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Abstract. Building on previous work by four of us (ABCN), we con-
sider further generalizations of Warrington’s juggling Markov chains.
We first introduce “multispecies” juggling, which consist in having balls
of different weights: when a ball is thrown it can possibly bump into a
lighter ball that is then sent to a higher position, where it can in turn
bump an even lighter ball, etc. We both study the case where the num-
ber of balls of each species is conserved and the case where the juggler
sends back a ball of the species of its choice. In this latter case, we
actually discuss three models: add-drop, annihilation and overwriting.
The first two are generalisations of models presented in (ABCN) while
the third one is new and its Markov chain has the ultra fast convergence
property. We finally consider the case of several jugglers exchanging
balls. In all models, we give explicit product formulas for the stationary
probability and closed form expressions for the normalisation factor if
known.

1. Introduction

Several Markov chains studied in nonequilibrium statistical physics are
known to have, despite nontrivial dynamics, an explicit and sometimes re-
markably simple stationary state. The most famous examples of these are
one-dimensional models of hopping particles such as the asymmetric exclu-
sion process [5], where the stationary state satisfies the so-called matrix
product representation [4] and the zero-range process, where the stationary
state is factorised [8]. The main reason for this simplicity is the underlying
combinatorial structure of these processes. Of the two examples mentioned
above, a variant of the former known as the totally asymmetric simple exclu-
sion process (TASEP), solved first in [6], has a rich combinatorial structure
even when the system is generalised to include several types of particles. The
latter system is known as the multispecies TASEP, and its stationary state
has an explicit solution which comes from queueing theory [9].
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The multispecies TASEP has the further exceptional property that the
stationary state can also be calculated if the hopping probabilities of par-
ticles depend on their location, known as the inhomogeneous multispecies
TASEP. This was first done for the three-species case in [3] and the result
for arbitrary species has been announced in [12]. While the stationary state
of the general inhomogeneous multispecies TASEP has an explicit descrip-
tion in principle, the actual formulas for the stationary probabilities can be
considerably complicated.

In this paper, we will first study the multispecies variants of the basic
juggling process introduced in [13] then extended to their inhomogeneous
versions in [7, 1]. In contrast to the TASEP, as we will show in Theorem 6, the
stationary probabilities and the partition function have elegant and compact
expressions. We then study the multispecies variants of two other juggling
processes, which were also introduced in [13], where the number of balls of
each type can vary. In all of these cases, we prove analogous results; see
Theorems 10 and 12. We also introduce a new model where the number
of balls of each type can vary that we call the overwriting model. This
model has the nice property that it converges to its stationary distribution
in deterministic finite time. In probabilistic language, this is equivalent to
saying that the overwriting model has a deterministic strong stationary time.

The rest of the paper is organized as follows. In Section 2, we discuss
in some detail the first model, the so-called Multispecies Juggling Markov
Chain (MSJMC): Section 2.1 provides its definition and the expression for
its stationary distribution, and Section 2.2 is devoted to the enriched chain.
Other models with a fluctuating number of balls of each type (but with a
finite state space) are considered in Section 3: we introduce the multispecies
extension of the add-drop and the annihilation models studied in [1] in the
respective Sections 3.1 and 3.2. In Section 3.3, we present the overwriting
model. Finally, in Section 4, we describe another possible extension of the
juggling Markov chain of [13], that involves several jugglers.

Remark 1. Our proofs were mainly obtained by a classic combinatorial ap-
proach which consists of introducing an enriched chain whose stationary
distribution is simpler, and which yields the original chain by a projection
or “lumping” procedure, see e.g. [11, Section 2.3.1]. Let us summarize this
strategy. Suppose we have a Markov chain on the state space S (which will
be a finite set in all cases considered here), with transition matrix P (which
is a matrix with rows and columns indexed by S, such that all rows sum
to 1), and for which we want to find the stationary distribution, namely
the (usually unique) row vector π whose entries sum up to 1 and such that
πP “ π. The idea is to introduce another “enriched” Markov chain on a
larger state space S̃ with transition matrix P̃ , which has the two following
properties:

‚ its stationary distribution π̃ is “easy” to find (for instance we may
guess and then check its general form because its entries are integers
with nice factorisations, or monomials in some parameters of the
chain),

‚ it projects to the original Markov chain in the sense that there exists
an equivalence relation „ over S̃ such that S can be identified with
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S̃{ „ (i.e. the set of equivalence classes of „), and such that the
lumping condition

(1)
ÿ

y1„y

P̃x,y1 “ Prxs,rys

is satisfied for all x, y in S̃, where rxs P S denotes the equivalence
class of x.

Then, it is straightforward to check that the stationary distribution π of the
original Markov chain is given by

(2) πrxs “
ÿ

x1„x

π̃x1 .

In principle, there may be a large number of terms in the right-hand side of
(2), making the resulting stationary distribution π nontrivial.

For all the juggling models, we give arguments to show that the Markov
chains are aperiodic and irreducible. This implies that their stationary dis-
tributions are unique. For the enriched chains, we do not explicitly prove
irreducibility, since the arguments are long-winded and not particularly in-
teresting. Finding a stationary distribution of the enriched chain and per-
forming the lumping procedure is sufficient to obtain the unique stationary
distribution of the original chain.

Most of the results of this paper have been previously announced in the
conference proceeding [2].

2. Multispecies juggling

2.1. Definition and stationary distribution. The first model that we
consider in this paper, and for which we give the most details, is a “multi-
species” generalisation of the so-called Multivariate Juggling Markov Chain
(MJMC) [1]. Colloquially speaking, the juggler is now using balls of different
weights, and when a heavy ball collides with a lighter one, the lighter ball is
bumped to a higher position, where it can itself bump a lighter ball, and so
on, until a ball arrives at the topmost position. Should the reader find this
model unrealistic, she may instead think of a lazy referee “juggling” with a
stack of papers of varying priorities to review: every day the referee takes the
paper on the top of the stack but, after spending his time on other duties,
decides to postpone it to a later date, possibly bumping a less important pa-
per further down the stack, etc. Formally, our Multispecies Juggling Markov
Chain (MSJMC) is defined as follows.

Let T be a fixed positive integer, and n1, . . . , nT be a sequence of positive
integers. The state space Stn1,...,nT of the MSJMC is the set of words on
the alphabet t1, . . . , T u containing, for all i “ 1, . . . , T , ni occurrences of the
letter i (the letter 1 represents the heaviest ball and T the lightest one). Of
course those words have length n “ n1 ` ¨ ¨ ¨ ` nT , and there are

`

n
n1,...,nT

˘

different states.
To understand the transitions, it is perhaps best to start with an example,

by considering the word 132132 (i.e. T “ 3, n1 “ n2 “ n3 “ 2). The first
letter 1 corresponds to the ball received by the juggler: it can be thrown
either directly to the rightmost position, i.e. to the top (resulting in the
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word 321321), or in the place of any lighter ball. Say we throw it in place
of the first 2. This 2 can in turn be thrown either to the rightmost position
(resulting in the word 311322), or in the place of a lighter ball on its right:
here it can only “bump” the second 3, which in turn has no choice but to go to
the rightmost position, resulting in the word 311223. This latter transition
is represented on Figure 1.

