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Abstract

An evidence gap exists in fully understanding and reliably hmagthe variations in elastic
anisotropy that are observed at the millimeter scale in heardical bone. The porosity (pore
volume fraction) is known to account for a large part, but nobbthe elasticity variations.
This effect may be modeled by a two-phase micromechamiogdél consisting of a
homogeneous matrix pervaded by cylindrical pores. Although this madddden widely
used, it lacks experimental validation. The aim of the piteserk is to revisit experimental
data (elastic coefficients, porosity) previously obtained fromdtfical bone specimens from
the femoral mid-diaphysis of 10 donors and test the validitgjeomodel by proposing a
detailed discussion of its hypotheses. This includes investig@t what extent the
experimental uncertainties, pores network modeling, andx&astic properties influence
the model’s predictions. The results support the validity ofwileephase model of cortical
bone which assumes that the essential source of variatiolasti€ @roperties at the
millimeter-scale is the volume fraction of vascular poyodNe propose that the bulk of the
remaining discrepancies between predicted stiffness ceefficand experimental data
(RMSE between 6% and 9%) is for a part due to experimemtabeand for another part due
to small variations of the extravascular matrix propertiésre largely, although most of the
models that have been proposed for cortical bone were basederal steps of
homogenization and a large number of variable parametersiometBat a model with a
single parameter, namely the volume fraction of vas@geosity, is a suitable representation
for cortical bone. The results could provide a guide to buildisyetspecific cortical bone
models. This will be of interest to analyze the strueturetion relationship in bone and to
design bone mimicking materials.

Keywor ds. mechanical model; anisotropic elasticity; cortical bonkotifze properties;

porosity
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1 Introduction

Bone is a multiscale biocomposite whose structure and mechpropairties at one level
determine the properties of the subsequent one. Despite numeidias dedicated to the
assessment of cortical bone mechanical properties, soméqaesimain open regarding the
determinants of cortical bone elastic properties which are knowary, among others, with
age, anatomic location, disease, or drug treatment. Awhekarstanding as well as a good
representation of the elastic properties and their vanisiis needed for the modeling of the
macroscopic (organ scale) behavior of bones, the investigatgiruofural-functional
relationships (remodeling) or the design of new in vivo technitpuasnitor bone properties.
At the mesoscale (2-10 millimeters [1]), cortical bone lsamescribed as a two-phase
composite material consisting of a dense mineralized matria @oft phase, i.e. Haversian
canals, Volkmann’s canals, and resorption cavities (reféor@s vascular porosity)
containing fluid and soft tissues. The porosity has been es$dblie be an important
determinant of the mesoscopic bone properties [2-4]. On the otherd@nsidering only
published experimental studies in human cortical bone, the impte bone matrix elastic
properties (i.e. at the microscopic level) on bone mesoseadtodly is a matter of debate in
the literature [3, 5]. In a previous experimental study [@],asddressed the question of the
respective contributions of the variations of porosity and bonexneddsticity (reflected by
acoustical impedance) to changes of mesoscopic elastic pesp¥ve found that the elastic
properties of the matrix only undergo small variations amorigrdiit specimens
(coefficients of variation of matrix impedance values wess than 6%) and that variations in
porosity account for most of the variations of mesoscopic eillgstt least when the
analyzed porosity range is large (3-27%). These results subgesh a first approach, the
variations of mesoscale cortical stiffness could be modsjexdsimple micromechanical

model where the matrix would be the same for all bone specifinengixed matrix stiffness



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

coefficients) and the porosity would be the only specimen-depepdeareter. A reasonable
model, already proposed by several authors [7-10], consists ofphase micromechanical
model: a homogeneous matrix with transversely isotropic stifimesaded by cylindrical
pores aligned with the direction of highest matrix stiffndshis two-phase model, when
implemented with fixed matrix properties (further referteds the reference model),
correctly predicts the trend of the variation of eachtielasefficient as a function of the
porosity [6]. However, there remain unexplained discreparméwveen the predicted and
measured stiffness coefficients for most of the specinTdrese discrepancies may originate
from different sources. On the one hand, the two-phase maatdyis rough idealization of
bone: the modeled porosity is uniformly distributed and the poresrawmar, regular and
infinitely long; on the other hand, the experimental datal¢ation of stiffness and vascular
porosity) is subject to several measurement errors.

