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Geneviève Bélanger,1 Alexander Belyaev,2, 3 Matthew

Brown,2 Mitsuru Kakizaki,4 and Alexander Pukhov5
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Abstract

Large Hadron Collider (LHC) searches for the SM Higgs boson provide a powerful limit on models involving

Universal Extra Dimensions (UED) where the Higgs production is enhanced. We have evaluated all one-loop

diagrams for Higgs production gg → h and decay h → γγ within “minimal” UED (mUED), independently

confirming previous results, and we have evaluated enhancement factors for Higgs boson production and decay

over the mUED parameter space. Using these we have derived limits on the parameter space, combining data

from both ATLAS and CMS collaborations for the most recent 7 TeV and 8 TeV LHC data. We have performed

a rigorous statistical combination of several Higgs boson search channels which is important because mUED

signatures from the Higgs boson are not universally enhanced.

We have found that R−1 < 500 GeV is excluded at 95% CL, while for larger R−1 only a very narrow

(±1−4 GeV) mass window aroundmh = 125 GeV and another window (up to 2 GeV wide for R−1 > 1000 GeV)

around mh = 118 GeV are left. The latter is likely to be excluded as more data becomes available whereas the

region around mh = 125 GeV is where the recently discovered Higgs-like particle was observed and therefore

where the exclusion limit is weaker.

It is worth stressing that mUED predicts an enhancement for all channels for gg → h production and decay

while the vector boson fusion process WW/ZZ → h → γγ is generically suppressed and WW/ZZ → h →

WW ∗/ZZ∗ is standard. Therefore, as more 8 TeV LHC data becomes available, the information on individual

Higgs boson production and decay processes provided by the CMS and ATLAS experiments can be effectively

used to favour mUED or exclude it further.
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I. INTRODUCTION

Theories with Universal Extra Dimensions (UED) are very promising for solving puzzles in the Stan-

dard Model (SM). The UED framework was proposed by Appelquist et al [1], following the suggestion

of the existence of large (i.e. millimetre-scale) extra dimensions [2, 3] or a warped (Planck-scale) extra

dimension [4]. In UED, unlike in the preceding extra dimension models, all SM particles are postulated

to propagate in a TeV−1-sized bulk (normal space plus the extra compactified dimensions). Models

of UED provide solutions to problems such as explaining the three fermion generations in terms of

anomaly cancellation [5], and providing a mechanism for a sufficient suppression of proton decay [6].

Moreover, UED models can naturally incorporate a Z2 symmetry called KK parity, analogous to R

parity in supersymmetry, leading to a well-motivated dark matter candidate [7, 8].

The simplest UED theory is known as minimal Universal Extra Dimensions (mUED) and it posits

a single, flat extra dimension compactified on an S1/Z2 orbifold in order to recover chiral interactions

in the 4D effective theory. Periodicity on a circle (S1) leads to the discretisation of momentum along

the extra dimension into integer multiples of the compactification scale, i.e. p5 = nR−1, where R is the

radius of the circle. The integer n is called “Kaluza-Klein (KK) number” and is a conserved quantity1

before orbifolding. The “orbifolding” to S1/Z2 leads to KK number conservation being violated at loop

level. However, KK parity – defined to be (−1)n – is conserved to all orders in perturbation theory. As

a result of this symmetry, mUED predicts a stable lightest Kaluza-Klein particle (LKP) which would

be a prospective candidate for dark matter.

The collider phenomenology of mUED has been studied intensively in many publications (e.g.[9–

13]), but we are only aware2 of one experimental paper [14] that has set LHC limits on mUED. This

is not surprising – the search for mUED is much more difficult than the search of SUSY within the

experimentally well-explored mSUGRA scenario at the LHC. The main reason for this is that mUED

provides much smaller missing transverse momentum due to the small mass splitting between KK-

partners of SM particles of the same KK level. Though dark matter constraints set an upper limit

on the scale of mUED below about 1.6 TeV [15], this scale will be very difficult to test even with the

14 TeV LHC [13, 16]. More pragmatically, only a few computational tools for studying mUED are easily

1 It is conserved in the following sense. Consider a vertex of three particles with KK numbers n, m and l. This vertex

“conserves” KK number if ±n±m± l = 0 can be satisfied for some (independent) choice of plus or minus signs. E.g.

a (1, 1, 0) vertex would conserve KK number, but (0, 0, 1) would not.
2 We thank Kohsaku Tobioka for bringing this work to our attention.
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accessible to experimentalists: Datta et al [17] implemented mUED in CompHEP[18, 19]/CalcHEP [20, 21]

and independent implementations [15, 16] have improved upon this by treating electroweak symmetry

breaking consistently.

We show in this paper that the Higgs sector of mUED provides an excellent way of testing the

model at the LHC as was shown recently in [22, 23]. Indeed the loop-induced production process

gg → h and decay h → γγ are sensitive to heavy KK particles and are thus different from their SM

values. Here we improve on previous results by rigorously combining the limits from different channels

(gg → h → γγ, gg → h → W+W− → ℓ̄νℓν̄ and gg → h → ZZ → 2ℓ̄2ℓ) statistically, using the

latest ATLAS and CMS Higgs search results. Constraints on the mUED parameter space are then

derived. Going beyond [22], we also show the effects of including the radiative mass corrections for

these particles. Our independently-derived expressions for gg → h and h → γγ amplitudes agree with

those derived first by Petriello [24]

This paper is structured as follows. The next section describes the main features of the mUED model.

In Sec. III, we evaluate and present the effect of KK-particles in the loop for gg → h production and

Higgs decay to γγ, W+W− and ZZ. The impact of KK-particles differ for each channel and this non-

universality should be taken into account when establishing combined limits on the mUED parameter

space. We express the results of that section in terms of the enhancement of the gg → h → γγ,

gg → h → W+W− and gg → h → ZZ cross-sections. Next, in Sec. IVB, we discuss how these results

can be used to constrain the parameter space of the model, describing the problems encountered when

statistically combining experimental data from different channels. In Sec. V we show new limits on

the mUED parameter space using our rigorous statistical combination and the latest ATLAS and CMS

data. Section VI contains our conclusions. Details on the calculation of the gg → h and h → γγ

amplitudes can be found in a set of appendices.

II. THE MUED MODEL

In UED, in contrast to other Kaluza-Klein theories, there is one or more towers of KK particles

associated with every SM particle. The particles in a KK tower each have the same quantum numbers

but progressively heavier masses. In mUED, to a good approximation, the mass of a KK particle is

given in terms of its KK number by nR−1, leading to a very regularly-spaced mass spectrum. At the

tree level, this regular spacing is altered slightly by electroweak contributions m0 to the mass so that

mtree
n =

√

n2/R2 +m2
0 . (1)
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Furthermore, radiative corrections to the KK masses play a crucial role. Corrections to the masses

of the strongly-interacting KK particles can be as large as 30% and, even for the weakly interacting

particles for which the mass corrections are numerically small, radiative effects are extremely important.

Without them there would be many nearly-degenerate particles and all the KK partners of (nearly)

massless SM particles would be stable to a good approximation. Radiative corrections, first calculated

in [25], lift the degeneracy. This means that all KK particles eventually decay to SM particles and the

lightest KK particle (LKP), which is forbidden to decay to SM particles by KK parity conservation.

This LKP (a heavy version of the photon for much of the parameter space) is an excellent dark matter

candidate. The small mass splittings between KK-partners of SM particles of the same KK level leads

to soft jets and leptons in the decay of KK-particles thus making it more challenging to extract a signal

at the LHC.

Associated with the SM W± boson there is a single tower of KK partners W±
n . However, each SM

fermion f has two KK towers denoted f
(n)
1,2 . This feature will be relevant when comparing the size of

the contribution of bosons and fermions to the Higgs partial widths. Without electroweak and radiative

corrections, these particles have simple interpretations: they are the KK partners of the SU(2)L doublet

and singlet respectively and only the left-handed (right-handed) components of f1 (f2) survive at the

zero KK level after the orbifold projection.

The KK modes, on the other hand, are vector-like, i.e. their left- and right-handed components

transform in the same way under SU(2). Another way to say this is that both components couple

equally to the KK W± bosons. With electroweak and radiative effects included however, the mass

eigenstates become mixtures of the electroweak eigenstates and so the couplings to the gauge bosons

become chiral.

There are two free parameters in mUED: the Higgs mass mh and the compactification scale R−1.