1 3 2 1 3 2
1 3 5 7

3 1 1 2 2 3

Figure 1. A possible transition from the state 132132, cor-
responding to the bumping sequence p1, 3, 5, 7q.

We now give the formal definition of the transitions. Let w “ w1 ¨ ¨ ¨wn be
a state in Stn1,...,nT , and set, by convention, wn`1 “ 8. A bumping sequence
for w is an increasing sequence of integers pap1q, . . . , apkqq with length at
most T ` 1 such that ap1q “ 1, apkq “ n ` 1 and, for all j between 1 and
k´1, wapjq ă wapj`1q (that is to say, the ball at position apjq is heavier than
that at position apj ` 1q). We denote by Bw the set of bumping sequences
for w. For a P Bw, we define the state wa resulting from w via the bumping
sequence a by

(3) wai “

#

wap`´1q if i “ ap`q ´ 1 for some `,
wi`1 otherwise,

which is easily seen to belong to Stn1,...,nT . Returning to the example in
Figure 1 with w “ 132132, the longest possible bumping sequence is a “
p1, 3, 5, 7q and indeed wa “ 311223.

We now define the transition probabilities, which means assigning a prob-
ability to each bumping sequence. As in the MJMC, these probabilities
will depend on a sequence z1, z2, . . . of nonnegative real parameters. Sup-
pose that we have constructed the i ´ 1 first positions pap1q, . . . , api ´ 1qq
of a random bumping sequence, so that apiq has to be chosen in the set
t`| api ´ 1q ă ` ď n ` 1, w` ą wapi´1qu: zj is then proportional to the
probability that we pick apiq as the j’th largest element in that set. Upon
normalizing, we find that the actual probability of picking a specific apiq can
be written as

(4) Qw,apiq “
zJwpapiq,wapi´1qq

yJwpapi´1q,wapi´1qq

,

where we introduce the useful notations
yi “ z1 ` ¨ ¨ ¨ ` zi

Jwpm, tq “ 1`#t`|m ď ` ď n,w` ą tu
(5)

for m P t1, . . . , nu , t P t1, . . . , T u and i P t2, . . . , ku. All in all, the global
probability assigned to the bumping sequence a is

śk
i“2Qw,apiq. Noting
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that, for all states w,w1 P Stn1,...,nT , there is at most one a P Bw such that
w1 “ wa, we define the transition probability from w to w1 as

(6) Pw,w1 “

$

’

&

’

%

k
ź

i“2

Qw,apiq if w1 “ wa for some a P Bw,

0 otherwise.

For instance, the transition of Figure 1 has probability z4{y5ˆz2{y2ˆz1{y1.

Remark 2. The choice of transition probabilities is very important for the
model to be solvable. For example, if we choose zj as the probability of the
j’th smallest instead of largest, then that chain does not seem to have a
simple stationary distribution.

Remark 3. The MJMC [1, Section 2] is recovered by taking T “ 2, and
identifying 1’s with balls (‚) and 2’s with vacant positions (˝).

123

132

312231

213

321

z3
y3
· z2
y2

z3
y3
· z1
y2

z2
y3z1

y3
z2
y2

z2
y3 z2

y2

z1
y2

z1
y2

z1
y3

z3
y3

1

1

Figure 2. Transition graph of the MSJMC with T “ 3 and
n1 “ n2 “ n3 “ 1.

Example 4. Figure 2 illustrates the MSJMC on St1,1,1, and the correspond-
ing transition matrix with respect to the ordered basis p123, 132, 213, 231,
312, 321q reads

(7)

¨

˚

˚

˚

˚

˚

˚

˝

z3
y3
¨ z2y2

z3
y3
¨ z1y2

z2
y3

z1
y3

0 0
z3
y3

0 0 0 z2
y3

z1
y3

z2
y2

z1
y2

0 0 0 0

0 0 z2
y2

0 z1
y2

0

1 0 0 0 0 0
0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

.
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Observe that py1y2y3, y21y3, y1y22, y21y2, y21y2, y31q is a left eigenvector with eigen-
value 1, and thus is proportional to the stationary distribution.

Remark 5. We now give an argument to show that generically (i.e. when all
zi are nonzero), the MSJMC is irreducible and aperiodic, and thus admits a
unique stationary distribution π.

We can reach any state w by the following procedure. Note that it suffices
to reach a cyclic shift of w, since we can always throw balls to the rightmost
position. Start by positioning the heaviest balls, that is the balls labelled
1 as is done in w. This can be done by the irreducibility of the unlabelled
chain, studied in [1]. Assume now by induction that balls labelled 1, . . . , i
have been positioned as in w. The juggler will now throw all balls labelled
1, . . . , i to the rightmost position and balls labelled i ` 1 to the positions
given by w. Those positions will be occupied by lighter balls since all heav-
ier balls already are sorted according to w. Those lighter balls can bounce to
anywhere, the rightmost position for instance. After T transitions all balls
labelled i` 1 have been sorted according to w. By induction, irreducibility
is proven.
Furthermore, the state 1n12n2 ¨ ¨ ¨TnT can be sent to itself through the bump-
ing sequence p1, n1` 1, n1`n2` 1, . . . , n` 1q, which proves the aperiodicity
of the model.

Our main result for this section is an explicit expression for π.

Theorem 6. The stationary probability of w P Stn1,...,nT is given by

(8) πpwq “
1

Z

n
ź

i“1

yEwpiq,

where

(9) Ewpiq “ 1`#tj|i ď j ď n,wj ą wiu “ Jwpi, wiq,

and the normalisation factor Z reads

(10) Z “
T
ź

i“1

hnipy1, . . . , yn´n1´¨¨¨´ni`1q,

with h` being the complete homogeneous symmetric polynomial of degree `.

Returning again to the example w “ 132132, we have πpwq “ y31y2y3y5.
According to the general lumping strategy outlined in Remark 1, Theorem 6
is proved in Section 2.2 by introducing a suitable enriched Markov chain.

2.2. The enriched Markov chain. The first idea to define the enriched
Markov chain comes from expanding the product on the right-hand side of
(8) using the definition (5) of the yj ’s, resulting in a sum of monomials in
the zj ’s which is naturally indexed by the set of sequences v “ v1 ¨ ¨ ¨ vn of
positive integers such that vi ď Ewpiq (with E as defined in (9)) for all
i P t1, . . . , nu. Let us call such v an auxiliary word for w. This suggests that
we can define an enriched state as a pair pw, vq where w P Stn1,...,nT and v
is an auxiliary word for w. We denote by Sn1,...,nT the set of enriched states.

The second idea, needed to define the transitions, is to use the auxiliary
word to “record” some information about the past, in such a way that all
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transitions leading to a given enriched state have the same probability (this
will be a key ingredient in the proof of Theorem 7 below). More precisely,
given an enriched state pw, vq, we consider as before a bumping sequence
a P Bw, and we define the resulting enriched state pw, vqa “ pw1, v1q by
updating of course the basic state as before, i.e. we set w1 “ wa as in (3),
while we update the auxiliary word as

(11) v1i “

#

Ew1piq if i “ ap`q ´ 1 for some `,
vi`1 otherwise.