The objective of the present paper is to test the validithefeference model (matrix
pervaded by cylindrical pores) by proposing a detailed discussitstgfpotheses and to
determine to what extent cortical bone millimeter scalsaropic elasticity can be predicted
based on the sole knowledge of porosity. One added value sfulisis the systematic
guantification of all the potential sources of discrepancigscthdd be modeled and the
discussion of their relative contributions. One further origiypalf our work is that we
compare the predictions of a popular category of micromechanam®lmaccounting only
for pore volume fraction and the predictions of a finite eler(fe/s} model which accounts
for the distribution of the pore volume fraction within the @adtispecimen.

This paper is organized as follows. Section 2 briefly preskatexperimental findings of
Granke et al. [6] and the reference two-phase model. S&tijaantifies the discrepancies
between data and model predictions. We then clarify hovihéagxperimental data can be

trusted (section 4) before revisiting the hypotheses ahtiiel to search for factors, besides
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changes in pore volume fraction, that would explain the discregsabetween data and

model predictions (section 5).

2 Experimental data and refer ence model

The specimens preparation and measurement methods, which s@ibatkin detail in
Granke et al. [6] are summarized below. The data uskn ipresent study was obtained on
21 parallelepiped specimens (nominal size 5 x 5 x Z)rfmom 10 female donors (mean age
81 years, range 66-98 years). The faces of the specimea®rented according to the radial
(1), circumferential (2), and longitudinal (3) axes defined byatiteomic shape of the
femoral diaphysis. The diagonal terms of the apparentrtigspscopic) stiffness tensor -
longitudinal Ci1, C22, Ca3) and shearQus, Css, Cse) elastic coefficients - were determined
from the apparent mass density and wave velocity measureasamysa well-established
pulse transmission method [11]. The vascular por#sitias obtained from 50-MHz-
scanning acoustic microscopy (SAM [12, 13]) with a resolutioBOofnicrons. The 3D pore
network was imaged with a resolution of @ for a subset of 10 specimens using
synchrotron radiation micro-computed tomography (€R- ESRF, Grenoble, France).
The reference two-phase model predicts mesoscopic elastiat@rsgxclusively accounting
for variations of the pore volume fraction. Different homogeionaschemes have been used
by different authors to calculate the predictions of such a masiginptotic homogenization
[7], Mori-Tanaka method [9], generalized self-consistent mef8p®dur implementation of
the reference model uses asymptotic homogenization (AH) [14, A&]mbdel hypothesizes
that cortical bone can be regarded as a homogeneous transisasepic (TI) matrix
pervaded by infinite cylindrical pores, periodically distributathim the matrix material
(specifically on a hexagonal lattice). An orthonormal CanteB&ame K1, X2, X3) is attached to

the model, whergs is aligned with the axis of the cylindrical pores. The plangx?) is the
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plane of isotropy for the matrix properties. Given a stiffriesnsoc™ describing the matrix
elasticity, a stiffness tensot describing the elasticity of the material in pores, #wedvolume
fraction of pores, a homogenized stiffness te@Sas calculated using a custom MatLab
codé (The MathWorks, Natick, MA). Since the specimens wep keist during the
measurements, the material in pores (undrained) is assurbebawe like bulk water, that is,
bulk modulus and Poisson ratio are set to 2.3 GPa and Osgp@ctively. Preliminary
calculations indicated that computed effective propertieaatreensitive to small variations
of the elastic properties of the fluid material in pqiegs In contrast, they are sensitive to the
elastic properties of the matrig™) which must be carefully chosen. In the reference model,
we assign the same elastic propertiéandcP to all of the specimens. This amounts to
assuming the existence of a “universal” matrix which hasoybe defined. We previously
determined [6] the optimal fixed matrix elastic coe#iuts for the reference model by
minimizing the distance between the experimer@a) &nd homogenizedi) mesoscopic
elastic coefficients. Preciselg? is the tensor which minimizes the objective functionrdsdi

as:

