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SUMMARY
Muscle contraction is a largely mechanical process taking place at the sub-cellular level. While
being an intrinsically active system the contractile apparatus also displays some intriguing passive
mechanical properties including negative stiffness and a fundamental nonequivalence of isometric and
isotonic loading protocols. We reveal the origin of this unusual behavior by analyzing a conceptual
model which represents a delicate generalization of the Huxley-Simmons model. Our analytically
explicit study sheds light on the crucial role of long-range interactions in this system. The model can
be easily adapted to a wide class of biological phenomena involving cooperative switching mediated
by effective backbones, from muscle power-stroke to gating, binding and folding.
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1 INTRODUCTION

In distributed biological systems collective effects are usually revealed through synchronized confor-
mational changes that can be broadly interpreted as folding-unfolding transitions. A prototypical
example of such transition can be found in muscle sarcomeres which are the elementary contrac-
tile units of skeletal muscles. A schematic representation of a sarcomere, shown in Fig. 1, contains
actin (thin) and myosin (thick) filaments cross-linked by myosin cross-bridges.

(a) (b)
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FIGURE 1: Schematic structure of the three layers of organization inside a sarcomere : (a) global architecture
with domineering parallel links ; (b) structure of an elementary contractile unit shown in more detail in Fig. 2 ;
(c) individual attached cross-bridge represented by a bistable element in series with a shear spring.

Active behavior of skeletal muscles is associated with time scales of about 30 ms which allow for the
metabolic fuel (ATP) to be delivered to the cross-bridges. At shorter times (∼1 ms) muscles exhibit
a nontrivial passive response : if a tetanized muscle is suddenly extended, it comes loose, and if it is
shortened, it tightens up with apparently no involvement of ATP. This behavior was first revealed in
the study of Huxley and Simmons [1] who attributed the observed quick force recovery (relaxation)
to the conformational change (power-stroke) taking place in myosin cross-bridges that are bound
to actin filaments. The authors proposed a chemo-mechanical model of a sarcomere where the pre-
and post-power-stroke conformations of the myosin heads are represented as discrete chemical states
(spin model) and considered only isometric loading (hard device). While the Huxley-Simmons model
serves as a paradigm for many other similar models in biophysics involving elastically interacting
switching units [2, 3], it was not systematically studied in isotonic conditions and, in particular, it
has not been confronted with the retarded muscle response observed in the load clamp protocols (soft
device setting) [4].



To clarify the origin of this retardation, we systematically compare in this communication the mecha-
nical response of the Huxley-Simmons model in soft and hard device ensembles. We show that already
at zero temperature the behavior of the mechanical system in both protocols is different and we argue
that this difference is due to the long-range interactions that are present only in the soft device setting
[5]. At finite temperature the response in a hard device is characterized by uncorrelated fluctuations
of individual cross-bridges and leads to negative stiffness as in the original Huxley-Simmons model.
In a soft device the response is collective manifesting itself through synchronized oscillations of all
attached cross-bridges. We prove that in this case the equilibrium stiffness is necessarily positive.

2 THE HUXLEY AND SIMMONS MODEL
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FIGURE 2: A reformulation of the Huxley-Simmons model as a parallel bundle of bistable cross-bridges. (a)
Energy landscape of an individual crosslinker ; (b) N crosslinkers loaded in a soft device.

We represent the Huxley-Simmons model in a non-orthodox way as a cluster of N bistable units
connecting two rigid backbones, see Fig. 2. Each cross-bridge is described by a sharply welled bi-
stable potential so that the configurational spin variable x can take only two values x = 0 and x = −1.
With the unfolded (pre-power-stroke) state we associate the energy level v0 while the folded (post-
power-stroke) configuration is considered as a zero energy state. Each bi-stable element is connected
to its own series spring with stiffness k = 1. We can write the dimensionless energy of the system
(per cross-bridge) in the form

v(x; z) =
1

N

N∑
i=1

[
(1 + xi) v0 +

1

2
(z − xi)2

]
. (1)

In the hard device case each cross-bridge is exposed to the same total elongation z and thus the
individual units are independent. In the soft device case, where the control parameter is the total
tension T , the energy per cross-bridge is

w(x, z; t) = v(x, z)− tz = 1

N

N∑
i=1

[
(1 + xi) v0 +

1

2
(z − xi)2 − tz

]
, (2)

where t = T/N is the force per cross-bridge. Now there is a mean field interaction among individual
cross-bridges.