For instance, in our running example w “ 132132 and a “ p1, 3, 5, 7q, for
v “ 412211 we have v1 “ 142211. We may think of the auxiliary word as
“labels” carried by the balls, that are modified (maximized) for the bumped
balls and preserved otherwise. The transition probability from pw, vq to
pw1, v1q is as before

(12) rPpw,vq,pw1,v1q “

$

’

&

’

%

k
ź

i“2

Qw,apiq if pw1, v1q “ pw, vqa for some a P Bw,

0 otherwise.

It is clear that the enriched chain projects to the MSJMC. Indeed, we define
an equivalence relation over Sn1,...,nT by simply “forgetting” the auxiliary
word, so that the equivalence classes may be identified with Stn1,...,nT (note
that 1n is a valid auxiliary word for any element of Stn1,...,nT ). The lumping
condition (1) is trivially satisfied, since we have rPpw,vq,pw,vqa “ Pw,wa for all
pw, vq in Sn1,...,nT and a in Bw, and rPpw,vq,pwa,v1q “ 0 whenever pwa, v1q ‰
pw, vqa.

Theorem 7. The stationary distribution of pw, vq in Sn1,...,nT for the en-
riched chain is

(13) π̃pw, vq “
1

Z

n
ź

i“1

zvi

where Z is the normalisation factor.

Proof. We have to check that, for all pw1, v1q P Sn1,...,nT , we have

(14)
ÿ

pw,vqPSn1,...,nT

rPpw,vq,pw1,v1qπ̃pw, vq “ π̃pw1, v1q,

which is done by characterizing all possible predecessors of pw1, v1q. Let pw, vq
be such that pw1, v1q “ pw, vqa for some bumping sequence a P Bw. We will
show in particular that a and w are uniquely determined from the data of
pw1, v1q. Hence, as claimed above, all transitions to pw1, v1q have the same
probability.

We start by explaining how to recover the bumping sequence a “ pap1q,
. . . , apkqq or, more precisely, its set of values A “ tap1q, . . . , apkqu. Recall
that 1 and n ` 1 belong to A by definition. We claim that j P t2, . . . , nu
belongs to A if and only if the following two conditions hold:

(i) v1j´1 “ Ew1pj ´ 1q,
(ii) w1j´1 ă w1j1´1 where j

1 is the smallest element of AXtj`1, . . . , n`1u.
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Indeed, these two conditions are clearly necessary: (i) by (11), and (ii) by
(3) and the requirement that wj ă wj1 when j ă j1 are both in the bumping
sequence. Conversely, assume that j R A, so that wj “ w1j´1 and vj “

v1j´1. By the definition of the MSJMC transitions, the subword w1j ¨ ¨ ¨w
1
n is

a permutation of wj`1 ¨ ¨ ¨wnw1j1´1. Hence, recalling (5), Ew1pj ´ 1q ´Ewpjq

is equal to 1 if (ii) holds and to 0 otherwise. If (i) holds, we have Ew1pj´1q “
v1j´1 “ vj ď Ewpjq, and hence (ii) cannot hold. This completes the proof of
our claim, which fully determines A (hence a) by reverse induction.

Once we have recovered a, it is clear that w is uniquely determined, while
we have vj “ v1j´1 for j R A. All predecessors of pw1, v1q are then obtained
by picking, for each j P Aztn ` 1u, vj an arbitrary integer between 1 and
Ewpjq. This shows that

(15)
ÿ

v:pw1,v1q“pw,vqa

π̃pw, vq “
1

Z

ź

jRA

zv1j´1

ź

jPAztn`1u

yEwpjq.

The last observation we need is that

(16) Jwpapiq, wapi´1qq “ Jw1papiq, w
1
apiq´1q “ Ew1papiq ´ 1q “ v1apiq´1

for all i P t2, . . . , ku, since w1apiq ¨ ¨ ¨w
1
n is a permutation of wapiq ¨ ¨ ¨wn and

since wapi´1q “ w1apiq´1. By (4) and (6) we find that, for any predecessor
pw, vq of pw1, v1q,

(17) rPpw,vq,pw1,v1q “

ź

jPAzt1u

zv1j´1

ź

jPAztn`1u

yEwpjq

.

Combined with (15), the desired stationarity condition (14) follows. �

Proof of Theorem 6. The expression (8) is immediately obtained by applying
the general lumping expression (2) for the stationary state, Theorem 7 and
the definition of enriched states. It remains to check the expression (10),
which we do by induction on T . Let φpwq “

śn
i“1 yEwpiq, so that Z is the

sum of φpwq over all w P Stn1,...,nT . The expression (10) holds for T “ 0,
as Z “ φpεq “ 1 where ε is the empty word. For T ě 1, let w be a word
in Stn1,...,nT , and let ŵ P Stn2,...,nT be the word obtained by removing all
occurrences of 1 in w, and shifting all remaining letters down by 1. Denote
by i1 ą ¨ ¨ ¨ ą in1 the positions of 1’s in w, and let j` “ n ` 2 ´ i` ´ `, so
that 1 ď j1 ď ¨ ¨ ¨ ď jn1 ď n ´ n1 ` 1. The mapping w ÞÑ pŵ, pj1, . . . , jn1qq

is bijective, and it is not difficult to see from the definition (9) of E that

(18) φpwq “ φpŵq
n1
ź

`“1

yj` .

Summing the product on the right-hand side over all sequences pj1, . . . , jn1q

yields the complete homogeneous symmetric polynomial hn1py1, . . . , yn´n1`1q

and (10) follows by induction. �
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3. Multispecies juggling with fluctuating types

Our goal is here to introduce multispecies generalisations of the add-drop
and annihilation models developed in [13, 1]. Both models have the same
state space and the same transition graph, but different transition probabil-
ities. The state space StTn is the set of words of length n on the alphabet
A “ t1, . . . , T u. The number of balls of each type is not fixed anymore and
thus there are Tn possible states. The transitions are similar to the ones
in the MSJMC, except that the type of the ball the juggler throws is inde-
pendent of the type of the ball she just caught. This ball then initiates a
bumping sequence as defined before. More precisely, starting with a state
w “ w1 ¨ ¨ ¨wn P St

T
n , we let w´ “ w2 ¨ ¨ ¨wn. Transitions involve replacing

the first letter of w by an arbitrary j P A, resulting in the intermediate state
jw´, then applying a bumping sequence a P Bjw´ , resulting in the final
state pjw´qa, where p¨qa is defined as in (3). Defining transitions probabil-
ities requires specifying how we pick j and a. The multispecies add-drop
and annihilation models differ in the way that we pick the new ball of type
j and the position ap2q where it is inserted, while the subsequent elements
ap3q, . . . , apkq of the bumping sequence are then chosen in the same way as
for the MSJMC. Figure 3 shows all allowed transitions for St32.

Remark 8. Both chains are irreducible, since a state w1 ¨ ¨ ¨wn can be reached
from any state in n steps by just putting a wi in the rightmost position at
the i’th step. The models are also aperiodic since the state 1n can be sent
to itself by putting a 1 at the rightmost position. This remark also applies
to the overwriting model, described later in Section 3.3.

21 22 23

11 12 13

31 32 33

Figure 3. The transition graphs of the add-drop and an-
nihilation models on St32. Arrows with the same colour cor-
respond to transitions with the same probability (as, in both
the add-drop and the annihilation model, the transition prob-
ability does not depend the first letter of the initial state).