Strictly speaking, because mUED (like all theories involving extra dimensions) is not renormalisable it

must be treated as an effective theory valid to some specified cut-off momentum scale Λ. Thus Λ is

technically a third parameter of the theory. In practice, however, low energy observables are only weakly

sensitive to the cut-off. For definiteness, in this paper, like in many of earlier works, as a benchmark

point we take Λ = 20R−1 which is low enough to keep the SM coupling constants perturbative below

the cut-off scale [1, 26].3

3 The vacuum stability condition constrains the cutoff scale ΛR . 5 for R−1 ∼ 1 TeV and mh = 125 GeV [27]. This

bound can be evaded if the SM vacuum is metastable below the cutoff scale.
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In mUED the Higgs mass is limited to be below around 230 GeV by the simple requirement that

the dark matter candidate should be neutral [15, 28]. More stringent limits are derived from collider

searches for the SM Higgs boson. Indeed as we will demonstrate in this paper, the signals from the Higgs

boson in mUED are enhanced as compared to those of the SM in nearly all of the main search channels.

One exception is the W-fusion production of the Higgs decaying to two photons. The LEP limit on the

SM Higgs, mh > 114.4 GeV, therefore provides a conservative lower limit. The LHC sensitivity to the

Higgs within the mUED scenario is better than for the SM Higgs boson, leading to a reduced range of

allowed masses as we will derive in the next sections. As we know, recently the discovery of the Higgs-

like particle with mh=125 GeV was claimed by both the CMS [29] and ATLAS [30] collaborations.

This signal has a strong effect on the mUED parameter space and we use these latest CMS and ATLAS

results (expressed in the form the limits on the SM Higgs parameter space) to limit mUED with mh

around 125 GeV. By the end of 2012 the LHC will be able to collect more statistics and clarify the

nature of the Higgs-like particle which eventually could be applied to further uncover the status of

mUED.

A lower bound of around 600 GeV on the compactification scale comes from tests of electroweak

precision measurements [31] and b → sγ [32]. The upper bound on R−1 is provided by cosmological

observations from the requirement that the abundance of the LKP (whose mass is approximately R−1)

does not exceed the observed dark matter abundance [15].

III. EVALUATION OF AMPLITUDES FOR HIGGS PRODUCTION AND DECAY IN

MUED

In the SM, the dominant process for producing the Higgs boson at the LHC is gluon-gluon fusion,

despite the leading order contribution being a one-loop process. This process, shown in Fig. 1 (left),

involves triangle diagrams of quarks – predominantly the top quark because of its large Yukawa coupling.

It is this large coupling and also the high gluon luminosity at the LHC that makes this production

mechanism dominant. In mUED, KK quarks can also run in the triangle loop leading to an enhancement

over the SM amplitude.

For low values of the Higgs mass (e.g. around the recently discovered [29, 30] Higgs-like particle at

125 GeV) the most powerful Higgs search channel is into two photons. Indeed the low QCD background

for this process compensates for the fact that the Higgs decay width into two-photons is loop-induced

and thus suppressed. In the SM the dominant contribution to the two-photon amplitude comes from
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loops involving W± bosons. This contribution is about four times larger than the one from fermions.

Furthermore, the charged fermion triangle loop (again, dominated by top quarks) interferes destructively

with the W± contribution.

In mUED, new contributions arise from KK W ’s and KK fermions running in loops. The contribu-

tions of the KK W ’s and KK fermions have the same sign as their SM counterparts, but the increase

as compared to the SM contribution is larger for fermions than for W’s. First, associated with each SM

fermion there are two towers of KK fermions while there is only one for W±. Second, the contributions

of particles from higher KK levels decrease more slowly for fermions than for W’s, as we will see in the

next section. Furthermore, for KK number n ≥ 1, there is an additional contribution from charged

scalars a±n . This field is a mixture of the KK modes of the 5th component of the charged vector field

and the charged component of the Higgs field. At each KK level, the charged scalar contributes with

the same sign as the fermion diagrams. The net effect is therefore to suppress the Higgs to diphoton

decay rate relative to the SM prediction. The three (fermion, W± and a±n ) contributions are shown in

Fig. 1. Additional diagrams involving W± Goldstones and ghosts are presented in Appendix C.

In the following subsections we show the results of calculating the amplitude for production of a SM

Higgs boson from gluon-gluon fusion, and also the amplitude for subsequent decay to two photons. The

amplitudes A for the gg → h and h → γγ processes both take the form

A = Ã [(p · q)(ǫ · η)− (p · η)(q · ǫ)] , (2)

where the external vector particles with momenta p and q have polarisation vectors ǫ and η respectively.

These polarisation and momentum conventions are shown in Fig. 1.

In (2) the Higgs is allowed to be off-shell. To calculate the exact amplitude for gg → h → γγ,

one would combine the separate off-shell amplitudes for gg → h and h → γγ with a Higgs propagator.

However, in our analysis we use the “narrow width approximation” (valid when the Higgs boson’s width

is much less than its mass) which allows us to write the gg → h → γγ cross section as the product of

the cross-section for production of an on-shell Higgs boson and the branching ratio of an on-shell Higgs

to two photons, i.e.

σ(gg → h → γγ) ≈ σ(gg → h)× BR(h → γγ).

In this approximation, we only need amplitudes involving on-shell Higgs bosons, so we can write (2)

as

A = Ã
[

m2
h

2
(ǫ · η)− (p · η)(q · ǫ)

]

, (3)
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FIG. 1: Some diagrams involved in the production (left) and decay (right) of the SM Higgs boson. For the

Higgs decay, there are also diagrams involving Goldstone bosons and Faddeev-Popov ghosts which are shown

in appendix C.

where mh is the Higgs mass.

These amplitudes have been calculated previously in the SM case in the mh/M ≪ 1 limit [33] (where

M is the mass of the particle flowing in the loop) and subsequently [34] for general mh/M . They have

also been calculated in the mUED case (without radiative mass corrections) in [24]. We performed the

calculation in the general mass case for mUED and included radiative corrections to the KK masses

for the first time. We used the ’t Hooft-Feynman gauge and regulated the divergences that appear

in intermediate steps using dimensional regularisation. We made use of the well-known Passarino-

Veltman functions [35] to evaluate the momentum integrals. Our calculation is shown in detail with

all contributing diagrams in Appendices B and C. Our results reduce to the SM result found in the

literature [36] when the KK modes are removed and agree with the result in [24] when we use tree-level

KK masses in mUED.

A. Higgs production

The amplitude for gg → h (Fig. 1) reads4

4 It should be noted that higher loop corrections to the gg → h amplitude can be substantial, reaching as much as 90%

of the one-loop amplitude [37]. However, these large corrections are dominated by SM contributions (KK contributions

are suppressed by powers of the compactification scale R−1). The SM QCD corrections depend only on spin of the

particle in the large mass limit and therefore they are universal for SM and mUED. In this paper we are ultimately

only interested in the ratio of mUED and SM rates in which the QCD corrections cancel to a good approximation and

therefore our results are valid for higher order QCD corrections.
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Ãggh = − αs

4πv

(

F SM
ggh +

N
∑

n=1

F
(n)
ggh

)

. (4)

where αs is the strong coupling constant and v = 2 sin θWmW/e is the Higgs vacuum expectation value

(θW is the Weinberg angle, e is the elementary electric charge and mW is the mass of the W boson). In

the SM there would be contributions from each quark flavour q in the loop, such that F SM
ggh =

∑

q fF (mq)

where the standard fermion contribution is given by

fF (m) =
8m2

m2
h

[

1 +

(

1− 4m2

m2
h

)

c0(m)

]

, (5)

where c0 is a dimensionless form of the scalar three-point Passarino-Veltman function

c0(m) =















[

arcsin
(

mh

2m

)]2
m2 ≥ m2

h/4

−1
4

[

ln

(

1+
√

1−4m2/m2
h

1−
√

1−4m2/m2
h

)

− iπ

]2

m2 < m2
h/4.

Note that fF and c0 are dimensionless functions and the argumentm always appears in the dimensionless

combination 4m2/m2
h (often written as τ in the literature).

