order derivatives (that is q = 1). For higher order
derivatives the proof follows the same line (one employs a reccurrence argument).
We look now to ∇xX

n
m(x) which solves the equation

∇xX
n
m(x) = I +

m−1∑
k=1

Ak∇xX
n
k (x).

This equation si of type (146) so the upper bound of ‖∇xX
n
m(x)‖q,p follows from (149). For

higher order derivatives the reasoning is the same.
Let us now deal with LXn

m. Notice that
〈
DHj

k, DH
i
k

〉
= 0 for i 6= j. Then, using the compu-

tational rules (see (63)) we obtain

LXn
k+1 = AkLX

n
k +

N∑
i=1

H i
k+1α

i
k +

N∑
i=1

LH i
k+1β

i
k +

N∑
i,j=1

γi,jk
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with

αik =
d∑

l,r=1

∂xl∂xra
i
k(κk, Xk)

〈
(DXn

k )r, (DXn
k )l
〉
, βik = aik(X

n
k )

and

γi,jk =
1

2
LH i

k+1H
j
k+1b

i,j
k (κk, X

n
k , Hk+1) +

1

2
LH i

k+1H
j
k+1b

i,j
k (κk, X

n
k , Hk+1)

+
1

2
H i
k+1H

j
k+1

( d∑
l,r=1

∂xl∂xrb
i,j
k (κk, X

n
k )
〈
(DXn

k )l, (DXn
k )r
〉

+
N∑
r=1

∂zrb
i,j
k (κk, X

n
k , Hk+1)LHr

k+1

+
χk+1

n

N∑
r=1

∂2
zrb

i,j
k (κk, X

n
k , Hk+1)

)
+ 1i=j

χk+1

n
bi,ik (κk, X

n
k , Hk+1)

+
χk+1

n

(
H i
k+1∂zjb

i,j
k (κk, X

n
k , Hk+1) +Hj

k+1∂zib
i,j
k (κk, X

n
k , Hk+1)

)
.

We have

‖αik‖q,p 6 C‖ψ‖1,q+3,∞‖Xn
k ‖lq+1,p 6 C(1 + ‖ψ‖l1,q+3,∞) exp(C‖ψ‖2

1,3,∞)

and a similar estimate holds for ‖βik‖q,p.
Moreover, we have Γm =

∑N
i,j=1

∑m−1
k=0 γ

i,j
k so we have to analyse each of the terms in γi,jk . We

look first at

‖LH i
k+1H

j
k+1b

i,j
k (κk, X

n
k , Hk+1)‖q,p 6 ‖LH i

k+1H
j
k+1‖q,2p‖b

i,j
k (κk, X

n
k , Hk+1)‖q,2p

6 ‖LH i
k+1‖q,4p‖H

j
k+1‖q,4p‖ψ‖1,q+2,∞(‖Xn

k ‖lq,2p + ‖Hj
k‖

l
q,2p)

6
C

n
(1 + ‖ψ‖l1,q+2,∞) exp(C‖ψ‖2

1,3,∞).

The other terms in γi,jk verify similar estimates. So we obtain

‖Γm‖q,p 6
N∑

i,j=1

m−1∑
k=0

‖γi,jk ‖q,p 6 C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2
1,3,∞).

We conclude that
Cq,p(α, β,Γ) 6 C(1 + ‖ψ‖l1,q+4,∞) exp(C‖ψ‖2

1,3,∞)

and we are done.
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