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a b s t r a c t

The corrosion protection of 304L stainless steel by aluminium oxide coatings deposited by metal–organic

chemical vapor deposition (MOCVD) was investigated in a 0.1 M NaCl solution at room temperature by

polarization curves and electrochemical impedance spectroscopy. The effect of the coating thickness

was specifically considered. Transmission electron microscopy cross-section observations of the stainless

steel/alumina coating showed that the coating is amorphous and porosity-free. The impedance response,

for short immersion times, confirmed the absence of porosity and revealed that the alumina coatings

with thickness ranging from 250 nm to 1700 nm provide high corrosion resistance. The corrosion

protection increased when the alumina coating thickness increased. However, from the impedance data

obtained for different exposure times to the aggressive solution, a threshold film thickness of

500–600 nm was determined, above which the corrosion protection was not improved. Due to their

interesting physicochemical properties, such films of amorphous alumina are an innovative and econom-

ically accessible alternative to improve the stainless steel corrosion resistance and could be used in

miniaturized sensors operating in marine environment.

1. Introduction

Due to their relatively good corrosion resistance, stainless steels

(SSs) are foreseen as base material for the fabrication of housings of

sensors which are used for the autonomous monitoring of marine

environment and particularly for the measurement of parameters

such as dissolved oxygen, turbidity, conductivity, pH or fluores-

cence. To efficiently protect the sensors, housing materials must

meet multiple specifications, including resistance against corro-

sion, sand erosion and bio-fouling [1]. Despite the fact that the

corrosion resistance of SS is improved by addition of alloying

elements, still today, when exposed to chloride solutions, SS suffer

from localized corrosion [2]. This situation is even worst consider-

ing the combined erosion–corrosion problem which happens when

the abrasive fluid damages the passive film. The breakdown of the

oxide film leads to localized corrosion propagation (intergranular

or crevice corrosion) resulting in strong degradation of the SS part.

Surface treatments such as paints or coatings (organic and

inorganic films) are used to face this drawback [3–6]. Ceramic films,

processed either by wet techniques, such as sol–gel (titanium oxide

[7]) or by vacuum techniques such as atomic layer deposition

(aluminium and/or tantalum oxides [8] and their nanolaminates

[9]), or microarc alloying (titanium carbide [10]) are also promising

surface treatments.

Our group has recently shown that amorphous aluminium

oxide coatings can be obtained through a robust, environmen-

tally-compatible MOCVD process involving aluminium tri-

isopropoxide (ATI) as single source precursor [11–13]. The

processing-structure relationship was established and it revealed

that deposition temperature is the key parameter of the process.

When processed below 650 °C, X-ray and electron diffraction

patterns showed that films are amorphous. Observation of cross-

sections by transmission electron microscopy (TEM) revealed that

films are compact without any visible pores. At deposition temper-

atures exceeding 650 °C, gradual stabilization of nanocrystallized

c-Al2O3 takes place. Deposition temperature also impacts the

composition of the films: combined electron probe microanalysis

(EPMA), Rutherford backscattering spectroscopy (RBS) and

energy-dispersive X-ray spectroscopy (EDS) showed that, for films

processed at 350 °C, the O/Al ratio is equal to 2. For these films,

Fourier transform infrared spectrometry (FTIR) revealed the pres-

ence of OH groups, with the overall composition corresponding

to that of aluminium oxy-hydroxide, AlOOH.With increasing depo-

sition temperature, the O/Al ratio and the concentration of OH

groups gradually decrease to reach a composition which matches
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that of stoichiometric Al2O3 for films processed above 415 °C. The

surface of samples processed at 480 °C is hydrophobic, with water

contact angle of 103 degrees [14], and the hardness and Young’s

modulus are 11 GPa and 155 GPa, respectively [15].

The structure–properties relationship of such aluminium oxide

coatings has been investigated on titanium alloys. Promising bar-

rier properties against oxidation at moderate temperature (up to

650 °C; i.e. before crystallization of the amorphous film takes

place) were shown, thus allowing the replacement of e.g. SS by

titanium alloys in hotter parts of aeroturbines [15–18]. The prom-

ising performance of the amorphous alumina was attributed to the

absence of grain boundaries in the coating and to the reduced

oxygen vacancy diffusion in alumina [19]. Electrochemical

measurements revealed that amorphous Al2O3 coatings processed

at 480 °C provide the best performance, with a two orders of

magnitude improvement of the corrosion resistance with regard

to the bare titanium alloy [17].