In the m ≫ mh limit, the above expressions reduce to c0 =
m2

h

4m2 +
m4

h

48m4 +O(m6
h/m

6) and

fF (m) ≈ 4

3
+

m2
h

6m2
+O(m4

h/m
4) → 4/3. (6)

Thus the amplitude tends to a constant in the heavy quark limit. This is however not the case when KK

quarks are included in the loop: the heavy KK quarks “decouple” and, therefore, progressively higher

KK modes lead to progressively smaller modifications to the Higgs boson coupling. Consequently, as

we show below, one can safely neglect higher KK modes.

The reason for this decoupling is that, in contrast with SM fermions, while a KK particle’s mass

increases with KK number there is no corresponding increase in its Yukawa couplings and so decoupling

does occur because of suppression from the propagators. This decoupling behaviour is shown explicitly

below.

In mUED, the contribution from KK quarks at the nth KK level (there are two KK quarks at each

level for each SM quark q) is

F
(n)
ggh =

∑

q

sin(2a(n)q )

(

mq

m
(n)
q,1

fF (m
(n)
q,1 ) +

mq

m
(n)
q,2

fF (m
(n)
q,2 )

)

. (7)

where m
(n)
q,1 and m

(n)
q,2 denote the KK quark masses and a

(n)
q denote the mixing angles required to

diagonalise the KK quark mass matrices. At tree level, all KK quark masses are nearly degenerate,

m
(n)
q,tree =

√

m2
q +

n2

R2
,
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where mq is the zero mode mass. Radiative corrections induce mass splittings between the KK fermions

(see e.g. [25]). Similarly, the mixing angles are

a
(n)
q,tree =

1

2
arctan

(

mqR

n

)

at tree-level (so sin(2a
(n)
q,tree) = mq/m

(n)
q,tree), but radiative corrections alter this expression (see for example

[16]).

In our analysis we used one-loop corrected expressions for all masses and mixings as detailed in [25],

but it is illustrative to neglect loop corrections and study the behaviour (just considering the top-quark

contribution, which is dominant) for that case that m
(n)
t > mt > mh:

F
(n)
ggh ≈ 2

(

mt

m
(n)
t

)2

fF (m
(n)
t ) ≈ 2

(

mt

m
(n)
t

)2

× 4

3
, (8)

throwing away terms in mh/mt and mtR of order 3 or higher. This demonstrates the fact, mentioned

above, that (in contrast to SM quarks) heavy KK quarks decouple from the process.

Taking the mass of the nth KK quark to be approximately n/R and considering just the top quark,

the total KK contribution to the amplitude is approximately

FKK
ggh ≡

N
∑

n=1

F
(n)
ggh ≈ 2× 4

3
m2

tR
2

N
∑

n=1

1

n2
. (9)

The sum is convergent as N → ∞, thanks to the decoupling of the heavy KK particles. In this limit,

FKK
ggh → 4(πmtR)2/9. So the momentum cutoff uncertainty is quite mild if one chooses a reasonably

large value for it.

The sum over KK modes n is taken up to a cutoff N , corresponding to a momentum cutoff in the

extra dimension of NR−1. Mild cutoff-dependence is expected in perturbatively non-renormalisable

theories such as mUED. In our quantitative analysis we chose N = 20 and included only t and b in

the sum over quark flavours q, which is an excellent approximation due to the size of their Yukawa

couplings compared to those of the lighter quarks. One should note that for large N the rest of the sum

is proportional to 1/N . Therefore, for N = 20 our result is given with about 5% accuracy as compared

to the full sum.

B. Higgs decay to two photons

The h → γγ amplitude is given by

Ãhγγ = − α

2πv
Fhγγ, (10)

10



where α is the fine structure constant, v is the Higgs vacuum expectation value (defined just below

Eq. 4), and

Fhγγ = F SM
hγγ +

N
∑

n=1

F
(n)
hγγ (11)

The SM part consists of a contribution from the W± vector bosons and fermions:

F SM
hγγ = fV (mW ) +

∑

f

ncQ
2
ffF (mf). (12)

The sum is taken over all SM fermions f , each with charge Qfe, setting nc to 3 for quarks and 1 for

leptons. The fermion loop function fF is the same as for the gg → h case, given in (5), and the vector

function fV (representing the W± and related Goldstone and ghost contributions) is

fV (m) = −2 − 12
m2

m2
h

− 24
m2

m2
h

(

1− 2m2

m2
h

)

c0(m). (13)

In the large mass limit this tends to a constant

fV ≈ −7− m2
h

2m2
+O(m4

h/m
4) → −7, (14)

showing that particles whose masses are proportional to their Yukawa couplings do not decouple from

the process, just as we saw in (6) for the production amplitude.

At the nth KK level the amplitude receives contributions from KK charged fermions (two KK

partners for each SM fermion) and the KK W±
n vector boson. There is also a contribution from the

charged scalar a±n that is not present at the SM level, so

F
(n)
hγγ = f

(n)
F + f

(n)
V + f

(n)
S . (15)

The fermion contribution is the same as the quark contribution (7) was for the Higgs production

amplitude, up to colour and charge factors:

f
(n)
F =

∑

f

ncQ
2
f sin(2a

(n)
f )

(

mf

m
(n)
f,1

fF (m
(n)
f,1) +

mf

m
(n)
f,2

fF (m
(n)
f,2)

)

. (16)

and so has a similar asymptotic behaviour to the one shown in (8). The sum over KK modes is therefore

convergent as well.

The vector contribution is given in terms of the SM expression as follows and also decouples as

mW,n → ∞, in contrast to the SM case:

f
(n)
V =

m2
W

m2
W,n

fV (mW,n) ≈ −7m2
W

m2
W,n

+O(m4
W/m4

W,n) → 0. (17)
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The scalar contribution is given by

f
(n)
S (ma,n, mW,n) =

[

2m2
W

m2
W,n

(

1−
2m2

a,n

m2
h

)

− 2

]

[

1−
4m2

a,n

m2
h

c0(ma,n)

]

. (18)

At tree-level, ma,n = mW,n so, keeping mW and mh constant, as we increase the KK scalar’s mass,

f
(n)
S ≈ m2

W

m2
a,n

(

1

3
+

m2
h

6m2
W

)

+O(m4
W/m4

a,n) → 0, (19)

again demonstrating decoupling behaviour in the large KK mass limit.

In the SM case we can use the limits when the mass of the particle flowing in the loop is large com-

pared to the Higgs mass to estimate the relative contributions from fermions and vectors, noting that

they have opposite signs. Including the charge and colour factors for the fermion case and considering

only the top quark, the ratio is |fV |/|ncQ
2
t fF | ≈ 7/16

9
≈ 3.9. Following the same procedure for contri-

butions from level n KK particles (taking their masses to be approximately n/R) we find not only that

the vector and fermion contributions each have the same sign as their SM counterparts but also that

the ratio of vector to fermion contributions is smaller than in the SM: recognising that there are two

KK top quarks, |f (n)
V |/|f (n)

F | ≈ 3.9(m2
W/2m2

t ) ≈ 0.42, i.e. less than 1. This suggests that the net effect

of KK particles will be from the top quark contribution which will thus interfere destructively with

the SM contribution from W ’s, reducing the overall amplitude. In addition, there is the charged scalar

contribution which has the same sign as the fermion contribution, reducing the amplitude further. This

indication of amplitude suppression is confirmed by the full calculation.

The dependence of the two amplitudes (4) and (10) on the two free parameters of mUED – mh and

the inverse compactification radius R−1 – is shown in Fig. 2. This clearly indicates that for a light

Higgs the ggh coupling is enhanced while hγγ is suppressed as argued above. The R−1 dependence

enters through the KK masses and mixing angles. We have calculated the amplitudes using tree-level

KK masses (dashed lines) and loop-corrected values (solid lines).

C. Calculating the mUED cross-section enhancement

In order to constrain mUED using SM Higgs boson searches at the LHC, we first need to calculate

the enhancement of cross-sections of Higgs production and subsequent decay in different channels. Here

we consider the three most important channels in the low Higgs mass range: gg → h → γγ, gg →
h → W+W− → ℓ̄νℓν̄ and gg → h → ZZ → 2ℓ̄2ℓ. We can work in the narrow width approximation

12
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FIG. 2: Behaviour of the SM amplitudes and the relative sizes of the corresponding mUED amplitudes for

several values of R−1. The top figure shows the behaviour of the absolute values of the SM amplitudes for

Higgs production and decay to two photons respectively. The bottom figures show the enhancement of these

amplitudes in mUED relative to the SM, where R = AUED/ASM. For the mUED plots, from top to bottom

on the RHS of each plot: R−1 = 500, 750, 1000, 1250 and 1500 GeV. Solid lines show the results when using

loop-corrected KK masses and dashed lines show tree-level results.