Hy(c™) =\/Z

k=1 i=1

5 Cii:k_Ci:;k(CmvvaPk) i
Z( Cii;k J (1)

whereN is the number of bone specimeRgyefers to the estimate of porosity of specirken
assessed from impedance maps, @ngand C;, to its experimental and homogenized

elastic coefficients, respectively. Consideringtladl specimens (i.&=21), the TI stiffness

tensorc™ which minimizesHo was found to be
c, = 26.8 GPag};=35.1 GPag,, = 7.3 GPac,, = 5.8 GPa, and;= 15.3 GPa 2
(These correspond to the following values of engjiimg moduli E"= 16.5 GPaE" = 24.0

GPa,G;'=5.8GPa,G" = 7.3 GPa). This dataset is referred to as trereate matrix

1 Code available on line from www.labos.upmc.fréipip.php?rubriquel133
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elasticity in the rest of the paper. Values assigoehe bone matrix are consistent with the
literature [16-19].

In Granke et al. [6], elasticity values predicteithvthe reference model were calculated to
help interpret the data. However, this was witheodetailed analysis of the general adequacy

of the model, which is the purpose of the presapep.

3 Discrepancies between data and model predictions

The above values of the mineralized matdX (Eq. (2)) have been obtained with one specific
dataset. In order to ensure that the values areritictlly dependent on the dataset, we
applied the leave-one-out cross validation (LOOQD), 21]. Ten datasets were formed by
excluding the specimens from theh femur (=1..10) and pooling the specimens from the
nine remaining human femurs. For each of thesesdetathe elastic tenso¥{ n} was
computed using the objective function defined in(EEg(hereN = 18, 19 or 20 depending on
the excluded femunm). The optimized stiffness tensa®{ n} for the matrix calculated for the
ten datasets were found to be close to the refeneratrix as evidenced by the average
relative distance betweefii{n} and c™; which was less than 1.5% (Table 1), thereby
confirming that the reference matrix properties.(Egare not biased by the particular set of
specimens considered in this study.

The adequacy of the fit between the reference mamkhe experiments was evaluated by
means of the root mean square error (RMSE), ieestéindard deviation of the residuals
between the experimental and predicted elastidiceits. Here, the homogenized stiffness
tensor predicted by the reference model for a gspatimen harvested from the femus
computed using™n}, c?, and the porosity of the specimen. Note that ttradgenized
elasticityC" is thus strictly independent of the mesoscale ex@atal dataC. The RMSE

absolute and corresponding relative errors weradda beCi1: 1.5 GPa (7.3 %22 1.6
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GPa (8.7 %)Csz 2.0 GPa (6.6 %)Cas 0.4 GPa (6.3 %)Css: 0.5 GPa (8.5 %)Css:0.3 GPa

(7.9 %)).

4. Quantification of experimental uncertainties

In this section, we assess whether measuremems$ ean explain the deviation between
experimental observations and model predictions.

4.1 Porosity and elasticity

Longitudinal Ci1, C22, Cs3) and shearGas, Css, Cee) elastic coefficients were obtained by
processing longitudinal and shear ultrasound veloneasurements, which lead to different
experimental errors for longitudinal and shear ficiehts. The measurement relative ef&sr
(repeatability) is 3.2 % and 4.7 % for the longitiad and shear elastic coefficients,
respectively [6]. The standard deviations corredpanto these errors were calculated for
each coefficient and exhibited the following maximalues: 0.7 GPa fa€1; andCzz, 1.1

GPa forCss, 0.3 GPa foCs4 andCss, and 0.2 GPa foCes.

As for the error on the porosity estim&ethe comparison on ten specimens betweand

the volumetric porosity obtained from SR-UCT (taksra reference) led to an average error
of EP=0.8 % point of porosity [6].

