
Weizhi Lu et al.

RESEARCH

Efficient Visual Tracking via Low-Complexity
Sparse Representation
Weizhi Lu1*, Jinglin Zhang2, Kidiyo Kpalma1 and Joseph Ronsin1

*Correspondence:

weizhi.lu@insa-rennes.fr
1 UMR 6164, IETR, INSA,
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Abstract

Thanks to its good performance on object recognition, sparse representation has
recently been widely studied in the area of visual object tracking. Up to now,
little attention has been paid to the complexity of sparse representation, while
most works are focused on the performance improvement. By reducing the
computation load related to sparse representation hundreds of times, this paper
proposes by far the most computationally efficient tracking approach based on
sparse representation. The proposal simply consists of two stages of sparse
representation, one is for object detection and the other for object validation.
Experimentally, it achieves better performance than some state-of-the-art
methods in both accuracy and speed.
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1 Introduction
Object tracking is a challenging task in computer vision due to the constant changes

of object appearance and location. Sparse representation has recently been intro-

duced in this area for its robustness in recognizing objects with high corruption [1].

Although related tracking works have been proposed with competitive performance,

the application efficiency of sparse representation has not received enough attention.

This paper is thus proposed to address this problem.

Sparse representation is mainly developed within the framework of particle filter,

where it is used to measure the similarity between the particle and the dictionary

with the representation error. Currently, this method still faces some challenges

in terms of complexity and performance. To be specific, it should be noted that

sparse representation has to be calculated for each particle, while the number of

particles is often of the level of hundreds (e.g. 600 particles in [2–4]). Obviously it is

a considerable computation cost, especially in the setting where each sparse solution

is also computationally expensive. Precisely, to represent the particle with relatively

little error, sparse representation usually requires a relatively large dictionary (with

a trivial template) and relatively dense coefficients, which both will increase the

solution complexity. Regarding the tracking performance, it is necessary to point out

that sparse representation cannot resolve the problem of identity drift, if it is simply

used to weight the particle. There are two major reasons. First, sparse representation

cannot provide a reliable similarity measure due to the potential overfitting solution,

which tends to introduce excessive nonzero coefficients to reduce the representation

error. In practice, it seems difficult to completely avoid the overfitting problem,

because the sparsity of sparse solution is usually unknown. Second, the similarity
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threshold between object and background is hard to be determined with sparse

representation, since the similarity level usually varies with the change of object

appearance.

To address the aforementioned problems, this paper develops a simple but effective

tracking-by-detection scheme by exploring the distribution of sparse coefficients

instead of the sparse representation error for similarity measure. The proposed

scheme consists of two-stage sparse representation. In the first step, the object of

interest is detected by the largest sparse coefficient; in the second step, the detected

object is validated with a binary classifier based on sparse representation, which

outputs the decision in terms of the distribution of sparse coefficients.

Compared with the traditional framework of particle filter, the proposed scheme

will not only significantly reduce the computation cost related to sparse represen-

tation, but also effectively avoid identity drift. The computation advantage mainly

results from the following two facts. First, as stated before, the proposed scheme

only involves two-step sparse representation; in contrast, the particle filter usually

has to repeat sparse representation hundreds of times. Second, note that in the

proposed scheme sparse representation is explored with the distribution of sparse

coefficients rather than the representation error. Precisely, sparse representation is

concerned only with the largest few coefficients which cover a great proportion of

the energy of sparse solution. From the example in Figure 1, it can be observed that

the distribution of the few largest coefficients is not sensitive to the representation

error. This allows sparse representation to be carried out with a relatively small

dictionary and a relatively high representation error, which also implies a relatively

low solution cost. Regarding the robustness to identity drift, it mainly benefits from

the binary classifier based on sparse representation, which can effectively identify

the background sample even when the background model is not well trained.

The rest of this paper is organized as follows. In the next Section, the tracking

works related to sparse representation are briefly reviewed. In Section III, a brief

summary about sparse representation is presented. In Section IV, the proposed

tracker with two-step sparse representation is described and analyzed. In Section

V, extensive experiments are conducted with comparison to the state-of-the-art.

Finally, a conclusion is given in Section VI.

2 Related Work
Extensive literature has been proposed on object tracking. Due to the limited writ-

ing space, we mainly review the tracking works related to sparse representation in

terms of performance and complexity.

Sparse representation is introduced into the tracking mainly for improving the

performance of recognition or feature selection. Mei and Ling [5] first explored s-

parse representation into an on-line tracking system, where a trivial template with

high dimension is introduced to approximate noise and occlusion. Later, to improve

the high-dimensional feature selection, Liu et al. [6] attempt to learn discriminative

high-dimensional features using dynamic sparsity group. To reduce the sensitivity

to background noise in the selected object area, Wang et al. [2] and Jia et al. [7]

applied the sparse coding histogram based on local patches to describe objects.

