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Abstract

Background

Meiotic recombination between homologous chromosomes provides natural combinations of genetic
variations and is a main driving force of evolution. It is initiated via programmedDNA double-strand
breaks (DSB) and involves a specific axial chromosomal structure. So far, recombination regions have
been mainly determined by experiments, both expensive and time-consuming.

Results

SPoRE is a mathematical model that describes the non-uniform localisation of DSB and axis proteins
sites, and distinguishes high versus low protein density. It is based on a combination of genomic sig-
nals, based on what is known from wet-lab experiments, whose contribution is precisely quantified. It
models axis proteins accumulation at gene 5’-ends with a discrete approximation of their diffusion and
convection along genes. It models DSB accumulation at approximated gene promoter positions with
intergenic region length and GC-content. SPoRE can be used for prediction and it is parameterised in
an obvious way that makes it easy to understand from a biological viewpoint.

Conclusions

When compared toSaccharomyces cerevisiae experimental data, SPoRE predicts axis protein and
DSB positions with high sensitivity and precision, axis protein density with an average local correla-
tion r = 0.63 and DSB density with an average local correlationr = 0.62. SPoRE outbreaks previous
DSB predictors, which are based on nucleotide patterning, and it reaches85% of success rate in DSB
prediction compared to54% obtained by available tools on a benchmarked dataset.

SPoRE is available at the address http://www.lcqb.upmc.fr/SPoRE/.
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Background

In sexually reproducing eukaryotes, the production of gametes relies onmeiosis, during which a diploid
cell is divided into four haploid cells. A critical step is homologous recombination between homologous
chromosomes, in which both crossover and non-crossover events occur, resulting in a different gene
content of the offspring chromosomes. This allows evolution to explore different allelic combinations
through recombinations that are more likely to occur in some regions than others [1,2] and that are
initiated by DNA double-strand breaks (DSBs) [3].

The Spo11 protein, a transesterase highly conserved through evolution[4] and required for meiotic
recombination inSaccharomyces cerevisiae [3], Caenorhabditis elegans [5], Drosophila [6] and mam-
mals [7], causes DSBs. Two Spo11 proteins work in concert to cut both DNA strands and, after the
cleavage, each Spo11 is bound to a DNA fragment [8]. This property has been used to make a high-
resolution DSB density map of theS. cerevisiae genome [9] revealing that DSBs are more abundant be-
fore gene starts [9]. It is also known that DSB frequency is strongly correlated with GC-content [10,11],
open chromatin structure [12-16] and histone methylation [17,18].

A specific chromosomal structure is formed during meiosis, and plays a key role in recombination
events. The formation of this structure is due to bonding of cohesin and several other proteins on
specific DNA sites, and to their assembly in a protein complex forming an axis [19-21]. The DNA lying
outside protein binding sites forms loops along the axis [11,22,23]. Axes of homologous chromosomes
are themselves bound to each other by transversal filaments made of (Zip1 inS. cerevisiae, Sycp1 in
mammals) proteins, forming the so-called synaptonemal complex.

In S. cerevisiae, the structural axis is formed by cohesin (Rec8), Red1 and Hop1 proteins [19,20]. It
has been shown that proteins Mer2, Rec114, and Mei4 bind to DNA at axissites, rather than to loop
sequences, and that their association depends on Red1 and Hop1. In turn, Red1 deposition depends
on Rec8 cohesin in certain regions, but not in others, and in both cases,their local distribution is very
similar [24]. The global correlations arer = 0.88 between Red1 and Hop1,r = 0.57 between Red1
and Rec8, andr = 0.38 between Hop1 and Rec8. Also, cohesin (and Red1) density is higher in
convergent regions, that is intergenic regions characterized by two gene ends, and is correlated with
AT-content [25], but no specific cohesin-DNA binding motif has been identified. Red1 density is locally
negatively correlated with DSB density (see Figure two E in [24]).

Many questions remain open on the chromosomal axis formation. Can we modelthe accumulation
of axial proteins and DSBs on the chromosomes entirely from genomic factors? If so, what is the
contribution made by each one of them?

A number of genomic markers (like gene start, gene end, GC-richness) associated to high-density sites
have been highlighted by experiments [10,26-29], but, once combined together, how well do they explain
the frequency of occurrence of proteins or DSBs in a given site along the axis? In other words, can we
create a mathematical model, based on genomic markers, and a tool that can predict axial proteins and
DSB? With a rapid increase of sequenced genomes, it is highly desirable to develop automated methods
for timely identifying recombination hotspots.

Computational predictions of recombination hotspots have been based on nucleotide sequence content.



These approaches take into account, more [30] or less [31,32] explicitly,sequence order effects. But the
accuracy of these algorithms still needs further improvement and more formal mathematical approaches,
considering mechanisms of chromatin remodeling during meiosis, could be a possible way to proceed.

Here, we provide a mathematical framework, called SPoRE for “SPots of REcombination”, that allows
us to model axis proteins and DSB localization and density along chromosomes.SPoRE models axis
proteins and DSB distributions based on genomic information. For axis proteins, SPoRE uses gene stop
codon positions and gene lengths as its only input, while for DSBs, it uses theorder of the genes defining
intergenic regions, intergenic region lengths and GC-richness. Based on these genomic markers, SPoRE
modelsS. cerevisiae experimental data for Red1 and Spo11 distributions [9,24] accurately. Weused
SPoRE to make predictions on three more yeast species,Lachancea kluyveri, Kluyveromyces lactis and
Schizosaccharomyces pombe. Finally, we compared it to available tools predicting DSB hotspots and
coldspots, and demonstrated its higher performance.