3.1. Add-drop model. In the add-drop model, choosing a ball of type
j and sending it to the `’th available position from the right is done with
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probability proportional to cjz` where, in addition to the previous parameters
z1, z2, . . ., we introduce new nonnegative real parameters c1, . . . , cT that can
be interpreted as “activities” for each type of ball. Because lighter balls can
be inserted in fewer possible positions, the actual probability of choosing j
and ` has to be normalized, and reads cjz`{p

řT
t“1 ctyJwp2,tqq where w is the

initial state – recall the definition (5) of the notations yi and Jw and note
that Jwpm, tq “ Jjw´pm, tq for all m ą 1. As the position where the new ball
is inserted is ap2q ą 1, saying that it is the `’th available position from the
right means that ` “ Jwpap2q, jq. As described above, subsequent elements
ap3q, . . . , apkq of the bumping sequence a are chosen in the same way as for
the MSJMC, so that the global probability of picking a new ball of type j
and a bumping sequence a P Bjw´ is

(19) pwpj, aq “
cjzJwpap2q,jq
T
ÿ

t“1

ctyJwp2,tq

k
ź

i“3

Qw,apiq,

where we recall the notation (4). The multispecies add-drop juggling Markov
chain is then the Markov chain on the state space StTn for which the transition
probability from w to w1 reads

(20) Pw,w1 “

#

pwpj, aq if w1 “ pjw´qa for some j P A and a P Bjw´ ,
0 otherwise.

Note that we recover the add-drop juggling model [1] when we set T “ 2.

Example 9. The transition matrix of the multispecies add-drop Markov chain
on the state space St32 in the ordered basis p11, 21, 31, 12, 22, 32, 13, 23, 33q
reads

(21)

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

c1z1
λ1

0 0 c2z1
λ1

0 0 c3z1
λ1

0 0
c1z1
λ1

0 0 c2z1
λ1

0 0 c3z1
λ1

0 0
c1z1
λ1

0 0 c2z1
λ1

0 0 c3z1
λ1

0 0

0 c1z1
λ2

0 c1z2
λ2

c2z1
λ2

0 0 c3z1
λ2

0

0 c1z1
λ2

0 c1z2
λ2

c2z1
λ2

0 0 c3z1
λ2

0

0 c1z1
λ2

0 c1z2
λ2

c2z1
λ2

0 0 c3z1
λ2

0

0 0 c1z1
λ3

0 0 c2z1
λ3

c1z2
λ3

c2z2
λ3

c3z1
λ3

0 0 c1z1
λ3

0 0 c2z1
λ3

c1z2
λ3

c2z2
λ3

c3z1
λ3

0 0 c1z1
λ3

0 0 c2z1
λ3

c1z2
λ3

c2z2
λ3

c3z1
λ3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with the notation λ1 “ pc1`c2`c3qy1 , λ2 “ c1y2`pc2`c3qy1 and λ3 “ pc1`
c2qy2 ` c3y1. One can check that pc21y21, c1c2y21, c1c3y21, c1c2y1y2, c22y21, c2c3y21,
c1c3y1y2, c2c3y1y2, c

2
3y

2
1q is a left eigenvector with eigenvalue 1.

Theorem 10. The stationary probability of w “ w1 ¨ ¨ ¨wn P St
T
n for the

add-drop model is given by

(22) πpwq “
1

Z

n
ź

i“1

cwiyEwpiq
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where the normalisation factor Z reads

(23) Z “
ÿ

n1`¨¨¨`nT“n

˜

cn1
1 ¨ ¨ ¨ cnT

T

T
ź

i“1

hnipy1, . . . , yn´n1´¨¨¨´ni`1q

¸

with h` the complete homogeneous symmetric polynomial of degree `.

Proof. We will again follow the strategy described in Remark 1. We consider
the enriched Markov chain whose state space is the set STn of pairs of words
pw, vq with w P StTn and v “ v1 ¨ ¨ ¨ vn is an auxiliary word as defined in
Section 2.2. Given pw, vq P STn , j P A and a P Bjw´ , we define the resulting
enriched state pw, vqaj “ pw

1, v1q by setting w1 “ pjw´qa, and

(24) v1i “

#

Ew1piq if i “ aplq ´ 1 for some l,
vi`1 otherwise,

and the transition probabilities are of course given by
(25)

P̃pw,vq,pw1,v1q “

#

pwpj, aq if pw1, v1q “ pw, vqaj for some j P A and a P Bjw´ ,
0 otherwise,

with p as defined in (19).
We will now show that the stationary probability of pw, vq P STn for the

enriched add-drop model is given by

(26) π̃pw, vq “
1

Z

n
ź

i“1

cwizvi ,

which will give us equation (22) by lumping. We thus have to check that,
for all pw1, v1q P STn , we have

(27)
ÿ

pw,vqPST
n

rPpw,vq,pw1,v1qπ̃pw, vq “ π̃pw1, v1q.

Let pw1, v1q be a state in STn . For a given pw1, v1q we can deduce most of
a possible predecessor pw, vq. As in the proof of Theorem 7 we can first
deduce the bumping sequence a, then the type j of the added ball. This
means that w2, . . . , wn and vi, i R A are uniquely determined. Recall that for
a “ pap1q, . . . , apkqq we defined A “ tap1q, . . . , apkqu. Let W “ jw2 ¨ ¨ ¨wn.
We have

(28)
ÿ

pw,vq:pw1,v1q“pw,vqaj

π̃pw, vq “
1

Z

T
ÿ

i“1

ciyJW p2,iq
ź

`RA

zv1`´1

ź

`PAzt1,n`1u

yEW p`q.

Furthermore, by observing that Jwpapiq, wapi´1qq “ v1`´1 (as in equation (16))
we have, for all pw, vq such that pw, vqaj “ pw

1, v1q,

(29) P̃pw,vq,pw1,v1q “
cjzJW pap2q,jq
T
ÿ

t“1

ctyJW p2,tq

ź

`PAzt1,ap2qu

zv1`´1

ź

`PAzt1,n`1u

yEW p`q

.

Combined with (28), the desired stationarity condition (27) follows. �
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3.2. Annihilation model. In this section, we assume that hopping param-
eters are probabilities, i.e. z1`¨ ¨ ¨`zn`1 “ 1. In this model, we consider that
the juggler first tries to send a ball of type 1. She chooses ` P t1, . . . , n` 1u
with probability z`, and tries to send the ball at the `’th available position
(counted from the right as before). If ` is a valid position (that is, it is not
larger than the number of available positions for the 1), there is a bump-
ing sequence whose subsequent elements are drawn in the same way as for
the MSJMC. Otherwise, she tries instead to send a 2 according to the same
procedure, etc. In the end, if she did not manage to send any ball of type
in t1, . . . , T ´ 1u, she just sends a T to the righmost position. Note that
failing to send a ball of type t for an initial state w is done with probability
1 ´ yJwp2,tq. Globally, the probability of picking a new ball of type j and a
bumping sequence a P Bjw´ reads

(30) qwpj, aq “

$

’

’

’

’

&

’

’

’

’

%

zJwpap2q,jq

j´1
ź

t“1

`

1´ yJwp2,tq
˘

k
ź

i“3

Qw,apiq if j ă T ,

T´1
ź

t“1

`

1´ yJwp2,tq
˘

if j “ T .