When taking into account the measurement errorgomsidered that: i) the actual
experimental elastic coefficient lies with€ = [(1-E€)-Cii , (1+EC)-Cii], whereCi is the
experimentally measured elastic coefficient BRd= 0.032 and 0.047 for the longitudinal and
shear elastic coefficients respectively; and @& pinedicted elastic coefficient, for a specimen
with estimated porositl, lies withinAC" = [C"ii(c™, c?, P+EP) , C'ii(c™, c?, P-EP)], whereEP

= 0.008. We found that the range€ andAC" overlapped for 72 out of the 126 measured

coefficients (Fig. 1). For 19 out of the 21 invgatied specimens, there was at least one elastic

coefficient for whichAC andAC" did not overlap. Based on these results, it cacobeluded
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that the measurement errors cannot account fastiberved discrepancies between

experimental and predicted elastic coefficients.

4.2 Misalignment of the specimen during cutting

In the model, the pores and the axis of symmetith@imatrix stiffness are aligned with
direction 3. Thus it is assumed that the 1-2-plefened from the specimen faces after
cutting is actually perpendicular to the pores @rttie plane of isotropy. However, the
specimens faces may not be well aligned with ttecamical axes due to inaccuracy of
anatomical landmarks used for the cut. We evaluidiiediegree of possible misalignment
based on the pores orientation observed in longiéhdections cut from the ten specimens
imaged with SR-puCT (see online material). The maxmmisalignment was estimated to be
10°. The consequence of misalignment is that iffeests coefficients measured are not
precisely the coefficientSi on the diagonal of the tensor matrix expresseteématural basis
of the specimen material supposed to be TI. To tifyahe error on the experimental
assessment of the latter, we compared the diagtiffakss coefficients of the reference
model with a 10° off-axis deviation of axis 3 t@ttiagonal stiffness coefficients of the
reference model tensor in the natural basis (BigTHe maximum values of the relative
variations were\C'11= 1.0%,AC 33= 1.3%,AC 44= 1.7%, and\C's6= 1.0%. These values
are significantly less than the observed discrelparzetween the reference model and

experimental points.

5. Revisiting the model hypotheses

5.1 Porosity distribution
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In the reference model, any variability of porehasize and distribution was disregarded.
The influence of these factors was investigatedifersubset of ten specimens imaged by SR-
HCT. We proceeded in two steps:

Step 1. Each specimen 3D volume was divided into N adjasabvolumesvi (k=1..N) of
approximately 1.5 x 1.5 x 1.5 nirtFig. 2a,b). The 3D porosity of each subvolume was
calculated from the SR-uCT segmented data. Thearafe matrix elastic and pore tensoits
andcP were assigned to the bone matrix and materiabiegpphases, respectively. The
homogenized elastic tensBik was then calculated on each subvolgneaising the

analytical AH scheme. The procedure yields a remtagion of the distribution of millimeter
scale elasticity within the specimen. The eladticttiations are entirely due to fluctuations of
porosity within the specimen (Fig. 2c).

Step 2: The second step involved solving the homogerangtroblem for the whole volume:
the homogenized elastic properties of each bonarepa were obtained using finite element
computations as in Grimal et al. [1] using a cleaisprocedure [22]. Briefly, the material
properties at all pointsl(x,y,2) that belong to subvolunssx were set to be the same constant
C(x,y,2) = C'k (Fig. 2d). Six sets of kinematic uniform (KUBC)dhstress uniform (SUBC)
boundary conditions were applied successively sStamd strain fields were calculated with a
commercial finite element code (COMSOL Multiphy$i&5) in the framework of linear
elasticity. The computed apparent stiffness (KUBC3ompliance (SUBC) tensors were
obtained by dividing components of strain and stfedds.CSUBC andCKUBC provide lower

and upper bounds of the apparent tensor. Notdtteatomputational cost to calculate these
bounds without step 1, that is a computation cotetlion the entire volume with a mesh so
fine as to match the resolution of the SRUCT imagesild have been prohibitively high.

With our approach, the convergence of the appatéfriess tensor computed using an

10
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unstructured mesh of tetrahedral elements wasreatdor a mesh composed of about 7000
guadratic Lagrange elements with a characterigg&a 700 pm.

The homogenization procedure (steps 1 and 2) wakated by computing the boun@SYBC
andCKUBC gn an artificial data set (Fig. 3) correspondinghte reference model, i.e. made of
a homogeneous matrix and cylindrical pores orgahtrea hexagonal periodic pattern for a
porosity of 12.5%. The bounds computed with FEMenwithin 10° GPa of the theoretical
value given by the reference model.