Zhong et al. [8] proposed a collaborative model that weights particles by combining
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the confidences of local descriptor and holistic representation. Note that, the track-

ing methods described above are mainly focused on the performance improvement,

while ignoring the complexity of implementation. In the traditional tracking frame-

work of particle filter, the computation cost introduced by sparse representation

usually cannot be ignored, because it has to be calculated for each particle. In this

sense, it is of practical interests to reduce the complexity related to sparse repre-

sentation. Mei et al. [3] proposed to discard insignificant samples by limiting their

linear least square errors before resampling particles with more computationally

expensive `1-regularization. In terms of compressed sensing theory, random pro-

jection is introduced to reduce the feature dimension in [9, 10]. Strictly speaking,

the random projection based feature selection arises from random projection theory

rather than compressed sensing theory [11]. In this paper, we also apply the sim-

ilar method for feature selection. According to random projection theory, we will

implement random projection with random matrices, rather than fixed matrices as

applied in [9, 10]. By this means, the feature selection performance of random pro-

jection should be improved [12]. In [13], Bao et al. developed a fast sparse solution

solver with the accelerated proximal gradient approach. However, their solver is

sensitive to a parameter termed as Lipschitz constant, which is computational load

during the template updating. Liu and Sun [14] attempted to weight each particle

only with corresponding sparse coefficient such that sparse representation needs to

be conducted only once. This method seems very attractive in complexity; however,

it should be noted that, the magnitude of each coefficient in fact cannot be ensured

’proportional’ to the similarity/correlation between the corresponding particle and

the query object. Mathematically, with the principle of least square, we can de-

rive that the exact ’proportion’ exists only when the sub-dictionary corresponding

to sparse coefficients is orthogonal. Obviously, this condition is hard to be satis-

fied by the realistic dictionaries. With the erroneous similarity measure, however,

the method in [14] still presents relatively good performance. This is because em-

pirically the particles corresponding to large coefficients tend to be similar to the

query object. In this case, the selected particles with high weights are not inclined

to change the attribute of particle filter, then the tracking performance will not

be influenced. Besides the theoretical limitation, this method in [14] also holds a

critical performance limitation: it is sensitive to identity drift, because the object

out of the scene can hardly be detected only with the distribution of sparse coeffi-

cients. Zhang et al. [15] proposed to jointly represent particles by using multi-task

learning to explore the interdependencies between particles. In addition, to detect

an occlusion, the nonzero coefficients in the trivial template were used to locate

occluded pixels in [3]. However, this method seems unreliable due to the potential

overfitting solution. In particular, when the overfitting solution occurs as in Figure

1(c), all pixels are likely to be classified as occlusion, though in fact there is no

occlusion. In this paper, to reduce the complexity of sparse representation, we also

exploit the sparse coefficients instead of representation error for similarity measure.

However, we successfully avoid the limitations mentioned above by developing a

novel tracking scheme.

To account for the change of object appearance, almost all the trackers mentioned

above explore an adaptive appearance model for the on-line sample updating [5]
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or learning [16, 17]. It is known that the adaptive model is likely to lead to the

identify drift, if the background sample cannot be effectively excluded. However, to

effectively discriminate the background sample from the object is still a challenging

task due to the change of object appearance. For instance, in practice it is hard to

set a decision threshold between the object and background with representation

error [4, 16, 18, 19]. To address this problem, it is better to introduce a binary

classifier which involves a definitive decision threshold [20–23]. Thus in the proposed

approach, we specially develop a binary classifier based on sparse representation.

Compared with traditional binary classifiers, as will be shown later, the proposed

classifier is competitive in both performance and complexity.

3 Sparse representation-based classification
This section briefly introduces sparse representation-based classification with the

typical face recognition as an example. Let vector y ∈ Rm×1 denote a test face, and

matrix D = [DG1
, DG2

, . . . , DGN
] ∈ Rm×n be a dictionary consisting of N classes of

labeled face vectors, where the i-th sub-matrix DGi = [Di1 , Di2 , . . . , Dini
] includes

ni samples and
∑N

i=1 ni = n. Then we ideally suppose that the test face can be

approximated by a linear combination of few labeled face vectors, namely

y = Dβ + ε (1)

where β is required to hold at most k � n nonzero positive entries; and ε is the

tolerated error. Subsequently, the feature vector y is viewed as close to the subspace

of labeled samples corresponding to the nonzero entries of β. In other words, it can

be identified as the class

î = argmax
i
{δi(β)|1 ≤ i ≤ N}, (2)

where δi(β) is a function that sums the elements of β corresponding to DGi
. The

solution to k-sparse vector β can be simply derived with greedy algorithms of com-

plexity O(mnk), such as OMP [24] or LARS [25]. Note that, to reduce the represen-

tation error, the dictionary D is often further concatenated with a trivial template

consisting of two identity matrices [I−I] ∈ Rm×2m, thereby dramatically increasing

the solution complexity [2, 3, 5–7,9, 15].