Based on these previous results, the aim of the present work

was to investigate the corrosion protection of 304L stainless steel

by amorphous Al2O3 coatings deposited at 480 °C and to analyze

the influence of the coating thickness on the corrosion perfor-

mance of the coated steel. Indeed, to ensure compact coatings with

acceptable corrosion protection and minimized delamination con-

cerns, the alumina coating must be defined with a reasonable min-

imum thickness. The Al2O3 coating/stainless steel interface was

examined using TEM. Polarization curves and electrochemical

impedance measurements were performed for different coatings

thicknesses. The corrosion protection performance of the Al2O3

coatings were evaluated by measuring the impedance of the sam-

ples for various exposure times (from some hours to 20 days) to a

0.1 M NaCl solution. From the capacitance values, the film thick-

nesses was calculated and compared to the values obtained by

reflectometry measurements.

2. Experimental

2.1. MOCVD of alumina coatings

MOCVD of alumina coatings was performed from ATI in a hori-

zontal hot-wall reactor as previously described [11]. Processing

conditions were the same in all experiments: deposition tempera-

ture and pressure 480 °C and 0.67 kPa, respectively, bubbling 20

standard cubic centimetres per minute (sccm) 99.9992% pure N2

(Air Products) flow through liquid ATI maintained at 383 K and fur-

ther diluting the gas phase with additional 631 sccm N2. These con-

ditions lead to a theoretical flow rate of ATI between 4 and 7 sccm

[20], depending on the adopted law for ATI vapor pressure provided

in the literature [21–23]. The resulting growth rate of the coating

was around ca. 12 nm/min [12]. It is worth noting that the thermal

instability of the ATI molecule [12] had a negative impact on the

reproducibility of the ATI flow rate, resulting in films whose thick-

ness may be shifted with regard to the targeted one. Moreover, the

N2 bubbling technique for the production of ATI vapors was poorly

adapted for short processing time and/or low film thickness com-

pared for example with liquid injection techniques. Nevertheless,

in spite of its drawbacks, this technology was adopted in the pres-

ent work due to its convenient implementation at laboratory scale.

2.2. Coating deposition and characterization

The composition inweight percent of the 304L stainless steelwas

C = 0.02, Cr = 17–19, Ni = 9–11, Mn = 2, Si = 1, P = 0.04, S = 0.03 and

Fe to balance. 10 mm x 10 mm x 1 mm plates were mechanically

abraded with successive SiC papers down to 4000 grade. They were

degreased and cleaned using acetone and ethanol and finally dried

under Ar flow immediately before being loaded in the reactor.

250 ± 50 nm to 1700 ± 50 nm thick filmswere deposited on one face

of the substrates by varying the deposition time. Thicker films flake

off the substrate due to poor accommodation between the coeffi-

cients of thermal expansion. Film thickness wasmeasured at differ-

ent locations on the sample by reflectrometry using a UV–VIS

reflectometer (Ocean Optics) and the NanoCalcÒ software.

Scanning electron microscopy (SEM) observations of the surface

of the SS and of the coatings were performed using a JEOL JSM 6400.

The coating/substrate interfaces were examined by TEM. Cross-sec-

tions of the samples were prepared by cutting thin slices normal to

the film/substrate interface using a diamond wire saw. Two slices

were glued together, film to film, and embedded in epoxy resin in

a 3 mm diameter brass tube. After curing, the tube was sectioned

into approximately 300 lm thick discs. These discs were then pol-

ished on both faces and dimpled before ion-milling to transparency

with a low angle (0–10°) precision ion-beam polishing system

(PIPS). Observations were done with a JEOL JEM 2010 instrument

operating at 200 kV and equipped with an EDS chemical analyser.

2.3. Electrochemical measurements

The electrochemicalmeasurementswere performedusing a con-

ventional three-electrode cell with bare Al (99.999 %), bare SS and

alumina coated SS coupons as working electrodes, a saturated calo-

mel reference electrode (SCE) and a platinum grid auxiliary elec-

trode. Particular attention was paid to the preparation of the

coated samples: an electrical wire was welded on the uncoated side

of the SS and the entire backside of the sample including thewelded

zone and the edgeswere embedded in an insulating epoxy resin. The

electrode surface of bare SS and pure Al, was polished to a 3 lmfin-

ishingwith diamond paste, rinsed and sonicatedwith ethanol, dried

in warm air and the samples were finally prepared similarly to the

coated ones. To enable the comparison between the electrochemical

results, the surface area in contact with the electrolyte was accu-

rately determined by optical microscopy. The surface area varied

from 0.2 cm2 to 0.35 cm2 depending on the sample.

