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Abstract

Background

Meiotic recombination between homologous chromosomes provides natorbir@tions of geneti

variations and is a main driving force of evolution. It is initiated via programDié double-strand

breaks (DSB) and involves a specific axial chromosomal structurearSe€ombination regions ha
been mainly determined by experiments, both expensive and time-consuming.

Results

SPoRE is a mathematical model that describes the non-uniform localisatiddB&bd axis protein
sites, and distinguishes high versus low protein density. It is based anlaireation of genomic sig
nals, based on what is known from wet-lab experiments, whose contnbatecisely quantified. |

models axis proteins accumulation at gene 5’-ends with a discrete approxiroftieir diffusion and
convection along genes. It models DSB accumulation at approximated geneter positions with

intergenic region length and GC-content. SPoRE can be used for prediciibit is parameterised
an obvious way that makes it easy to understand from a biological viewpoin

Conclusions

When compared t&accharomyces cerevisiae experimental data, SPoORE predicts axis protein
DSB positions with high sensitivity and precision, axis protein density with ane@e local correla

tionr = 0.63 and DSB density with an average local correlatica 0.62. SPORE outbreaks previous

DSB predictors, which are based on nucleotide patterning, and it re&s¥eof success rate in DS
prediction compared t84% obtained by available tools on a benchmarked dataset.

SPORE is available at the address http://www.lcgb.upmc.fr/SPoRE/.
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Background

In sexually reproducing eukaryotes, the production of gametes relieemsis, during which a diploid
cellis divided into four haploid cells. A critical step is homologous recombindigtween homologous
chromosomes, in which both crossover and non-crossover eventg oesulting in a different gene
content of the offspring chromosomes. This allows evolution to explorerdiif allelic combinations
through recombinations that are more likely to occur in some regions tharsqth&t and that are
initiated by DNA double-strand breaks (DSBSs) [3].

The Spoll protein, a transesterase highly conserved through evdWitiand required for meiotic
recombination irSaccharomyces cerevisiae [3], Caenorhabditis elegans [5], Drosophila [6] and mam-
mals [7], causes DSBs. Two Spol1l proteins work in concert to cut bbbk Sirands and, after the
cleavage, each Spoll is bound to a DNA fragment [8]. This propegypban used to make a high-
resolution DSB density map of ti& cerevisiae genome [9] revealing that DSBs are more abundant be-
fore gene starts [9]. Itis also known that DSB frequency is stronglsetated with GC-content [10,11],
open chromatin structure [12-16] and histone methylation [17,18].

A specific chromosomal structure is formed during meiosis, and plays adteyinr recombination
events. The formation of this structure is due to bonding of cohesin aretadesther proteins on
specific DNA sites, and to their assembly in a protein complex forming an ax2]L9The DNA lying
outside protein binding sites forms loops along the axis [11,22,23]. Axesrmblogous chromosomes
are themselves bound to each other by transversal filaments made of (Zptenevisiae, Sycpl in
mammals) proteins, forming the so-called synaptonemal complex.

In S cerevisiae, the structural axis is formed by cohesin (Rec8), Red1 and Hopl psdtEi20]. It

has been shown that proteins Mer2, Rec114, and Mei4 bind to DNA as#&ss rather than to loop
sequences, and that their association depends on Redl and Hopin, IRéd1l deposition depends
on Rec8 cohesin in certain regions, but not in others, and in both dhs@slocal distribution is very
similar [24]. The global correlations are= 0.88 between Red1 and Hopt,= 0.57 between Red1
and Rec8, and = 0.38 between Hopl and Rec8. Also, cohesin (and Redl) density is higher in
convergent regions, that is intergenic regions characterized by two gene ends, and idatedravith
AT-content [25], but no specific cohesin-DNA binding motif has beentified. Redl1 density is locally
negatively correlated with DSB density (see Figure two E in [24]).

Many questions remain open on the chromosomal axis formation. Can we thedatcumulation
of axial proteins and DSBs on the chromosomes entirely from genomic $&cttfrso, what is the
contribution made by each one of them?

A number of genomic markers (like gene start, gene end, GC-richnesg)iaied to high-density sites
have been highlighted by experiments [10,26-29], but, once combinetthesgeow well do they explain
the frequency of occurrence of proteins or DSBs in a given site alagxis? In other words, can we
create a mathematical model, based on genomic markers, and a tool tha¢diah goxial proteins and
DSB? With a rapid increase of sequenced genomes, it is highly desiraldedimd automated methods
for timely identifying recombination hotspots.

Computational predictions of recombination hotspots have been basedleotiue sequence content.



These approaches take into account, more [30] or less [31,32] expbaijyence order effects. But the
accuracy of these algorithms still needs further improvement and morelfiorat@ematical approaches,
considering mechanisms of chromatin remodeling during meiosis, could beidlposay to proceed.

Here, we provide a mathematical framework, called SPoRE for “SPots céiREination”, that allows

us to model axis proteins and DSB localization and density along chromos@ReRE models axis
proteins and DSB distributions based on genomic information. For axis psof&HoRE uses gene stop
codon positions and gene lengths as its only input, while for DSBS, it usesdbeof the genes defining
intergenic regions, intergenic region lengths and GC-richness. Basbése genomic markers, SPORE
modelsS. cerevisiae experimental data for Red1l and Spoll distributions [9,24] accuratelyuség
SPORE to make predictions on three more yeast spaaebancea kluyveri, Kluyveromyces lactis and
Schizosaccharomyces pombe. Finally, we compared it to available tools predicting DSB hotspots and
coldspots, and demonstrated its higher performance.

