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Abstract 

 In a previous work, the analysis of the electrolyte-resistance (ER) increment due to the 

presence of an insulating sphere above or in contact with a disk electrode, simulating a spherical 

particle, drop, or gas bubble close or attached to an electrode has been reported [Bouazaze et al., 

Electrochim. Acta 55 (2010) 1645]. In the present work, the influence on the ER of the contact 

angle with the electrode surface, which plays for example a major role in the size of bubbles on gas-

evolving electrodes, is quantitatively determined. The mathematical collocation method used in the 

previous work was improved to account for the change in geometry of the electrode-sphere system. 

The theoretical results show that the ER increment due to the presence of the sphere depends on its 

size, position, and contact angle. For a given size and position of spheres of aspect ratio less than 

0.4, the ER increment due to the contact angle varies roughly between -45% and +35% of the 

increment due to a perfect sphere, depending on the interplay of the surface and volume competing 

effects influencing the ER. Despite their low values, the ER increments could be experimentally 

measured for spheres of different contact angle placed at the electrode centre, owing to a high-

precision motorized translation stage and a specific low-noise ER measurement device. An 

excellent agreement was obtained between the theoretical and experimental results. 
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1. Introduction 
 Formation of electrolytic bubbles is encountered in many industrial electrochemical 

applications because gas molecules are often generated from electrochemical reactions. This 

phenomenon has important implications because a part of the active electrode surface is screened 

by the attached bubbles, which affects charge, mass, and heat transfers at the electrode/electrolyte 

interface. The screening effect of electrolytic bubbles and the influence of the contact angle of 

attached bubbles, defined as the angle between the liquid-gas interface and the electrode surface, 

have been studied in several papers. For example, the modification of the primary distribution of 

potential and current lines (ohmic effects) due to the presence of a single spherical bubble attached 

to an infinite plane electrode has been analytically derived by Sides and Tobias and the incremental 

electrical resistance was calculated for a sparse array of spherical bubbles [1]. The electrode current 

density, which is quite negligible on a small area around the contact point, was found to 

approximately apply for nearly spherical bubbles having a contact angle lower than 17.5°. This 

analysis was later extended to bubbles making arbitrary contact angle with the electrode by Wilson 

and Hulme [2]. Dukovic and Tobias studied the effects of attached bubbles on the local distribution 

of current and on the potential drop at the electrode [3]. In addition to the increase in electrical 

resistance (ohmic effects), their model shows an increase in the surface overpotential due to the 

masked electrode area that increases the local current density, and a decrease in the concentration 

overpotential due to decreased local supersaturation near the bubbles. All these parameters have 

been shown to depend on the contact angle of the bubbles with the plane electrode. 

 The screening effect of attached electrolytic bubbles was also studied by Vogt et al. who 

introduced the bubble fractional coverage factor, defined as the area screened by the normal 

projection of the bubbles on the electrode surface. They showed this factor strongly depends on the 

electrolysis current density for both stagnant [4] and flowing [5-6] electrolytes. However, these 

authors neglected the influence of the contact angle when its value is lower than 90° (wetting 

electrolyte), considering that the actual current density on the shaded area below the attached 

bubbles is small. 
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 Several authors have tried to take into account the influence of the contact angle on bubble 

growth rate, detachment diameter, and population density on the electrode, and to predict its 

dynamic variation at different stages of bubble evolution (nucleation, growth, and detachment). 

Trieu et al. studied hydrogen evolution formed by formaldehyde oxidation during electroless copper 

deposition on a vertical wall [7]. They theoretically showed the dependence of the side contact 

angle and bubble detachment radius and observed experimentally that the smaller the contact angle, 

the larger the evolving bubbles, which strongly affects the quality of the product plate.  

 Buehl and Westwater studied the effect of contact angle on the growth rate of bubbles in 

water supersaturated with carbon dioxide [8]. Their theoretical work and photographic observations 

of bubbles coming out from an artificial site drilled on a horizontal wall concluded that the effect of 

contact angle on bubble growth rates was small for contact angles between 0 and 90 degrees, even 

if the contact angle changed during bubble growth. Baum et al. studied the influence of the 

attachment of hydrogen bubbles produced during the etching of Si (100) in aqueous KOH on the 

surface roughness of microstructures [9]. Indeed, these bubbles are one of the causes of the 

formation of pyramids on the Si surface. They showed that the decrease in contact angle of the 

attached bubbles due to alcohol or oxidizing agent addition improves the surface finish. 

 Gas evolution may also be studied using the electrochemical noise technique, which consists 

in measuring the potential or current or electrolyte resistance fluctuations generated by the growth 

and detachment of bubbles, in order to derive the size and departure rate of bubbles. Despite the 

ability of the technique to monitor gas evolution in real time, very few studies have been reported in 

the literature on this topic. Gabrielli et al. showed that the mean departure rate, the mean radius of 

detaching bubbles, and the gas evolution efficiency can be derived from the spectral analysis of the 

potential or current fluctuations [10]. Hodgson showed that the influence of various electrocatalysts 

on the departure rate of chlorine bubbles evolving on ruthenium-titanium oxide anodes could be 

monitored by current noise measurements [11]. Compared to the analysis of the potential or current 

fluctuations, which depend on several factors (ohmic, activation, concentration of dissolved gas) 
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[3,12], the analysis of the fluctuations of the electrolyte resistance (ER) measured between the 

reference electrode and the working electrode is easier since only ohmic effects are concerned. 