In the latter case, we have a “ p1, n` 1q. The transition probabilities of the
multispecies annihilation juggling Markov chain are obtained by replacing
pwpj, aq with qwpj, aq in (20). Note that we recover the annihilation juggling
model [1, Section 4.2] when we set T “ 2.

Example 11. The transition matrix of the multispecies annihilation Markov
chain on the state space St32 in the basis p11, 21, 31, 12, 22, 32, 13, 23, 33q reads
(31)̈

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

0 z1 0 z2 z1z3 0 0 pz2 ` z3qz3 0
0 z1 0 z2 z1z3 0 0 pz2 ` z3qz3 0
0 z1 0 z2 z1z3 0 0 pz2 ` z3qz3 0
0 0 z1 0 0 z1z3 z2 z2z3 z23
0 0 z1 0 0 z1z3 z2 z2z3 z23
0 0 z1 0 0 z1z3 z2 z2z3 z23

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The stationary distribution is given by pz21 , z21p1 ´ y1q, z1p1 ´ y1q
2, z1p1 ´

y1q, z
2
1z3p1´ y1q, z1z3p1´ y1q

2, y2p1´ y1q
2, z3y2p1´ y1q

2, z23p1´ y1q
2q, which

is the unique left eigenvector with eigenvalue 1.

Theorem 12. The stationary probability of w “ w1 ¨ ¨ ¨wn P St
T
n for the

annihilation model is given by

(32) πpwq “

˜

n
ź

i“1,wiăT

yEwpiq

¸

¨

˝

T
ź

`“2

#tm|wmě`u
ź

p“1

`

1´ yp
˘

˛

‚.

Moreover, no normalisation factor is needed as

(33)
ÿ

wPStTn

πpwq “ pz1 ` ¨ ¨ ¨ ` zn`1q
npT´1q “ 1.
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The stationary probabilities of enriched states are no longer monomials
in the zi’s, which suggest that a further enrichment is possible as already
observed for the case T “ 2 in Section 4.2 of [1].

Proof. The theorem is proved by enriching the chain as before. We again use
the state space STn for the enriched multispecies annihilation Markov chain,
as for the enriched multispecies add-drop Markov chain in Section 3.1. The
transitions are also defined in the same way. The transition probabilities are
now given by
(34)

P̃pw,vq,pw1,v1q “

#

qwpj, aq if pw1, v1q “ pw, vqaj for some j P A and a P Bjw´ ,
0 otherwise,

with q as defined in (30). We will now show that the stationary probability
of pw, vq P STn , w “ w1 ¨ ¨ ¨wn, v “ v1 ¨ ¨ ¨ vn is given by

(35) π̃pw, vq “
n
ź

i“1,wiăT

zvi

T
ź

`“2

#tm|wmě`u
ź

p“1

p1´ ypq.

Once we prove this, we will obtain a proof of (32) by lumping. To do so, we
have to check that π̃ satisfies

(36)
ÿ

pw,vqPST
n

rPpw,vq,pw1,v1qπ̃pw, vq “ π̃pw1, v1q.

Let pw1, v1q be a state in STn . We do not have a lot of choice in choosing
a predecessor pw, vq of pw1, v1q; the bumping sequence a, the type j of the
added ball, w2, . . . , wn and vi, i R A, where as before A is the set of values in
a, are uniquely determined (this works exactly as for the proof of Theorem
7). Let W “ jw2 ¨ ¨ ¨wn, and consider the quantities

C “
n
ź

i“1,w1iăT

zv1i ,

C 1 “

$

&

%

zJW pap2q,jq

ś

iPAzt1,ap2qu zv1
i´1

ś

iPAzt1,n`1u yEW piq
if j ă T ,

1 otherwise,

C2 “
ź

iPAzt1,n`1u
wiăT

yEW piq

ź

iRA
wiăT

zvi ,

D “
T
ź

`“2

#tm|w1mě`u
ź

p“1

p1´ ypq,

D1 “

j´1
ź

i“1

p1´ yJW p2,iqq,

D2 “
T
ź

`“2

#tmě2|wmě`u
ź

p“1

p1´ ypq,

(37)
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K “

T
ź

`“2

p1´ y#tmě2|wmě`u`1q `

T´1
ÿ

w1“1

yEwp1q

w1
ź

`“2

p1´ y#tmě2|wmě`u`1q.

First, we note that C 1C2 “ C. Recall that j “ T implies A “ t1, n ` 1u.
Secondly, we have D1D2 “ D, since JW p2, iq “ #tm ě 2|wm ą iu ` 1. For
all pw, vq such that P̃pw,vq,pw1,v1q ‰ 0, we have

(38) P̃pw,vq,pw1,v1q “ C 1D1,

where the C 1 follows from (16) and (4) and where we recall that the prob-
ability of failing to send a ball of type i for an initial state w is done with
probability 1 ´ yJwp2,iq. Note that the transfer probability does not depend
on the choice of pw, vq. Now we have

(39)
ÿ

pw,vq:pw1,v1q“pw,vqaj

π̃pw, vq “ C2D2K,

where the i “ 1 case has been removed from C2 and collected in K. Fur-
thermore, K can be rewritten as

(40) K “

T´1
ź

`“1

p1´ yJwp2,`qq `
T´1
ÿ

w1“1

yJwp2,w1q

w1´1
ź

`“1

p1´ yJwp2,`qq,

which can be easily seen to telescope to 1. The desired condition (36) follows.
�

3.3. Overwriting model. The aim is here to describe a multispecies gen-
eralisation of the annihilation model studied in [1] in which the ultrafast
convergence property holds, namely we want the stationary distribution to
be reached in a finite number of steps, independent of the starting distribu-
tion. Let P be the transition matrix of a Markov chain (which is assumed to
be irreducible and aperiodic). Saying that this Markov chain has the ultra-
fast convergence property is equivalent to saying that there exists an integer
m such that Pm is the matrix whose rows are copies of the left eigenvector of
P for the eigenvalue 1, or to saying that P has only one nonzero eigenvalue
(which is 1).

3.3.1. Model description. The state space StTn is, as described in Section 3, is
the set of words in t1, . . . , T un, and the transition probabilities are dictated
by the indeterminates z1, . . . , zn`1 satisfying z1 ` z2 ` ¨ ¨ ¨ ` zn`1 “ 1 as in
Section 3.2.

In the overwriting model, each integer gets a chance to overwrite an integer
larger than it. More formally, the transitions are described by the following
process. Initially, the first letter is erased, and everything is moved to the
left by 1 step. Now the juggler first tries to send a ball of type 1; she chooses
i P t1, n ` 1u with probability zi, and aims for the i’th available position,
meaning those positions which contain an integer greater than 1 (counting
from right as before). If i is greater than the number of available positions
for a 1 to land, the juggler simply fails to send a 1, otherwise the 1 lands
to some position, destroying the ball previously occupying it if it isn’t the
righmost position. She then tries to send a 2, which can only land in a
position higher than the 1 did (any available position if the 1 didn’t land),
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3146253 146253∗ 126243∗
11− y6

146253∗
2z5

126253∗
31− y3

126253∗
4

z2
51− y1

126243∗
6 1

1262436

(1− y6)(1− y3)(1− y1)z5z2

Figure 4. Computation of the transition probability from
3146253 to 1262436 in the overwriting multispecies Markov
chain on St67. We successively attempt to insert each number
1, . . . , 6 at an available position or discard it (the possible
choices are represented by arrows, and the chosen one is dis-
played as a thick red arrow together with its probability).

or fail to land. She then tries to send a 3, and so on. If, after trying to send
a ball of each type in t1, . . . , T ´1u, no ball landed to the rightmost position,
she puts a T in that position. Otherwise, the new state is reached as soon
as a ball is sent to the rightmost position.