It is worth mentioning a special case where the test face is novel and out of the

database. In this case, the nonzero entries of β empirically incline to scatter among

some different classes instead of focusing on a specific class. So the novel face can

be detected with a threshold as

max{δi(β)|1 ≤ i ≤ N} < γ

n∑
j=1

βj (3)

where 0 < γ < 1 is an empirical parameter. As will be detailed in section 4.3, the

feature of detecting novel objects can be used to detect the outlier during the object

tracking.
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4 Proposed tracking scheme
The proposed tracking scheme mainly consists of two steps: object detection and

object validation, as sketched in Figure 2. In this section, we first introduce the

feature selection method, then detail the tracking scheme in subsections 4.2 and

4.3. The computation advantage of the proposed tracking scheme is analyzed in

subsection 4.4.

4.1 Random-projection based feature selection

In tracking scenarios, it is usually hard to obtain ideal object features. The raw

image and color histogram have been two kinds of popular features. In this paper, we

use the random projection of raw image as a feature. Specifically, before performing

sparse representation, we first project the vector of raw image to a relative low

dimension with a random matrix [12]. This simple feature selection method has

achieved competitive performance for face recognition [1]. In this case, the sparse

representation of formula (1) can be reformulated as

Ry = RDβ + ε (4)

where R ∈ Rd×m is a random projection matrix, d < m. The random matrix R

is commonly constructed with elements i.i.d drawn from the Gaussian distribution.

Here, for simpler computation, we exploit a more sparse random matrix which

holds exactly one nonzero entry being ±1 equiprobably in each column. This kind

of matrix has shown better feature selection performance than Gaussian matrices

[11], and it also performs well in the following tracking work. Note that to obtain

relatively reliable feature selection, for each given y, random projection usually

requires to be carried out several times and then to consider the average result [12].

In this process, the matrix R is random generated. More precisely, in our approach

the random projection together with sparse representation will be repeated five

times for each given y. Then the average value of five sparse solutions β is used to

make a decision for y.

Despite its low implementation complexity, random projection clearly is not the

best feature selection tool in terms of performance. However, considering the vari-

ation of object appearance, it is reasonable to argue that, the feature comparison

based on the sum of few randomly selected pixels is probably more robust than the

conventional pixel-wise comparison. This also explains why random projection can

present satisfactory recognition performance in the proposed tracker.

4.2 Object detection

In this section, the object detection is simply implemented by approximating the

known object with local patches detected from current frame. To be specific, as

illustrated in Figure 3, let y be a known/query object extracted from the former

adjacent frame, and D consisting of overlapping local patches collected from current

frame. Here the local patches are extracted from a rectangle region of interest with

a sliding window of fixed size. Suppose y can be sparsely approximated with the

dictionary D. Then the candidate object can be located with the element of D

which corresponds to the largest component of sparse solution β, as illustrated in

Figure 3.



Weizhi Lu et al. Page 6 of 16

Algorithm 1 Object detection

Definitions: Let Y = [Ys Yd] be a set of known object samples from former frames,

where Ys represents the subset of static samples from the initial frames and Yd

denote the subset of dynamic samples from the recent frames, and D be the dictio-

nary consisting of overlapping local patches extracted from some regions of current

frame, with a fixed space layout. And then suppose {yj : 1 ≤ j ≤ Nc} is a set of

Nc query samples randomly selected from Ys or Yd.

1. The average value of sparse coefficient β̄ = 1
Nc

∑Nc

j=1 β
j is derived with respect to

Ryj = RDβj + ε, where R is the random projection matrix for feature selection.

2. The candidate object is located by the local patch with index î = argmaxi{β̄i},
where β̄i indicates the i-th component of vector β̄.

It is clear that the detection performance depends heavily on the reliability of

query object y extracted from the former frame. Here, we define a special template

Y = [Ys Yd] to model the query object y. As it appears in state-of-the-art [4,

8], Ys denotes a static appearance model consisting of ground-truth manually or

automatically detected from the first frame as well as its perturbations with small

Gaussian noises, and Yd represents a dynamic appearance model collecting some

object samples extracted from recent frames. To account for the object appearance

change, in this paper a set of query samples, rather than one, are randomly selected

from the two models above. The average sparse solution of the query objects selected

above is used to determine the detection result. Note that, to avoid false detection,

it is suggested to collect more query samples from the static model Ys than from

the dynamic model Yd. The local patches of the dictionary D are collected with a

sliding window of the size of the initialized object. Considering the continuity of the

object movement, the searching region of the sliding window allows to be restricted

to a relatively small area, e.g. twice or three times the object size. If the object is

lost, the searching region can be temporarily expanded. For better understanding,

the object detection flow is sketched in Algorithm 1.

It is necessary to point out that the detection corresponding to the largest coef-

ficient is not always reliable or correct. An obvious evidence is that, there would

remain an ’object area’ defined by the largest coefficient, even though the object

has been occluded or out of the image. To avoid such kind of false detection, we

have to introduce a binary classifier to further validate the detection, as detailed in

the sequel.

4.3 Object validation and template updating

In this section, a binary classifier based on sparse representation is developed for dis-

criminating the object from the background. Here sparse representation is adopted

for the following four reasons:

• It is computationally competitive, since it only involves simple operations of

matrix-vector product.