Results and discussion
The model and the algorithm

SPoRE modeling of axis proteins and DSBs relies on a general principleathéie summarized in two
main steps (Figure 1). First, it defines a set of positions on the genome pitméeins might accumulate,
and sets a weight for each of these positions according to gene annofBliisnweight is used as an
indicator of the density of the proteins. In the second step, it makes a smaoethusing a Gaussian
kernel of the distribution of weights along the genome.

Figure 1 Summary of SPORE modeling approach. Two main steps constitute the approach and
they are described from top to bottom (center). First, SPORE considarsd positions to which it
assigns weights. Axis proteins (red) and DSBs (blue) involve conmegeEnes and divergent genes,
respectively. In the drawing, locations with non-zero weight are indicaie colored vertical bars
(height represents importance) and triangles: convergent genasisgproteins and divergent regions
for DSBs display the highest weights (top). Then, SPoRE smooths the diginof weights with a
Gaussian kernel (bottom) modeling, in this way, the diffusion of the protemsnd their main sites.
The red box on the leftX; axis proteins) and the blue box on the rigBt DSB) describe some details
of SPORE models.

This main computational core in SPORE, takes as input a genome and its getatiam, and provides
as output the modeling curves describing DSBs and axis proteins distrilaltiog the whole genome
(Figure 2). A list of Transcription Factor Binding Sites (TFBS) can beviged as input for more
accurate promoter region detection. This intermediate output is used byESB@rRovide four kinds of
data: 1. It produces the curves modeling the density of DSBs and at@nsalong the whole genome,
in a format that is ready for browsing (see Additional file 1: Figure S1)G®en a list of intervals on
the genome, it predicts whether they are hot or cold spots for DSBs.v@n@@ilist of intervals on the
genome, it predicts whether they are axis sites. 4. Given an experimentaldefined over the genome,
it compares the DSB and axis proteins model curves with experimental dhf@r@rides Pearson and
Spearman local correlation coefficients between them. Also, it comparesde of the model curves
with the peaks of the experimental curve, computing PPV and sensitivity.



Figure 2 SPoRE flowchart. SPoORE takes several input files (brown boxes); the input in the orange
box is optional. SPORE implements the construction of the modeling curvesisquraxeins and DSBs,

as described in Figure 1 (blue box, top), and uses these curves asangualgorithmic tasks (bottom
blue boxes; outputs in grey boxes): 1. The prediction of DSB hotsptastir®) from a list of genomic
regions, it decides whether these regions are susceptible to DSB or fibe Prediction of axis proteins
sites. As in 1, it makes predictions starting from a list of genomic regionsged\by the user; 3. The
production of ready for browsing output files describing the axis pretaid the DSB modelling curves
(see Additional file 1: Figure S1); 4. The comparison of SPORE moddld (&) to experimental data
(dashed lines).

SPORE can be easily used. It takes as input a genome and its associaeahgetation, and all its
parameters are automatically computed on the input genome. Also, SPoREamm&affolds, not only
on fully assembled chromosomes, since its minimal requirement is ORF annotation.

Analysis of convergent and divergent regions

Our intuition on the positioning of high-density hotspots for axis proteins eéddwas developed with

the analysis of thé&. cerevisiae experimental data in [9,24]. In understanding these data, we focused
on convergent and divergent regions, instead of considering thieaththe end of genes as previously
done (compare Additional file 1: Figure S2 to Additional file 1. Figure S3)e Plots, reported in
Additional file 1: Figure S2A-F, highlight characteristics of the data whiepldyed for convergent and
divergent intergenic regions. Notice that in [25], it was already oteskthat meiotic cohesin preferably
accumulates in convergent regions (Additional file 1: Figure S2A), witkxdreme bias against regions

in which transcription is diverging (Additional file 1: Figure S2B).

By focusing at convergent and divergent regions, we obsengeeovide with that a precise numerical
evaluation) that:

1. the local negative correlation between Redl and DSBs localizatioesveldsin [24,25] physically
corresponds to convergent and divergent regions, where g@aneregions present high average Redl1
density and almost no presence of DSBs (Additional file 1: Figure S2/Aanahile divergent regions
present a high average Spol1l density and an important decreaselifigdional file 1: Figure S2B
and E);

2. Redl1 density is much higher at gene 3'-ends than it is at gene 5;-andsyet even higher when
we consider only convergent intergenic regions, having two genads-6Additional file 1: Figure S2A
and C);

3. DSB density is twice as high in divergent regions, having two gene sthatis intandem regions,
that is intergenic regions between co-directional genes (Additional fifeglire S2E-F);

4. DSB peaks are localized in promoter regions. This observation haslalbeen made long ago [28],
and was confirmed with the high-resolution DSB density in [9], in which theaastfound that 88.2%
of DSBs overlap with promoters. This can be seen in the DSB distribution ie @ixgrgent regions
(Additional file 1: Figure S4C-D). For the vast majority of intergenic regifwfs< 800nt in length),
the DSB peaks appear roughly centered in the middle of divergent se@datditional file 1: Figure
S2E-F), this position well approximating promoter locations.

From [24], we also observed that:

5. the shape of the distribution of Red1 proteins along genes (Additionat fileigure S5A), highlights



a linear increase of the amount of Red1 proteins towards the gene ergingegenes this increasing
distribution is not sharply distinguishable but when considering all gerggther, it becomes gradu-
ally more pronounced in longer genes. In particular, the area undeidtidation curves increases
proportionally to gene length.

6. The distributions of Rec8 and Hopl in intergenic regions have a simjj@rgo the Red1 distribution
(see Additional file 1: Figure S10).