For w P StTn , we define an overwriting sequence B “ ppb1, t1q, . . . , pbk, tkqq
for w as follows: 1 ă b1 ă b2 ă . . . ă bk “ n` 1, 1 ď t1 ă t2 ă . . . ă tk ď T ,
and for all i “ 1, . . . , k, ti ă wbi with, by convention, wn`1 “ `8. We
denote by Bw the set of overwriting sequences for w.

For w P StTn and B P Bw, the state in StTn obtained by applying the
overwriting sequence B to the word w, denoted wB, is given by

(41) wBi “

#

tj if i “ bj ´ 1 for some j,
wi`1 otherwise.

Note that the probability for the juggler to fail to send a ball of type ` during
the j’th part of the overwriting is 1´ yJwpbj´1`1,`q, with the convention that
b0 “ 1 and where J is as in (5). This returns 1 if a ball has already been
sent to the rightmost position. The probability for the juggler to succeed
in sending a ball of type tj to position bj ´ 1 during the j’th part of the
overwriting is zJwpbj ,tjq.

Example 13. In Figure 4, we describe the transition from the state 3146253
to the state 1262436 in the state space St67. The corresponding overwriting
sequence is given by pp3, 2q, p6, 4q, p8, 6qq and the probability of this transition
is p1´ y6qz5p1´ y3qz2p1´ y1q.

Given z1, . . . , zn`1 nonnegative real numbers summing to 1, we are now
able to define the transition probabilities for the overwriting multispecies
Markov chain: for w,w1 P StTn if there exists B P Bw such that w1 “ wB, the
transition probability from w to w1 reads

(42) Pw,w1 “
k
ź

j“1

´

tj´1
ź

`“tj´1`1

p1´ yJwpbj´1`1,`qq

¯

ź

j|tj‰T

zJwpbj ,tjq,

and it reads 0 otherwise.
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Example 14. The transition matrix of the overwriting Markov chain on the
state space St32 in the ordered basis p11, 21, 31, 12, 22, 32, 13, 23, 33q reads
(43)̈

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

z1 0 0 z1pz2 ` z3q 0 0 pz2 ` z3q
2 0 0

0 z1 0 z1z2 z1z3 0 z2pz2 ` z3q z3pz2 ` z3q 0
0 z1 0 z1z2 z1z3 0 z2pz2 ` z3q z3pz2 ` z3q 0
0 z1 0 z1z2 z1z3 0 z2pz2 ` z3q z3pz2 ` z3q 0
0 0 z1 z1z2 0 z1z3 z2pz2 ` z3q z2z3 z23
0 0 z1 z1z2 0 z1z3 z2pz2 ` z3q z2z3 z23
0 0 z1 z1z2 0 z1z3 z2pz2 ` z3q z2z3 z23

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The stationary distribution is given by the row vector pz21 , z21p1´ y1q, z1p1´
y1q

2, z1y2p1´y1q, z
2
1z3p1´y1q, z1z3p1´y1q

2, y2p1´y1q
2, z3y2p1´y1q

2, z23p1´
y1q

2q, which is the unique left eigenvector for the eigenvalue 1.

The stationary distribution of the overwriting chain does not seem to
have a simple formula in general, unlike the add-drop and annihilation mul-
tispecies variants. However, we do obtain an indirect formula using an en-
riched chain, which we state as Corollary 18 in Section 3.3.2. It turns out
that the occupation probability for the last site and the joint occupation dis-
tributions at the last two sites have particularly simple expressions, which is
what we state next.

Theorem 15. The stationary probability of having a j at the last site is
given by

(44) Ppwn “ jq “

#

z1p1´ z1q
j´1 if j ă T ,

p1´ z1q
T´1 if j “ T .

The joint probability of having an i at the pn´ 1q’th site and a j at the n’th
site is given by

(45) Ppwn´1 “ i, wn “ jq “ p1´ z1q
maxpi,jq´1p1´ y2q

minpi,jq´1ˆ
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

z1y2 if i ă j ă T ,

z21 if j ď i ă T ,

y2 if i ă j “ T ,

z1 if j ă i “ T ,

1 if i “ j “ T .

The proof is given in the following section, where we construct an enriched
chain and analysing the transitions therein.

3.3.2. Staircase tableaux enrichment. It is now natural to look at staircase
tableaux, as was done for the original juggling model in [7]. The state space
for the enriched version of the overwriting chain on StTn is the set of Young
tableaux of shape pn, n ´ 1, . . . , 2, 1q, with the following conditions on the
entries in cells.

(1) Entries belong to the set t1, . . . , T ´ 1u.
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(2) Entries appear in increasing order from left to right, and from bottom
to top (the diagrams are drawn in French notation).

(3) Empty cells are allowed.
This set of tableaux is denoted by T T

n . For V P T T
n , we will denote by V˚,k

the k’th column, from the left, of V (which has n` 1´ k cells).
The transitions of the enriched Markov chain are as follows. At each step,

the entries in the bottom row are deleted, all remaining entries are moved
one step down and one step right, and we add entries to the leftmost column
so that the tableaux conditions above still hold. More precisely, we proceed
in the following way. We first try to add a 1 by choosing a number k1 in
t1, . . . , n`1u and placing a 1 in the k1’th free position (from top to bottom;
a position is “free” if and only if there is no 1 in the same row). If k1 is
greater than the number of free positions, no 1 is added. We then similarly
try to add a 2 by choosing k2 in t1, . . . , n` 1u and placing a 2 in the k2’th
free position, a position being free if there is no 1 or 2 in the same row, and
having no 1 above it. We continue this way until all numbers between 1 and
T ´ 1 have been tried.

For V P T T
n , for i P t1, . . . , T u and k P t1, . . . , nu, we introduce the useful

notation

(46) CV pi, kq “

$

’

’

’

&

’

’

’

%

z1`#tcells above entry i in V˚,k, with no entry j ď i to the rightu

if i is in V˚,k,
1´ y#tcells in V˚,k with no entry j ď i in, to the right or on topu

otherwise.

Here we use the convention that y0 “ 0.

Example 16. Figure 5 gives the example of a state in T 4
4 , and all possible

states that it can transition to (with transition probabilities below the cor-
responding arrows). If we call V the topmost tableau, we have for example
CV p3, 1q “ 1´ y0 “ 1 and CV p2, 2q “ z2.

The probability of such a transition V ÑW is then given by

(47) PV,W “

$

’

&

’

%

0 if Wi,j ‰ Vi´1,j´1 for some 2 ď j ď i ď n,
T´1
ź

i“1

CW pi, 1q otherwise.