• The decision can be easily derived in terms of the distribution of sparse coef-

ficients.

• Compared with traditional binary classifiers, it has an exclusive advantage:

it can detect the outliers which is not included in current background model,
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because in this case the sparse coefficients tend to scatter rather than focus [1].

This property has been verified in our recent work on multi-object tracking,

in which the novel object is detected as an outlier according to the scattering

sparse coefficients [26]. This implies that we can detect the background sample,

even when the background model is not robust or large. Then the computation

and storage loads on background modelling can be significantly reduced.

• In practice, the discrimination between the object and the background seems

to be a multi-class classification problem rather than a binary classification

problem, since the complex and dynamic background usually involves kinds

of feature subspaces, some of which might be similar to the object feature.

In this case, the two opposite half-spaces trained by traditional binary classi-

fiers, like SVM [26], probably overlap with each other, thereby deteriorating

the classification performance. In contrast, sparse representation is robust to

this problem, because it partially explores the similarity between individual

samples rather than directly dividing the sample space into two parts [1].

The proposed binary classifier can be briefly described as follows. Suppose yc is the

candidate object detected from the former step, which can be sparsely approximated

by a dictionary Z, namely

Ryc = RZβ + ε. (5)

Here Z = [ZGp
ZGn

] consists of two parts, which represent the subset of positive

samples and the subset of negative samples, respectively; and the two subscripts

Gp and Gn are the subsets of column indexes. Then we can determine the attribute

of the candidate object with the distribution of sparse coefficients. Precisely, as

illustrated in Figure 4(a)(b), the candidate object will be regarded as positive if

the sparse coefficients mainly focus on the part of positive samples; otherwise, the

decision is negative.

The parameters of the proposed classifier are further detailed as follows. The pos-

itive samples ZGp come from the aforementioned static and dynamic appearance

models Y, and the negative samples ZGn
are collected by a sliding overlapping

window from the neighborhood of tracked object, where partial object region is

included as opposed to relatively complete object region in positive samples. Corre-

spondingly, the sparse solution β is also divided into two parts: β = [βGp βGn ]. Note

that, the classifier is not sensitive to the representation error, and so β can be very

sparse, e.g., it holds at most 10 nonzero entries in our experiments. In terms of the

distribution of sparse coefficients, we propose two rules to define the positive out-

put. One is that the largest coefficient of sparse solution β corresponds to a positive

sample of ZGp
; namely, argmaxi{βi} ∈ Gp. And the other is that the sparse coef-

ficients corresponding to positive samples, βGp , take higher energy than the sparse

coefficients corresponding to negative samples, βGn ; that is, ||βGp ||1/||β||1 > 0.5.

Empirically, the latter criterion is more strict than the former, since it measures the

similarity between the candidate object and the whole positive subspace, instead of

the individual positive samples. In this paper, to present a relatively fluent track-

ing trajectory, the detection is positively labeled, when either of the two criterions

above is satisfied. But for the template updating, we only apply the second criteri-

on with a stricter threshold, i.e. ||βGp
||1/||β||1 > 0.8, which provides more reliable
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Algorithm 2 Object validation and template updating

Definitions: Let yc denote the candidate object derived in Algorithm 1, and Z =

[ZGp ZGn ] be the dictionary consisting of object samples and background samples,

where the Gp and Gn denote the index sets corresponding to above two classes of

samples. Note that ZGp ⊆ Y of Algorithm 1.

1. The average of sparse solutions β̄ = [β̄Gp β̄Gn ] = 1
Nr

∑Nr

j=1 β
j is derived

with Rjyc = RjZβ
j + ε, where Rj denotes the j-th random projection with

j ∈ {1, 2, ..., Nr}, and correspondingly βj is the sparse solution. Here Nr is the

frequency of repeating random projection.

2. The candidate object is labeled, if argmaxi{β̄i} ∈ Gp and

0.5 < ||β̄Gp
||1/||β̄||1 < 0.8, where β̄i denotes the i-th element of vector β̄.

3. The candidate object is labeled and updated for dynamic object model Yd, and its

neighboring background patches are updated for ZGn
, if argmaxi{β̄i} ∈ Gp and

||β̄Gp
||1/||β̄||1 > 0.8.

4. If both steps 2 and 3 cannot be performed, the object is assumed to keep still or

move with a constant velocity.

5. If step 4 is active in a few consecutive frames, object detection in Algorithm 1 is

performed again in a larger region.

features and then prevents the template from identity drift. In practice, the thresh-

old value needs to be tuned empirically. Recall that random projection needs to

be carried out several times to achieve better feature selection performance for the

unique candidate object [12]. In our experiments, the random projection together

with sparse representation is repeated five times, and then the average value of five

sparse solutions β is used for the final decision.

It is necessary to emphasize that the proposed classifier holds an exclusive ad-

vantage: it can detect the outlier. Typical outliers include the dynamic background

samples and the sudden and great changes of object appearance, which usually

cannot be well described with current background model. In this case, as shown in

Figure 4(c), the sparse coefficients incline to scatter among the positive and neg-

ative subspaces rather than focusing on one of them, namely ||βGp
||1/||β||1 ≈ 0.5.