Owing to the experimental set-up described in Ref. [13], Huet et al. simultaneously measured 

potential and electrolyte resistance (ER) fluctuations due to oxygen bubbles detaching from rough 

and porous horizontal Ni electrodes and showed that the size of detached bubbles depends on the 

electrode surface roughness [14]. Volanschi et al. studied the influence of various surfactants on the 

dynamic surface tension, which plays a significant role on the size and departure rate of evolving 

bubbles, from the simultaneous measurement of potential and ER on microcavity electrodes in 

aqueous solutions [15]. Benzaïd et al. also measured the ER fluctuations generated by hydrogen 

bubbles on cylindrical vertical carbon steel tensile specimens under cathodic polarisation [16]. 

However, their simplified model of the power spectral density of the ER fluctuations gave 

characteristic parameters of the gas evolution in only qualitative agreement with optical 

observations because of the complicated screening and dragging effects of rising bubbles for 

vertical electrodes. 

 In order to improve the theoretical models, it is necessary to quantify the effect of a bubble 

above or attached to a plane electrode of finite size on the ER. In a previous work, the ER 

increment due to the presence of an insulating sphere in contact with a disk electrode was calculated 

with the collocation mathematical method [17]. This configuration “single sphere – electrode” 

simulating a frozen bubble is the basic case in the study of gas evolution and can also find interest 

in other fields, such as when tracking the position of a moving spherical particle in a flow-channel 

[18]. However, only bubbles of contact angle equal to zero were concerned up to now. To extent the 

previous study, the influence of contact angle of an insulating sphere sitting at any position on a 

disk electrode is investigated in the present paper. 
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2. Theoretical treatment 

 The mathematical collocation method used to calculate the distribution of the potential  in 

the electrolyte when an insulating sphere simulating a bubble with a zero contact angle lies on a 

disk electrode has been detailed in Refs. [17,19] and is summarized in Appendix A. This method 

applies as well when the contact angle  of the bubble is different from 0. In that case, the bubble is 

simulated by a sphere cut off by a plane. Fig. 1 shows the notations used in this paper. The centre of 

the disk electrode of radius ae is the origin O of the Cartesian coordinate system (x, y, z) and the 

centre O' of the sphere of radius ap corresponds to the point (x0, 0, z0 = ap cos ), where  is the 

contact angle of the truncated sphere, as defined in Fig. 1.  

 Once the coefficients Anm and Cnm of the series expansion of the potential distribution in the 

electrolyte are determined (Appendix A), the ER can be calculated from the ratio of the potential 0 

applied to the surface of the electrode and the current I flowing across the electrode, which is 

obtained by integrating the current density on the electrode 0)/(  zz , where  is the 

electrolyte conductivity. The following expression of the ER is obtained for a sphere ( = 0) sitting 

on the electrode; it only depends on one coefficient (A00) of the series expansion of the potential, 

which is a purely imaginary complex number (see Appendix D in Ref. [17]): 

 
00e

00
e 2 AjaI

R






  (1) 

For a truncated sphere (  0), the derivation of the ER is more involved. Indeed, there is no 

analytical expression of the current I flowing across the electrode, in contrast with a perfect sphere, 

so that the current density must be numerically integrated on the electrode area not blocked by the 

sphere. When the truncated sphere is centred on the electrode axis, the expression of the ER 

depends on all coefficients An0 of the potential series expansion but the numerical calculations are 

relatively simple. When the sphere is not centred, these calculations are much more complex and 

some convergence problems arise, especially when the sphere approaches the electrode edge. The 

convergence of the calculations was ensured for x0 < ae – ap sin , that is, when the disk below the 
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truncated sphere lies entirely on the electrode surface, at least for the largest spheres considered in 

this work (ap/ae = 0.4 or 0.5).  

 The ER change due to the presence of the sphere was compared to the value of the 

theoretical ER of the disk electrode in the absence of the sphere, which is given by Newman’s 

formula when the counter electrode is at infinity [20]: 

 
e

Ne, 4

1
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R


  (2) 

To compare the contribution of spheres of different sizes and located at various positions on the 

electrode, the ER variation was normalized:  
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and the dimensionless radial position, X0, of the sphere centre was introduced:  

 
e

0
0 a

x
X   (4) 