AXxis proteins model

In a first attempt, axis proteins could be modeled by using gene 3’-endd$esisnce positions and by
associating to each position a weight corresponding to the length of theeeajatie. This simple model
implies that convergent regions are governed by weights defined asuhe 6f two gene lengths, that
tandem regions are modeled by the length of only one gene, and thajetiveegions are ignored. It
captures well some characteristics observesl rerevisiae experimental data: convergent regions host
about the double amount of Red1 compared to tandem regions, wherbwacsuhe base noise level
(see Additional file 1: Figure S2A and Additional file 1: Figure S2C) andatm®unt of Red1 at gene
3’-ends augments with gene length (Additional file 1. Figure S4A).

SPORE is based on this simple model but it also describes, in an explicit veagptead of Redl
proteins along the gene. This Redl spreading is likely due to two processesf diffusion and one
of convection of proteins. Since experimental measures of diffusiostants produced highly varying
values depending on the organism and on the protein [33], and that masa$gonvection constants are
also organism and gene dependent [34], we cannot directly use thmode the curves in Additional
file 1: Figure S5A. Then, we discretely approximated the curves throligbarly increasing curve that
begins at the start of the gene and increases to its maximum value at thengeas & Additional file
1: Figure S5C. Since we wish the amount of axis proteins per gene to perpamal to gene length,
we set the “triangle” height to be the same for all genes. As a consegjuttrecarea of the triangle is
proportional to gene length, as described by experimental data (Addifienk Figure S5A).

The precise mathematical formulation of SPORE model is the following. Firstefieedthe raw curve
before smoothing:

.CL'—CLg

h(x) = Z 1o, 0,1 ()

b, —a
geG g g

whereG is the set of all genes andthe position (in nucleotides) on the genomgis the position of the
start codon of;, andb, is the position of its stop codon. The functitp , (x) has value 1 ifc € [a, ]
and 0 otherwise.

Then we apply a kernel-based smoothing with a Gaussian kerrighto Namely, we compute the

convolution with a Gaussian kernk&l to obtain the final functiorfreq: Which is our Red1 model curve:

(t—z)*
+oo —5 3

JRed1(z) = (h* K)(x) = / h(z)-e 203 ooth dt

— 00

whereogmootn IS 1500 nucleotides.



DSB mode

SPORE localizes DSBs in promoter regions. Since these regions aresilgtidantifiable, SPORE
follows a few rules to approximate their position in an intergenic region: 1. ifégen is convergent,
then no DSB is supposed to occur in it, 2. if the region is between two cotedagenes (tandem
region), then DSBs are located at the center of the intergenic regiasymtaag for the promoter of the
starting gene, 3. if the region is divergent, then DSBs are located at tefogns, atl/3 and at2/3

of the intergenic region respectively, corresponding to the two promdtecases 2 and 3, the amount
of DSBs is also modeled to be dependent on the average GC-content witltidlav (see Methods).
If TFBS are available, SPORE can use them to identify the promoter regiargehe and replace the
location identified by steps 2 and 3 above with a more accurate evaluationmbiieter location.

SPoRE adds one more contributing factor to the above model: the interggiuio fength. For this, it
makes sure that the contribution of very long intergenic regions wouldenpébalized by high weights,
and fixes a maximum weight threshold to a valBé.,, ..

Formally, SPORE modeling curvg)sg () is defined as:

_(@—py)’
Z min(irly, IRLmax) - (max(0, g¢(pg) — GChmin))® - € 202 00th
geG
whered is the set of all genes; the position (in nucleotides) on the genomé, is the intergenic
region length before the gene (on the strand whei®lying). The positionp, depends on both the
orientation ofg and the position of geng precedingy; gc(py) is the smoothed GC content at position
pg- Let]a, b] be the intergenic region andbe the start codon position ¢f then:

_Ja+(b—a)/2 if g and ¢’ are on the same strand
9 L a+(b—a)/3 if g and ¢’ are on opposite strands

The two threshold$RL,,,x andGC,y;, are defined asRL,,.x = pry + o andGCrin = pac —
3oac, Wherepry, (uac) andorry, (oge) are mean and standard deviation of the distribution of inter-
genic region lengthsC' content) over the whole genome. The quadratic term describes a poeferr
DSB concentration in regions with a higher GC content.

This model takes into account the observation that divergent regi@isabout the double amount of
DSBs compared to tandem regions (indeed, 2 gene starts instead of 1 tergemic region influence
twice as much the average DSB density) and that, at large scale, on theniti®o$doase pairs scale,
GC-content correlates with DSBs [10].

Comparison with experimental data

SPoORE has been constructed to predict DSB and axis proteins distribidgion éhromosomes, and
to measure the importance of different factors in this prediction. To evah@mteaccurate SPORE
modeling is, we performed four types of analysis:

a. experimental data on Redl [9] and Spol1l [24] proteins obtained fd3. ttekevisiae genome were

considered and the local/global Pearson and Spearman correlatioreebeé®RoRE modeling curves
and experimental curves were computed. The distribution of peaksaatbering sites of highest
protein concentration, along the two curves was studied. Several motelgcterized by different
combinations of genomic signals, were tested to numerically evaluate the impachodignal.



b. coherence of SPORE predictions was tested on two experimental daBxs88 felated to axis pro-
teins and DSBs.

c. SPoORE was run on four yeast species.
d. SPORE was compared to existing DSB predictors, all based on machinetego-32].

SPoRE model and axis proteinsin S. cerevisiae

SPoRE model (that is model 3 in Table 1) is based on the hypothesis thatratdégp accumulate at
the end of genes, that genic region length is the main factor for proteiritygeansd that taking into
account protein diffusion and convection along the gene improves meciSPORE reaches average
Pearson local (global) correlation= 0.63 (r = 0.54; Additional file 1: Figure S7A) and Spearman’s
local (global) correlatiorp = 0.63 (p = 0.60). We note that lower correlations are obtained when
an increasing distribution of proteins along the gene is omitted (model 2 in TabRearson’s local
(global) correlation iss = 0.58 (r = 0.52), and Spearman’s local (global) correlationpis= 0.54

(p = 0.51).