This chain lumps to the overwriting model by the following procedure. Let
the rows of the tableaux be numbered from bottom to top. For V a tableau
in T T

n , we define, for k P t1, . . . , nu, aV pkq as the leftmost entry on the
pn ´ k ` 1q’th row of V , and as T otherwise. The resulting lumped word
w P StTn is then given by

(48) w “ apV q :“ aV p1q ¨ ¨ ¨ aV pnq.

One can check that this procedure satisfies all the conditions for lumping;
see Remark 1. We are now in a position to prove Theorem 15.

Proof of Theorem 15. The probability of having a j in the last site of w P StTn
in the overwriting chain is the same as the probability of having a j in the
topmost cell of V P T T

n if j ă T , or of having nothing in this cell if j “ T .
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z1 z2z1

z2x2z1

z2x
2
2

z3z1

z3z2z1

z3z2x2

z3x3z1

z3x3x2

x4z1

x4z2z1

x4z2x2

x4x3z1

x4x3x2

1
3

32

1
1

3
32

2
1

3
32

3
1

3
32

1
1

3
32

1

1

1

1
3

32

1

1
3

32

1

1
3

32

2

2

3

3

1

1
3

32

1

1
3

32
2

1
3

32

1
3

32

1
3

32

1
3

32

1
3

32

2

2

2

3

3

Figure 5. A state in T 4
4 and all its successors. Here xi “ 1´ yi´1.

This means that any number i ă j failed to reach the first available cell,
which happens with probability 1´ z1 for each one of them, and if j ă T , j
reached that cell, which happens with probability z1, which proves the first
part of the theorem.

For the second part of the theorem, we will only treat the case i ă j ă T ,
since all the cases are proved in a similar fashion. The joint probability of
having a i in the pn ´ 1q’th site and a j in the n’th site of w P StTn is the
same as the probability of being in one of the two configurations of Figure
6.

j j
i i

> i or empty

Figure 6. The two possible cases for i ă j ă T in the proof
of the second part of Theorem 15.

The transition probability into the first configuration is

(49) p1´ z1q
i

l jh n

no k ď i in the topmost
cell of the 2nd column

ˆ p1´ y2q
i´1

l jh n

no k ă i in the top 2
cells of the 1st column

ˆ z2
ljhn

i is in the 2nd

cell of the 1st column

ˆ p1´ z1q
j´i´1

l jh n

no k between i` 1 and j ´ 1 in the
topmost cell of the 1st column

ˆ z1
ljhn

j is in the topmost
cell of the 1st column

“ p1´z1q
j´1p1´y2q

i´1z1z2,
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while the transition probability into the second configuration is

(50) p1´ z1q
i´1

l jh n

no k ă i in the topmost
cell of the 2nd column

ˆ z1
ljhn

i is in the topmost
cell of the 2nd column

ˆ p1´ y2q
i´1

l jh n

no k ă i in the top 2
cells of the 1st column

ˆ p1´ z1q
j´i

l jh n

no k between i and j ´ 1 in the
topmost cell of the 1st column

ˆ z1
ljhn

j is in the topmost
cell of the 1st column

“ p1´ z1q
j´1p1´ y2q

i´1z21 .

By summing (49) and (50), we get the desired probability. �

The idea of this proof also hints at why the stationary distribution of the
overwriting Markov chain is not of a simple form. However, we will show
that the stationary distribution of the enriched Markov chain on staircase
tableaux has a particularly nice structure.

Theorem 17. The stationary distribution of V P T T
n for the staircase

tableaux enriched Markov chain is given by

(51) ΠpV q “
n
ź

k“1

T´1
ź

i“1

CV pi, kq,

with the normalisation factor pz1 ` ¨ ¨ ¨ ` zn`1qnpT´1q “ 1.

We will prove this formula by considering an even larger enlargement of the
Markov chain on staircase tableaux, analogous to the doubly enriched chain
of the single species annihilation model in [1, Definition 4.14]. An immediate
corollary of this result is the formula for the stationary distribution of the
overwriting Markov chain.

Corollary 18. The stationary probability of w “ w1 ¨ ¨ ¨wn P St
T
n for the

overwriting model is given by

(52) πpwq “
ÿ

V PT T
n

apV q“w

ΠpV q,

where apV q is defined in (48).

3.3.3. The doubly enriched chain. In this section we will construct a general-
isation of the doubly enriched chain of the single species annihilation model
in [1, Definition 4.14], which was a Markov chain on words of length n. In
this case, the natural extension of this Markov chain is to matrices. The
state space T̃ T

n is the set of matrices with T ´ 1 rows and n columns with
entries in t1, . . . , n` 1u.

It is clear there are pn` 1qnpT´1q different states. As usual, given z1, . . . ,
zn`1 nonnegative real numbers summing to 1, the transitions are defined as
follows. For M P T̃ T

n , all transitions from M are obtained by deleting the
last column inM , shifting all the remaining columns to the right by one, and
adding an arbitrary column on the left. The probability of this transition
is given by the product of factors zi for each element i in the resulting first
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column. More precisely,

(53) P̃M,N “

$

’

’

’

’

&

’

’

’

’

%

T´1
ź

i“1

zNi,1 if Nk,l “Mk,l´1 for all k P t1, . . . , T ´ 1u

and all l P t2, . . . , nu,
0 otherwise.

Since this is a product of T ´ 1 independent copies of the single row Markov
chain, it is clear this Markov chain is recurrent. Further, the stationary
distribution is given, for M P T̃ T

n , by the product

(54) Π̃pMq “
T´1
ź

i“1

n
ź

j“1

zMi,j

with normalisation pz1 ` ¨ ¨ ¨ ` znqnpT´1q “ 1.

Remark 19. The dynamics of the doubly enriched chain guarantee that the
stationary distribution is reached after n steps (indeed, the first state has
been completely forgotten after n steps), which is the desired ultrafast con-
vergence property. Equivalently, n is a strong stationary time for this chain.

An immediate consequence of Remark 19 is a complete description of the
spectrum of the transition matrix, given by the following theorem.

Theorem 20. Let n, T P N, and let M be the transition matrix of the doubly
enriched chain on T̃ T

n . The eigenvalues for M are 1 with multiplicity 1 and
0 with multiplicity n´ 1.

Proof. As stated before, the stationary distribution is reached after n steps.
This means that Mn is the Matrix with all the rows being the left nor-
malised eigenvector for M (which represents the stationary distribution).
Thus, Mn`1 “Mn, and therefore Xn`1 ´Xn is a nullifying polynomial for
M . This shows that 1 is an eigenvalue of multiplicity 1 (we already knew that
its multiplicity was at least 1) and that 0 is the only other eigenvalue. �

The doubly enriched Markov chain on matrices described above lumps
onto the singly-enriched chain on staircase tableaux. Let M be in T̃ T

n . We
will construct a tableau T associated toM by starting with an empty tableau.
We then fill T according to the following pseudocode.
‚ for k decreasing from n down to 1:
‚ for i increasing from 1 to T ´ 1:
‚ if Mi,k is less than or equal to the number of available positions in

the k’th column of T :
‚ insert i in the Mi,k’th position from the top

‚ else:
‚ do not insert i.

We then set ApMq :“ T . One can check that this algorithm leads to an
actual lumping between these two Markov chains; see Remark 1.