2.1. Case of a perfect sphere ( = 0) 

 As an example, Fig. 2 shows the normalized ER increment Re,norm due to the presence of an 

insulating perfect sphere in contact with a disk electrode at any radial position x0 on the diameter 

y0 = 0 of the electrode [17]. The two peaks, which are obtained for small spheres (ap/ae < 1), are due 

to the fact that the current lines are more importantly blocked at the electrode edge (X0 = 1) where 

the local primary current density is higher. Despite the low values of Re,norm (maximum of 0.3% 

for ap/ae = 0.1 and 1.2% for ap/ae = 0.2), the experimental values of Re,norm measured in Ref. [17] 

were in excellent agreement with the calculated values in Fig. 2. 
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2.2. Case of a truncated sphere (  0) 

 In a first part, the truncated sphere is positioned at the centre of the disk electrode (x0 = 0, 

y0 = 0) where its influence on the ER is the lowest, according to Fig. 2. The ER increment, Re,norm, 

due to the truncated sphere is compared to that of a perfect sphere (= 0) by introducing the ER 

increment in percentage, Re,%, defined as follows : 

 100
)0,0(

)0,0(),0(
),0(

0norme,

0norme,0norme,
0e,% 




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XR

XRXR
XR  (5) 

Fig. 3 shows the values of Re,norm and Re,% for five aspect ratios ap/ae of the sphere and contact 

angles ranging between 0° (perfect sphere) and 90° (hemisphere). The Re,norm values at the 

electrode centre show a significant dependence on the sphere size (less than 0.1% for ap/ae = 0.1 

and around 5.0% for ap/ae = 0.5) and weaker variations with the contact angle. For small spheres 

(ap/ae  0.2), Re,%  is negative (for example, -5.9% for  = 40° and ap/ae = 0.1) regardless of the 

contact angle. For larger spheres, Re,% is positive for small contact angles (for example, +3.5% for 

 = 40° and ap/ae = 0.4) and negative when the contact angle increases ( > 62° for ap/ae = 0.4). For 

an hemisphere ( = 90°), Re,% is negative whatever its size, with a much larger variation for small 

hemispheres (-43.4% for ap/ae = 0.1 against -14.6% for ap/ae = 0.5). Two opposing effects have to 

be considered to explain the results: 

i) a surface effect: no current line can flow across the electrode surface under the truncated 

sphere, which increases the ER; 

ii) a volume effect: the volume of a truncated sphere is smaller than that of a perfect sphere of 

same diameter, so that the current lines are modified on a smaller vertical distance; moreover, 

they rearrange more favourably around the foot of the sphere. Both effects decrease the ER. 

For small truncated spheres, despite the fact that the surface area blocked under the sphere 

represents a large part of the projected surface of the sphere when it has a high contact angle (sin2  

= 41% for  = 40°), the Re,% value is less than that of a perfect sphere, indicating that the volume 
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effect is dominant. This is because very few current lines reach the electrode below a perfect sphere 

when it is positioned at the centre of the electrode. The Re,% decrease with increasing  observed 

for small spheres disappears for bigger spheres, indicating a more important surface effect, up to a 

limiting value of contact angle ( = 63° for ap/ae = 0.4), from which the volume effect becomes 

dominant again. For the hemisphere ( = 90°), the volume effect is clearly dominant for all spheres, 

the effect of the rearrangement of the current lines above the hemisphere being more important than 

that caused by the blocking of the electrode surface by the hemisphere.  

 Fig. 4 shows the values of Re,norm and Re,% for truncated spheres of aspect ratio ap/ae = 0.2 

and 0.4, which are now positioned at any radial position X0 on the disk electrode. The different 

contact angles chosen correspond to those used in the experimental part presented below. As 

mentioned above, some convergence problems arose when the sphere approaches the electrode 

edge. The calculation of the potential distribution in the electrolyte was performed with two sets of 

degree n and order m and only results with very close values of Re,norm were retained. No 

convergence problem could be observed for the largest sphere (ap/ae = 0.4 and  = 0°, 41.4°, 69.5°, 

and 90°) up to the limiting position X0,lim = 1 - ap/ae sin . For the smallest sphere (ap/ae = 0.2), for 

which the values of Re,norm are very low, the convergence of the calculation was more difficult and 

only the results corresponding to the contact angles 0° and 60° are presented. 

 The Re,norm values in Fig. 4a are obviously more important for the large sphere and increase 

with the distance X0 to the electrode centre because the primary current density increases as well. 

For the hemisphere of aspect ratio 0.4, the Re,norm values are almost twice higher at the electrode 

edge than at the electrode centre. Fig. 4b shows the Re,% values and allows the volume and surface 

effects identified above for a sphere positioned at the electrode centre to be compared. For the small 

sphere with a contact angle of 60°, the volume effect (Re,% < 0) observed at the electrode centre is 

still predominant when the sphere is moved towards the electrode edge up to a position X0 = 0.7 

(X0,lim = 0.83) where the influence of the blocking of the strong current lines by the truncated sphere 
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becomes significant. For the bigger sphere (ap/ae = 0.4), the surface effect is preponderant at all 

positions X0 of the sphere of contact angle 41.4°. In contrast, for the larger contact angles, the 

volume effect predominates when the sphere is located near the electrode centre while the surface 

effect dominates at a position X0 > 0.32 (X0,lim = 0.625) for the sphere of contact angle 69.5° and 

X0 > 0.55 (X0,lim = 0.6) for the hemisphere.  