Table 1 Performance of SPoRE and other models for axis proteins ahfor DSBs
Axis proteins - Redl

Model description Pearson Spearman
correlation correlation
Id Positions Weights loc glo loc glo
1 Gene ends 1 0.14 0.11 0.13 0.11
2 Gene ends gene length 0.58 0.52 0.54 0.51
3 Diffusion along gene gene length 0.63 0.54 0.63 0.60
DSB - Spol1l
Model description Pearson Spearman
correlation correlation
Id Positions Weights loc glo loc glo
1 Gene starts 1 0.34 0.28 0.68 0.65
2 Gene starts gene length 0.26 0.21 0.65 0.63
3 Promoters 1 0.48 0.40 0.74 0.71
4 Promoters IRL 0.50 0.41 0.74 0.70
5 Promoters GC 0.58 0.52 0.75 0.72
6 Promoters GC x IRL 0.62 0.56 0.76 0.72

Local and global Pearson and Spearman correlation coefficienésliean calculated between different model curves and
S cerevisiae experimental data for axis proteins [9] and DSBs [24]. Bold charadighlight best performance. Different
models are characterized by different weighting factors (column ‘faistly For DSB analysis7C is GC-content smoothed
with a Gaussian kernel of 1000 nucleotidé$}L is the intergenic region length, diR L. if the region is too large (see
Methods). SPoRE model for axis proteins is number 3, and for DSBsnigar 6. Values are output of the SPORE program
(Figure 2, bottom right). See also the correlation curves for models FandAdditional file 1. Figure S7. All p-values
associated to both Pearson and Spearman global correlations arétawkie 5 (even for weak correlations such as 0.11).
Highest correlations are highlighted in boldface.

Red1 localization is well predicted by the position of the peaks of SPORE mgdalive (Figure 3).
For instance, along all chromosomes, 62% of real peaks are founarlmgariel at a distance of at most
A = 1 kb from a predicted peak (74% at 1.5 kb), a&62%% of the predicted peaks are at most 1 kb away
from a real peak (73% at 1.5 kb). Sensitivity and PPV at increadinglues are illustrated by the curve
plotin Figure 4A. We notice that random models, based on random sekecfigpots along the genome
(see Methods), give much lower PPV and sensitivity values.



Figure 3 SPORE model for axis proteins compared to experimental @a in S. cerevisiae chro-
mosome 3. Red1 density curve [24] (black) and SPORE axis proteins modelling cgreerf) on
chromosome 3. Colored circles on the top of the plot mark peaks of thescurve

Figure 4 SPoORE performance in detecting axis proteins and DSB hqgtets for S. cerevisiae. Peaks
localisation (not density) in SPORE curves is compared to peaks localisatspénimental curves for
axis proteins [9JA) and DSBs [24]B). Positive Predictive Value (PPV) and Sensitivity (see Methods)
obtained with SPORE models (number 3 for axis proteins and number 6 fos)D8B reported for
increasing values of the paramety representing the maximum distance allowed between two peaks
to say that they match. The vertical bars in the plots correspoad=olkb and1.5kb in A and toA =

150nt and300nt in B. Different random models are used to analyze SPoRE behavior (siedde

best PPV/sensitivity over 1000 simulations (blue), PPV/sensitivity for alpevof 5% (green), average
PPV/sensitivity over 1000 simulations.

It is worth noticing that the usage of constant weights makes the modelrperice very poor, as
the correlation with real data falls down to= 0.14 (model 1 Table 1). Strictly speaking, even the
positional analysis of the peaks, as discussed above, is dependsyropriate weight values, because
a smoothing is performed before extracting the peaks (Gaussian window with .5kb). Therefore,
peaks result from the accumulation of high weights and they are not simplglmodene ends. This
is why model 1 (Table 1) has much lower PPV and sensitivity than model 2.

Finally, since experimental data highlight the existence of a backgrousd maucing a basic level of
Red1 distribution along chromosomes, we verified whether, by includinged finise level in SPORE
model (see Methods), predictions$ncerevisiae would be improving the fit or not. A minor improve-
ment in Pearson correlation coefficients (locat at 0.64 and global ai = 0.56) is observed.

SPoRE model and DSBsin S. cerevisiae

The SPoRE model (that is model 6 in Table 1) assumes that DSBs concemigaiee promoter po-
sitions, and that intergenic region length and GC-content are key fdotoexplaining DSB density.
SPORE displays a local Pearson correlatica 0.62 and a Spearman correlatipn= 0.76 with exper-
imental data [9]. The heatmap of the experimental Spol1 distribution cupamfPthe Spoll SPoORE
modeling curve, reported in Figure 5, shows a sharp diagonal confiiméngccurate prediction of the
model and in particular the precise prediction of regions with high DSB deosDSB absence.

Figure 5 Heatmap of the experimental Spol1 distribution curve [9] ad the Spoll SPoORE curve

on the S. cerevisiae genome. Pairs ofy-values belonging to the two curves have been recorded every
10nt along the chromosomes, and a total amount of about 1.2 millions fgints) were identified,
wherey; andy, are they-coordinates of the experimental and modeling curves, respectivahe lot,
they-coordinates have been replaced by their ranks to allow for better viatializ Thez-axis reports
ranks from the experimental curve and thaxis reports ranks from the SPoRE modeling curve. Each
square in the plot describes the number of points falling into the corresgpimierval of rank values.
The dark red square on the top right collects picks with the higiteabks and the red square on the
bottom left collects points in the experimental curve displaying no Spollnadetion, and therefore

no DSBs.