Γh ≪ mh, assuming that the Higgs is produced approximately on-shell and subsequently decays with

some branching ratio BR, so that

σ(xx → h → yy) = σ(xx → h)× BR(h → yy).

In fact, since we need only the enhancement of each signal cross-section relative to the SM, knowledge

of the full hadronic cross-section is not required because the integrals of parton density functions would

be the same in mUED and the SM and would cancel in the ratio. The ratio can then be written simply

(see, for example, [38]) in terms of total and partial Higgs widths as

µγγ ≡ σmUED(gg → h → γγ)

σSM(gg → h → γγ)
≈ ΓmUED(h → gg)× BRmUED(h → γγ)

ΓSM(h → gg)× BRSM(h → γγ)
(20)
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FIG. 3: Enhancement of mUED cross-sections in γγ (left) and W+W−/ZZ (right) channels relative to the SM.

The graphs show variation with mh for the following values of R−1: from top to bottom on the RHS of each

plot, R−1 = 500, 750, 1000, 1250 and 1500 GeV. Solid lines show results when using loop-corrected masses in

the loops, while dashed lines correspond to tree-level masses.

for the diphoton channel and

µWW/ZZ ≡ σmUED(gg → h → WW )

σSM(gg → h → WW )
≈ ΓmUED(h → gg)× BRmUED(h → WW )

ΓSM(h → gg)× BRSM(h → WW )

≈ ΓmUED(h → gg)× ΓSM(h → all)

ΓSM(h → gg)× ΓmUED(h → all)

(21)

for the W+W− and ZZ channels. Note that the mUED and SM expressions for the partial Higgs width

to two vector bosons are the same, to leading order.

These two enhancement factors are plotted for various values of mh and R−1 in Fig. 3, also showing

the effect of including loop corrected masses in the loop diagrams.

IV. CONSTRAINING THE PARAMETER SPACE

A. Using one channel

Results for experimental searches for the Higgs boson at the LHC (by the ATLAS and CMS col-

laborations) are usually presented using “Brazil band” combined plots. These plots can be applied to

family of models related to the SM in the following way. The pattern of fully-exclusive Higgs signal

cross-sections (σ(xx → h → yy)) is the same as the Standard Model’s except that each of them is scaled

by some uniform factor, often denoted by µ. The plots show the value of this enhancement factor that
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is excluded at the 95% confidence level for each value of the Higgs mass. This quantity is normally

written as µ95%. When µ95% drops below unity, the SM is excluded at the 95% confidence level.

Although µ95% can be used to exclude models that have the same pattern of cross-sections as the

SM, for models (such as mUED) where different channels receive different corrections from new physics,

this combined µ95% is not a useful quantity. Fortunately, the collaborations also provide exclusion plots

for separate channels. It is then a simple matter to compare the value of, say, µγγ to the excluded value

µ95%
γγ . The exclusions from each channel and each experiment can then be overlapped in a simple way

to constrain the model. As mentioned in the introduction, this has been done previously for mUED

[22, 23]. However more accurate constraints on the model’s parameter space can be obtained with a

more sophisticated method of combining the exclusions from different channels in a statistically rigorous

way. Such a method is discussed in the next section.

B. Statistical combination

We want to reproduce as closely as possible the analysis used by the experimental collaborations to

calculate µ95% for the SM Higgs, but within the framework of mUED. We start completely analogously

by imagining a family of models, each exactly the same as mUED except that the Higgs signal cross-

sections in each channel are all scaled by a common factor µ. So, for example, if mUED (for certain

values of mh and R−1) predicts a gg → h → γγ cross-section of σmUED
γγ , a gg → h → WW → ℓ̄ℓν̄ν

cross-section of σmUED
WW , and a gg → h → ZZ → 2̄ℓ2ℓ cross-section of σmUED

ZZ , we imagine a family

of related models predicting {µσmUED
γγ , µσmUED

WW , µσmUED
ZZ } = {µµγγσ

SM
γγ , µµWWσSM

WW , µµZZσ
SM
ZZ}, writing

the cross-sections in terms of the mUED enhancement factors defined in (20) and (21).

We then construct functions giving the probability of observing a particular numbers of events in each

channel (the “individual likelihoods”, pi ≡ p(nobs
i |µ, µi)). These will depend on the expected number of

events in each channel i, given by

ni = si + bi = Lεiµµiσ
SM
i + bi.

Here, si and bi denote the total number of signal and background events in channel i expected to be

observed in the model defined by (mh, R
−1, µ). The integrated luminosity is given by L and the signal

cross-section can be written as µµiσ
SM
i . Finally, it should be noted that the number of events one

is able to see differs from the number of events that occur because of detector inefficiencies, particle

misidentification and kinematical cuts. This is taken into account by the “efficiency” factor εi.
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Once the individual likelihoods pi = p(nobs
i |µ, µi) are known, the total joint likelihood

P ({nobs
i }|µ, {µi}) =

∏

i pi can be easily formed and then µ95% can be calculated.

The difficulty comes in reconstructing the likelihoods. The experimental collaborations do not rou-

tinely make available the efficiency factors, exact number of observed events after cuts, or expected

number of background events after cuts. What they do make available is the value of µ95%
i for many of

the channels, and also the “expected” µ95%
i, expected, which is the probability that the number of observed

events might fluctuate down to the background-only expectation.

Azatov et al propose [39] a method for approximately reconstructing the individual channel likeli-

hoods from the data provided by the experimental collaborations. We have followed their method in

this paper, and explain some important points here.

It is possible to write the likelihood approximately as

pi ∝ exp

[

−(nobs
i − ni)

2

2nobs
i

]

∝ exp

[

−(µµi − βi)
2

2α2
i

]

,

when nobs
i ≫ 1 (in fact nobs

i > 10 is a good approximation). Here we have introduced the following

quantities:

αi ≡
√

nobs
i

sSMi
and βi ≡

nobs
i − bi
sSMi

, where sSMi = LεiσSM
i .

The important point to realise is that we have managed to write the three unknown quantities nobs
i , bi

and εi in just two independent combinations, αi and βi.

Making the further reasonable approximation that (nobs
i − bi)/bi ≪ 1 we can deduce, as shown in

eq. 3.24 in [39], that

αi ≈
√
bi

sSMi
=

µ95%
i, expected

1.96

if we interpret exclusion limits in the Bayesian sense. With this knowledge we can then infer the value

of βi from the observed µ95%
i , provided by the experimental collaborations, by solving the following

equation (eq. 3.22 in [39]) numerically:

0.95 ≈
Erf
(

µ95%
i

−βi√
2αi

)

+ Erf
(

βi√
2αi

)

1 + Erf
(

βi√
2αi

) ,

where the error function Erf(x) = 2√
π

∫ x

0
e−t2dt.

With the individual likelihoods approximately reconstructed in this way we can form the joint like-

lihood and calculate the combined µ95% (again, working in the Bayesian picture). We find it to be

µ95% = βcomb +
√
2αcomb × Erf−1

[

0.95− 0.05× Erf

(

βcomb√
2αcomb

)]

,

16



where

αcomb ≡
(

∑

i

µ2
i

α2
i

)− 1
2

and

βcomb = α2
comb ×

∑

i

µiβi

α2
i

.

Using the procedure outlined above, we performed a scan over the mUED parameter space, calcu-

lating µ95% for each point (mh, R
−1). We used the gg → h → γγ, gg → h → W+W− → ℓ̄ℓν̄ν and

gg → h → ZZ → 2ℓ̄2ℓ channels from ATLAS and CMS Higgs boson searches. We scanned mh in 2-

GeV steps, R−1 in 12.5-GeV steps. We have further considered additional constraints on the parameter

space. The Higgs mass range is bound from below by LEP limits and from above by the requirement

that the dark matter candidate be neutral – see [15]. The inverse radius must be greater than around

600 GeV so as not to conflict with electroweak precision tests [31, 32], and less than 1600 GeV so that

the dark matter candidate is not too heavy [15].