Results and discussion

The model and the algorithm

SPoRE modeling of axis proteins and DSBs relies on a general principle thatcan be summarized in two
main steps (Figure 1). First, it defines a set of positions on the genome where proteins might accumulate,
and sets a weight for each of these positions according to gene annotation. This weight is used as an
indicator of the density of the proteins. In the second step, it makes a smooth curve using a Gaussian
kernel of the distribution of weights along the genome.

Figure 1 Summary of SPoRE modeling approach. Two main steps constitute the approach and
they are described from top to bottom (center). First, SPoRE considers aset of positions to which it
assigns weights. Axis proteins (red) and DSBs (blue) involve convergent genes and divergent genes,
respectively. In the drawing, locations with non-zero weight are indicated by colored vertical bars
(height represents importance) and triangles: convergent genes foraxis proteins and divergent regions
for DSBs display the highest weights (top). Then, SPoRE smooths the distribution of weights with a
Gaussian kernel (bottom) modeling, in this way, the diffusion of the proteins around their main sites.
The red box on the left (A; axis proteins) and the blue box on the right (B; DSB) describe some details
of SPoRE models.

This main computational core in SPoRE, takes as input a genome and its gene annotation, and provides
as output the modeling curves describing DSBs and axis proteins distributionalong the whole genome
(Figure 2). A list of Transcription Factor Binding Sites (TFBS) can be provided as input for more
accurate promoter region detection. This intermediate output is used by SPoRE to provide four kinds of
data: 1. It produces the curves modeling the density of DSBs and axis proteins along the whole genome,
in a format that is ready for browsing (see Additional file 1: Figure S1). 2. Given a list of intervals on
the genome, it predicts whether they are hot or cold spots for DSBs. 3. Given a list of intervals on the
genome, it predicts whether they are axis sites. 4. Given an experimental curve defined over the genome,
it compares the DSB and axis proteins model curves with experimental data and provides Pearson and
Spearman local correlation coefficients between them. Also, it compares thepeaks of the model curves
with the peaks of the experimental curve, computing PPV and sensitivity.



Figure 2 SPoRE flowchart. SPoRE takes several input files (brown boxes); the input in the orange
box is optional. SPoRE implements the construction of the modeling curves for axis proteins and DSBs,
as described in Figure 1 (blue box, top), and uses these curves as input for 4 algorithmic tasks (bottom
blue boxes; outputs in grey boxes): 1. The prediction of DSB hotspots. Starting from a list of genomic
regions, it decides whether these regions are susceptible to DSB or not; 2. The prediction of axis proteins
sites. As in 1, it makes predictions starting from a list of genomic regions provided by the user; 3. The
production of ready for browsing output files describing the axis proteins and the DSB modelling curves
(see Additional file 1: Figure S1); 4. The comparison of SPoRE models (solid line) to experimental data
(dashed lines).

SPoRE can be easily used. It takes as input a genome and its associated gene annotation, and all its
parameters are automatically computed on the input genome. Also, SPoRE works on scaffolds, not only
on fully assembled chromosomes, since its minimal requirement is ORF annotation.

Analysis of convergent and divergent regions

Our intuition on the positioning of high-density hotspots for axis proteins and DSBs was developed with
the analysis of theS. cerevisiae experimental data in [9,24]. In understanding these data, we focused
on convergent and divergent regions, instead of considering the start and the end of genes as previously
done (compare Additional file 1: Figure S2 to Additional file 1: Figure S3). The plots, reported in
Additional file 1: Figure S2A-F, highlight characteristics of the data when displayed for convergent and
divergent intergenic regions. Notice that in [25], it was already observed that meiotic cohesin preferably
accumulates in convergent regions (Additional file 1: Figure S2A), with anextreme bias against regions
in which transcription is diverging (Additional file 1: Figure S2B).

By focusing at convergent and divergent regions, we observe (and provide with that a precise numerical
evaluation) that:

1. the local negative correlation between Red1 and DSBs localizations observed in [24,25] physically
corresponds to convergent and divergent regions, where convergent regions present high average Red1
density and almost no presence of DSBs (Additional file 1: Figure S2A andD), while divergent regions
present a high average Spo11 density and an important decrease in Red1 (Additional file 1: Figure S2B
and E);

2. Red1 density is much higher at gene 3’-ends than it is at gene 5’-ends, and yet even higher when
we consider only convergent intergenic regions, having two gene 3’-ends (Additional file 1: Figure S2A
and C);

3. DSB density is twice as high in divergent regions, having two gene starts, than intandem regions,
that is intergenic regions between co-directional genes (Additional file 1:Figure S2E-F);

4. DSB peaks are localized in promoter regions. This observation has already been made long ago [28],
and was confirmed with the high-resolution DSB density in [9], in which the authors found that 88.2%
of DSBs overlap with promoters. This can be seen in the DSB distribution in large divergent regions
(Additional file 1: Figure S4C-D). For the vast majority of intergenic regions(of < 800nt in length),
the DSB peaks appear roughly centered in the middle of divergent regions (Additional file 1: Figure
S2E-F), this position well approximating promoter locations.

From [24], we also observed that:

5. the shape of the distribution of Red1 proteins along genes (Additional file1: Figure S5A), highlights



a linear increase of the amount of Red1 proteins towards the gene end. Onsingle genes this increasing
distribution is not sharply distinguishable but when considering all genes together, it becomes gradu-
ally more pronounced in longer genes. In particular, the area under the distribution curves increases
proportionally to gene length.

6. The distributions of Rec8 and Hop1 in intergenic regions have a shape similar to the Red1 distribution
(see Additional file 1: Figure S10).

Axis proteins model

In a first attempt, axis proteins could be modeled by using gene 3’-ends as reference positions and by
associating to each position a weight corresponding to the length of the relative gene. This simple model
implies that convergent regions are governed by weights defined as the “sum” of two gene lengths, that
tandem regions are modeled by the length of only one gene, and that divergent regions are ignored. It
captures well some characteristics observed inS. cerevisiae experimental data: convergent regions host
about the double amount of Red1 compared to tandem regions, when we subtract the base noise level
(see Additional file 1: Figure S2A and Additional file 1: Figure S2C) and theamount of Red1 at gene
3’-ends augments with gene length (Additional file 1: Figure S4A).

