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IFN-� Polymorphisms (IFN-� �2109 and IFN-� �3810) Are
Associated with Severe Hepatic Fibrosis in Human Hepatic
Schistosomiasis (Schistosoma mansoni)1

Christophe Chevillard,2,3* Carole Eboumbou Moukoko,2* Nasr-Eldin M. A. Elwali, †

Jay H. Bream,4‡ Bourema Kouriba,* Laurent Argiro,* Siddig Rahoud, † Adil Mergani, †

Sandrine Henri,* Jean Gaudart,* Qurashi Mohamed-Ali,§ Howard A. Young,‡ and
Alain J. Dessein*

Schistosome infection is a major public health concern affecting millions of people living in tropical regions of Africa, Asia, and
South America. Schistosomes cause mild clinical symptoms in most subjects, whereas a small proportion of individuals presents
severe clinical disease (as periportal fibrosis (PPF)) that may lead to death. Severe PPF results from an abnormal deposition of
extracellular matrix proteins in the periportal spaces due to a chronic inflammation triggered by eggs and schistosome Ags.
Extracellular matrix protein production is regulated by a number of cytokines, including IFN- �. We have now screened putative
polymorphic sites within this gene in a population living in an endemic area forSchistosoma mansoni. Two polymorphisms located
in the third intron of the IFN- � gene are associated with PPF. The IFN-� �2109 A/G polymorphism is associated with a higher
risk for developing PPF, whereas the IFN-� �3810 G/A polymorphism is associated with less PPF. The polymorphisms result in
changes in nuclear protein interactions with the intronic regions of the gene, suggesting that they may modify IFN-� mRNA
expression. These results are consistent with the results of previous studies. Indeed, PPF is controlled by a major locus located on
chromosome 6q22-q23, closely linked to the gene encoding the�-chain of the IFN-� receptor, and low IFN-� producers have been
shown to have an increased risk of severe PPF. Together, these observations support the view that IFN-� expression and subse-
quent signal transduction play a critical role in the control of PPF in human hepatic schistosome infection (S. mansoni). The
Journal of Immunology, 2003, 171: 5596–5601.

Schistosomiasis is a worldwide public health problem. Mil-
lions of people in subtropical countries are affected, and it
is estimated that 50,000–100,000 die annually (1). In

Schistosoma mansoni infection, some eggs, trapped in hepatic si-
nusoids, induce an immune reaction that prevents toxic substances
from diffusing from the eggs into the surrounding hepatic tissue

(2–5). Egg-derived products and mediators released at the site of
the inflammation stimulate the differentiation of stellate cells into
myofibroblasts. Fibroblasts secrete extracellular matrix proteins
(ECMP)5 that deposit in the periportal space (6). In most infected
subjects living in endemic areas, ECMP accumulation is well con-
trolled, and these individuals develop minor pathological manifes-
tations. However, in 5–10% ofS. mansoni-infected subjects,
ECMP accumulate in the portal space due to imbalance between
fibrogenesis and fibrolysis, leading to extended periportal fibrosis
(PPF), also called Symmers’ pipestem fibrosis. PPF is a major
cause of portal hypertension and its attendant sequelae, which in-
clude varices and abdominal ascites. Subjects with advanced PPF
may die of hematemesis, coinfection, or heart failure (7, 8).

Various explanations have been put forward to explain the het-
erogeneous distribution of severe disease cases in endemic popu-
lations, including heavy infection, gender, and age (9–11). Our
laboratory, in collaboration with colleagues of the University of
Gezira, have analyzed the factors that could explain the develop-
ment of PPF in a Sudanese population located in the highlyS.
mansoni endemic area of Gezira. This study demonstrated that the
genetic makeup of the host plays an important role in susceptibility
to PPF, and a major susceptibility gene has been mapped on chro-
mosome 6 (6q22-q23) near the gene encoding the�-chain of the