V. RESULTS

Using our model’s predictions of Higgs production enhancement for different values of mh and R−1

together with experimental limits on Higgs boson production, we can exclude regions of the (mh, R
−1)

plane where µ95% < 1. Initially, we statistically combined the CMS data from Fig. 6 (top) of [40] and

the ATLAS data from Fig. 3 of [41] in each of the γγ, W+W− and ZZ channels. Note that these data

are from the old 7 TeV dataset, before the discovery of a Higgs-like particle at 125 GeV in July 2012.

When we started writing this paper, this was the state of the art. We update the analysis using the

newest 8 TeV data later in this section.

The resulting limits on mUED from the 7 TeV dataset are shown in our Fig. 4 (left), where the green

contour separating the green and red shaded regions corresponds to µ95% = 1 level. The other contours

of constant µ95% are shown in steps of 0.05 for increasing value of µ95% towards the green region and its

decreasing value in the opposite direction. The red-shaded region of the parameter space is excluded at

95% confidence level. These constraints are combined with other constraints from DM relic density [15]

as well as EW precision tests [31] in Fig. 4 (right).

We can see that Higgs searches powerfully constrain mUED, in which Higgs production is enhanced.

Compared to previous studies [22] we have included mass corrections for the particles in the loops, pro-

viding more realistic predictions of mUED cross sections, and have accurately combined non-universal
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FIG. 4: Left: exclusion of mUED (mh, R
−1) parameter space at 95% CL from Higgs boson search using

combined ATLAS and CMS limits in γγ, W+W− and ZZ channels, based on the 7 TeV data. The allowed

region is in light green and the excluded region is in red. Dark green shows the additional allowed region

when loop corrected KK masses are used instead of tree-level masses. Contours of constant µ95% are shown

in steps of 0.05. Right: Combination of limits on the mUED parameter space from: the Higgs constraints

considered in this paper; EW precision tests (95% CL); and DM relic density limits for Λ = 40R−1 (solid line)

and Λ = 20R−1 (dashed line) cases.

enhancement for γγ and W+W−/ZZ signatures.

This new approach allows us to find accurate limits on the mUED (mh, R
−1) parameter space. After

combination of ATLAS and CMS limits for each individual channel (γγ, W+W− and ZZ) in gluon-

gluon fusion, we find that R−1 < 500 GeV is excluded at 95%CL. For 500 GeV < R−1 < 600 GeV only

a very narrow (±1− 3 GeV) mass window around mh = 125 GeV is left. This is the region where the

excess of the events in the Higgs search channels is reported by the ATLAS and CMS collaborations and

where the exclusion limit is weaker. For even larger values of R−1 another narrow mass range around

mh = 118 GeV is allowed.

For a Higgs mass mh = 125 GeV, we display in Fig. 5 the variation of the enhancement factor in

the gg → h → γγ (top) and gg → h → W+W−/ZZ (middle) channels as a function of R−1 together

with the suppression factor in the W+W−/ZZ → h → γγ (bottom). The latter is relevant for the

Higgs search in the pp → jjγγ. These plots can be used to ascertain how a measurement of each
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channel’s cross-section can be used to constrain the scale R−1. For example, an enhancement in both

the gg → h → γγ and the gg → h → W+W− channel would favour the mUED model around the TeV

scale while a large enhancement in pp → jjγγ would disfavour the model.

Since we started to write this paper, new limits (calculated from the first tranche of 8 TeV data)

have been released by CMS [29] and ATLAS [30]. The data are strong enough for each experiment to

claim discovery of a Higgs-like particle with a mass of around 125 GeV, confirming the hints evident

in earlier analyses. The new ATLAS limits are shown for all channels in Fig. 16a of the supplementary

figures associated with [30].5 CMS make their latest limits for γγ available in Fig. 4a of [42] and their

limits for WW in Fig. 4 (right) of [29]. The CMS limits for the h → ZZ → 4ℓ channel can be found in

the supplementary figures for [43].6

We have calculated the constraints on the mUED parameter space in light of these new experimental

data and the result is shown in Fig. 6 (left). We also show a comparison of the allowed regions for the

old and new data in Fig. 6 (right).

We should also comment on the expected sources of uncertainty in our approach. Since our study

is based on the ratio of mUED and SM cross-sections our results are insensitive to PDF uncertainties

which simply cancel in this ratio. The other potential sources of uncertainty are the higher order

corrections to the amplitudes we calculate. Fortunately, higher order corrections has been evaluated for

h → gg process to four loops in [44]. Using the results from that paper one can estimate that the biggest

uncertainty in our results from higher order corrections comes from the second loop term, containing

an additional log(m
(n)
q /mh) dependence due to mUED. It turns out numerically that this effect is about

1%× (σmUED/σSM) < 1% and is thus negligible. Therefore the biggest source of uncertainty is actually

related to the choice of using loop-corrected versus tree-level masses one in our loop calculations. As

we argue above, we choose the loop-corrected mass for our evaluations, but in order to be on the

conservative side we consider the impact of choosing the tree-level mass instead. We use this difference

to estimate the uncertainty in our limits. With tree-level masses, our limits presented in both Fig. 4

and Fig. 6 are shifted by about 50 GeV. In fact the limits actually improve when using the tree-level

masses.

The allowed region shrinks overall with the extra data, but the high and low mh limits on R−1

relax down to about 550 GeV. This is actually to be expected: in the 2011 data, the W+W− channel

5 These can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/
6 https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12016TWiki
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Solid lines show results when using loop-corrected masses in the loops, while dashed lines correspond to tree-

level masses. 20
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FIG. 6: Left: limits on mUED parameter space from newest 7 TeV and 8 TeV ATLAS and CMS Higgs search

data using the same conventions as in Fig. 4 (left). Right: comparison of allowed regions for the combined

7 TeV and 8 TeV LHC data (solid) and 7 TeV data (dashed) using loop masses.

surprisingly showed no excess of events around 125 GeV even though such an excess was observed in the

other channels, including ZZ. In the new data, there is an excess in W+W−, bringing this channel in

line with the others and thus weakening the limit on the mUED parameter space slightly at the edges of

the allowed region where the diphoton channel is less restrictive. However, the improvement in limiting

power of the diphoton channel causes the region 117 GeV . mh . 121 GeV to become forbidden.

With the new data then, all values of R−1 < 550 GeV are forbidden, leaving a small region of allowed

parameter space 2–8 GeV wide around mh = 125 GeV and another allowed island up to 2 GeV wide

around 116 GeV for R−1 > 1000 GeV.

VI. CONCLUSIONS

LHC searches for the SM Higgs provide a powerful limit on mUED model where the Higgs production

is enhanced. We have evaluated all one-loop diagrams for Higgs production gg → h and decay h → γγ

within the mUED model and have independently confirmed previous results [24]. Based on these results

we have derived enhancement factors for Higgs boson production and decay in the mUED parameter

space. Then, using these factors we have derived the first limits on the mUED parameter space which

combine both limits from ATLAS and CMS collaborations for 7 TeV and 8 TeV LHC data and take into
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account statistical combination of several Higgs boson search channels properly. As for other extensions

of the SM, the correct statistical combination of several Higgs boson search channels is important for

mUED since these channels are not universally enhanced: the gg → h → γγ process is not enhanced

as strongly as the gg → h → WW ∗ or gg → h → ZZ∗ processes due to the fact that the decay h → γγ

is actually suppressed as compared to the Standard Model. Overall enhancement for gg → h → γγ

nevertheless takes place because the enhancement of gg → h overcomes the suppression in the h → γγ

decay.

In contrast to previous studies [22] we have included mass corrections for the KK particles in the

loop and found that the effect of KK particles is slightly reduced as compared to the calculation using

tree-level masses. The comparison between the computations with tree-level and radiatively corrected

masses provides information about the theoretical uncertainties in the enhancement of the Higgs boson

production and decay within the mUED model. Also, we think that including these mass corrections

gives more precise result and allows one to take into account some part of the higher order corrections.

This is since one-loop corrected masses give a better approximation to pole masses and since the coupling

constants that couple the gluon (or photon) to the KK quarks are protected by gauge invariance from

receiving radiative corrections.

As a result we have found an accurate limit on mUED in the (mh, R
−1) parameter space. After

combination of ATLAS and CMS limits for each individual channel (γγ, WW ∗ and ZZ∗) for the latest

7 TeV and 8 TeV data, we found that R−1 < 550 GeV is excluded at 95%CL, while for larger R−1 only

a very narrow (±1 − 4 GeV) mass window around mh = 125 GeV (the mass of the recently observed

Higgs-like particle), and another smaller window around 118 GeV (forR−1 > 1000 GeV) remain allowed.