Then the outliers can be easily excluded from the template updating, if a relatively

strict threshold is adopted, e.g., ||βGp ||1/||β||1 > 0.8. This advantage allows us to

build a background model of relatively few samples, since the classifier is not very

sensitive to the robustness of the background model. Finally, it is necessary to dis-

cuss the case where the object is lost. In this case, the object will be searched again

within a larger region. If the search fails, the object will be assumed to move with

a constant velocity or keep still in the following few frames. The whole flow of this

part is summarized in Algorithm 2.

4.4 Computation cost related to sparse representation

There are two major factors affecting the computation cost related to sparse repre-

sentation: 1) the repetition number of sparse representation and 2) the complexity

of sparse solution. Compared with the traditional tracking framework of particle

filter, the proposed approach presents obvious advantages on these two factors, as

detailed below.
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• The proposed scheme only involves two-step sparse representation, in which s-

parse representation allows to be performed only twice, if the feature is robust.

To obtain relatively reliable features, in our experiments sparse representation

along with random projection is repeated dozens of times, namely (Nc +1)Nr

times. In contrast, the traditional framework of particle filter has to be carried

out for each particle, such that the repetition times of sparse representation

is usually of the level of hundreds, e.g. about 600 times in [2–4].

• Recall that the solution complexity is roughly proportional to the dictionary

size m× n and the sparsity k. In the traditional methods, the dictionary size

is usually large, since to reduce representation error, it has to involve a high-

dimensional trivial template [I−I] with the size of object feature. The sparsity

k cannot be restricted, unless the representation error is small enough. In

contrast, the proposed approach is not sensitive to the representation error.

Thus, in the paper we significantly reduce the dictionary column size n by

excluding the trivial template, while restricting the sparsity k to a relatively

low value, e.g. k = 10 in our experiments. Furthermore, the dictionary row

size m is also drastically reduced with random projection.

Recently, some trackers based on sparse representation have been proposed with

’real-time’ performance by reducing the complexity of sparse solution [9] [13]. How-

ever, these trackers cannot reduce the repetition number of sparse representation

due to their framework of particle filter. Thus, their computational gain is still

limited compared with our approach. For a better understanding, here we analyze

two typical real-time trackers: RTCST [9] and APGL1 [9]. For the tracker RTCST,

compressed sensing theory is exploited to reduce the feature dimension with linear

projection, thereby reducing the complexity of sparse solution. The strategy is also

adopted in our approach with random projection theory [11]. So compared with our

approach, the tracker RTCST has no computational advantage. Furthermore, it is

worth noting that the linear projection based feature selection is based on random

projection theory rather than compressed sensing theory [11]. The tracker APGL1

is developed by exploring the accelerated proximal gradient (APG) approach for

sparse solution. The APG approach seems to be computationally attractive, since

it does not requires the operation of matrix inversion, which is of complexity O(k3)

and often involved in current solution algorithms. However, it should be noted

that the convergence performance of the APG approach is sensitive to a parameter

termed the Lipschitz constant, which needs to be evaluated with the largest singu-

lar value of the dictionary D. This implies that the singular value of the dictionary

has to be calculated for each dictionary updating, while the solution of singular

value holds a relatively high complexity O(n3). Then we can say that the updating

of Lipschitz constant will drastically degrade the computational advantage of the

APG approach, especially in the complex scene where the dictionary requires to be

frequently updated.

5 Experiments
We evaluate the proposed tracker on ten challenging videos, among which eight

are publicly available[1] and two are produced by ourselves. Their attributes are

[1]http://www.cvg.rdg.ac.uk/PETS2009/; http://www.gris.informatik.tu-darmstadt.de/

~aandriye/data.html; http://faculty.ucmerced.edu/mhyang/pubs.html
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summarized in Table 1. They are exploited here especially to validate the robust-

ness of the proposed approach on identity preservation. To present more significant

challenges of occlusion than the public available videos, we specially produce two

videos, termed ’paper’ and ’face hand’, in which the occlusions share the similar

feature with the targets, and last a long-time. For the video results, please see the

link below[2].

For comparison, we perform four known trackers: IVT tracker [16], L1 tracker [5],

PLS tracker [4] and SCM tracker [8]. These four trackers all explore an adaptive

appearance model. The first two trackers are mainly focused on the updating of

dynamic appearances, while the latter two trackers further introduce the static

model to prevent the identity drift. Note that the trackers L1 and SCM are both

developed based on sparse representation. L1 is the first tracker that explores s-

parse representation, and to the best of our knowledge, SCM is currently known

the best tracker based on sparse representation [27]. For fair comparison, the four

trackers are all implemented with their original codes, and the tracked object is

initialized with same position. Regarding the parameters tuning, we use the default

parameters of L1 and PLS. Since the trackers IVT and SCM have provided some

options of parameters for some popular videos, we adopt their default parameters

for the videos they have evaluated, and select proper parameter options for oth-

er videos, e.g., using their parameters for ’head’ and ’pedestrian’ to track ’head’

and ’pedestrian’ in other videos. Recall that the proposed tracker cannot cope with

scales. In contrast, the other four trackers all exploit the technique of affine trans-

form. Empirically, some trackers are probably sensitive to the initialization. For fair

and comprehensive performance evaluation, we exploit two initialization methods:

one-pass evaluation (OPE) and spatial robustness evaluation (SRE) [27]. The OPE

method simply initializes the tracker with the ground-truth. The SRE method sets

the initialization region by scaling the ground truth with five ratios 0.8, 0.9, 1, 1.1

and 1.2, and then the average tracking performance is considered.