The CSUBC andCKVUBC hounds computed for the ten bone specimens wergl faube very
close to the predictions of the reference modelntiaximum relative error for the different
coefficients weré\Ci1= 1.3%,AC22= 1.2%,ACs3= 0.8%,ACss= 1.3%,ACs5= 1.1% and
ACes= 2.4%. This was in spite of the large variatiohparosity that are present within some
of the specimens, which are typically caused byptiesence of large resorption cavities. A
striking example is the specimen ‘06’ for which stddumes porosities range from 4 to 37%.
In general, the largest discrepancies were foun@{g C>>andCss, and were more
pronounced for those specimens that display laag@tons of porosity (e.g. specimens ‘03’,
‘06’, ‘08’) (Fig. 3). These results suggest that #patial distribution of pores sizes and shapes
as well as their variations between different apecis, independently of variations of pore
volume fraction, are not likely the principal caudehe discrepancies between the reference

model predictions and experimental results.

5.2 Pore length

The reference model assumes that the pores, regiresélaversian channels and resorption
cavities, are infinitely long. The fact that the@®are actually finite may be a source of
discrepancy between the model predictions andxperaments. Models based on Eshelby’s

solution for ellipsoidal inclusions in a matrix [R&low for the consideration of the shape of

11
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the pores, that is, their aspect ratio. Among th&sible formulations based on Eshelby’s
solution, the Mori-Tanaka scheme (MT) appears ttheanost relevant [24]. Note that the
MT method has been used by several authors tosemreone at the millimeter scale [9, 10,
25-27]. When the ellipsoid in the MT scheme ismgtical (i.e. the pores are infinitely long),
the AH (reference) and MT models yield very clossuits for the entire range of porosity of
cortical bone. (However, it is noteworthy that fki¢ method offers the advantage of being
stable, even at high porosity [24]). Accordinglye wonsidered a MT model of cortical bone
mesoscopic elasticity: the elastic properties efrtfatrix and pores were defined by the same
tensors as for the reference model, respectiwvebndc?, the inclusions were spheroids, and
the aspect ratié (major semi-axis over minor semi-axis) was chosih regard to the
general shape of the pores. In human femoral naghyisis, the osteon length is 4 mm on
average [28]. The diameter of the Haversian canal®men is (mean + SD [min-max])
150+119 [57-457] um [29]. Accordingly, we assumatd resides in the range 10-70.
Computations showed that the MT effective elastapprties change only very slightly when
increasing the aspect ratio beyond 10 (solid ImEig. 4) suggesting that aspect ratios of

ellipsoidal inclusions as small as 10 to 20 cacdesidered of infinite extent.

6. Discussion

Validating models of bone tissue elasticity sharddsist in a comparison of measured
stiffness tensors and specimen-specific model ptieds. In practice, it is difficult to

measure all the terms of the stiffness tensor aoahly a few elasticity constants are used for
the validation: Dong and Guo [8] have used two shed two longitudinal coefficients,
Deuerling et al. [30] and Bauman et al. [31] hasedionly longitudinal coefficients. In
previous works, the specimen-specific model premtisthave used a variety of specimen data

such as porosity [8, 31], elasticity and arealtfoas of osteonal and interstitial tissues [8] and

12
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average orientation of mineral crystals [31]. Heve,have investigated a popular two-phase
composite model of cortical bone which predictsdbpendency of the mesoscopic elastic
coefficients on porosity. The strength of the pnéstudy lies in the number of subjects (21
specimens from ten female donors), the number asomed and predicted elastic coefficients
(three longitudinal and three shear coefficierthoaigh the transverse isotropic model only
predicts four different coefficients) and the assgsnt of Haversian porosity for each

specimen.