*Immunologie et Ge´nétique des Maladies Parasitaires, Laboratoire de Parasitologie-
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IFN-� receptor (12). Furthermore, analysis of the immune re-
sponse of the subjects with severe PPF has demonstrated an asso-
ciation of advanced PPF with a reduction in IFN-� production
(13). Cytokines produced by egg-stimulated blood mononuclear
cells from subjects with no or mild fibrosis and subjects with se-
vere PPF were measured. Multivariate analysis of cytokine levels
showed that high IFN-� levels were associated with a marked re-
duction of the risk of fibrosis. These observations are supported by
various studies that demonstrate that IFN-� is a key antifibrogenic
and profibrolytic cytokine. Indeed, IFN-� inhibits stellate cell dif-
ferentiation and collagen production by myofibroblasts. Moreover,
IFN-� stimulates ECMP degradation by increasing tissue metal-
loproteases (TMP) and by inhibiting tissue inhibitors of metallo-
proteases (TIMP) (14–18). It was shown on mouse, in an in vivo
model (liver injury induced by carbon tetrachloride), that IFN-�
inhibited lipocyte activation of liver injury, reduced collagen I
mRNA. This results in an overall decrease in hepatic fibrosis (14).
Jimenez et al. (15) had shown, in vitro, that IFN-� and IFN-�
inhibit collagen synthesis by human diploid fibroblasts mainly by
decreasing collagen production rather than by impairment of se-
cretion or increased extracellular degradation of the newly synthe-
sized molecules. Moreover, in confluent human fibroblast micro-
culture experiments, it was shown that IFN inhibit collagen
production (16). Mallat et al. (17) had also shown that IFN-� has
a significant effect (inhibition) on newly synthesized collagen se-
cretion by cultured Ito cells. Finally, Tamai et al. (18) had shown
that IFN-� coordinately up-regulates matrix metalloproteinase
(MMP)-1 and MMP-3 gene expression in cultured keratinocytes.
In contrast, it has no effect on TIMP-1 gene expression. These
experiments suggest that IFN-� enhances MMP gene expression at
the posttranscriptional level. Thus, the altered MMP expression by
IFN-� without concomitant effect on TIMP gene expression po-
tentially leads to imbalance between these proteases and their in-
hibitors, and enhanced proteolytic activity.

These results led us to test whether polymorphisms in the IFN-�
locus could alter the susceptibility to PPF. The results reported in
this work show that two polymorphisms located in the IFN-� gene
are associated with PPF. These polymorphisms are shown to mod-
ify the binding of NFs to the IFN-� genomic DNA, suggesting that
they may modify the level of expression of this gene.

Materials and Methods
Study population

This study was performed on the population of two villages (Taweela/
Umzukra) of the Gezira area, a region endemic for S. mansoni (Sudan). The
entire population of the first village (Taweela: n � 770) and one-third of
the population of the second village (Umzukra: n � 700) were studied.
Pedigrees were drawn for both populations.

Ultrasound analysis

PPF was studied by ultrasound (portable Aloka SSD 500 Echo camera and
3.5-MHz convex probe). Liver size, peripheral portal branches (PPB), de-
gree of PPF, thickness of PPB walls, spleen size, and splenic vein diameter
were assessed, as previously described (19, 20). The disease was graded, as
previously described (F0, FI, FII, and FIII). Briefly, grade 0 (F0) corre-
sponds to normal liver with no thickening of the PPB wall and PPB di-
ameters 2–3 mm. Grade I (FI) indicates a pattern of small stretches of
fibrosis around secondary portal branches and PPB diameters 4 mm. FII
still shows a patchy fibrosis, but a continuous fibrosis affects most second-
order portal branches. PPB appears as long segments of fibrosis; PPB di-
ameter is 5–6 mm. FIII shows a thickening of the walls of most PPBs;
some branches are occluded, and long segment of fibrosis reaches the sur-
face of the liver.

Ultrasound analysis is a valuable and noninvasive tool that allows as-
sessment of liver size, PPB, the degree of PPF, thickness of PPB walls,
spleen size, and splenic vein diameter. Portal hypertension was indicated
by abnormal portal vein or splenic vein diameter (21, 22).

Subgroup design

Only unrelated subjects from these two villages were included in this study.
When several unrelated individuals were present in a pedigree, the oldest
subjects were selected because the risk of PPF increases markedly with age
(12–20). These criteria allowed the selection of 105 unrelated individuals
among those who volunteered to give blood. The selected subjects were
classified under three subgroups. Subgroup A is including subjects with
either no or mild or advanced fibrosis. Subgroup B is including subjects
with either no or mild fibrosis. The final subgroup (C) is including patients
with severe PPF.

Blood samples

A total of 5–15 ml of blood was collected on citrate as anticoagulant and
kept at �20°C until DNA was extracted using the standard salting-out
method (23).

Mutation detection

Polymorphism detection was conducted either by single-strand conforma-
tional polymorphism (24) or by digestion of the PCR product with restric-
tion enzymes (25, 26). Briefly, for single-stranded conformational poly-
morphism analysis, 20 �l of PCR product was mixed with 20 �l of 0.2 N
NaOH solution and denatured at 95°C for 5 min. A total of 20 �l of loading
buffer was added to the denatured products before electrophoresis on mu-
tation detection electrophoresis gel (0.5�) in Trizma base boric acid EDTA
1� at 7 mA (constant amperage) for 16 h at 4°C or room temperature, after
which the gel was stained for 10 min in ethidium bromide solution (1
�g/ml). The analysis was performed at 4°C and at room temperature to
increase the detection power of the analysis.

Some polymorphisms are creating or destroying restriction sites (25,
26). Some genotyping was done by restriction analysis. Briefly, 5 �l of
PCR product was digested by specific restriction enzymes, as indicated
previously (25, 26), under the conditions described by the manufacturer
(New England Biolabs, Beverly, MA).