SPoRE is based on this simple model but it also describes, in an explicit way, the spread of Red1
proteins along the gene. This Red1 spreading is likely due to two processes, one of diffusion and one
of convection of proteins. Since experimental measures of diffusion constants produced highly varying
values depending on the organism and on the protein [33], and that measures of convection constants are
also organism and gene dependent [34], we cannot directly use them tomodel the curves in Additional
file 1: Figure S5A. Then, we discretely approximated the curves through alinearly increasing curve that
begins at the start of the gene and increases to its maximum value at the gene end, as in Additional file
1: Figure S5C. Since we wish the amount of axis proteins per gene to be proportional to gene length,
we set the “triangle” height to be the same for all genes. As a consequence, the area of the triangle is
proportional to gene length, as described by experimental data (Additional file 1: Figure S5A).

The precise mathematical formulation of SPoRE model is the following. First we define the raw curve
before smoothing:

h(x) =
∑

g∈G

1[ag ,bg ](x).
x− ag
bg − ag

whereG is the set of all genes andx the position (in nucleotides) on the genome,ag is the position of the
start codon ofg, andbg is the position of its stop codon. The function1[a,b](x) has value 1 ifx ∈ [a, b]
and 0 otherwise.

Then we apply a kernel-based smoothing with a Gaussian kernel toh(x). Namely, we compute the
convolution with a Gaussian kernelK to obtain the final functionfRed1 which is our Red1 model curve:

fRed1(x) = (h ∗K)(x) =

∫ +∞

−∞

h(x) · e
−

(t− x)2

2σ2
smooth .dt

whereσsmooth is 1500 nucleotides.



DSB model

SPoRE localizes DSBs in promoter regions. Since these regions are not easily identifiable, SPoRE
follows a few rules to approximate their position in an intergenic region: 1. if theregion is convergent,
then no DSB is supposed to occur in it, 2. if the region is between two co-oriented genes (tandem
region), then DSBs are located at the center of the intergenic region, accounting for the promoter of the
starting gene, 3. if the region is divergent, then DSBs are located at two positions, at1/3 and at2/3
of the intergenic region respectively, corresponding to the two promoters. In cases 2 and 3, the amount
of DSBs is also modeled to be dependent on the average GC-content within awindow (see Methods).
If TFBS are available, SPoRE can use them to identify the promoter region ofa gene and replace the
location identified by steps 2 and 3 above with a more accurate evaluation of thepromoter location.

SPoRE adds one more contributing factor to the above model: the intergenic region length. For this, it
makes sure that the contribution of very long intergenic regions would not be penalized by high weights,
and fixes a maximum weight threshold to a valueIRLmax.

Formally, SPoRE modeling curvefDSB(x) is defined as:

∑

g∈G

min(irlg, IRLmax) · (max(0, gc(pg)−GCmin))
2
· e
−

(x− pg)
2

2σ2

smooth

whereG is the set of all genes,x the position (in nucleotides) on the genome,irlg is the intergenic
region length before the gene (on the strand whereg is lying). The positionpg depends on both the
orientation ofg and the position of geneg′ precedingg; gc(pg) is the smoothed GC content at position
pg. Let [a, b] be the intergenic region anda be the start codon position ofg, then:

pg =

{

a+ (b− a)/2 if g and g′ are on the same strand
a+ (b− a)/3 if g and g′ are on opposite strands

The two thresholdsIRLmax andGCmin are defined asIRLmax = µIRL + σIRL andGCmin = µGC −

3σGC, whereµIRL (µGC) andσIRL (σGC) are mean and standard deviation of the distribution of inter-
genic region lengths (GC content) over the whole genome. The quadratic term describes a preferred
DSB concentration in regions with a higher GC content.

This model takes into account the observation that divergent regions host about the double amount of
DSBs compared to tandem regions (indeed, 2 gene starts instead of 1 in an intergenic region influence
twice as much the average DSB density) and that, at large scale, on the thousands of base pairs scale,
GC-content correlates with DSBs [10].

Comparison with experimental data

SPoRE has been constructed to predict DSB and axis proteins distribution along chromosomes, and
to measure the importance of different factors in this prediction. To evaluatehow accurate SPoRE
modeling is, we performed four types of analysis:

a. experimental data on Red1 [9] and Spo11 [24] proteins obtained for theS. cerevisiae genome were
considered and the local/global Pearson and Spearman correlations between SPoRE modeling curves
and experimental curves were computed. The distribution of peaks, characterizing sites of highest
protein concentration, along the two curves was studied. Several models,characterized by different
combinations of genomic signals, were tested to numerically evaluate the impact of each signal.



b. coherence of SPoRE predictions was tested on two experimental datasets [24,35] related to axis pro-
teins and DSBs.

c. SPoRE was run on four yeast species.

d. SPoRE was compared to existing DSB predictors, all based on machine learning [30-32].

SPoRE model and axis proteins in S. cerevisiae

SPoRE model (that is model 3 in Table 1) is based on the hypothesis that axis proteins accumulate at
the end of genes, that genic region length is the main factor for protein density, and that taking into
account protein diffusion and convection along the gene improves precision. SPoRE reaches average
Pearson local (global) correlationr = 0.63 (r = 0.54; Additional file 1: Figure S7A) and Spearman’s
local (global) correlationρ = 0.63 (ρ = 0.60). We note that lower correlations are obtained when
an increasing distribution of proteins along the gene is omitted (model 2 in Table 1): Pearson’s local
(global) correlation isr = 0.58 (r = 0.52), and Spearman’s local (global) correlation isρ = 0.54
(ρ = 0.51).