The parameters related to the two-step sparse representation are detailed as fol-

lows. In the step of object detection, 10 query samples are collected from the static

model Ys and 5 query samples collected from the dynamic model Yd. The step

length of the sliding window is around 4 pixels. Both the object retrieval region

and background sampling region are not more than three times the object size. In

the step of object validation, the classifier consists of 50 positive samples and 100

negative samples. The positive detection cannot be used for model updating unless

||βGp
||1/||β||1 > 0.8. In the two steps above, the sparse representation based on

random projection is repeated 5 times for each instance. The random projection

matrix is of size (d = 200,m = 32× 32). It implies that the object is extracted and

represented with a vector of size 32× 32, which is further reduced to the dimension

of 200 by random projection before performing sparse representation. The upper

bound of sparsity k is set to 10 during the sparse solution.

5.1 Computational efficiency

The proposed tracker is mainly implemented with MATLAB code, except for the

sparse solution which is derived with the LARS algorithm of SPAMS package [28].

[2]https://sites.google.com/site/wzlusd/home/tracking-project
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Here we compare its speed with other three popular trackers based on sparse rep-

resentation: L1 [5], SCM [8] and APGL1 [13]. Also, these trackers are mainly im-

plemented with MATLAB code, except for some computationally expensive parts.

Precisely, similarly to the proposed tracker, the trackers L1 and SCM also explore

the SPAMS package for sparse solution. So the comparison with them is fair. The

real-time APGL1 tracker implements the technique of affine transform with C code.

For a fair comparison, all the trackers are tested with the same video ’girl’ on a PC

with intel i7 CPU (2.67GHZ). The result is shown in Table 2, where the speed is

evaluated with respect to varying feature size. Recall that the feature size means

the length of the feature vector which is extracted from the image to represent the

object. It corresponds to the column size m of the random projection matrix R with

size d×m. The increasing feature size will increase the computation load of sparse

solution, thereby reducing the speed of the tracker. Note that, to demonstrate the

advantage of random projection, our approach is evaluated in terms of two cases:

’Ours 1’ and ’Ours 2’. Precisely, for the case of Ours 1, the random matrix of size

d×m is applied without introducing dimension reduction by setting d = m; for the

case of Ours 2, with random projection, the feature vector of length m is projected

to the low dimension d = 50 < m. Theoretically, the case of Ours 2 should run

faster than the case of Ours 1 due to its dimension reduction, which is validated

with the results of Table 2. This implies that the random projection can indeed

significantly improve the tracker’s speed, as the projection dimension d decreases.

Note that the smaller d tends to lead to the worse feature selection. Thus the value

of d cannot be too small in practice. Compared with other three trackers, as it is

expected, both Ours 1 and Ours 2 present much higher speed. For instance, the

frame rate is improved dozens of times in Ours 2. From Table 2, it can be observed

that their speed advantages become more obvious as the feature size increases. This

is because the increasing computation of sparse solution gradually turns into the

tracker’s time bottleneck, and then our low-complexity on sparse representation is

fully displayed. In summary, the low complexity of the proposed tracker is fully

verified by its obvious speed advantage over state-of-the-art.

5.2 Quantitative evaluation

We measure the tracking accuracy of aforementioned trackers based on the center

location error and the overlap rate [29]. The center location error is the Euclidean

distance between the central points of tracked object RT and the corresponding

manually labeled ground-truth RG. The OPE center location error plots on all

test sequences are shown in Figure 5. The average location errors are given in

Table 3. The overlap rate, defined as area(RT ∩RG)/area(RT ∪RG), evaluates the

success rate, which is shown in Table 4. From Figure 5, it can be observed that the

proposed approach achieves relatively persistent and stable tracking, and obtains

better overall performance than other four trackers on the ten videos. However,

its performance advantage is not sufficiently mirrored in Table 4, since we simply

exploit a fixed-size rectangle to represent an object with varying size. Precisely, even

if we have successfully captured the object, like in the sequence david, the overlap

rate is still small, because our tracking window is often larger or smaller than the

ground-truth.



Weizhi Lu et al. Page 12 of 16

By comparing the results of OPE and SRE in each video of Table 3, we can see

that the performance of the proposed tracker is relatively stable in the two cases.

This implies that the proposed tracker is robust to the scale of initialization region.