As new 8 TeV data becomes available, the results from the different Higgs search channels can be

used to fit the mUED parameter space. Signals compatible with the SM would eventually push the

values of R−1 above the TeV scale while deviations from the SM could either be compatible with a lower

scale or even exclude mUED completely depending on the channels involved. Indeed mUED predicts

an enhancement for all channels for gg → h production and decay. On the other hand, the vector

boson fusion process WW/ZZ → h → γγ is generically suppressed in mUED while WW/ZZ → h →
WW ∗/ZZ∗ is standard. A confirmation of the larger excess in the vector boson fusion mode over the

gluon fusion mode for the two-photon channel that is currently observed would disfavour mUED. On

the other hand predictions that come closer to the SM ones would lead to an increase in the mUED

scale.

With detailed information on individual Higgs boson production and decay processes provided by
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CMS and ATLAS experiments, one can understand much better the nature of the Higgs boson and

interpret it within mUED or other BSM theories.
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Appendix A: Feynman rules

Below is a table of the Feynman rules for the propagators and vertices needed to evaluate the

diagrams contributing to the gg → h and h → γγ amplitudes. The vertex rules are given in terms of

a general coefficient; underneath this, the value of the coefficient is written for the SM case and for

the nth KK level. We use a (+ − −−) signature and the following momentum conventions: fermion

momentum flows in the same direction as fermion number and external momentum flows inwards. This

convention is shown graphically in Fig. 1

=
i(/p+m)

p2 −m2 + iǫ
=

i

p2 −m2 + iǫ
=

−igµν
p2 −m2 + iǫ

(Feynman gauge)

iGffγµ

GSM
ff = −eQf

G
(n)
ff = −eQf

iλff

λSM
ff = − gmf

2mW

λ
(n)
ff = − gmf

2mW
sin 2a

(n)
f

iGWW (p3µgνρ − p3νgµρ − p1ρgµν + p1νgµρ + p2ρgµν − p2µgνρ)

GSM
WW = −e

G
(n)
WW = −e

25



= −





















GWGgµν

GSM
WG = emW

G
(n)
WG = emW,n

iGGG(p2 − p1)µ

GSM
GG = e

G
(n)
GG = e

iGaa(p2 − p1)µ

GSM
aa = 0

G(n)
aa = e

= −





























iGc̄cp1µ

GSM
c̄c = −e

G
(n)
c̄c = −e

iλWW gµν

λSM
WW = gmW

λ
(n)
WW = gmW

iλGG

λSM
GG = −gm2

h/(2mW )

λ
(n)
GG = − gm2

h

2mW

(

mW

mW,n

)2
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=

iλc̄c

λSM
c̄c = −gmW/2

λ
(n)
c̄c = −gmW/2

=

−λWG(p2 − p1)µ

λSM
WG = −g/2

λ
(n)
WG = −(g/2)(mW /mW,n)

iλaa

λSM
aa = 0

λ(n)
aa = − g

2mW

[

2

(

ma,n

mW,n

)2

m2
W +m2

h

(

1− m2
W

m2
W,n

)]

iHWW (2gµνgρσ − gµσgνρ − gµρgνσ)

HSM
WW = −e2

H
(n)
WW = −e2

iHGGgµν

HSM
GG = 2e2

H
(n)
GG = 2e2

iHaagµν

HSM
aa = 0

H(n)
aa = 2e2
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= −

IWGgµν

ISMWG = −eg

2

I
(n)
WG = −eg

2

mW

mW,n

Appendix B: gg → h amplitude

Here we calculate the generic 1-loop amplitude for two gluons to produce a Higgs boson via a quark

loop. We leave the couplings and quark masses general for now and will specialise to the SM and mUED

case below.

i(Aggh,q)
ab
µν = 2×

The factor of two is to count the diagram formed by swapping the external gluons. To form the

amplitude above diagram should be contracted with the gluon polarisation vectors which carry Lorentz

and group indices. The labeled arrows denote momentum flow; the other labels designate the particle

names.

The KK and SM quarks couple to gluons identically as igsta, where gs is the strong coupling constant

and ta is an SU(3) generator. We call the Yukawa coupling iλq.

Performing the loop momentum integral in D = 4 − ǫ dimensions to regulate the divergence (and

introducing the renormalisation scale µ to compensate), the amplitude without polarisation vectors is

i(Aggh,q)
ab
µν = −2(igs)

2(iλq)Tr(t
atb)µ4−D

×
∫

dDk

(2π)D
tr

{

i(/k +m)

k2 −m2 + iǫ
γµ

i(/k + /p+m)

(k + p)2 −m2 + iǫ

i(/k − /q +m)

(k − q)2 −m2 + iǫ
γν

}

with the overall minus sign due to the fermion loop. The propagator conventions used here are given in

appendix A with the mass set to a general quark mass m (we reserve the symbol mq for the SM mass
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of quark q). The trace Tr is over the SU(3) generators and tr is over the product of Dirac matrices.

The rest of the calculation (and all following calculations) assumes that the gluons and Higgs boson

are physical, so p2 = q2 = 0, pµǫµ(p) = qνǫν(q) = 0 and (p + q)2 = m2
h. The approximation that the

Higgs is real is justified if the “narrow width approximation” is valid (see Sec. III for details).

The numerator of the Dirac trace (rejecting off-shell terms as discussed above) is

i3 × 4m[gµν(m
2 − k2 −m2

h/2) + 4kµkν + pνqµ] = i3 × 4m{[(m2 −m2
H/2)gµν + pνqµ]− gµνk

2 + 4kµkν}.

In terms of PV functions the amplitude becomes

i(Aggh,q)
ab
µν = −2(igs)

2(iλq)Tr(t
atb)i3

iπ2

(2π)4
4m
{

[(m2 −m2
h/2)gµν + pνqµ]C0 + gµνC

ρ
ρ + 4Cµν

}

.

Performing Passarino-Veltman reduction, and carefully taking the limit D → 4, we find that

i(Aggh,q)
ab
µν =

i

2π2
λqg

2
sTr(t

atb)m

(

gµνm
2
h

2
− pνqµ

)[

2

m2
h

−
(

1− 4m2

m2
h

)

C0

]

.

For SU(3) generators, Tr(tatb) = 1
2
δab so the quark q’s total contribution to the amplitude is

i(Aggh,q)
ab
µν =

iαs

π
δab
(

gµνm
2
h

2
− pνqµ

)

λqm

[

2

m2
h

−
(

1− 4m2

m2
h

)

C0(m,mh)

]

,

where αs = g2s/4π.

It is useful to factor out the Lorentz and colour dependence by defining the “reduced amplitude” Ã
for a particular process in terms of the the full (sans polarisation vectors) amplitude Aab

µν :

Aab
µν = Ã × δab

(

gµνm
2
h

2
− pνqµ

)

,

so in this case

Ãggh,q =
αs

π
λqm

[

2

m2
h

−
(

1− 4m2

m2
h

)

C0(m,mh)

]

,

which can be written in terms of the function defined in (5) as

Ãggh,q =
αs

4π
λq

1

m
fF (m). (B1)

1. The SM and mUED cases

a. Standard Model

Equation (B1) is in terms of the mass m and Yukawa coupling λq of a general quark q. For the SM

quarks, let m = mq with q ∈ {u, d, s, c, b, t}. The SM Yukawa coupling in terms of the Higgs vacuum
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expectation value (VEV) v is λSM
q = −mq/v, so

ÃSM
ggh = − αs

4πv
F SM
ggh ,

where

F SM
ggh =

∑

q

fF(mq), (B2)

which is the expression shown in (4) and the following paragraph in Sec. III.

b. Including KK modes

At each KK level n, there are two types of quarks q
(n)
1 and q

(n)
2 for each SM quark q. At tree

level, these quarks’ masses would both be
√

m2
q + n2/R2, but if one-loop mass corrections are included

then they split. However, Yukawa couplings to the Higgs are shifted equally under mass corrections

so λ
(n)
q = −mq sin(2a

(n)
q )/v for both q

(n)
1 and q

(n)
2 . Here a

(n)
q is the mixing angle between quark flavour

eigenstates (q
(n)
L , q

(n)
R ) and mass eigenstates (q

(n)
1 , q

(n)
2 ); this is explained further in [16].