Table 1 Performance of SPoRE and other models for axis proteins and for DSBs
Axis proteins - Red1

Model description Pearson Spearman
correlation correlation

Id Positions Weights loc glo loc glo
1 Gene ends 1 0.14 0.11 0.13 0.11
2 Gene ends gene length 0.58 0.52 0.54 0.51
3 Diffusion along gene gene length 0.63 0.54 0.63 0.60

DSB - Spo11
Model description Pearson Spearman

correlation correlation
Id Positions Weights loc glo loc glo
1 Gene starts 1 0.34 0.28 0.68 0.65
2 Gene starts gene length 0.26 0.21 0.65 0.63
3 Promoters 1 0.48 0.40 0.74 0.71
4 Promoters IRL 0.50 0.41 0.74 0.70
5 Promoters GC 0.58 0.52 0.75 0.72
6 Promoters GC × IRL 0.62 0.56 0.76 0.72
Local and global Pearson and Spearman correlation coefficients have been calculated between different model curves and
S. cerevisiae experimental data for axis proteins [9] and DSBs [24]. Bold characters highlight best performance. Different
models are characterized by different weighting factors (column “weights”). For DSB analysis,GC is GC-content smoothed
with a Gaussian kernel of 1000 nucleotides;IRL is the intergenic region length, orIRLmax if the region is too large (see
Methods). SPoRE model for axis proteins is number 3, and for DSBs is number 6. Values are output of the SPoRE program
(Figure 2, bottom right). See also the correlation curves for models 3 and6 in Additional file 1: Figure S7. All p-values
associated to both Pearson and Spearman global correlations are lowerthan10e−15 (even for weak correlations such as 0.11).
Highest correlations are highlighted in boldface.

Red1 localization is well predicted by the position of the peaks of SPoRE modeling curve (Figure 3).
For instance, along all chromosomes, 62% of real peaks are found by our model at a distance of at most
∆ = 1 kb from a predicted peak (74% at 1.5 kb), and62% of the predicted peaks are at most 1 kb away
from a real peak (73% at 1.5 kb). Sensitivity and PPV at increasing∆ values are illustrated by the curve
plot in Figure 4A. We notice that random models, based on random selections of spots along the genome
(see Methods), give much lower PPV and sensitivity values.



Figure 3 SPoRE model for axis proteins compared to experimental data in S. cerevisiae chro-
mosome 3. Red1 density curve [24] (black) and SPoRE axis proteins modelling curve (green) on
chromosome 3. Colored circles on the top of the plot mark peaks of the curves.

Figure 4 SPoRE performance in detecting axis proteins and DSB hotspots for S. cerevisiae. Peaks
localisation (not density) in SPoRE curves is compared to peaks localisation inexperimental curves for
axis proteins [9](A) and DSBs [24](B). Positive Predictive Value (PPV) and Sensitivity (see Methods)
obtained with SPoRE models (number 3 for axis proteins and number 6 for DSBs) are reported for
increasing values of the parameter∆, representing the maximum distance allowed between two peaks
to say that they match. The vertical bars in the plots correspond to∆ = 1kb and1.5kb in A and to∆ =
150nt and300nt in B. Different random models are used to analyze SPoRE behavior (see Methods):
best PPV/sensitivity over 1000 simulations (blue), PPV/sensitivity for a p-value of 5% (green), average
PPV/sensitivity over 1000 simulations.

It is worth noticing that the usage of constant weights makes the model performance very poor, as
the correlation with real data falls down tor = 0.14 (model 1 Table 1). Strictly speaking, even the
positional analysis of the peaks, as discussed above, is dependent onappropriate weight values, because
a smoothing is performed before extracting the peaks (Gaussian window withσ = 1.5kb). Therefore,
peaks result from the accumulation of high weights and they are not simply modeling gene ends. This
is why model 1 (Table 1) has much lower PPV and sensitivity than model 2.

Finally, since experimental data highlight the existence of a background noise inducing a basic level of
Red1 distribution along chromosomes, we verified whether, by including a fixed noise level in SPoRE
model (see Methods), predictions inS. cerevisiae would be improving the fit or not. A minor improve-
ment in Pearson correlation coefficients (local atr = 0.64 and global atr = 0.56) is observed.

SPoRE model and DSBs in S. cerevisiae

The SPoRE model (that is model 6 in Table 1) assumes that DSBs concentratein gene promoter po-
sitions, and that intergenic region length and GC-content are key factorsfor explaining DSB density.
SPoRE displays a local Pearson correlationr = 0.62 and a Spearman correlationρ = 0.76 with exper-
imental data [9]. The heatmap of the experimental Spo11 distribution curve [9] and the Spo11 SPoRE
modeling curve, reported in Figure 5, shows a sharp diagonal confirmingthe accurate prediction of the
model and in particular the precise prediction of regions with high DSB densityor DSB absence.

Figure 5 Heatmap of the experimental Spo11 distribution curve [9] and the Spo11 SPoRE curve
on the S. cerevisiae genome. Pairs ofy-values belonging to the two curves have been recorded every
10nt along the chromosomes, and a total amount of about 1.2 millions points(y1, y2) were identified,
wherey1 andy2 are they-coordinates of the experimental and modeling curves, respectively. Inthe plot,
they-coordinates have been replaced by their ranks to allow for better visualization. Thex-axis reports
ranks from the experimental curve and they-axis reports ranks from the SPoRE modeling curve. Each
square in the plot describes the number of points falling into the corresponding interval of rank values.
The dark red square on the top right collects picks with the highesty-ranks and the red square on the
bottom left collects points in the experimental curve displaying no Spo11 accumulation, and therefore
no DSBs.