In fact, it presents poor performance only in the video ’PETS09 s2l1’, where it

fails in the scaling cases of SRE. In contrast, the other four trackers seem sensitive

to the initialization: this might be explained by the following fact. These trackers

all exploit the technique of affine transform, which inclines to gradually converge

to the local part of the target when the feature is not robust. From Table 4, it

can be observed that the the SRE result is a little worse than the OPE result in

each video, although as shown in Table 3, the proposed tracker in fact presents

comparable performance in these two cases. As explained before, this is because the

SRE method introduces a relatively large difference between the initialized tracking

window and the ground-truth in the first frame.

5.3 Qualitative evaluation

In addition to quantitative evaluation, the qualitative evaluation, as illustrated in

Figure 6, is presented in terms of the following several typical challenges.

Occlusion: The object occlusion has been the major challenge of on-line visual

object tracking, which probably leads to the false object detection and gradually

drift the identity of object model. However, in the proposed approach the binary

classifier based on sparse representation can effectively detect and prevent the occlu-

sion from the updating of object model. In practice, the proposed approach is robust

to object occlusion. To highlight the advantage of the proposal, we specially produce

two challenging videos against long-time complete occlusions: sequences face hand

and paper. In the sequence face hand, the target face is completely occluded with

hands for a long period. In the sequence paper, the target paper is completely oc-

cluded twice by another similar paper. In addition, the partial or complete occlusion

cases can also be observed in the sequences PETS09 s2l1, Tudcrossing, face man,

face woman and girl.

The proposed approach performs well on the videos mentioned above. In con-

trast, the other four trackers fail, when the long-time complete occlusion occurs or

the occlusion shares similar feature with the target. For instance, in the sequence

face hand, IVT, L1 and PLS early drift to the background when a short-time oc-

clusion occurs, and SCM finally drifts to one hand which covers the face for a long

period. In the sequence paper, the four trackers all drift to the occlusion or back-

ground. It is interesting to note that, SCM is robust to short-time occlusion due

to the application of static object model. Nevertheless, it remains sensitive to the

long-time occlusion, as demonstrated in the sequence face hand. This implies that

SCM cannot effectively detect the collusion, which finally modifies the attribute of

the dynamic object model by the accumulation of false samples.

Motion & Blur: The fast or abrupt motion has been a great challenge for the

traditional framework of particle filter, whose motion estimation parameters are

usually continuous. However, this problem can be easily addressed within the pro-

posed tracking-by-detection scheme by expanding the object retrieval region. It is

known that the blur caused by fast motion is unfavorable for object recognition.

However, the fluent tracking results in sequences animal and jumping validate that
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the proposed approach works well in this case. It indicates that the random projec-

tion of raw image is robust to the blur. By exploring the sparse coding histogram

as feature, SCM also performs well in this case. In contrast, the remaining three

methods perform relatively worse. They all drift from the target in the sequence

jumping.

Scale & Rotation: There are drastic scale changes, and in-plane or out-of-plane

rotations in the two sequences david and girl. They pose great challenges to the

proposed approach which only holds a fixed-sized tracking window. In this case,

the object detection of the proposed approach is usually false. However, the false

detection can be effectively identified with object validation. This will help the

proposed tracker effectively avoid the identity drift caused by scale or rotation. So

in the sequences david and girl, the proposed approach successfully recaptures the

object after severe scalings or rotations. In contrast, the other four methods incline

to lose the target for ever in the presence of severe scale changes or rotations, e.g.

the out-of-plane rotation in the sequence girl.

Illumination: In theory, the proposed approach should not be sensitive to the

illumination change, since the feature vector collected by random projection allows

to be linearly scaled during the sparse solution. In practice, the proposed approach

performs well together with other four methods. For instance, in the sequence david,

the five methods all successfully track the object walking from the dark to the light

in the early few frames.

Overall performance: The proposed approach shows better overall performance

than others due to the robustness of sparse representation on both object detection

and validation. The two trackers SCM and PLS both explore a static object model

to identify the object, while they cannot prevent the false detection from updating

the dynamic object model. So they perform worse than the proposed tracker in our

experiments. Note that SCM obviously outperforms PLS. This can be explained by

the fact that SCM explores both static and dynamic features to weight particles,

while PLS only adopts the dynamic feature. The remaining two trackers IVT and L1

cannot cope with severe appearance changes, since the ground-truth is not preserved

in their template updating.

6 Conclusion
This paper has proposed an efficient tracking-by-detection scheme based on two-

stage sparse representation. In order to evaluate the proposed approach, extensive

experiments are conducted on ten benchmark videos comprising various challenges

like light change, fast motion, scale and rotation, partial occlusion, and complete

occlusion. Compared with traditional trackers based on sparse representation, the

proposed tracker presents obvious advantages on both accuracy and complexity.