Localization of DSB high-density spots is well predicted by the position of dake of our modeling
curve (Additional file 1: Figure S6). For instance, 64% of the prediceskp are found at most =
150nt away from a real peak (PPV) and 68% of the real peaks are fouedsthan 50nt away from



a predicted peak (sensitivity). Sensitivity and PPV at increadinglues are reported in Figure 4B. In
comparison, a random model based on a random selection of spots imterggions (see Methods),
displays much lower PPV and sensitivity.

Although SPoRE identifies a subset of the peaks found by the modelstaobmeights (see sensitivity
in model 3, Table 1), it clearly predicts better their heights when GC-richaed, to a lesser extent,
intergenic region length are considered. The performance of theseatifimodels is reported in Table 1.

Finally, we tested whether the knowledge of TFBSSirterevisiae [36], leading to a more accurate
promoter region localization, improves SPoORE predictions or not. There ismmvement on peak
heights prediction (Pearson and Spearman local and global correlaidiicents do not increase).
For peak localization, PPV slightly increases to 67% and sensitivity to 69%\ fer 150nt, and we
conclude that a precise estimation of promoter regions helps modeling DSB4biom. The effect of
TFBS availability in modeling remains limited though.

Coherence of SPoRE predictions with two large-scale experimental datasets

SPoRE modeling curves can be used for comparison with experimentalfahfiei@nt origin. In this
respect, we considered two different datasets.

First, as mentioned in the introduction, it has been shown previously thdt &etiHopl patterns are
influenced by Rec8 (cohesin) patterns [24]. Hopl, for instance, ishiited almost like Red1 (local
correlation isr = 0.92, global isr = 0.88) with which it interacts [37,38]. On the other hand, Rec8 is
more abundant around centromeres than Red1/Hopl, although loediores are the same. Therefore,
Rec8 global correlation with Red1 is onty= 0.57, while its local correlation is stilt = 0.83. Because

of these correlations, we expect SPoRE to be locally well correlated wigl ldod Rec8 (data from
[24]). Indeed, we find that SPORE model has a local correlation-ef0.62 with Hop1 andr = 0.60

with Rec8, compared to = 0.64 with Red1. This confirms that the three axial proteins share SPoRE
local distribution patterns. Consistently, if we look at global correlatiorffments, SPoRE is well
correlated with Hopl/( = 0.55) and Red1« = 0.56) but weakly correlated with Rec8 & 0.33).

Second, we compared SPoORE curves to histone trimethylation data. It éla®bserved before that
H3K4 trimethylation (H3K4me3) is linked to DSBs [17]. Then, we computed datioss between
H3K4me3 (data from [35]) and SPoRE modeling curve for Spoll. Werfird).25, which is compa-
rable tor = 0.21 obtained when we correlate H3K4me3 and DSB experimental data. Similarly, with
Spearman coefficients, we find= 0.61 between H3K4me3 and our model, apd= 0.52 between
H3K4me3 and DSB experimental data. We conclude that SPORE model isteonsvith this known
interaction.

Both these examples confirm that the modeling curves are faithful appriiaireaof experimental
curves and that biological conclusions can be safely derived from.the

SPoRE predictions on several yeast species

The large number of sequencing projects on yeast clades and the ugawmirprojects (still a few to-
day) exploring the molecular biology of yeast species encouragesdye o$§predictive tools for learn-
ing about the distribution of DSB and axial proteins sites, to start comparstinies on yeasts across
clades. We run SPoRE drachancea Kluyveri and Kluyveromyces lactis. The genome oL. kluyveri
shows a patrticularly high GC-content on the left-arm of the C chromosoeeeAdditional file 1: Fig-
ure S8) and SPoRE predicts a higher concentration of DSBs in this choomabsrm. We note that
the number of peaks within the C-left arm is comparable to other chromosems) and that SPoORE



detects the same number of peaks (353) than model 4, which excludes taetGIC Namely, the GC
factor in SPoRE exclusively influences DSB density and not DSB positipaimd the high number of
DSBs predicted along the C-left arm is a consequence of SPORE higiles pather than SPoRE higher
number of peaks. Experiments lin kluyveri are expected to confirm SPoORE prediction in the C-left
arm of the C chromosome.

We have also run SPoRE &chizosaccharomyces pombe where recombination is known to be partially
dependent on DNA motifs. As expected in this species [39], SPoORE psedlarge number of DSBs
in large intergenic regions. It should be noticed thaSirpombe, divergent and tandem regions are
unusually large compared to other yeast specie& tarevisiae, L. kluyveri andK. lactis for instance,
the mean length of divergent and tandem regions, is approximately 7@datitvs 1200nt forS. pombe
(Additional file 1: Figure S9). Since SPoRE favors DSBs in tandem avet@int regions, and since
the size of these regions plays an explicit role in the model, SPORE predictidimngs the previous
observations.

When comparing SPoRE predictions with the DSB distributioB.ipombe [40], results are much less
accurate than witls. cerevisiae. We get a local Pearson correlationrof= 0.36 (global correlation is

r = 0.26). Spearman correlation is better with= 0.43 (global correlation isp = 0.42). This can
be explained by the major differences betwé&egerevisiae and S pombe. As explained by [40], in

S pombe, DSB do not occur in most promoters and can occur in convergentn®didore precisely, in

S cerevisiae, 91% of divergent intergenic regions contain a DSB peak, while this nuisloaly 70%

in S pombe. In S cerevisiae the ratio between the number of DSB per kb in divergent versus coewerg
regions is around 14, while it is only 3 f& pombe. Both these observations are in contradiction with
our model, and that explains its poor performance for this species.

Comparison between SPoRE and other predictive tools

Several tools, based on nucleotide sequence analysis (consideniagskfork > 2) have been proposed
[30-32] as predictors of recombination or DSB hotspots.