We first examined the experimental uncertaintidth@dugh the precision of the experimental
data was acceptable, we recognize that it coulthpeoved. The precision of the vascular
porosity estimate would increase if calculated fribvn 3D volume data, e.g. from a SR-uCT
scan. Regarding the measurement of elastic prepertihuman cortical bone, Bernard et al.
[32] recently demonstrated the suitability for negot ultrasound spectroscopy to bring the
precision of Young and shear moduli down to abob%®) Even though the experimental
uncertainties were suboptimal in the present wihidy did not account for the observed
differences between the measured and predicteticatagfficients, confirming the need for a

close examination of the model assumptions.

In the reference model, the vascular porosity waalized as infinite cylinders of circular
cross-section aligned along the bone long axisfa/ed that, for realistic aspect ratios
(length of the pore/diameter of the pore) of Harrganal, that is, in the range 10-70,
modeling the pores as infinite cylinders yieldssaygood approximation of pores of finite
length. Cortical bone is characterized by a gradiéporosity from the endosteal to the
periosteal region [12, 33] as well as changeseémitres size [29, 34], and the presence of

large resorption cavities [28, 35, 36]. We combiA¢tiand FEM in a two-steps scheme to

13
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account for the spatial heterogeneity of the pdrsisibution which results in fluctuations of
millimeter scale elastic properties within the mead specimens of nominal dimensions
5x5x7 mn3. The results indicated that the details of thérithistion of the porosity play a
negligible role in the averaged strain and stréssiloution at the specimen scale, hence on
the values of apparent elastic properties. Usingxal-based finite element model, Baumann
et al. [31] found that a non-uniform spatial distition of intracortical porosity results in an
orthotropic behavior (weaker stiffness in the radieection as compared to the
circumferential, especially towards the epiphysesich they mainly attributed to the
endosteal resorption. We did not observe this pimemon, likely because we harvested bone
specimens that covered the entire cortex but didnetude the trabecularized areas (e.g. Fig
4A in [37]), i.e. the large resorption cavitiesitglly present on the endosteal surface.
Interestingly, the model gives a satisfactory prgdin of the variations of millimeter-scale
elastic coefficients by assuming that the porogiiations between samples are due to
changes of either diameter or number of cylindnaies aligned with the bone axis (the
analytical model does not make any distinction leefavthese two options). It should be noted
that the analytical model disregards the networngarés perpendicular to the bone axis
(Volkmann’s canals), while the FE model takes #ed shape and distribution of the vascular
pores and resorption lacunae into account. Thetigueshy it is possible to obtain
satisfactory predictions without explicitly modedithe Volkmann’s canals was not in the
scope of this study. However, one reason couldhdiecortical tissue in long bones contains
much more Haversian canals than Volkmann canakstetbre, the variability in overall pore
volume fraction can be assumed to be dominatediligitions in the Haversian canals
network. It is of course possible to build a mathelt accounts separately for pores aligned

and perpendicular to the bone axis, which wilhallo address this question in future studies.
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The predictions of the model critically depend be &ssumed values of the mineralized
matrix stiffness. Using data from the literaturegjiestionable as bone matrix elastic
properties can be significantly different dependamgthe cortical site [38], the specimen
preparation [39-41] or the spatial resolution @& firobing technique (e.g. the penetration
depth in nanoindentation testing [42, 43] or therl@ dimension of the ultrasound beam in
SAM [44]). Moreover, most of experimental bone stgdlo not provide the full stiffness
tensor but only elastic properties in one direc{@ong the osteons axial direction) and they
usually discriminate between osteonal and intébtissue instead of providing average
elastic properties for the bone matrix. To the loéstur knowledge, there is no study
reporting the anisotropic elastic properties faiveamatrix tissue from a human femoral mid-
diaphysis.

In the present work, the model assumes fixed strcoefficientsc(") for the bone matrix.
However, the elastic properties of the matrix imiam femoral bone are susceptible to
change, among other factors, with age [45] andoamagl location [19]. Physiological
variations of elasticity at the microscopic levavh been documented to range between 5 and
15% [19, 45]. Note that this was the case for gecsnens used in this study [6]: precisely,
the conversion of the acoustic impedance valuesalatstic coefficients [46] led to intra-
specimens elastic variations of 8 to 10.5%.