Localization of DSB high-density spots is well predicted by the position of the peaks of our modeling
curve (Additional file 1: Figure S6). For instance, 64% of the predicted peaks are found at most∆ =
150nt away from a real peak (PPV) and 68% of the real peaks are found atless than150nt away from



a predicted peak (sensitivity). Sensitivity and PPV at increasing∆ values are reported in Figure 4B. In
comparison, a random model based on a random selection of spots in intergenic regions (see Methods),
displays much lower PPV and sensitivity.

Although SPoRE identifies a subset of the peaks found by the model at constant weights (see sensitivity
in model 3, Table 1), it clearly predicts better their heights when GC-richness and, to a lesser extent,
intergenic region length are considered. The performance of these different models is reported in Table 1.

Finally, we tested whether the knowledge of TFBSs inS. cerevisiae [36], leading to a more accurate
promoter region localization, improves SPoRE predictions or not. There is noimprovement on peak
heights prediction (Pearson and Spearman local and global correlation coefficients do not increase).
For peak localization, PPV slightly increases to 67% and sensitivity to 69% for∆ = 150nt, and we
conclude that a precise estimation of promoter regions helps modeling DSB localization. The effect of
TFBS availability in modeling remains limited though.

Coherence of SPoRE predictions with two large-scale experimental datasets

SPoRE modeling curves can be used for comparison with experimental data of different origin. In this
respect, we considered two different datasets.

First, as mentioned in the introduction, it has been shown previously that Red1 and Hop1 patterns are
influenced by Rec8 (cohesin) patterns [24]. Hop1, for instance, is distributed almost like Red1 (local
correlation isr = 0.92, global isr = 0.88) with which it interacts [37,38]. On the other hand, Rec8 is
more abundant around centromeres than Red1/Hop1, although local variations are the same. Therefore,
Rec8 global correlation with Red1 is onlyr = 0.57, while its local correlation is stillr = 0.83. Because
of these correlations, we expect SPoRE to be locally well correlated with Hop1 and Rec8 (data from
[24]). Indeed, we find that SPoRE model has a local correlation ofr = 0.62 with Hop1 andr = 0.60
with Rec8, compared tor = 0.64 with Red1. This confirms that the three axial proteins share SPoRE
local distribution patterns. Consistently, if we look at global correlation coefficients, SPoRE is well
correlated with Hop1 (r = 0.55) and Red1 (r = 0.56) but weakly correlated with Rec8 (r = 0.33).

Second, we compared SPoRE curves to histone trimethylation data. It has been observed before that
H3K4 trimethylation (H3K4me3) is linked to DSBs [17]. Then, we computed correlations between
H3K4me3 (data from [35]) and SPoRE modeling curve for Spo11. We findr = 0.25, which is compa-
rable tor = 0.21 obtained when we correlate H3K4me3 and DSB experimental data. Similarly, with
Spearman coefficients, we findρ = 0.61 between H3K4me3 and our model, andρ = 0.52 between
H3K4me3 and DSB experimental data. We conclude that SPoRE model is consistent with this known
interaction.

Both these examples confirm that the modeling curves are faithful approximations of experimental
curves and that biological conclusions can be safely derived from them.

SPoRE predictions on several yeast species

The large number of sequencing projects on yeast clades and the upcoming new projects (still a few to-
day) exploring the molecular biology of yeast species encourages the usage of predictive tools for learn-
ing about the distribution of DSB and axial proteins sites, to start comparative studies on yeasts across
clades. We run SPoRE onLachancea kluyveri andKluyveromyces lactis. The genome ofL. kluyveri
shows a particularly high GC-content on the left-arm of the C chromosome (see Additional file 1: Fig-
ure S8) and SPoRE predicts a higher concentration of DSBs in this chromosomal arm. We note that
the number of peaks within the C-left arm is comparable to other chromosomal arms, and that SPoRE



detects the same number of peaks (353) than model 4, which excludes the GCfactor. Namely, the GC
factor in SPoRE exclusively influences DSB density and not DSB positioning, and the high number of
DSBs predicted along the C-left arm is a consequence of SPoRE higher peaks rather than SPoRE higher
number of peaks. Experiments inL. kluyveri are expected to confirm SPoRE prediction in the C-left
arm of the C chromosome.

We have also run SPoRE onSchizosaccharomyces pombe where recombination is known to be partially
dependent on DNA motifs. As expected in this species [39], SPoRE predicts a large number of DSBs
in large intergenic regions. It should be noticed that inS. pombe, divergent and tandem regions are
unusually large compared to other yeast species. InS. cerevisiae, L. kluyveri andK. lactis for instance,
the mean length of divergent and tandem regions, is approximately 700nt while it is 1200nt forS. pombe
(Additional file 1: Figure S9). Since SPoRE favors DSBs in tandem and divergent regions, and since
the size of these regions plays an explicit role in the model, SPoRE prediction confirms the previous
observations.

When comparing SPoRE predictions with the DSB distribution inS. pombe [40], results are much less
accurate than withS. cerevisiae. We get a local Pearson correlation ofr = 0.36 (global correlation is
r = 0.26). Spearman correlation is better withρ = 0.43 (global correlation isρ = 0.42). This can
be explained by the major differences betweenS. cerevisiae andS. pombe. As explained by [40], in
S. pombe, DSB do not occur in most promoters and can occur in convergent regions. More precisely, in
S. cerevisiae, 91% of divergent intergenic regions contain a DSB peak, while this number is only 70%
in S. pombe. In S. cerevisiae the ratio between the number of DSB per kb in divergent versus convergent
regions is around 14, while it is only 3 inS. pombe. Both these observations are in contradiction with
our model, and that explains its poor performance for this species.

Comparison between SPoRE and other predictive tools

Several tools, based on nucleotide sequence analysis (considering k-mers, fork ≥ 2) have been proposed
[30-32] as predictors of recombination or DSB hotspots.