Example 21. Figure 7 gives the example of a matrixM in T̃ 3
4 and the tableau

T in T 3
4 it lumps onto. This tableau T can then be lumped onto w “ 1243

in St34.
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3

2

1

4 3 2 1

5 53 2

1 114
3

Figure 7. A matrix in T̃ 3
4 and the tableau in T 3

4 that it
lumps to.

Remark 22. Since lumpings preserve the ultrafast convergence property, both
the chain on staircase tableaux on T T

n and the overwriting Markov chain on
StTn converge in n steps.

We now prove the formula for the stationary distribution of the Markov
chain on staircase tableaux.

Proof of Theorem 17. We have to check that, for each V P T T
n ,

(55)
ÿ

MPT T
n

MPA´1pV q

Π̃pMq “ ΠpV q.

To do so, let k P t1, . . . , nu and i P t1, . . . , T ´ 1u. If i appears in the k’th
column of V , then every M in T̃ T

n projecting to V must be such that Mi,k

is equal to the number of cells above entry i in V˚,k with no entry j ď i to
the right. Similarly if i does not appear in the k’th column of V , then Mi,k

must be greater than the number of cells in V˚,k with no entry j ď i in, to
the right or atop of them. In both cases, summing z` over all the possible
values ` of Mi,k gives us CV pi, kq, and thus proves the result. �

4. Several jugglers

We now consider a completely different generalisation of Warrington’s
model [13]. Instead of a multivariate or multispecies generalisation, we will
now consider that there are several jugglers, and that each one of them can
send the balls she catches to any other juggler. We model this situation as
follows. For r, c, ` nonnegative integers such that ` ď rc, we denote by Srˆc
the set of rectangular arrays with r rows and c columns, such that each cell
either is empty or contains a ball, and by Srˆc,` Ă Srˆc the subset of arrays
containing exactly ` balls. Each column represents the balls that are sent to
a specific juggler. For A and B two arrays in Srˆc, we denote A´ the array
obtained by removing all the balls in the lowest row, and moving all the
other balls down one row (hence the topmost row of A´ is always empty).
We write A Ă B if all the balls in A are also in B. For i between 1 and r, we
denote by Ai the number of balls in the i’th row (rows are numbered from
top to bottom).

The several jugglers Markov chain is the Markov chain on the state space
Srˆc,` whose transition probabilities read, for A,B P Srˆc,`,

(56) PA,B “

$

’

&

’

%

1
`

rc´``Ar

Ar

˘ if A´ Ă B,

0 otherwise.
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1

32 4 5

6
Figure 8. The several jugglers Markov chain on the state
space S2ˆ2,2.

Here, Ar is the number of balls in the lowest row of A, which is exactly
the number of balls the jugglers will have to send back. These Ar balls
are reinjected uniformly in the rc ´ ` ` Ar available positions, under the
constraint that no two balls go to the same position. Note that there are no
balls reinjected when Ar “ 0, and PA,A´ “ 1 in this case. The irreducibility
and aperiodicity of the several jugglers Markov chain are easy to check.

Example 23. The transition Matrix of the several jugglers Markov chain on
the state space S2ˆ2,2 in the basis ordered p1, 2, 3, 4, 5, 6q on Figure 8 reads

(57)

¨

˚

˚

˚

˚

˚

˚

˝

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 1

3 0 0
1
3

1
3 0 1

3 0 0
1
3 0 1

3 0 1
3 0

1
3 0 1

3 0 1
3 0

1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

.

Note that p6, 3, 3, 3, 3, 1q is a left eigenvector for the eigenvalue 1.

Again, we have an explicit expression for the stationary distribution of
this Markov chain.

Theorem 24. The stationary probability of A P Srˆc,` for the several jug-
glers Markov chain reads

(58) πpAq “
1

Zrˆc,`

r
ź

i“1

pci´AăiqAi

where Aăi “ A1 ` ¨ ¨ ¨ ` Ai´1 is the number of balls strictly above row i,
pxqn “ xpx´ 1q ¨ ¨ ¨ px´ n` 1q is the Pochhammer symbol and Zrˆc,` is the
normalisation factor.

Remark 25. We have not been able to find a simple expression for the nor-
malisation factor Zrˆc,`.
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Proof. We introduce an enriched chain as follows. A state in the enriched
chain is an pr`1qˆc array with ` arcs, each arc going between two cells that
are not in the same row. For each arc, we mark the top cell with a cross and
the bottom cell with a ball. Each cell can contain at most one cross and at
most one ball, but could have one ball and one cross belonging to different
arcs. The projection to Srˆc,` is obtained by simply removing the top row,
all arcs and crosses but leaving the balls in place. See Figure 9 for all the
states of the enriched chain projecting down to the rightmost state in Figure
8.

‚

‚

ˆ ˆ

‚

‚

ˆ ˆ

‚

‚ˆ

ˆ

‚

‚ˆ

ˆ

‚

‚̂

ˆ

‚

‚̂

ˆ

Figure 9. All the states in the enriched chain projecting to
the state in S2ˆ2,2 with both balls in the right column.

The transitions in the enriched chain are obtained by first moving all arcs,
balls and crosses down one row in the array. Secondly, if there were balls in
the bottom row, they and the corresponding arcs and crosses are removed.
The balls are reinjected uniformly into the array except for the top row and
under the condition that no two balls may be in the same cell, just like in
the several jugglers Markov chain. For each of these balls an arc is inserted
from the ball and up to a cross positioned uniformly in the top row under
the condition that no two crosses can be in the same cell. (Alternatively we
could define the transitions such that the new crosses in the top row appear
in the same columns as the removed balls.)

Now we note that if we run the enriched chain backwards, it will be an
identical chain with the roles of balls and crosses exchanged (turned upside
down). The number of balls in the bottom row in a state is equal to the
number of crosses in the top row for every state it may transition to. Also
the number of ways to inject balls is the same as the number of ways of
removing crosses. It follows that the number of transitions out of any state
is equal to the number of transitions into the same state. Thus the stationary
distribution is uniform for the enriched chain.

The uniformity of the enriched chain means that, to evaluate the station-
ary probability πpAq of a state of the several jugglers Markov chain, it suffices
to count the number of states in the enriched chain projecting to it. For each
ball we can place the cross in any position in a row above with the constraint
that no two crosses can be in the same cell. The number of possibilities can
be counted row by row: assuming that the crosses corresponding to the balls
strictly above row j have been chosen, there remains cj ´Aăj cells without
crosses that may be matched with the Aj balls in row j, hence there are
pcj ´AăjqAj possible choices for row j. �

Remark 26. J.S. Kim [10] has studied the model of a juggler with each site
being allowed to contain up to a certain number c ą 1 of balls. Kim’s model
can be obtained from the several jugglers Markov chain by lumping.
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5. Open Problems

Several questions remain open in the multispecies juggling context. We
have not found an expression for the normalisation factor for the juggling
chain with several jugglers. We have also not yet found a multiparameter
version for the latter model, as the possibility of catching more than one ball
at a time changes the behaviour quite drastically. A multispecies model with
several jugglers is one possible extension of our model. From a probabilistic
point of view, it would also be natural to look at the extension to infinite
models, such as a Markov chain on the state space Stn1,...,nT´1,8. This would
contain as special cases, the unbounded and infinite juggling models studied
in [1, Section 3].
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