We compared to the most recent one, iRSpot-PseDNC [30], which impedh@eke the others. In [30],

the authors compared their predictions of DSB sites against 452 hotspotsanosome |V extracted

from the same Spoll experimental data [9] that we compared to. They floairtheir program predicts
as hot 347 of these hotspots, corresponding to a true positive rat&df30]. When applying the same
test to our model, we predicted as hot 361 of these 452 hotspots, aord#sg to a true positive rate
of 80%. However, to perform a proper benchmark, negative inssafoctdspots) should be included
in the test set, so that the false positive rate can also be measured. Werthergdarged the dataset
by adding 452 randomly chosen coldspots in the same experimental data ahcomosome IV (see

Methods). On this symmetric test set, the overall success rate of IRSDNEsklls to 54% against

85% for our model (see Methods), compared to an expected 50% fodarreprediction. This is due to
the fact that iRSpot-PseDNC detects 309 false positives (false posite/esit68%) while we only detect
43 of them (false positive rate is 10%). This shows that iRSpot-PseDNC idddtter than random in

detecting DSB hotspots. It should be noted that comparison is realizedgpohsites localization but

that no prediction on protein density is made by iRSpot-PseDNC, contraBdB B, where estimations
of density can be directly inferred from the modeling curve.

We also extended this benchmark over the wiBleerevisiae genome by considering all the 3600
hotspots discovered in [9], together with 3600 randomly chosen coldspbésaccuracy of SPORE in
that case is 84% (close to 85% for chromosome V). Its predictive peeoce can also be measured
with a ROC curve by varying the density threshold, in which case the arder ahe curve is 0.90
(see Additional file 1: Figure S11). iRSpot-PseDNC success rate gegyddentifying hotspots and



coldspots is 55% (comparable to the 54% obtained on chromosome |V; due nattive of iRSpot-
PseDNC output, no ROC curve can be produced).

A second test was realized on the same dataset used in [30] to compa-F$PNC to IDQD
[31]. This dataset, defined in [31], is composed of 490 hot ORFs ahd:6@ ORFs, where the hot
ORFs describe a set of recombination hotspots. Notice that a recombinatgpotis expected to be
located close to a DSB site but not the vice versa, and that SPORE canio¢ttly used for predicting
recombination hotspots since it was designed to predict DSB hotspots.

Hence, we decided to test how much the smoothed GC-content, which wasisefdctor in SPORE,
contributes to the identification of recombination hotspots. By using only Giteng we obtained an
accuracy of 83% (see Methods), against the 80% reached by IDQIhar85% reached by iRSpot-
PseDNC (based on a 5-fold cross-validation of the SVM approach thdgnngmt). The conclusion is
that even though iRSpot-PseDNC is based on the actual DNA contentyi@dikincleotide frequency as
its predictor), it appears that almost all the signal can, in fact, be reetbgemply with the GC-content
in a window.

Conclusions

We explored the hypothesis that genomic signals allow us to predict DNAelstiand breaks and the
formation of the loops (their position and length) in the 3D chromosomal steudiwning meiosis. Our

aim here is not to study the dynamics of a protein localization process bat tatidentify the genomic

information that can be used to predict the 3D structure formation and qu#rgifmportance of these
predictive factors. SPoRE allows us to test whether genomic signals adepgedictive variables or

not, and to what extent, in the accumulation of axis proteins and DSBs aloognokomes.

However, it should be noted that this does not imply that the factors areatlse ©f DSBs and axis
proteins positioning. For example, GC-content could be a consequathes a cause of DSBs [41]. In
both cases however, it is a useful factor for predicting DSB hotspots.

All genomic factors considered in the model are linear functions with theptoeeof a quadratic factor
modeling the impact of GC content. New parameters can be easily added to thEfondide evaluation

of new genomic markers effects. The interest in this modeling approachscfsora a straightfor-

ward biological interpretation of the parameters that helps to reason asilpiahiological mechanisms
forming protein accumulation.

Orientation of genes and chromosomal axis formation

We have shown through a formal model that the distribution of the chromdstisaproteins is en-

coded in gene organization along DNA. The orientation of the genes ictigathe formation of the
loops within the 3D axial structure during meiosis and to reach an undeisggofithis 3D structure

formation, this fact should be combined with the existence of a randomgs@merning the binding
of the axis proteins to DNA and with a pervasive transcriptomic activity indpairepositioning of the

proteins in specific sites along the genome. In this respect, SPORE motiEhetuto design appropri-
ate genomic signatures for synthetic chromosomes that should form a fuaictymaptonemal complex
structure.

Modeling organisms other than yeast

SPORE could be used to infer localization and density of axis proteins aBd Bifes at large scale
for those yeast species for which whole genome experiments have elotiiede yet. Today, more



than 40 yeast genomes have been completely sequenced and for maegeofdlast species, meiosis
either exists or can be induced. It might be interesting to apply SPoRE matthelse species to check,
through comparative genomics, whether syntenic region boundariespond to DSB hotspots or not
across species, whether the genetic content of DSB hotspots and ofdlgtiborhoods are conserved
in different species and so on.

Axial chromosome structures formation has been experimentally obserk@stanany sexually repro-
ducing eukaryotic species, from fungi to vertebrates. In yeast, odehfoghlights that axial chromo-
some structures and DSB distribution are governed by a rather simple combioggjenomic signals.
For other organisms, the model might be expected to become more completheRapuse, for in-
stance, other factors such as DNA binding sites targeted by axial prdigiesbeen demonstrated to
play an active role in DSB localization [42]. In this respect, SPORE might kentas a nutshell to
add extra signals and reach appropriate descriptions of experimetadhdzher organisms, possibly
multicellular ones. SPoRE software is provided to allow users for furthezldpment and testing of
new genomic factors.