We compared to the most recent one, iRSpot-PseDNC [30], which improvedabove the others. In [30],
the authors compared their predictions of DSB sites against 452 hotspots onchromosome IV extracted
from the same Spo11 experimental data [9] that we compared to. They found that their program predicts
as hot 347 of these hotspots, corresponding to a true positive rate of 77% [30]. When applying the same
test to our model, we predicted as hot 361 of these 452 hotspots, corresponding to a true positive rate
of 80%. However, to perform a proper benchmark, negative instances (coldspots) should be included
in the test set, so that the false positive rate can also be measured. We therefore enlarged the dataset
by adding 452 randomly chosen coldspots in the same experimental data and on chromosome IV (see
Methods). On this symmetric test set, the overall success rate of iRSpot-PseDNC falls to 54% against
85% for our model (see Methods), compared to an expected 50% for a random prediction. This is due to
the fact that iRSpot-PseDNC detects 309 false positives (false positive rate is 68%) while we only detect
43 of them (false positive rate is 10%). This shows that iRSpot-PseDNC is littlebetter than random in
detecting DSB hotspots. It should be noted that comparison is realized on hotspot sites localization but
that no prediction on protein density is made by iRSpot-PseDNC, contrary to SPoRE, where estimations
of density can be directly inferred from the modeling curve.

We also extended this benchmark over the wholeS. cerevisiae genome by considering all the 3600
hotspots discovered in [9], together with 3600 randomly chosen coldspots. The accuracy of SPoRE in
that case is 84% (close to 85% for chromosome IV). Its predictive performance can also be measured
with a ROC curve by varying the density threshold, in which case the area under the curve is 0.90
(see Additional file 1: Figure S11). iRSpot-PseDNC success rate on properly identifying hotspots and



coldspots is 55% (comparable to the 54% obtained on chromosome IV; due to thenature of iRSpot-
PseDNC output, no ROC curve can be produced).

A second test was realized on the same dataset used in [30] to compare iRSpot-PseDNC to IDQD
[31]. This dataset, defined in [31], is composed of 490 hot ORFs and 591 cold ORFs, where the hot
ORFs describe a set of recombination hotspots. Notice that a recombination hotspot is expected to be
located close to a DSB site but not the vice versa, and that SPoRE cannot be directly used for predicting
recombination hotspots since it was designed to predict DSB hotspots.

Hence, we decided to test how much the smoothed GC-content, which we usedas a factor in SPoRE,
contributes to the identification of recombination hotspots. By using only GC-content, we obtained an
accuracy of 83% (see Methods), against the 80% reached by IDQD and the 85% reached by iRSpot-
PseDNC (based on a 5-fold cross-validation of the SVM approach they implement). The conclusion is
that even though iRSpot-PseDNC is based on the actual DNA content (taking dinucleotide frequency as
its predictor), it appears that almost all the signal can, in fact, be recovered simply with the GC-content
in a window.

Conclusions

We explored the hypothesis that genomic signals allow us to predict DNA double-strand breaks and the
formation of the loops (their position and length) in the 3D chromosomal structure during meiosis. Our
aim here is not to study the dynamics of a protein localization process but rather to identify the genomic
information that can be used to predict the 3D structure formation and quantify the importance of these
predictive factors. SPoRE allows us to test whether genomic signals are good predictive variables or
not, and to what extent, in the accumulation of axis proteins and DSBs along chromosomes.

However, it should be noted that this does not imply that the factors are the cause of DSBs and axis
proteins positioning. For example, GC-content could be a consequence rather a cause of DSBs [41]. In
both cases however, it is a useful factor for predicting DSB hotspots.

All genomic factors considered in the model are linear functions with the exception of a quadratic factor
modeling the impact of GC content. New parameters can be easily added to the model for the evaluation
of new genomic markers effects. The interest in this modeling approach comes from a straightfor-
ward biological interpretation of the parameters that helps to reason on plausible biological mechanisms
forming protein accumulation.

Orientation of genes and chromosomal axis formation

We have shown through a formal model that the distribution of the chromosomal axis proteins is en-
coded in gene organization along DNA. The orientation of the genes influences the formation of the
loops within the 3D axial structure during meiosis and to reach an understanding of this 3D structure
formation, this fact should be combined with the existence of a random process governing the binding
of the axis proteins to DNA and with a pervasive transcriptomic activity inducing a repositioning of the
proteins in specific sites along the genome. In this respect, SPoRE model could help to design appropri-
ate genomic signatures for synthetic chromosomes that should form a functional synaptonemal complex
structure.

Modeling organisms other than yeast

SPoRE could be used to infer localization and density of axis proteins and DSBs sites at large scale
for those yeast species for which whole genome experiments have not been made yet. Today, more



than 40 yeast genomes have been completely sequenced and for many of these yeast species, meiosis
either exists or can be induced. It might be interesting to apply SPoRE model tothese species to check,
through comparative genomics, whether syntenic region boundaries correspond to DSB hotspots or not
across species, whether the genetic content of DSB hotspots and of theirneighborhoods are conserved
in different species and so on.

Axial chromosome structures formation has been experimentally observed across many sexually repro-
ducing eukaryotic species, from fungi to vertebrates. In yeast, our model highlights that axial chromo-
some structures and DSB distribution are governed by a rather simple combination of genomic signals.
For other organisms, the model might be expected to become more complex. Forthe mouse, for in-
stance, other factors such as DNA binding sites targeted by axial proteinshave been demonstrated to
play an active role in DSB localization [42]. In this respect, SPoRE might be taken as a nutshell to
add extra signals and reach appropriate descriptions of experimental data in other organisms, possibly
multicellular ones. SPoRE software is provided to allow users for further development and testing of
new genomic factors.