 

3. Experimental 

 A glass crystallizing dish of 21 cm in diameter and 10 cm in height was used as an 

electrochemical cell (Fig. 5). The working electrode was the cross-section of a 1 cm in diameter 

stainless steel rod embedded in an epoxy resin and mounted flush in a polymethylmethacrylate 

holder. The electrolyte was a 0.1 M Na2SO4 solution prepared with deionised water. A large 

graphite foil flattened against the wall of the crystallizing dish was used as a counter electrode. A 

potential difference of –300 mV was applied between the working electrode and the counter 

electrode with a home-made potentiostat in a two-electrode cell configuration. The maximum DC 

current flowing through the cell was 2 A. A sinusoidal voltage signal, vhf, of 100 kHz and 

amplitude of 50 mV was superimposed on the DC voltage of the potentiostat to measure the ER 

variations, Re. The sine wave current response, vhf/Re, at frequency fhf was amplified, rectified with 

a diode, and low-pass filtered with a cut-off frequency of 10 Hz, by using a home-made electronic 

device [13,21]. The amplitude of the voltage output signal, vRe
, obeyed the following relationship: 

 d
R

bvR 
e

1
e

 (6) 

The parameters b and d were determined through a calibration procedure in which the 

electrochemical cell was replaced by pure resistors. From Eq. 6, the mean value of the ER, Re, could 

then be calculated from the mean value of vRe
 during the electrochemical experiments. For 

example, the ER mean value in the absence of sphere was Re = 33.8 . In addition, the variations of 

the ER, Re, could be derived from the measured variations vRe
, with the equation: 
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obtained by differentiating Eq. 6 for ER variations of small amplitude. 

 Alumina spheres of 2 and 4 mm in diameter and excellent sphericity (Ceratec, The 

Netherlands) were used. Some of them were polished by the manufacturer to remove 0.1 mm, 0.5 

mm, and 1 mm for the 2-mm-diameter spheres, and 0.5 mm, 1.3 mm, and 2 mm for the 4-mm-

diameter spheres, so as to obtain truncated spheres of different contact angles (25.8°, 60°, 90° for 

the 2-mm-diameter spheres of and 41.4°, 69.5°, 90° for the 4-mm-diameter spheres). Using a stereo 

microscope, the spheres were carefully glued to the tip of a glass rod of about 100 µm in diameter, 

as shown in the scanning electron microscope (SEM) images in Fig. 6 for a perfect sphere of 2 mm 

in diameter and a hemisphere of 4 mm in diameter. The experiments were performed at room 

temperature. The position of the sphere was controlled with a three-axis linear translation stage 

(Newport, VP-25XA) and driven by an ESP300 motion controller (Newport) allowing a 25 mm 

range motion of the glass rod holding the sphere with a 100 nm resolution in the three directions. 

Complementary information on the experimental set-up, measurement conditions and procedures 

may be found in Ref. [17]. 

 In this work, the influence of the contact angle of the sphere on the ER was investigated for 

spheres located at the centre of the electrode because it was difficult to position the spheres far from 

the electrode axis at a very precise radial distance X0, a parameter that has a strong influence on 

Re,norm, according to Fig. 2 Although the values of Re,norm are lower at the electrode centre, they 

present a minimum at X0 = 0 and the influence of X0 could be negligible there. 
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4. Results and discussion 

4.1. Case of perfect spheres 

 Because of the elasticity of the glass rod, it was difficult to know exactly when the sphere 

was in contact with the disk electrode. The procedure described in Ref. [17] was used. Under visual 

control, the sphere was first positioned above the electrode centre and the parameters x and y giving 

the lateral position of the sphere were set to 0. Then, the sphere was scanned above the electrode in 

the x direction (y = 0) and the vRe
 variations were measured during forward and backward scans 

performed after progressively approaching the sphere to the disk electrode. As shown in Fig. 7a, the 

2-mm-diameter sphere was in contact with the disk electrode since discrepancies can be observed in 

the vRe
 values of the first part of the backward scan and the second part of the forward scan. These 

discrepancies, due to the friction of the sphere with the electrode surface, disappeared when the 

sphere was raised at a height h = 3 µm above the electrode (Fig. 7b), so that the forward and 

backward vRe
 curves overlapped quite well.  