Experiments were performed in a 0.1 M NaCl solution at room

temperature without stirring. Polarization curves were obtained

under potentiodynamic regulation using a Solartron 1287 electro-

chemical interface. The cathodic and anodic branches were

obtained consecutively with a scan rate of 0.6 V/h after a prelimin-

ary hold time of 1 h at the corrosion potential. Electrochemical

impedance measurements were carried out using a Biologic

VSP instrument. The impedance diagrams were obtained under

potentiostatic conditions at the corrosion potential over a fre-

quency range between 65 kHz to a fewmHzwith 10 points per dec-

ade, using a 20 mV peak-to-peak sinusoidal voltage. Photographs of

the coated SS surface after 20 days of immersion in a 0.1 M NaCl

solution were taken by a Nikon Eclipse MA200 optical microscope.

One measurement was realized on each sample. The small sur-

face area (<1 cm2) and the poor statistical weight of the measure-

ments (one measurement for each coating thickness) do not allow

obtaining unambiguous quantitative information. However, the

controlled and reproducible microstructure of each film allows,

at least, a qualitative ranking of the samples with regard to their

electrochemical behavior.

3. Results and discussion

3.1. Films characterization

Fig. 1a presents the TEM cross-section of an Al2O3/stainless

steel interface. The film appears free of porosity in agreement with

our previous results [15]. The amorphous nature of the alumina is



illustrated by the electron diffraction pattern in Fig. 1b. The

film/substrate interface reveals a 15 nm thick interfacial layer

(Fig. 1c) composed of Fe, Cr and Ni oxides (62% Fe, 27% Cr, 6% Ni

and 5% Mn). The formation of this layer cannot be avoided as it

is due to the oxidation of the SS at the beginning of the deposition

process [24]. The SS oxidation stops when the Al2O3 layer becomes

sufficiently continuous and compact.

3.2. Electrochemical results

Fig. 2 presents the polarization curves obtained in 0.1 M NaCl

solution for the bare SS, for a SS sample coated with a 1500 nm

thick alumina film, and for pure Al. The latter is reported for com-

parison with the alumina films since bare Al is naturally covered by

a ca. 3 nm thick amorphous alumina [25]. For the three systems,

the corrosion potential values account for a mixed potential linked

to the simultaneous anodic and cathodic reactions occurring on

their surface. In the present case, the anodic reaction is controlled

by the presence of an oxide film both for the SS and for the pure Al.

In neutral media, the cathodic reaction is the oxygen reduction. It

can be observed that the corrosion potential of the coated SS sam-

ple is shifted towards cathodic potential (0.28 V) by comparison

with the corrosion potential of the bare SS and is almost the same

as that of the pure Al. For the bare SS, the cathodic part of the

polarization curve is characterized by a large current plateau. On

the plateau, the current density is ca. 30 lA cmÿ2. Such low value

indicates that the reaction is limited by the presence of a passive

layer which impedes the electron transfer. The cathodic part of

the curve obtained for the coated SS is modified by comparison

with the curve obtained for the bare SS. A strong decrease of the

current density (approximately three current decades) and a

change in the kinetics (illustrated by an increase of the current

density when the potential evolves in the cathodic direction from

the corrosion potential) can be observed. The shape of the cathodic

part of the curve is similar to that obtained for pure Al. The lower

current densities obtained for the coated sample is attributed to

the higher thickness of the alumina film. The amorphous alumina

deposited on SS surface modifies the cathodic reaction due to a

pronounced barrier effect which limits the oxygen reduction

[17,26,27].