3 RESULTS

Athermal model. Since each of the internal degrees of freedom xi, for 1 ≤ i ≤ N , can take two dis-
crete values, an equilibrium state is characterized by the distribution of the N cross-bridges between
these two configurations. Due to the permutational invariance, each equilibrium state is fully charac-
terized by a discrete parameter p representing the fraction of cross-bridges in the post-power-stroke
configuration (xi = −1). At a given value of p, the energies (per crosslinker) of the marginal states
are equal to

v̂(p; z) = p
1

2
(z + 1)2 + (1− p)

(1
2
z2 + v0

)
, (3)

ŵ(p; t) = −1

2
t2 + pt+

1

2
p(1− p) + (1− p)v0, (4)



in hard and soft device, respectively. The corresponding tension-elongation curves t = z+p are shown
for both ensembles by the gray lines in Fig. 3(a). Since we have ∂2v̂

∂p2
= 0 and ∂2ŵ

∂p2
< 0, the global

minimum of the energy always corresponds to one of the pure states, p = 0 or p = 1 with a sharp
transition occurring at z = 0 in a hard device and t = 1 in a soft device, see bold lines in Fig. 3(a).
Hence, while the tension-elongation relation corresponding to the global minimum is characterized
by a plateau with zero stiffness in a soft device, the hard device transition shows extreme negative
stiffness. This difference which persists in the continuum limit is the signature of the fundamental
non-equivalence between the two protocols.

Notice also that the energy (3) is the combination of two limiting configurations, the first fully in
pre-power-stroke (p = 0) and the other fully in post-power-stroke (p = 1). The absence of a mixing
energy is a sign that the two coexisting populations of cross-bridges do not interact. In a soft device,
the nontrivial coupling term p(1 − p) describes the energy of mixing, see (4). The presence of this
term is a signature of a mean-field interaction among individual crosslinkers. This interaction has
a simple physical meaning : if one element changes configuration, its contribution to the common
tension changes and the other elements must adjust to maintain the force balance. As a result, the
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FIGURE 3: Huxley-Simmons model at zero temperature and N = 10. (a) Gray lines : tension-elongation
relations corresponding to p = 0, 0.1, . . . , 1 ; Bold lines : the global minimum of the energy ; (b,c) Internal
energy landscape corresponding to various paths shown by dashed lines in (a).

energies of the mixed states are higher than the energies of the homogenous states and the transition
from one pure configuration to the other requires crossing a macroscopic energy barrier. In a hard
device this barrier is absent, see Fig. 3 (b) and (c). To summarize, the difference between the hard and
the soft device behaviors manifests itself already in the purely mechanical case.

Thermal equilibrium. At finite temperature the equilibrium behavior is found by computing statistical
sum. One can show, that in thermodynamic limit the free energies in hard and soft device can be
written as [4]

f(p; z, β) = v̂(p, z)− s(p)/β, (5)

g(p; t, β) = ŵ(p, t)− s(p)/β (6)

where v̂ and ŵ are given by (3) and (4), respectively, and β is the inverse temperature. The term
−s(p) = [p log(p) + (1 − p) log(1 − p)] is a convex function of p describing ideal mixing. Since
v̂ is convex in p the free energy f always has a single minimum representing a disordered temporal
microstructure of pre- and post-power-stroke cross-bridges. In a soft device, the functionw is concave
in p and it favors homogenous states. Therefore the system in a soft device can undergo an order-
disorder phase transition. One can show that the critical temperature is βc = 4. At higher temperatures
(β < 4) the entropic term dominates and the system is characterized by incoherent fluctuations (see
B in Fig. 4 (a)) like in a hard device. Instead, at lower temperatures (β > 4) the mechanical energy
dominates and the power-stroke is completely synchronized so that all cross-bridges are either in the
pre-power-stroke state (p ≈ 0) or in the post-power-stroke state (p ≈ 1), see A and C in Fig. 4.
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FIGURE 4: Huxley-Simmons model at finite temperatures. (a) Bifurcation diagram showing the location of the
minima of g as function of β. The inserts show typical energy landscape below and above the critical point. A,
B, C, internal configuration corresponding to the critical points of the free energy. (b) Stochastic trajectories of
p for t = 1 at β = 2, 4 and 5. (c) Stress-strain relations in hard and soft devices for β = 2, 4 and 5.

This phase transition has a significant impact on kinetics, see Fig. 4 (b). At low temperatures, the
system shows fast collective hoping (temporal microstructure) between the two long-living ordered
configurations which can be regarded as quasi-stationary states. At large temperatures the phase tra-
jectory remains localized around the disordered state. In thermal equilibrium, the tension-elongation
relations can be written in the form t = z + 〈p〉 where the average 〈p〉 is the minimizer of the free
energy (in the thermodynamic limit). One can show that in a hard device the stiffness ∂t

∂z is always
positive if β < 4 and becomes negative in a finite interval of z if β > 4 while the stiffness in a soft
device is always positive, see Fig. 4(c). Hence we recover the ensemble non-equivalence which was
already present at zero temperature.

4 CONCLUSION

We have shown that the Huxley-Simmons models exhibits different mechanical responses in hard and
soft device loading protocols. The reason is that long-range interactions in the soft device create strong
mechanical feedback forcing cross-bridges to perform in a synchronized manner. As the collective
conformational change requires crossing a high energy barrier, the system may remain trapped in a
quasi-stationary state which is a possible explanation of the retarded response of skeletal muscles
observed in a force clamp protocol.
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