 The coordinates of the sphere and the vRe
 variations must be converted to the dimensionless 

units presented in the theoretical section in order to compare the theoretical and experimental 

results. The parameters X0 and H give the normalized lateral position and the distance of the sphere 

above the electrode, respectively: 
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where x and z are the lateral and vertical coordinates given by the translation stage while xc and zc 

are the coordinates of the electrode centre. On the other hand, the dimensionless increment of the 

ER due to the presence of the sphere, Re,norm, is derived from the vRe
 values and Eqs. 6 and 7: 
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where the factor G is the gain of the amplifier used in some experiments to improve the 

measurement accuracy of vRe
, after elimination of the vRe

 DC component. Finally, to eliminate the 

DC level of about 0.48 V in Fig. 7 and take into account a possible tilt of the baseline (not observed 

in Fig. 7) due to a slight default in the horizontality of the electrode or to a linear drift in 

temperature that sometimes occurred, two new parameters,  and , have been introduced in the 

following expression: 

 
B

xv
R

R )(
e

norme,


  (10) 

In summary, for each scan of the sphere in contact with the electrode, the Re,norm values were 

calculated from the raw vRe
 values after determining the four parameters xc, B,, and  by fitting 

the vRe
(x) experimental curve to the theoretical curve Re,norm(X0,  = 0) with the simplex algorithm. 

In Fig. 7, the following values were measured: vRe
 = 0.481 V, d = -33 mV, which gives a B value of 

0.514 V with G = 1. Fig. 8 shows the fit obtained between the experimental curve of the forward 

scan presented in Fig. 7a and the theoretical curve Re,norm(X0,  = 0) presented in Fig. 2 for the 

sphere size ap/ae = 0.2. The excellent agreement between the two curves, obtained with a fitted 

value B = 0.543 V close to the expected value (relative error of 5.6%), validates the methodology 

used for measuring small variations of Re,norm (less than 1.2%) during the scan of the sphere. 

 

4.2. Case of truncated spheres 

 The above method to ensure the contact between the sphere and the electrode was not 

appropriate for truncated spheres. Indeed, the contact area on the electrode is much greater than for 

perfect spheres, so that the glass rod broke during the forward and backward scans of the truncated 

spheres because of the important friction and a possible inclination of the electrode surface. A new 

method had to be developed in this work. The truncated sphere was firstly positioned above the 

electrode centre by measuring the vRe
 signal during successive scans of the sphere in the Ox and Oy 
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directions without touching the electrode. The minimum value of vRe
 corresponds to the electrode 

centre above which the truncated sphere was placed before being moved down toward the 

electrode. Fig. 9a presents the vRe
 variations as a function of the vertical position z during the 

descent and rise of a 2-mm-diameter sphere above the electrode centre (z decreased when the 

sphere went down). The two curves are almost identical, the slight differences coming probably 

from slight variations in the electrolyte temperature during the experiment. The ER increased when 

the sphere approached the electrode because the current lines were more strongly deviated under the 

sphere. When the sphere touched the electrode, the vRe
 signal became erratic while the glass rod 

was still going down (z decreased) without breaking because of its elasticity. This is not obvious in 

the enlarged view of the approach curve shown in the inset of Fig. 9a because of the fluctuations 

observed on this curve. However, it will be clearer on the approach curve of truncated spheres, as 

shown below, and this will allow the vertical position zc at which the sphere was in contact with the 

disk electrode to be determined. Since the disk electrode and the plane of the truncated sphere were 

polished and because the elasticity of the glass rod could force the whole plane surface of the 

truncated sphere to touch the disk electrode, the quality of the contact between the sphere and the 

electrode was considered to be good. It must be noticed that this method is the only one that can be 

used for truncated spheres that cannot be scanned in contact with the electrode without breaking the 

glass rod. Also, performing measurements at only one point of the electrode, here the electrode 

centre, gives the advantage of being less dependent of the horizontality of the electrode surface. At 

last, there is no need to position the sphere exactly above the electrode centre before measuring the 

approach curve since the vRe
(x) curve passes through a minimum at the electrode centre. 

 Fig. 9b shows the fitting of the average of the approach and backward curves of Fig.9a with 

the theoretical normalized ER increment Re,norm as a function of the normalized height H above the 

electrode disk. In this example, the measured values, vRe
 = 0.195 V and d = -27 mV, give a B value 

of 22.64 V with G = 102, while the fitted values were zc = -10.362 mm,  = 6.3 V/mm,  = 25.8 
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mV, and B = 22.82 V. This B value was close to the expected value (relative error of 0.8%). This, 

together with the excellent agreement between the experimental and theoretical curves, validates 

the measurement of the low values of Re,norm (less than 0.5%) when the sphere approaches the 

electrode. 

 The influence of the contact angle of the sphere on the ER is now analyzed. Fig. 10a 

presents the vRe
 variations induced by the vertical approach of a 2-mm-diameter sphere (ap/ae = 0.2) 

of contact angle 0° (sphere), 25.8°, 60°, and 90° (hemisphere) above the electrode centre. The z 

distance corresponds to an arbitrary origin of the positioning device so that the contact point on the 

electrode did not correspond to the same z value for each experiment. Fig. 10b shows the 

normalized ER increment Re,norm as a function of the dimensionless height H of the sphere. These 

curves were calculated from the raw data in Fig. 10a, using Eq. 9 with a B value of 22.82 V and Eq. 