The anodic branch is characterized for the three systems by a

passivity plateau, more or less extended in agreement with the

presence of passive films on SS and Al or of the insulating alumina

coating. For both the bare SS and the pure Al samples, the sharp

increase of the current density is due to the breakdown of the pas-

sive film influenced by the presence of Clÿ ions in the electrolyte

which induce a localized corrosion process. The values of the

pitting potential; i.e. the potential where the localized corrosion

occurs are 0.38 V/SCE and ÿ0.1 V/SCE for SS and pure Al, respec-

tively. The anodic domain of the coated SS is characterized by a

304L SS

Alumina

(a)

(b)

(c)

200 nm

30 nm

(FeNi)Cr2O4 oxide

Fig. 1. (a) TEM micrograph of the Al2O3/stainless steel cross-section, (b) diffraction pattern of the alumina and (c) Al2O3/stainless steel interface.
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Fig. 2. Polarization curves obtained after 1 h of immersion in 0.1 M NaCl solution:

(d) bare 304L SS, (4) pure Al, and (s) 304L SS coated with a 1500 nm thick alumina

film.
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Fig. 3. Variation of the current densities as a function of the thickness of the

alumina coatings: (a) for two cathodic potentials: (d) ÿ0.8 V/SCE and (s) ÿ0.95

V/SCE and (b) for three anodic potentials: (h) +0.5 V/SCE, (d) +0.4 V/SCE and (s)

+0.2 V/SCE.



low and relatively constant current density value (about

10 nA cmÿ2) in the whole investigated potential domain. This re-

sult underlines the stability of the coating in the aggressive

medium.

The polarization curves were plotted for the SS samples coated

with alumina films of various thicknesses in the range 250–

1700 nm (not reported here). The curves present the same shape

but the anodic and cathodic current densities depend on the thick-

ness of the alumina coating. The current densities can provide a

quantitative evaluation of the performance of the different systems

[28]. In Fig. 3, the current densities are reported for different

cathodic and anodic potentials for five coatings with different

thicknesses. For the cathodic potentials (Fig. 3a), it can be observed

that the current density significantly decreases with increasing the
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Fig. 4. Electrochemical impedance diagrams obtained at Ecorr after different hold times in 0.1 M NaCl solution for the different alumina thicknesses: (a) 270 nm, (b) 520 nm

and (c) 780 nm.



coating thickness. For 250 nm thick and for 1700 nm thick, the cur-

rent densities are 1.7 � 10ÿ7 A cmÿ2 and 4.7 � 10ÿ9 A cmÿ2,

respectively for a cathodic potential value of ÿ0.8 V/SCE. The de-

crease of the cathodic current density indicates that the rate of

the oxygen reduction is reduced with increasing the coating thick-

ness; i.e. with impeding the electron transfer between the metal

surface and the coating/electrolyte interface [26,27]. The current

densities measured on the anodic plateau for different potential

values poorly depend on the coating thickness (Fig. 3b). The cur-

rents are very low (in the nA range), and thus, it can be assumed

that the measured anodic currents are in the limit of the sensitivity

of the potentiostat. It can be noted that the pitting potential cannot

be determined in the presence of the coating indicating that most

probably, thick films are less sensitive to pitting development

[29,30]. In a recent paper, Diaz et al. observed, in the case of ul-

tra-thin Al2O3 films (5–50 nm) deposited by atomic layer deposi-

tion, that the anodic current density decreases with increasing

coating thickness [27]. Marin et al. highlighted a similar protective

behavior of Al2O3 coatings deposited by atomic layer deposition on

AISI 316 samples with thickness ranging from 10 to 100 nm [31].

Electrochemical impedance diagrams were obtained after dif-

ferent hold times in 0.1 M NaCl solution for three different Al2O3

coatings thicknesses. They are represented in Fig. 4 in Bode

coordinates (modulus and phase angle as a function of frequency).

Two different behaviors are observed depending on the immersion

time. For short immersion times, a capacitive behavior is observed

(straight line in the modulus plot and phase angle around ÿ90°)

which is characteristic of the impedance of an insulator. The

impedance modulus is high and data points in the low frequency

range are difficult to obtain without dispersion.

To fit the impedance data, constant phase elements (CPE) are

commonly used. The CPE parameters (Q and a) can be graphically

obtained [32]. In the present study, the values of a are close to 1

(0.98–0.99) for the three coatings and thus, the Q values corre-

spond to a capacitance, expressed in unit F cmÿ2. The C values

can be obtained directly from the imaginary part of the impedance

Zj(f) as:

C ¼
1

Zj2pf
ð1Þ

Fig. 5 shows the graphical determination of the capacitance for

the three coatings. Since the impedance response can be associated

to a capacitance, the dielectric constant or the film thickness may

be obtained from the equation:

C ¼
ee0

d
ð2Þ

where d is the film thickness, e is the dielectric constant and e0 is the

permittivity of vacuum with a value of e0 = 8.8542 � 10ÿ14 F cmÿ1.