We found that the discrepancies between model gieds and experimental data can neither
be explained by experimental errors nor by theildetzhape and distribution of the pores.
Individual variation of matrix elasticity is onectar which warrants further studies. As a first
step, we propose to assess the sensitivity ofteféestiffness coefficients to matrix stiffness
controlled variations. We computed solutions foo tyets of matrix coefficients defined as a +
10% variation of the reference values (EqQ. (2)e @ksociated variations of the predicted

effective elasticity (averaged over the entire meas porosity range) areC’11= + 1.8 GPa,
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AC'33=+ 2.8 GPaAC 4= + 0.6 PaAC s6= = 0.4 GPa. Hence, the effective elasticity
variations due to small (x 10%) matrix propertyigtions are likely larger than the
experimental uncertainties and consistent withréimge of fluctuations of the experimental
data (Fig. 5). This result suggests that a prespseimen-specific model of a cortical bone
specimen should account for specimen-specific matastic properties, which are likely to
vary, for example, with changes in tissue mineoaitent [47-49] and average orientation of
mineral fibrils [30, 50].

While a simple scaling of all elastic coefficiemtas sufficient to test for the influence of the

matrix elasticity, this approach remains too sistgtifor an accurate specimen-specific

model (e.g. an increase in the axial stiffne§smay not necessarily be associated to an

increase incl}). Hence, the validation of a proper model of then® properties and their

variations appears as a natural perspective ofuhik.

Multistep homogenization schemes can be used teedire stiffness tensor of matrix
elasticity, starting from the physical propertié$one constituents (collagen, water, mineral)
[9, 25, 26, 51]. Upon assuming certain composiéind organization rules for the different
phases, it may be possible to obtain a transversetsopic stiffness tensor with less than five
degrees of freedom [10, 52]. Modeling of corticahb material properties at the millimeter-
scale with a two-phase model is a framework that wsed here for elastic modeling. It is
worth noting that strength [53], viscoelasticity[5and poroelasticity [55] of cortical bone

may also be explained in this framework.

A limitation of the study is the unique anatomioebin of our specimens which were all
harvested in the femoral mid-diaphysis, thereaidribiting transversely isotropic elastic
properties, in agreement with previous studies $8], The application of the proposed

model to anatomical sites which can reveal an @pparthotropic elastic behavior is not

16



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

straightforward (e.g. near the femoral or tibiapéyses [57, 58]). Further investigations are
needed to clarify the respective contributionshef matrix elasticity symmetry and the pore
network to the orthotropic behavior and conseqyeadbpt the model. Finally, future studies
should include a larger number of specimens aradfagher precision to distinguish between
the discrepancies that can be attributed respéctivexperimental noise and matrix

elasticity.

Conclusion

In this work we compared model predictions of dffexstiffness with experimental data on
human cortical bone specimens. Although most ofitbdels that have been proposed for
cortical bone were based on several steps of hamwagen and a large number of variable
parameters, the careful comparison conducted letveebn experimental data and model
predictions support our hypothesis that a relagigghple model, namely a two-phase
composite material, is a suitable representatiogddical bone. Several factors may in
principle have an effect on millimeter-scale elagtioperties: relative fractions of osteonal
and interstitial tissues, osteon types associatdddifferent patterns of fibril orientations,
volume fractions and shapes of porosities at tfferdint hierarchy levels, quality and volume
fractions of mineral and collagen molecules, ette Tesults presented in this paper support
the validity of the two-phase composite materiatlieiof cortical bone which assumes that
the essential source of variations of elastic prigxeat the millimeter-scale is the volume
fraction of Haversian porosity. We propose thatliblk of the remaining discrepancies
between predicted stiffness coefficients and expenial data (RMSE between 6% and 9%)
is for a part due to experimental errors and fartlagr part due to small variations of the

extravascular matrix properties.
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The outcome of this study provides valuable insidat predicting the variations of bone
elasticity at the millimeter scale. Ultimately, ienple and accessible model that can reliably
predict changes of anisotropic elasticity wouldahgseful tool for the bone community, e.g.
to feed finite element models commonly used intfrecrisk assessment or orthopaedics
(implant development, preoperative planning) antestigate structure-functional
relationships (effect of bone remodeling on lodattcity).