Methods
Visualization in a genome browser

To allow biologists to visualize easily SPORE modeling curves, SPoRE providessults in the WIG
file format. They can be loaded in the UCSC genome browser (http://genomedzd, in the genome
browser available at http://lyeastgenome.org/ and in the IGV software (dditighal file 1: Figure
S1) [43]. For the four yeast genomes that we analyzed, the comésgpwig files are available at
http://www.lcgb.upmc.fr/fSPoORE/. For convenience, we also provide thespumelingS. cerevisiae
experimental data in the same format, to allow for easy comparison.

Software availability

SPoORE program is provided to the users that would like to apply it to yeastex) others than those
we already considered here, or modify it for other organisms. Thelfned file explains what are the
parameters that should be set for other organisms. The software isoévaiidttp://www.lcgb.upmc.fr/
SPORE/

Annotation

The reference strain we used to validate SPoRE&csharomyces cerevisiae S288C. The gene annota-
tions were retrieved from thgaccharomyces Genome Database (http://www.yeastgenome.org/), release
64. We included 4879 “verified” ORFs and 895 “uncharacterized” ®RFour set of coding genes,
but not “dubious” ORFs. We also considered transposons by takingotiieatures labeled “transpos-
able element gene”, rRNAs (RDN37-1, RDN37-2, RDN5-1, RDN5-PN8-3, RDN5-4, RDN5-5,

and RDN5-6), and pseudogenes (21). Eachancea kluyveri andKluyveromyces lactis, genomes and
annotations were downloaded from Genolevures (http://www.genoleamfs Only features named
“CDS” were taken into account in our models. Faohizosaccharomyces pombe, genome and anno-
tation were downloaded from PomBase (http://www.pombase.org/). We uastdds labeled “CDS”,
representing exons, and merged them together to get intervals defimiag igeour models.



Protein density data used for SPoRE validation

We use protein density data along the genome from Spoll immunoprecipitatised4tencing for
DSB [9] and from ChIP-on-chip for Red1, Hopl and Rec8 [24]. yitwere mapped on th& cerevisiae
S288C genome, even though strain SK1 was used in the experiments. Rawedaused for computing
all correlations reported in Table 1. They were retrieved from supplanedata in [9] for Spol1, and
from the GEO dataset GSE29860 for Red1/Hop1/Rec8.

Smoothing

To smooth the curves, we use a kernel-based smoothing with a Gaussiah ke use the “density”
function provided in R [44] for all our models, the Spoll experimental daththe GC-content. We
use the “ksmooth” R function for Red1 experimental data to take into acaaurgctly the irregular
spacing of the tiling array probes. When referringstat smoothing, we mean that the Gaussian kernel
we use has a standard deviatiorvof

For DSBs, we used = 250 nt for both data and models. Notice that Spoll experimental data have a
nucleotide-level precision and that the smoothing we use takes into adbeursinge in which Spol1
might cut DNA around hotspots. For axis proteins, we used 1000 nt for the Redl experimental
data, and0 = 1500 nt for our models. The rationale behind the different values is that ChiP-on
chip experiments produce large fragments of DNA where proteins bindesna consequence, a large
range of probes in the microarray detects them. The accumulation of pdobsghe equivalent of a
smoothing, and because of this, we need to smooth the data less than in theThedalo parameters
were adjusted so that the number of peaks detected on both smootheslis@approximately the same
(1558 forS. cerevisiae data, 1615 in SPORE model). More precise experimental data might concksp

to a different smoothing constamtand the software allows for easy changes.

Normalized density and experimental noise

Normalized densityyf axis in Figure 3 and Additional file 1: Figure S6) is defined by translating and
scaling the values in such a way that the first percentile maps to 1 and theed®émfile maps to 99.
This is a way to scale the data approximately between 0 and 100 without takingcitdant extreme
values. In fact, these latter might be a consequence of the experimeistal imdRed1 model 4 (Table 1),
noise was estimated from data by considering the 1st percentdaed the 99th percentilé/, where

m = 2.169456 and M = 7.622778 for S cerevisiae. The ratio)//m = 3.5 has been used to estimate
the noise level in Figure S3E.

Correlations between model and experimental curves

To estimate the local correlation between two curves, we considered awifds0 kb in which we
compute the correlation coefficient (Pearson or Spearman) betweds pfine two curves every 10 nt.
Then we move the window by 10% of its size (ie. 5 kb) and repeat the computatid we reach
the end of the chromosome. We repeat these operations for each chrmen@nd finally, we take the
average of all these correlation coefficients (from all windows frorstailbmosomes).

Global correlation is computed by considering the complete genome at dhpei(as every 10 nt),
instead of a sliding window. It provides a single correlation coefficient.



Peak predictions and their evaluation

High-density spots for both axis proteins and DSBs are computed as tke giethe corresponding
smoothed curves. They are defined as local maxima that are at leasthormalized density unit (see
“Normalized density”) above the surrounding local minima.

To evaluate high-density spot predictions versus experimental hotsmotsed two standard measures,
sensitivity and Positive Predicted Value (PPV). Namely, for each peakeirexperimental curve at
positionz, we look for a peak in the model lying in the interval— A, = + A]. If there is such a peak
then we count it as a true positive. Sensitivity is defined as the fraction@ptsitives over the number
of real peaks. Positive Predictive Value is defined symmetrically to sebgithy reversing real and
predicted peaks. It is the fraction of real peaks over the number digieel peaks.