Film thickness was calculated under the assumption that the dielec-

tric constant e of alumina equals 10 [33].

Table 1 compares the thickness of the three samplesmeasuredby

reflectrometry and calculated fromEq. (2). The calculated values are

in good agreement with the measured ones. The impedance results

obtained for short immersion times showed the insulating character

of the coatings which is in agreement with porosity-free films.
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Fig. 7. SEM micrographs of the surface for (a) bare SS and (b) 1200 nm alumina

coated stainless steel after 2 h of immersion in 0.1 M NaCl solution.



When the immersion time increases (Fig. 4), the impedance

diagrams are modified. The impedance modulus significantly

decreases and the phase angle shows the presence of different time

constants. This modification can be attributed to the occurrence of

corrosion. However, it is difficult to extract quantitative parame-

ters because the diagrams account both for the presence of the alu-

mina coating and for the corrosion process. Nevertheless, it is

generally accepted that the low frequency domain on the imped-

ance diagrams characterizes the SS/coating interface and it can

be assumed that the decrease of the impedance modulus with

increasing immersion time is associated with the degradation of

the SS/coating interface. The presence of defective sites in the

coating when the exposure time to the aggressive solution is

increased can explain this behavior.

Based on the above considerations, we call thereafter the

immersion time corresponding to the transition between the

capacitive behavior and the decrease of the impedance modulus

‘‘critical defective time’’ (CDT) and we use it to evaluate the corro-

sion protection performance of the Al2O3 coatings. Fig. 6 shows the

CDT measured for the three coating thicknesses. It clearly appears

that the thicker the coating, the longer the CDT. This result shows

that the corrosion protection is improved with increasing the

thickness of the alumina coating. Indeed, a significant improve-

ment of the protection can be noticed for the 520 nm thick coating

in comparison with the 270 nm thick one. The protection is not sig-

nificantly improved with further increase of the thickness, as

shown by the moderate increase of CDT for the 780 nm thick coat-

ing. This reveals that a threshold coating thickness is necessary to

observe for a long period the protection of the SS.

3.3. Surface observations

Fig. 7 presents SEM micrographs of the surface of the bare SS

and of the SS coated with a 1200 nm thick alumina film after 2 h

of immersion in 0.1 M NaCl solution. For the bare SS, pits are

clearly observed (Fig. 7a). The size of the pit is about 20–30 lm

but probably localized corrosion propagated inside the SS as

revealed by the small pits observed around the cavity (zoom in

Fig. 7a). In contrast, the alumina coated sample (Fig. 7b), does

not present any sign of corrosion under the same experimental

conditions, which confirm its efficient protective properties.

Fig. 8 shows the micrographs, after 20 days of immersion in

0.1 M NaCl solution, of SS coated with 270 nm (8a), 520 nm (8b)

and the 780 nm (8c) alumina films. For the thinner coating, the sur-

face appears strongly corroded, in agreement with the impedance

results showing that this film does not ensure long-term corrosion

protection. For the thicker coatings, only some pits are visible illus-

trating significant improvement of the SS protection.

4. Conclusions

Polarization curves and electrochemical impedance measure-

ments were used to assess the corrosion resistance of 304L stain-

less steel coated with MOCVD processed amorphous alumina

films of different thicknesses. 250–1700 nm thick films provided

efficient protection of SS, illustrated by a two decades reduction

of the anodic current and by preventing the pitting process

throughout the investigated anodic potential range. In the cathodic

domain, the coated 304L SS also demonstrated a significant de-

crease of the current associated with the oxygen reduction. This

relation between the barrier properties of the coating and its thick-

ness was confirmed by the measure of the ‘‘Critical Defective

Time’’, determined from impedance data, which represents the

immersion time before switching from a capacitive behavior of

SS/coating interface to the decrease of the impedance modulus:

the higher the coating thickness, the higher the CDT (and therefore

the more protective the coating). This relation is valid up to a

threshold film thickness of ca. 500–600 nm.

The artificial passivation of 304L stainless steel with a relatively

thin (ca. 500–600 nm) film of MOCVD amorphous alumina is an

innovative and economically accessible alternative to protect it

against corrosion. This work paves the way towards nanostructur-

ing of amorphous Al2O3-based coatings to meet combined specifi-

cations of protection against corrosion and biofouling.
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