Futurein vitro studies may consider including an individualizeatnix elasticity in order to
obtain a model specific to a given cortical bonecamen. Forn vivo applications, there is, to
date, no clinical tool allowing for the assessnamatrix elasticity from a patient’s bone.
However, implementing the proposed model (withdixeatrix properties) in subject-specific
FE analyses would be straightforward. This coulddmee directly from CT data in a similar
manner as described in the work of Hellmich ef5#], i.e. by converting the pore volume
fraction of each voxel (deduced from its Hounsfigldit value) into the corresponding
anisotropic elastic tensor using the two-phaseamechanical model presented in this work.
Such implementation would constitute a step forwaridhproving bone mechanical behavior
predictions as it overcomes one of the main flafvsuorent subject-specific FE models, that
is, material properties are frequently assumecktisditropic [60].

Additionally, another class of problems that candsgé from the present work are finite
difference time-domain (FDTD) simulations aimingshicidating the interaction mechanisms

between ultrasound and bone structures [61].
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Tables

Table 1 Optimized stiffness tensor for the matrix propestcalculated after considering
different sets of specimens

Figur es captions

Fig. 1 Longitudinal (eft) and shearr{ght) elastic coefficients versus porosity. The sale$
display the elastic coefficients computed with terence model. The dotted lines show the
influence of a 10° off-axis deviation of axis 3.>8®s represent the experimental errors on the
measurement of elastic coefficielsand the evaluation of porosity. The boxes highégh

in red indicate those measurement errors whichatagmtirely explain the distance between
the experimental and predicted elastic coeffici¢dsout of 126 measured coefficients).

Fig. 2 (a,b) The bone volume is divided into subvolumes of aginately 1.5 mm(c) The

3D porosity of each subvolume is calculated from3R-uCT segmented data. The
homogenized elastic tensor of each subvolume ipated using asymptotic
homogenization(d) Finite element modeling on the bone specimen.cbioedinate-
dependent material properties are retrieved frarhttmogenized elastic tensors calculated
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on each subvolume. Applying a set of uniform boupdanditions allows one to assess the
lower and upper bounds of the apparent elastidicaafts.

Fig. 3 Homogenized elastic properties: reference modek(golume fraction) versus Finite
Element Model (real pore shape and distributioemakto account). lllustration of the
coefficient G for an artificial dataset that corresponds tortference model (i.e. made of a
homogeneous matrix and cylindrical pores organaed hexagonal periodic pattern) and 10
human bone specimens.

Fig. 4 Homogenized elastic coefficients as obtained ftoenMori-Tanaka (MT) model (solid
lines) versus the pore aspect ratio (= length/diaméor a given porosity of 15%. The
effective elastic coefficients as obtained with tbference model (dotted lines) have been
superimposed. The grey zone represents the raragpett ratios of Haversian canals in
femoral human cortical bone.

Fig. 5 Relative differences between experimental datatlamgredictions of the reference
model versus porosity. The solid horizontal linesespond to the reference model. The
dotted lines correspond to the predictions of tleel@hwith modified matrix elastic
coefficients (£ 10% starting from the reference elodlues)
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Tablel

Excluded femur (matrix elastic tensor) M [GP4] cl [GPa] c [GPa] " [GP] cl [GP]

None (c", reference mode!) 26.8 35.1 7.3 5.8 15.4
#218 (c™{1}) 26.6 35.2 7.2 5.7 15.7

#227 (C{ 2}) 26.8 35.2 7.3 5.8 15.6

#228 (C{3}) 26.9 35.3 7.3 5.8 15.6

#245 (C™{4}) 26.6 34.9 7.2 5.7 15.4

#251 (C"{5}) 26.9 34.4 72 5.8 13.7

#260 (C™{ 6}) 26.8 34.6 7.3 5.8 14.3

#263 (C'{7}) 26.6 35.2 7.3 5.7 15.7

#267 (C{8}) 27.3 375 7.3 5.8 21.0

#268 (C{9}) 26.9 34.9 74 5.8 135

#271 (CT{10}) 26.6 34.8 7.3 5.8 13.6

mean % std 26.8+£0.2 35.2+09 7.3+£0.04 5.8.83 154+2.2
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