Methods

Visualization in a genome browser

To allow biologists to visualize easily SPoRE modeling curves, SPoRE providesits results in the WIG
file format. They can be loaded in the UCSC genome browser (http://genome.ucsc.edu/), in the genome
browser available at http://yeastgenome.org/ and in the IGV software (see Additional file 1: Figure
S1) [43]. For the four yeast genomes that we analyzed, the corresponding wig files are available at
http://www.lcqb.upmc.fr/SPoRE/. For convenience, we also provide the correspondingS. cerevisiae
experimental data in the same format, to allow for easy comparison.

Software availability

SPoRE program is provided to the users that would like to apply it to yeast species, others than those
we already considered here, or modify it for other organisms. The “readme” file explains what are the
parameters that should be set for other organisms. The software is available at http://www.lcqb.upmc.fr/
SPoRE/

Annotation

The reference strain we used to validate SPoRE isSaccharomyces cerevisiae S288C. The gene annota-
tions were retrieved from theSaccharomyces Genome Database (http://www.yeastgenome.org/), release
64. We included 4879 “verified” ORFs and 895 “uncharacterized” ORFs in our set of coding genes,
but not “dubious” ORFs. We also considered transposons by taking the89 features labeled “transpos-
able element gene”, rRNAs (RDN37-1, RDN37-2, RDN5-1, RDN5-2, RDN5-3, RDN5-4, RDN5-5,
and RDN5-6), and pseudogenes (21). ForLachancea kluyveri andKluyveromyces lactis, genomes and
annotations were downloaded from Genolevures (http://www.genolevures.org/). Only features named
“CDS” were taken into account in our models. ForSchizosaccharomyces pombe, genome and anno-
tation were downloaded from PomBase (http://www.pombase.org/). We used features labeled “CDS”,
representing exons, and merged them together to get intervals defining genes in our models.



Protein density data used for SPoRE validation

We use protein density data along the genome from Spo11 immunoprecipitation/454 sequencing for
DSB [9] and from ChIP-on-chip for Red1, Hop1 and Rec8 [24]. They were mapped on theS. cerevisiae
S288C genome, even though strain SK1 was used in the experiments. Raw data were used for computing
all correlations reported in Table 1. They were retrieved from supplementary data in [9] for Spo11, and
from the GEO dataset GSE29860 for Red1/Hop1/Rec8.

Smoothing

To smooth the curves, we use a kernel-based smoothing with a Gaussian kernel. We use the “density”
function provided in R [44] for all our models, the Spo11 experimental dataand the GC-content. We
use the “ksmooth” R function for Red1 experimental data to take into accountcorrectly the irregular
spacing of the tiling array probes. When referring toσ nt smoothing, we mean that the Gaussian kernel
we use has a standard deviation ofσ.

For DSBs, we usedσ = 250 nt for both data and models. Notice that Spo11 experimental data have a
nucleotide-level precision and that the smoothing we use takes into accountthe range in which Spo11
might cut DNA around hotspots. For axis proteins, we usedσ = 1000 nt for the Red1 experimental
data, andσ = 1500 nt for our models. The rationale behind the different values is that ChIP-on-
chip experiments produce large fragments of DNA where proteins bind and, as a consequence, a large
range of probes in the microarray detects them. The accumulation of probesdoes the equivalent of a
smoothing, and because of this, we need to smooth the data less than in the model.The two parameters
were adjusted so that the number of peaks detected on both smoothed curves is approximately the same
(1558 forS. cerevisiae data, 1615 in SPoRE model). More precise experimental data might correspond
to a different smoothing constantσ and the software allows for easy changes.

Normalized density and experimental noise

Normalized density (y axis in Figure 3 and Additional file 1: Figure S6) is defined by translating and
scaling the values in such a way that the first percentile maps to 1 and the 99th percentile maps to 99.
This is a way to scale the data approximately between 0 and 100 without taking intoaccount extreme
values. In fact, these latter might be a consequence of the experimental noise. In Red1 model 4 (Table 1),
noise was estimated from data by considering the 1st percentilem and the 99th percentileM , where
m = 2.169456 andM = 7.622778 for S. cerevisiae. The ratioM/m = 3.5 has been used to estimate
the noise level in Figure S3E.

Correlations between model and experimental curves

To estimate the local correlation between two curves, we considered a window of 50 kb in which we
compute the correlation coefficient (Pearson or Spearman) between points of the two curves every 10 nt.
Then we move the window by 10% of its size (ie. 5 kb) and repeat the computation until we reach
the end of the chromosome. We repeat these operations for each chromosome, and finally, we take the
average of all these correlation coefficients (from all windows from allchromosomes).

Global correlation is computed by considering the complete genome at once (all points every 10 nt),
instead of a sliding window. It provides a single correlation coefficient.



Peak predictions and their evaluation

High-density spots for both axis proteins and DSBs are computed as the peaks of the corresponding
smoothed curves. They are defined as local maxima that are at leastε = 1 normalized density unit (see
“Normalized density”) above the surrounding local minima.

To evaluate high-density spot predictions versus experimental hotspots,we used two standard measures,
sensitivity and Positive Predicted Value (PPV). Namely, for each peak in the experimental curve at
positionx, we look for a peak in the model lying in the interval[x−∆, x+∆]. If there is such a peak
then we count it as a true positive. Sensitivity is defined as the fraction of true positives over the number
of real peaks. Positive Predictive Value is defined symmetrically to sensitivity, by reversing real and
predicted peaks. It is the fraction of real peaks over the number of predicted peaks.