8 to derive H from the z and zc values. It should be noticed that the theoretical approach curve was 

not available for the truncated spheres to fit the experimental vRe
(z) curve and determine the 

vertical position zc where the sphere touches the electrode. As explained above, zc can be taken as 

the position where the vRe
 signal became erratic at the time the sphere touched the electrode while 

the glass rod was still going down because its elasticity. This is clearly shown in the inset of Fig. 

10a for the hemisphere. The distance between two successive z values in the approach curve was 25 

m so that the error on zc could be estimated to be about 10 m. 

 Fig. 10b shows that when a sphere of any contact angle was far above the electrode centre 

(H > 2), Re,norm was close to 0. In other words, a sphere of 2 mm in diameter (ap/ae = 0.2) located 

at a height twice larger than the electrode radius (5 mm) has no influence on the ER. When the 

sphere is in contact with the electrode centre, the Re,norm value was low, ranging from 0.27% to 

0.42% depending on the contact angle of the sphere. It must be noted that the maximum value of 

Re,norm did not correspond to the contact position at the electrode centre; it was obtained when the 

sphere was slightly above the electrode centre, for example at a distance Hmax  0.1 for the 
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truncated sphere of contact angle 60° and Hmax  0.13 for the hemisphere. For perfect spheres, the 

effect is much less pronounced but it was already observed in Ref. [19] (the down-pointing arrow in 

Fig. 3 shows the maximum of resistance increment). This phenomenon can be explained by the 

rearrangement of the current lines according to the position of the sphere. When a truncated sphere 

of high contact angle is located slightly above the electrode, the electrode surface under the sphere 

is not very active because very few current lines can reach the electrode surface through the thin 

electrolyte layer below the sphere, so that the surface effect on the ER is almost the same as when 

the sphere touches the electrode. In contrast, the volume of conductive electrolyte above the sphere 

that has been replaced by the insulating sphere and the rearrangement of the current lines around it 

lead to an increase in the ER (volume effect). At a distance higher than Hmax, the electrode surface 

under the sphere becomes more active because the current lines can reach the electrode more easily. 

The surface effect on the ER decreases while the volume effect is not changed, which explains the 

decrease in ER observed. The Re,norm maximum value was observed at lower values of Hmax for the 

truncated spheres of small contact angle (for example, Hmax  0.04 for  = 25.8°), and this 

maximum value was much closer to that at H = 0, because the electrode surface screened by the 

sphere was narrower, which limited the rearrangement of the current lines when the sphere was 

moved slightly above the electrode centre. 

 The results concerning the 4-mm-diameter (ap/ae = 0.4) truncated spheres of contact angle 

41.4°, 69.5°, and 90° are presented in Fig. 11. The vRe
 variations induced by the vertical approach 

of the sphere above the electrode centre were measured with an amplifier of gain G = 10 and are 

given in Fig. 11a while Fig. 11b shows the normalized ER increment Re,norm as a function of the 

dimensionless height H. Obviously, the Re,norm values were higher (between 2% and 3%) than 

those of the 2-mm-diameter spheres because of a more important screening of the electrode surface. 

As for the smaller spheres, the maximum values of Re,norm were obtained when the spheres were 

slightly above the electrode (Hmax  0.09 for  = 69.5° and Hmax  0.15 for the hemisphere). 
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 To compare the theoretical and experimental results, the experimental values of 

Re,norm(X0 = 0,) for each truncated sphere of contact angle  placed at the electrode centre were 

used to determine the ER increment in percentage, Re,%, of the Re,norm(X0 = 0, 0°) value for a 

perfect sphere also placed at the electrode centre (Eq. 5). Table 1 summarizes the theoretical and 

experimental results for the spheres of 2 mm and 4 mm in diameter in contact with the electrode 

centre (H = 0) and Fig. 12 presents the theoretical variations of Re,% as a function of the contact 

angle (Fig. 3b) and the experimental Re,% values given in Table 1. The excellent agreement 

between the theoretical and experimental values allows validating the methodologies used in this 

work, both in the modelling part and in the experimental measurements. 

 

5. Conclusions 

 This paper is an extension of previous works aimed at improving the analysis of the 

electrolyte resistance (ER) fluctuations generated by spherical insulating entities (gas bubbles, 

droplets, solid particles, etc.) passing close or attached to a disk electrode. In the study of gas-

evolving electrodes, the contact angle of bubbles with the electrode surface plays an important role 

on the size of the evolving bubbles. In the present work, the influence of the contact angle of 

spheres on the ER is investigated. 

 The mathematical collocation method allowed determining the ER increment due to the 

presence of a single sphere of any contact angle located at any position on the surface of a disk 

electrode. Low values of the ER increment were found for a sphere located at the electrode centre, 

Re,norm varying from 5% for a large sphere (ap/ae = 0.5) to less than 0.06% for a small sphere (ap/ae 

= 0.1). These values increased by a factor less than 2 that depends on the contact angle when the 

sphere was moved towards the electrode edge. For the sphere sizes investigated, the ER increment 

of a truncated sphere, Re,%, varied between -45% and +35% of the ER increment due to a perfect 

sphere. These variations, which depend on the size of the sphere, its lateral position on the 

electrode, and its contact angle, could be explained by the interplay of two competing effects 
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influencing the ER: a surface effect related to the accessibility of the electrode surface below the 

sphere to the current lines, and a volume effect related to the smaller volume of the insulating 

truncated sphere. 