The contribution to Ãggh from the KK level n quarks is then Ã(n)
ggh = − αs

4πv
F

(n)
ggh, where

F
(n)
ggh =

∑

q

sin(2a(n)q )

(

mq

m
(n)
q,1

fF (m
(n)
q,1 , mh) +

mq

m
(n)
q,2

fF (m
(n)
q,2 , mh)

)

.

The full expression for Fggh (and hence Ãggh), as given in (7), is obtained by summing over the KK

number n and adding the SM contribution (B2).

Appendix C: h → γγ amplitude

The full h → γγ amplitude receives contributions from fermions (quarks and leptons), W bosons

and charged scalars a± (which appear at KK number 1 and above). We use the subscript f , W and a

to distinguish these contributions.
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1. Fermion contribution

For each fermion there are two contributing diagrams (equal to each other and related by the swap-

ping external photons).

i(Af)µν = 2×

Leaving the couplings general and using the Feynman rules in Appendix A we find that

i(Af)µν = −2(+iGff )
2(+iλff)(+i)3

∫

k

1

D tr[(/k +m)γµ(/k + /p+m)(/k − /q +m)γν ]

=
2iG2

ffλff

16π2

[

4
m

m2
h

(4m2 −m2
h)C0 +

8m

m2
h

](

m2
hgµν
2

− pνqµ

)

.

where we have used the shorthand
∫

k

≡
∫

dDk

(2π)D
µ4−D

for the dimensionally-regularised momentum integral and where we have written the denominator,

common to all triangle diagrams considered in this paper, as

D = [k2 −m2 + iǫ][(k + p)2 −m2 + iǫ][(k − q)2 −m2 + iǫ].

Factoring out the Lorentz part yields as in the ggh case leaves

Ãf =
G2

ffλff

8π2

1

m
fF (m),

with fF (m) defined as in (5).

Specialising to the SM using the rules in Appendix A gives

ÃSM
f = −

Q2
fe

2

8π2v
fF (mf ),

where v = 2mW/g is the Higgs VEV and Qfe is the charge of the fermion.

The contribution from an nth level KK fermion is

Ã(n)
f = −

Q2
fe

2

8π2v
sin 2a

(n)
f fF (m

(n)
f ),

where a
(n)
f is the mixing angle for converting from the flavour to the mass eigenbasis of the KK fermion.
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2. Gauge boson contribution

There is an additional (in fact dominant) contribution to the h → γγ amplitude from SM and KK

W bosons and their associated Goldstone bosons and Faddeev-Popov ghosts. We chose to perform the

calculation in the ’t Hooft-Feynman gauge (the Rξ gauge with ξ = 1). The relevant diagrams, including

Goldstone (dashed) and ghost (dotted) internal lines, are as follows.

In the following we calculate the general expression for each diagram in turn and the corresponding SM

and nth KK level expressions using the values for the couplings in Sec. A.
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There are two W diagrams (related by crossing the external photons):

i(Aa)µν = 2× (iGWW )2(iλWW )(−i)3
∫

k

1

Dgρσ[−(k + p)µgσλ + (k + p)σgµλ − pλgµσ + pσgµλ

+ kλgµσ − kµgσλ]g
λκgκαg

αβ[−kνgβρ + kβgνρ − qρgνβ + qβgνρ + (k − q)ρgνβ − (k − q)νgβρ]

= 2G2
WWλWW

iπ2

(2π)4
[2gµνg

ρσCρσ + gµν(p− q)ρCρ −
5gµνm

2
h

2
C0 + 10Cµν + pνCµ − qµCν

+ 4pνqµC0]

=
iG2

WWλWW

8π2
[2DgµνC00 − 2m2

hgµνC12 − gµνm
2
hC1 −

5gµνm
2
h

2
C0 + 10gµνC00 − 10pνqµC12

− 2pνqµC1 + 4pνqµC0]

=
iG2

WWλWW

8π2

[(

Dm2gµν + 3m2gµν −
5

2
m2

hgµν −
10m2pνqµ

m2
h

+ 4pνqµ

)

C0

+

(

1

2
Dgµν −

2pνqµ
m2

h

+
3

2
gµν

)

B0(m
2
h, m

2) +

(

gµν +
2pνqµ
m2

h

)

B0(0, m
2) +

Dgµν
2

+
3gµν
2

− 5pνqµ
m2

h

]

=
iG2

WWλWW

8π2

[(

4m2gµν + 3m2gµν −
5

2
m2

hgµν −
10m2pνqµ

m2
h

+ 4pνqµ

)

C0

+

(

2gµν −
2pνqµ
m2

h

+
3

2
gµν

)

B0(m
2
h, m

2) +

(

gµν +
2pνqµ
m2

h

)

B0(0, m
2) +

5gµν
2

− 5pνqµ
m2

h

]

.

Throughout the calculation we work in D = 4− ǫ dimensions except for the last equality where we take

the ǫ → 0+ limit. Care must be taken in the case of the first B0 function:

lim
ǫ→0+

[DB0(m
2
h, m

2)] = 4 lim
ǫ→0+

[B0(m
2
h, m

2)]− 2;

this is the origin of the extra −gµν term in the last line.

The two Goldstone loop diagrams evaluate to

i(Ab)µν = 2× (iGGG)
2(iλGG)(+i)3

∫

k

1

D [−(k + p)− k]µ[−k − (k − q)]ν

= −2G2
GGλGG

iπ2

(2π)4
4Cµν

= − iG2
GGλGG

2π2
(C00gµν − pνqµC12)

= − iG2
GGλGG

2π2

[(

m2gµν
2

− m2pνqµ
m2

h

)

C0 +
gµν
4

B0(m
2
h, m

2) +

(

gµν
4

− pνqµ
2m2

h

)]

.
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There are 3× 2 diagrams with two W s and one Goldstone. The first four give7

i(Ac)µν = i(Ad)µν = 2× (−GWG)(λWG)(iGWW )(−i)2(+i)

∫

k

1

Dgρσgµσ[−(p + q)− (k + p)]λ

× gλκ[−kνgκρ + kκgνρ − qρgνκ + qκgνρ + (k − q)ρgνκ − (k − q)νgκρ]

=
iGWGGWWλWG

8π2

× [gµνg
ρσCρσ + 2gµν(p+ q)ρCρ + gµνm

2
hC0 − Cµν + 2pνCµ − 4qµCν − 4pνqµC0]

=
iGWGGWWλWG

8π2
[(D − 1)gµνC00 − (m2

hgµν − pνqµ)C12 + (m2
hgµν − 4pνqµ)C1

− (m2
hgµν + 2pνqµ)C2 + (m2

hgµν − 4pνqµ)C0]

=
iGWGGWWλWG

8π2

[(

(D − 1)gµν
4

− 6pνqµ
m2

h

)

B0(m
2
h, m

2) +
6pνqµ
m2

h

B0(0, m
2)

+

(

(D − 3)

2
m2gµν +m2

hgµν +
m2

m2
h

pνqµ − 4pνqµ

)

C0 +
(D − 3)gµν

4
+

pνqµ
2m2

h

]

=
iGWGGWWλWG

8π2

[(

3

4
gµν −

6pνqµ
m2

h

)

B0(m
2
h, m

2)− gµν
2

+
6pνqµ
m2

h

B0(0, m
2)

(

m2

2
gµν +m2

hgµν +
m2

m2
h

pνqµ − 4pνqµ

)

C0 +
gµν
4

+
pνqµ
2m2

h

]

.

The second two yield

i(Ae)µν = 2× (GWG)(−GWG)(iλWW )(i)(−i)2
∫

k

1

D
(

gµρg
ρσgσλg

λκgκν
)

=
iλWWG2

Wfg
µν

8π2
C0.

7 As in the case of Ãa, one must be careful when taking the D → 4 limit in the last equality.
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There are similarly 3× 2 diagrams involving one W and two Goldstones. The first four evaluate to

i(Af)µν = i(Ag)µν = 2× (iGGG)(λWG)(−GWG)(+i)2(−i)
∫

k

1

D [−(k + p)− k]µ[−(p + q)− (k + p)]ρg
ρσgνσ

= 2GGGGWGλWG

∫

k

1

D2kµ(2p+ q + k)ν

=
iGGGGWGλWG

4π2
(2pνCµ + Cµν)

=
iGGGGWGλWG

4π2
(−2pνqµC1 + gµνC00 − pνqµC12)

=
iGGGGWGλWG

4π2

[(

m2gµν
2

− m2pνqµ
m2

h

)

C0 +

(

gµν
4

− 2pνqµ
m2

h

)

B0(m
2
h, m

2)

+
2pνqµ
m2

h

B0(0, m
2) +

(

gµν
4

− pνqµ
2m2

h

)]

while the other two give

i(Ah)µν = 2× (−GWG)(+GWG)(+iλGG)(i)
2(−i)

∫

k

1

Dgρσgµσgνρ

=
iλGGG

2
WGgµν

8π2
C0.