Specifically, it significantly reduces the computation cost related to sparse repre-

sentation, thereby presenting much higher speed than state-of-the-art. Thanks to

its robustness to identity drift, it also achieves better tracking performance than

state-of-the-art especially in the presence of severe occlusions.
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Figure 1: An object vector of size 300 × 1 (left in (a)) is sparsely approximated by a
dictionary of ten objects (right in (a)) with sparse solution in (b), or by a dictionary
combining the ten objects and a trivial template [I − I] with sparse solution in (c). Here
I is an identity matrix of size 300 × 300. This means that the sparse solution is of length
equal to 10 in (b) and 310 in (c). The sparse solution in (b) has 4 nonzero entries and
the representation error is about 10−1. In contrast, the solution in (c) holds 300 nonzero
coefficients, thereby lowering the representation error to 10−3. For clarity, the first ten
coefficients in (c) corresponding to the ten objects above are detailed in (d). The similarity
between (b) and (d) implies that the distribution of the largest few coefficients is not
sensitive to the representation error.

Figure 2: The block diagram of the proposed tracking scheme.

Figure 3: The labeled object from the former frame can be sparsely approximated by
a dictionary consisting of overlapped local patches in some area of current frame. The
local patch corresponding to the largest coefficient is prone to indicate the position of the
candidate object.

Figure 4: The sparse solutions of binary classifier with input being an object sample in
(a), a background sample in (b) and an outlier in (c).

Figure 5: The OPE center location errors of five trackers on all test sequences. The vertical
axis indicates the location error and the horizontal axis is the frame index.

Figure 6: Tracking examples of five methods on ten challenging videos

Table 1: The attributes of the ten tested videos on light change (LC), fast motion (FM),
scale and rotation (SR), partial occlusion (PO), and complete occlusion (CO).

Video clip LC FM SR PO CO

Face hand X X
Paper X X

PETS09 s2l1 X
Tudcrossing X

Face man X X
Face woman X

Animal X
Jumping X

David X X
Girl X X X

Table 2: The implementation speed (frames per second) of the four trackers based on sparse
representation with varying feature size. The best and second best results are labeled in red
and blue, respectively. The ? indicates that the software cannot run with the corresponding
feature size.

Feature size 10× 10 20× 20 30× 30 40× 40 50× 50

L1 [5] 2.0172 0.3263 0.0166 0.0039 0.0019
SCM [8] ? 1.9025 0.9760 0.5648 0.3512

APGL1 [13] 18.0518 6.7513 0.7084 0.3160 0.1329
Ours 1 18.1232 8.5850 2.5802 0.9241 0.4040
Ours 2 18.3729 15.7857 13.0183 11.0276 7.8666



Weizhi Lu et al. Page 16 of 16

Table 3: Average center location errors (in pixel). The best and second best results are
shown in red and blue fonts, respectively.

Face hand Paper PETS09 s2l1 Tudcrossing Face man Face woman Animal Jumping David Girl

OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE

IVT 57.80 51.23 38.77 38.64 51.26 42.17 29.11 22.30 7.41 18.01 39.99 30.41 10.02 21.27 15.25 15.10 5.49 6.74 36.50 30.22

L1 43.98 45.12 70.42 55.28 45.04 45.22 11.49 11.17 28.96 23.47 24.06 20.30 81.02 33.08 55.68 52.03 58.32 57.00 24.53 45.13

PLS 62.08 59.30 34.77 39.11 42.98 44.71 43.11 37.60 9.09 17.10 22.57 20.00 91.94 32.90 66.93 72.44 77.73 78.17 39.51 54.00

SCM 23.82 18.17 40.89 37.01 32.12 23.00 4.36 6.35 3.06 6.81 4.68 4.58 25.75 14.22 3.73 3.66 47.20 40.90 110.49 51.18

Ours 4.08 6.22 4.45 4.12 8.47 40.06 4.23 6.29 9.74 13.40 10.45 9.79 6.39 9.73 3.77 4.15 8.65 10.21 22.68 26.43

Table 4: Average overlap rates between the tracked region and the ground-truth. The best
and second best results are shown in red and blue fonts, respectively.

Face hand Paper PETS09 s2l1 Tudcrossing Face man Face woman Animal Jumping David Girl

OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE OPE SRE

IVT 0.40 0.37 0.48 0.40 0.20 0.21 0.15 0.15 0.56 0.32 0.46 0.45 0.74 0.58 0.52 0.45 0.64 0.63 0.37 0.38

L1 0.35 0.30 0.12 0.16 0.39 0.35 0.54 0.51 0.36 0.32 0.54 0.54 0.23 0.37 0.11 0.14 0.26 0.24 0.48 0.25

PLS 0.35 0.29 0.44 0.39 0.38 0.35 0.09 0.11 0.52 0.34 0.43 0.40 0.21 0.37 0.07 0.07 0.25 0.25 0.39 0.27

SCM 0.70 0.61 0.54 0.48 0.38 0.47 0.69 0.70 0.67 0.61 0.82 0.78 0.57 0.62 0.80 0.80 0.37 0.36 0.13 0.28

Ours 0.93 0.77 0.82 0.73 0.64 0.30 0.74 0.69 0.56 0.47 0.67 0.59 0.84 0.69 0.82 0.73 0.39 0.35 0.51 0.48