 Owing to a high-precision motorized translation stage and a specific low-noise ER 

measurement device, the small ER increments due to the presence of single spheres of different 

contact angle located at the electrode centre could be experimentally determined. An excellent 

agreement was found between the experimental and theoretical results.  
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Appendix A. Calculation of the potential distribution  

 The calculation of the potential primary distribution in the electrolyte, when an insulating 

sphere is sitting on a disk electrode, is based on the integration of Laplace's equation ( = 0), 

where  is the electrical potential in the solution, when the concentration and temperature of the 

electrolyte, and therefore its conductivity, are uniform. The boundary conditions are: 

a)  is equal to 0 at any point infinitely far from the electrode (A1) 

b)  is equal to the applied potential 0 on the disk electrode surface (A2) 

c) the normal component of the current is equal to 0 at any point of the sphere surface and of the 

insulating plane; as a consequence, the normal component of the potential gradient /n is 

equal to 0 on these surfaces. (A3) 

 This problem can be solved using the mathematical collocation method. In this approach, 

the general solution of Laplace's equation is written as: 

  = e + p (A4) 

where e represents the potential in the coordinate system related to the electrode (oblate spheroidal 

coordinates e, e, e, with the origin at the centre of the electrode) and p represents the potential 

in the coordinate system related to the sphere (spherical coordinates p, p, p with the origin at the 

centre of the sphere). It can be shown [17], after introducing the concept of “double-sphere” (a 

second sphere of radius ap and centre O'' (x0, 0, -z0) is added), that  can be written as the sum of 

base functions: 
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where j is the square root of -1 and m
nP  and m

nQ  are the Legendre functions of degree n and order 

m (m  n) of the first and second kind, respectively. This solution satisfies the simplest boundary 
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conditions at infinity, Eq. (A1), and on the insulating plane, Eq. (A3). The coefficients Anm and 

Cnm of the series expansion must be determined so that the boundary conditions on the metallic 

electrode, Eq. (A2), and on the insulating sphere, Eq. (A3), are satisfied. The method consists in 

choosing a certain number of points on the sphere and on the electrode and enforcing the boundary 

conditions at these points on the electrode: 
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and on the sphere: 
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The calculation of the coefficients Anm and Cnm was performed with maximum values of degree n 

and order m, nmax and mmax, typically around 50 and 35, respectively. In that case, the number of 

points on the electrode and on the sphere was about three times the number of values Anm and Cnm 

to be determined. Obviously, only a finite number of coefficients Anm and Cnm were determined 

(see Appendix C in Ref. [17]). The potential  could then be calculated at any point (x, y, z) in the 

solution.  

 For a truncated sphere (contact angle  different from 0), the expression of the potential 

distribution (Eq. A5) is still valid if the angles p1 et p2 are now ranging between 0 and - instead 

of 0 and . The coefficients Anm and Cnm are still calculated with the boundary conditions on the 

electrode (Eq. A6) and on the sphere (Eq. A7), the points on the sphere and on the electrode being 

obviously limited to the zone in contact with the electrolyte (  -). 
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Figure and Table Captions 

 

Table 1  Theoretical and experimental values of Re,norm and Re,% as a function of the contact angle 

of the spheres of 2 mm and 4 mm in diameter in contact with the electrode centre. 

Fig. 1. Schematic drawing of the truncated sphere in contact with the electrode. 

Fig. 2. Normalized ER increment Re,norm due to the presence of an insulating sphere in contact 

with the electrode as a function of the radial position X0 for 2 sphere sizes (ap/ae = 0.1 and 

0.2). [17] 

Fig. 3. Normalized ER increment Re,norm (a) and Re,% (b) as a function of the contact angle of 

the insulating sphere of various size positioned at the electrode centre. 

Fig. 4. Normalized ER increment Re,norm (a) and Re,% (b) due to the presence of an insulating 

sphere of various contact angle and size (ap/ae = 0.2 and 0.4) as a function of its radial 

position X0. 

Fig. 5. Experimental set-up used for measuring the ER variations due to the presence of a sphere 

shifted above or in contact with the electrode.  

Fig. 6. SEM images of the sphere of diameter 2 mm (a) and hemisphere (θ = 90°) of diameter 4 

mm (b).  

Fig. 7. Variation of vRe
 as a function of the radial position x of an insulating 2-mm-diameter 

sphere plane (a) in contact with (h = 0) and (b) above (h = 3 µm) a 10-mm-diameter 

stainless steel electrode during a forward and backward scan at a 0.4 mm/s rate.  

Fig. 8. Theoretical and experimental normalized Re,norm variations as a function of the 

normalized radial position X0 of an insulating 2-mm-diameter sphere in contact with the 

electrode. The experimental data correspond to the forward scan in Fig. 7a. 