The last triangle diagrams are the two involving Faddeev-Popov ghosts:

i(Ai)µν = −2× (−iGc̄c)
2(+iλc̄c)(+i)3

∫

k

1

D [−(k + p)]µ(−k)ν

= 2G2
c̄cλc̄c

iπ2

(2π)4
Cµν

=
iG2

c̄cλc̄c

8π2
(C00gµν − pνqµC12)

=
iG2

c̄cλc̄c

8π2

[(

m2

m2
h

C0 +
1

2m2
h

)(

m2
hgµν
2

− pνqµ

)

+
gµν
4

B0(m
2
h, m

2)

]

.

There are six remaining (non-triangle) diagrams involving four-point vertices. The W diagram

evaluates to

i(Aj)µν = (iHWW )(iλWW )(−i)2
∫

k

gρσ

k2 −m2 + iǫ
gσλ

gλκ

(k − p− q)2 −m2 + iǫ
(2gµνgκρ − gµρgνκ − gµκgνρ)

= HWWλWW2gµν(D − 1)
iπ2

(2π)4
B0(m

2
h, m

2)

=
iHWWλWW (D − 1)gµν

8π2
B0(m

2
h, m

2)

=
iHWWλWWgµν

8π2
[3B0(m

2
h, m

2)− 2],
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and the Goldstone diagram evaluates to

i(Ak)µν = (iHGG)(iλGG)(i)
2gµν

∫

k

1

k2 −m2 + iǫ

1

(k − p− q)2 −m2 + iǫ

=
iHGGλGGgµν

16π2
B0(m

2
h, m

2).

The last four diagrams are related to diagram (l) (shown above) by swapping external momenta and

changing the direction of internal particle number flow:

i(Al)µν = 4× (−GWG)(+IWG)(−i)(+i)

∫

k

gρσgµσgνρ
(k2 −m2 + iǫ)[(k + p)2 −m2 + iǫ]

= − iGWGIWGgµν
4π2

B0(0, m
2).

3. Summing the diagrams

We now need to sum the diagrams to find the SM and nth KK level contributions. We have checked

the following expressions in Mathematica.

Putting in the SM values for masses and couplings gives the following. The Goldstone and ghost

have the same mass as the W boson. (The same applies for the higher KK modes.)

i(ASM
W )µν =

3ie2gm2
hmW gµνC0

8π2
+

3ie2gm3
WgµνC0

4π2
+

3ie2gmWpνqµC0

4π2
− 3ie2gm3

WpνqµC0

2π2m2
h

+
ie2gm2

hgµν
16π2mW

+
3ie2gmWgµν

8π2
− 3ie2gmWpνqµ

4π2m2
h

− ie2gpνqµ
8π2mW

.

Factoring out the Lorentz part and writing things in terms of the dimensionless function fV , defined in

(13), gives

ÃW = − e2g

16π2mW
fV (mW ).

The sum of the diagrams at the nth KK level is

i(A(n)
W )µν =

ie2gmW

8π2m2
hm

2
W,n

[

m2
h + 6m2

W,n +
(

12m4
W,n − 6m2

hm
2
W,n

)

C0

]

(

m2
hgµν
2

− pνqµ

)

,

so

Ã(n)
W = − e2g

16π2mW

(

mW

mW,n

)2

fV (mW,n).

4. Scalar contribution

For KK number n ≥ 1 there exist charged scalar particles a±n not seen at the SM level. At tree level

these have the same masses as their W±
n counterparts but loop corrections split this degeneracy.
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There are three allowed diagrams at each KK level contributing to the h → γγ amplitude that

involve a charged scalar (two of them are numerically equal and are related by swapping the photon

momenta):

i(A(n)
a± )µν = 2× +

These diagrams are exactly the same as the similar Goldstone diagrams Ab and Ak evaluated in the

previous section, but with a different particle mass and different couplings. Using the couplings from

Sec. A, we get that

i(A(n)
a± )µν = −2ie2λaa

4π2

[(

m2
a,ngµν

2
−

m2
a,npνqµ

m2
h

)

C0 +
gµν
4

− pνqµ
2m2

h

]

=
ie2g

4π2m2
hmW

[

2
m2

a,n

m2
W,n

m2
W +m2

h

(

1− m2
W

m2
W,n

)]

(

1

2
+m2

a,nC0

)(

m2
hgµν
2

− pνqµ

)

,

so

Ã(n)
a± = − e2g

16π2mW
fS(ma,n, mW,n),

where fS(ma,n, mW,n) is defined in (18).

Appendix D: P-V functions and conventions

1. Three-point PV function

The three-point scalar Passarino-Veltman function is frequently encountered when evaluating triangle

diagrams. It is defined by

iπ2

(2π)4
C0(p

2, (p+ q)2, q2, m2
0, m

2
1, m

2
2) ≡ µ4−D

∫

dDk

(2π)D
{(k2 −m2

0)[(k + p)2 −m2
1][(k − q)2 −m2

2]}−1.

We encounter this integral exclusively in the special case that the internal masses are equal:

iπ2

(2π)4
C0 ≡ µ4−D

∫

dDk

(2π)D
1

D ,
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where D is the denominator from the general expression with m0 = m1 = m2 ≡ m:

D = (k2 −m2
0)[(k + p)2 −m2][(k − q)2 −m2].

This integral can be evaluated [35] to give

C0(m) =















− 2
m2

h

[

arcsin
(

mh

2m

)]2
m2 ≥ m2

h/4

1
2m2

h

[

ln

(

1+
√

1−4m2/m2
h

1−
√

1−4m2/m2
h

)

− iπ

]2

m2 < m2
h/4.

(D1)

It is convenient to define a dimensionless version of this expression:

c0(m) = −m2
H

2
C0(m),

(where the normalisation matches the fiRe and fiIm functions defined in the SLHAplus library for

CalcHEP/MicrOMEGAS [44]).

2. Two-point PV function

We also frequently come across the scalar two-point PV function:

iπ2

(2π)4
B0(p

2, m2) ≡ µ4−D

∫

dDk

(2π)D
{(k2 −m2)[(k + p)2 −m2]}−1.

We encounter the following two spacial cases

B0(m
2
h, m

2) =
1

ǭ
− ln

m2

µ2
+ 2−

√

1− 4m2/m2
h

√

2m2
hC0(m) (D2)

and

B0(0, m
2) =

1

ǭ
− ln

m2

µ2
, (D3)

with D = 4− ǫ and
1

ǭ
=

2

ǫ
− γE − ln π, (D4)

γE ≈ 0.57721 being the Euler-Mascheroni constant.

3. PV Reduction

More generally, we come across three-point momentum integrals with more complex Lorentz structure

that can be written generically as

iπ2

(2π)4
Cρσ...κ ≡ µ4−D

∫

dDk

(2π)D
kρkσ · · ·kκ

D .
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These can be simplified through Passarino-Veltman reduction to expressions involving the scalar three-

point and two-point PV functions defined in (D1), (D2) and (D3); for on-shell external momenta (pµ

and qν) we get

Cµν = gµνC00 − pνqµC12

gρσC
ρσ = DC00 −m2

hC12

Cµ = −qµC2

Cν = pνC1.

(D5)

The coefficient functions expand further to

C00 =
1

2
m2C0 +

1

4
B0(m

2
h, m

2) +
1

4

C12 =
m2

m2
h

C0 +
1

2m2
h

C1 = C2 =
B0 (m

2
h, m

2)

m2
h

− B0 (0, m
2)

m2
h

.

(D6)

We used the PaVeReduce function in the FeynCalc package for Mathematica to check this.

Ultimately one must take the D → 4 limit. Particular care must be taken in the case of C00:

lim
D→4

DC00 = 4C00 + lim
ǫ→0

ǫ

4ǭ
= 4C00 +

1

2
.
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