Random models for axis proteins and DSBs sites

In order to test whether sensitivity and PPV values scored by SPoR&i®proteins and DSB spots
predictions are not the result of chance, we generated 1000 randdeigtior the two kinds of loci. For
axis proteins, the models were generated by randomly selecting 1615 positioig the wholé&. cere-
visiae genome, that is, the same number of peaks as in SPORE model 3 in TabledSBapots, the
models were generated by randomly selecting 4242 positioBscarevisiae intergenic regions, that is,
the same number of peaks as in SPORE model 6 in Table 1. We explicitly catsidegrgenic regions
because it is already known that DSB spots occur there. We wished tghtestter our predictions are
closer to real axis proteins or DSB spots than a random choice. Afteraamy the random positions,
we evaluated the position against experimental peaks by using the same nmethiogesl for SPoORE
(see above).

Intergenic region lengths

SPORE model for DSBs uses intergenic regions lengths as a contributightwePrecisely, given
an input genome, we compute the distribution of its intergenic region lengthsedntie threshold
IRLyax = p + o, wherey ando are average and standard deviation of the distribution. S-oere-
visiae, this value is 1202 nt (the first analysis of these regionS iterevisiae dates back to [45]). For
intergenic regions that are “too large”, thatisi, + o, we set the weight tbRL,,,.«, that is, the weight
stops growing after the threshold.

GC content

When taking into account GC content in our model, we use a kernel-basmatting of the GC distri-
bution on all nucleotides along the genome (both genic and intergenic), ethfagm a Gaussian kernel
with standard deviation 1 kb. Then we define all GC-based values with thetketbGC curveucc,
ogc andge(py) (see above). All along the genome, we assume the presence of a minimaitashou
GC content expressed by the thresh@@.,;, = pcc — 3oae.

Gene projections

Plots in Additional file 1. Figure S2, Additional file 1. Figure S3 and Additiofid 1: Figure S4,
were created by first smoothing the experimental data, then summing Redl/Spobthed curves
after centering them on reference positions (gene 5’-end, gened3'igergenic region centers). The
smoothing Gaussian kernel standard deviation used-is 20 nt, except for Additional file 1: Figure
S4B and Additional file 1: Figure S4D where we used respectively 15 nt ando = 5 nt. When



smoothing Red1 data, some values are missing because sometimes probedaarfram each other,
so the curve cannot be computed by using the Gaussian kernel betveeenTh avoid this problem,
we removed the intergenic regions with such holes in the gene projection pliaie precisely, we
removed 1 intergenic region out of 371 from the red curve in Additionallfild=igure S4A and 16
intergenic regions out of 381 from the yellow curve in Additional file 1: FegB84A and Additional file
1: Figure S4B.

Promoters and Transcription Factor Binding Sites (TFBS)

SPORE can model DSBs either by approximating the position of promoter eegroportionally to
the length of the associated intergenic region (see DSB model descriptior)alor by exploiting
knowledge of TFBS when available. For the latter, given a gene, it cerssttie set of its TFBS and
computes the average of their positions as the reference position to setighe of the SPORE model.

In case a gene has no known TFBS, then SPORE models its promoter locemhdn the length of its
intergenic region. FoB. cerevisiae, we used TFSB positions indicated in the Yeast Promoter Atlas [36]
repository, available at http://ypa.ee.ncku.edu.tw/.

Comparison with iRSpot-PseDNC on DSB data

Comparison between SPoRE DSB model and iRSpot-PseDNC [30] waserkalizthe dataset of 452
experimentally annotated [9] recombination hotspots for$heerevisiae chromosome V. This set,
originally used to evaluate iRSpot-PseDNC in [30], has been extended B#tkecldspots that we ex-
tracted from the same experiment [9]. This extension was done in ordesttbdt systems for false
positives. More precisely, for each hotspot in the dataset, we randetelgted a fragment of DNA on
chromosome IV with the same length as the hotspot, but without any experimetgsdlisted DSB, and
verified that these fragments do not overlap each other. (Notice thato1 18é S. cerevisiae genome
is made of regions that are larger than 242 nt, that is the average sizeotspmt) and that contain no
peak. We have randomly selected coldspots within these regions.) Hemobianed a set of coldspots
with the same number of sequences and the same length distribution as thdstspots. We then
tested iRSpot-PseDNC online by providing the server with the DNA seqaéndtiee dataset (the file is
available at http://www.lcgb.upmc.fr/'SPoRE/). To test our model, we simply preldist@ hotspot any
fragment on which the average of our curve is higher than the avevegehe whole genome.

To generate Additional file 1: Figure S11, we considered hotspots ddspois over the whol8. cere-
visiae genome. We used the same process as explained above for choossgptsldvith the only
differences that, first, we repeated the process for each of the dfhobomes, and, second, that we
allowed for at most 1 read to be present in a coldspot (requiring O re&ais stringent on some parts of
the genome). We then used the average of our curve over the hotsgatsldspots as a predictor, and
varied the threshold to produce the ROC curve (instead of setting it to theasedove).

A second dataset was used for comparison with iRSpot-PseDNC and [BT)DIt is defined in [31]
and it is downloadable as Sl of [30]. This set is defined by ORFs, buoes#fPoRE uses information
about intergenic regions instead, we benchmarked SPoRE on this datasedicting hotspots on the
intergenic regions lying before the gene start. Namely, we compared th@gavef our modelling
curve in this region to its mean and standard deviatiom by predicting hotspots when the average
of the curve is> 1 + 0. When the GC-content curve has been tested as a predictor of rectiorina
hotspots in this dataset, formally, we compared the maximum of the smoothedr@®&vcourve in the
gene and intergenic region preceding itdoc + oqc, whereugc, occ are the mean and the standard
deviation of the GC-content curve on the full genome. Notice that a much simpléel could replace
this GC-curve. In fact, we could just consider a 4kb window centerditeadtart of a gene, compute its
GC-content, and obtain identical accuracy.
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