Fig. 9. (a) Variation of vRe
 as a function of the vertical position z of an insulating 2-mm-diameter 

sphere above the electrode centre for an approach and backward scan at a 0.2 mm/s rate; 
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(b) experimental normalized Re,norm variations (average of the approach and backward 

curves) fitted with the theoretical curve, as a function of the normalized vertical position H 

of the sphere above the electrode. 

Fig. 10. (a) Variation of vRe
 as a function of the vertical position z and (b) normalized ER 

increment Re,norm as a function of the normalized height H of insulating 2-mm-diameter 

spheres with different contact angles above the electrode centre (0.2 mm/s scan rate). 

Fig. 11. (a) Variation of vRe
 as a function of the vertical position z and (b) normalized ER 

increment Re,norm as a function of the normalized height H of insulating 4-mm-diameter 

spheres with different contact angles above the electrode centre (0.2 mm/s scan rate). 

Fig. 12. Theoretical and experimental normalized ER increment Re,% as a function of the contact 

angle of the spheres of 2 mm and 4 mm in diameter in contact with the electrode centre. 
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Table 1  Theoretical and experimental values of Re,norm and Re,% as a function of the contact angle 

of the spheres of 2 mm and 4 mm in diameter in contact with the electrode centre. 

 

 
Spheres of 2 mm in diameter 

(ap/ae = 0.2) 

Spheres of 4 mm in diameter 

(ap/ae = 0.4) 

Contact angle / degree 0 25.8 60 90 0 41.4 69.5 90 

TheoreticalRe,norm, %  0.425 0.420 0.372 0.256 2.84 2.94 2.71 2.10 

ExperimentalRe,norm, % 0.424 0.414 0.369 0.267 2.85 2.94 2.73 2.17 

TheoreticalRe,%, %  0 -1.1 -12.5 -39.8 0 +3.5 -4.6 -26 

ExperimentalRe,%, % +0.2 -2.6 -13.2 -37.2 +0.4 +3.5 -3.9 -24 
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Fig. 1. Schematic drawing of the truncated sphere in contact with the electrode. 
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Fig. 2. Normalized ER increment Re,norm due to the presence of an insulating sphere in contact 

with the electrode as a function of the radial position X0 for 2 sphere sizes (ap/ae = 0.1 and 

0.2). [17] 
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Fig. 3. Normalized ER increment Re,norm (a) and Re,% (b) as a function of the contact angle of 

the insulating sphere of various size positioned at the electrode centre. 
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Fig. 4. Normalized ER increment Re,norm (a) and Re,% (b) due to the presence of an insulating 

sphere of various contact angle and size (ap/ae = 0.2 and 0.4) as a function of its radial 

position X0. 
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Fig. 5. Experimental set-up used for measuring the ER variations due to the presence of a sphere 

shifted above or in contact with the electrode.  
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Fig. 6. SEM images of the sphere of diameter 2 mm (a) and hemisphere (θ = 90°) of diameter 4 

mm (b).  
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Fig. 7. Variation of vRe

 as a function of the radial position x of an insulating 2-mm-diameter 

sphere plane (a) in contact with (h = 0) and (b) above (h = 3 µm) a 10-mm-diameter 

stainless steel electrode during a forward and backward scan at a 0.4 mm/s rate.  
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Fig. 8. Theoretical and experimental normalized Re,norm variations as a function of the 

normalized radial position X0 of an insulating 2-mm-diameter sphere in contact with the 

electrode. The experimental data correspond to the forward scan in Fig. 7a. 
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Fig. 9. (a) Variation of vRe

 as a function of the vertical position z of an insulating 2-mm-diameter 

sphere above the electrode centre for an approach and backward scan at a 0.2 mm/s rate; 

(b) experimental normalized Re,norm variations (average of the approach and backward 

curves) fitted with the theoretical curve, as a function of the normalized vertical position H 

of the sphere above the electrode. 



 34

 

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

-80

-60

-40

-20

0

20

40

60

80

 = 90°

 = 60°

 = 25.8°

 = 0°

 = 90°

(a)

v R
e  /

  m
V

z  /  mm

-11.8 -11.6 -11.4
60

65

70

contact

 

 

 
 

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5(b)

  = 0°
  = 25.8°
  = 60°
  = 90°

R
e,

no
rm

  /
  %

H  
 
 
 

Fig. 10. (a) Variation of vRe
 as a function of the vertical position z and (b) normalized ER 

increment Re,norm as a function of the normalized height H of insulating 2-mm-diameter 

spheres with different contact angles above the electrode centre (0.2 mm/s scan rate). 
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Fig. 11. (a) Variation of vRe
 as a function of the vertical position z and (b) normalized ER 

increment Re,norm as a function of the normalized height H of insulating 4-mm-diameter 

spheres with different contact angles above the electrode centre (0.2 mm/s scan rate). 
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Fig. 12. Theoretical and experimental normalized ER increment Re,% as a function of the contact 

angle of the spheres of 2 mm and 4 mm in diameter in contact with the electrode centre. 

 