Random models for axis proteins and DSBs sites

In order to test whether sensitivity and PPV values scored by SPoRE foraxis proteins and DSB spots
predictions are not the result of chance, we generated 1000 random models for the two kinds of loci. For
axis proteins, the models were generated by randomly selecting 1615 positions along the wholeS. cere-
visiae genome, that is, the same number of peaks as in SPoRE model 3 in Table 1. ForDSB spots, the
models were generated by randomly selecting 4242 positions inS. cerevisiae intergenic regions, that is,
the same number of peaks as in SPoRE model 6 in Table 1. We explicitly considered intergenic regions
because it is already known that DSB spots occur there. We wished to testwhether our predictions are
closer to real axis proteins or DSB spots than a random choice. After generating the random positions,
we evaluated the position against experimental peaks by using the same method employed for SPoRE
(see above).

Intergenic region lengths

SPoRE model for DSBs uses intergenic regions lengths as a contributing weight. Precisely, given
an input genome, we compute the distribution of its intergenic region lengths andset the threshold
IRLmax = µ + σ, whereµ andσ are average and standard deviation of the distribution. ForS. cere-
visiae, this value is 1202 nt (the first analysis of these regions inS. cerevisiae dates back to [45]). For
intergenic regions that are “too large”, that is> µ+ σ, we set the weight toIRLmax, that is, the weight
stops growing after the threshold.

GC content

When taking into account GC content in our model, we use a kernel-based smoothing of the GC distri-
bution on all nucleotides along the genome (both genic and intergenic), obtained from a Gaussian kernel
with standard deviation 1 kb. Then we define all GC-based values with the smoothed GC curve:µGC,
σGC andgc(pg) (see above). All along the genome, we assume the presence of a minimal amount of
GC content expressed by the thresholdGCmin = µGC − 3σGC.

Gene projections

Plots in Additional file 1: Figure S2, Additional file 1: Figure S3 and Additionalfile 1: Figure S4,
were created by first smoothing the experimental data, then summing Red1/Spo11 smoothed curves
after centering them on reference positions (gene 5’-end, gene 3’-end, intergenic region centers). The
smoothing Gaussian kernel standard deviation used isσ = 20 nt, except for Additional file 1: Figure
S4B and Additional file 1: Figure S4D where we used respectivelyσ = 15 nt andσ = 5 nt. When



smoothing Red1 data, some values are missing because sometimes probes are too far from each other,
so the curve cannot be computed by using the Gaussian kernel between them. To avoid this problem,
we removed the intergenic regions with such holes in the gene projection plots.More precisely, we
removed 1 intergenic region out of 371 from the red curve in Additional file1: Figure S4A and 16
intergenic regions out of 381 from the yellow curve in Additional file 1: Figure S4A and Additional file
1: Figure S4B.

Promoters and Transcription Factor Binding Sites (TFBS)

SPoRE can model DSBs either by approximating the position of promoter regions proportionally to
the length of the associated intergenic region (see DSB model description above), or by exploiting
knowledge of TFBS when available. For the latter, given a gene, it considers the set of its TFBS and
computes the average of their positions as the reference position to set the weight of the SPoRE model.
In case a gene has no known TFBS, then SPoRE models its promoter location based on the length of its
intergenic region. ForS. cerevisiae, we used TFSB positions indicated in the Yeast Promoter Atlas [36]
repository, available at http://ypa.ee.ncku.edu.tw/.

Comparison with iRSpot-PseDNC on DSB data

Comparison between SPoRE DSB model and iRSpot-PseDNC [30] was realized on the dataset of 452
experimentally annotated [9] recombination hotspots for theS. cerevisiae chromosome IV. This set,
originally used to evaluate iRSpot-PseDNC in [30], has been extended with 452 coldspots that we ex-
tracted from the same experiment [9]. This extension was done in order to test both systems for false
positives. More precisely, for each hotspot in the dataset, we randomly selected a fragment of DNA on
chromosome IV with the same length as the hotspot, but without any experimentallydetected DSB, and
verified that these fragments do not overlap each other. (Notice that 17%of the S. cerevisiae genome
is made of regions that are larger than 242 nt, that is the average size of a hotspot, and that contain no
peak. We have randomly selected coldspots within these regions.) Hence, we obtained a set of coldspots
with the same number of sequences and the same length distribution as the set ofhotspots. We then
tested iRSpot-PseDNC online by providing the server with the DNA sequences in the dataset (the file is
available at http://www.lcqb.upmc.fr/SPoRE/). To test our model, we simply predicted as a hotspot any
fragment on which the average of our curve is higher than the average over the whole genome.

To generate Additional file 1: Figure S11, we considered hotspots and coldspots over the wholeS. cere-
visiae genome. We used the same process as explained above for choosing coldspots, with the only
differences that, first, we repeated the process for each of the 16 chromosomes, and, second, that we
allowed for at most 1 read to be present in a coldspot (requiring 0 readsis too stringent on some parts of
the genome). We then used the average of our curve over the hotspots and coldspots as a predictor, and
varied the threshold to produce the ROC curve (instead of setting it to the meanas above).

A second dataset was used for comparison with iRSpot-PseDNC and IDQD[31]. It is defined in [31]
and it is downloadable as SI of [30]. This set is defined by ORFs, but since SPoRE uses information
about intergenic regions instead, we benchmarked SPoRE on this datasetby predicting hotspots on the
intergenic regions lying before the gene start. Namely, we compared the average of our modelling
curve in this region to its meanµ and standard deviationσ by predicting hotspots when the average
of the curve is≥ µ + σ. When the GC-content curve has been tested as a predictor of recombination
hotspots in this dataset, formally, we compared the maximum of the smoothed GC-content curve in the
gene and intergenic region preceding it toµGC + σGC, whereµGC, σGC are the mean and the standard
deviation of the GC-content curve on the full genome. Notice that a much simpler model could replace
this GC-curve. In fact, we could just consider a 4kb window centered atthe start of a gene, compute its
GC-content, and obtain identical accuracy.
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