Statistical analysis

Statistical analysis (�2 or Fisher’s tests) using SPSS software (Chicago, IL)
was used to compare the study groups (subgroup A vs subgroup C, or sub-
group B vs subgroup C). Linkage disequilibrium analysis was performed on
the genepop website (http://wbiomed.curtin.edu.au/genepop/index.html).

Nuclear extract preparation

Nuclear extracts were prepared from PHA-stimulated fresh human periph-
eral blood T cells, as described previously, for 3 days, washed under acid
conditions, and cultured in 10% RPMI 1640 for 2 days without PHA (27).
Then cells were left unstimulated or T cells were stimulated with 10 ng/ml
PMA � 1 �g/ml ionomycin (I) for 30 min (see Fig. 1). Cell pellets were
resuspended in lysis buffer (50 mM KCl, 25 mM HEPES, pH 7.8, 0.5%
Nonidet P-40, 1 mM PMSF, 10 �g/ml leupeptin, 20 �g/ml aprotinin, 100
mM DTT) and subsequently incubated on ice for 5 min. Nuclei were col-
lected by centrifugation at 2,000 rpm; the supernatant was harvested as the
cytoplasmic protein fraction. Nuclei were washed in buffer A without Non-
idet P-40 and harvested at 2,000 rpm. Nuclear pellets were resuspended in
extraction buffer (500 mM KCl, 25 mM HEPES, pH 7.8, 10% glycerol, 1
mM PMSF, 10 �g/ml leupeptin, 20 �g/ml aprotinin, 100 mM DTT), frozen
in dry ice, thawed slowly on ice, and finally centrifuged at 14,000 rpm for
10 min. The supernatant was harvested, and nuclear proteins were quan-
tified with the bicinchoninic acid protein assay reagent (Pierce,
Rockford, IL).

EMSA

Complementary single-stranded oligonucleotides were commercially syn-
thesized to span �10 bp on either side of the variant nucleotide, as follows:
IFN-� �2109F, 5�-TGA GGA AGA AGC (A/G)GG GAG TAC TG-3�;
IFN-� �2109R, 5�-CAG TAC TCC C(T/C)G CTT CTTCCT-3�; IFN-�
�3810F, 5�-TGA TGC ATA CAG (G/A)AA AGA CTG AA-3�; IFN-�
�3810F, 5�-TTC AGT CTT T(C/T)C TGT ATG CAT-3�.

Complementary strands were annealed by combining 2 �g of each oli-
gonucleotide and 6 �l of 10� annealing buffer (500 mM Tris, 100 mM
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MgCl2, and 50 mM DTT) in a 60 �l reaction, placing in a boiling water
bath for 5 min, and allowing to cool to room temperature. Then, 2 �l of the
double-stranded oligonucleotide probes was labeled with [32P]dCTP. The
DNA-protein-binding reaction was conducted in a 20 �l reaction mixture
consisting of 7 �g of nuclear protein extract from each cell condition, 1 �l
of 1 mg poly(dI-dC) (Sigma-Aldrich, St. Louis, MO), 4 �l of 5� binding
buffer (60 mM HEPES, 7.5 mM MgCl2, 300 mM KCl, 1 mM ethylenedi-
amine tetra-acetic acid, 2.5 mM DTT, 50% glycerol, and 4-(2-aminoethyl)-
benzenesulfonyl fluoride hydrochloride), and 1.5 � 104 cpm of 32P-labeled
oligonucleotide probe (28). The DNA-protein-binding reaction was incu-
bated at room temperature for 20 min, then loaded on a 6% nondenaturing
polyacrylamide gel, and run for 2 h at 140 V.

Results
IFN-� single nucleotide polymorphism analysis

A thorough search of the entire human IFN-� gene for polymor-
phisms identified five single nucleotide polymorphisms (SNPs)
(25, 26). Two SNPs were located within the promoter (IFN-�
�183 and IFN-� �155) (25). Two additional single nucleotide
substitutions were identified in intron 3 (IFN-� �2109 and IFN-�
�3810), and a single substitution was found in the 3� untranslated
region (IFN-� �5134) (26). The frequency of these polymorphisms in
each clinical fibrosis group (F0, FI, FII, or FIII) is shown in Table I.

Distribution of genotypes in study groups

One hundred and five unrelated subjects were studied in this study,
as follows: 32 subjects had no fibrosis (F0), 24 had mild fibrosis
(FI), 20 subjects had advanced fibrosis (FII), and 49 individuals
displayed severe (FIII) fibrosis. Portal hypertension was observed
in one-third of FII subjects and in all FIII subjects. For statistical
analysis, three subgroups were designed: subgroup A, subjects
with either F0, FI, or FII fibrosis; subgroup B, subjects with either
F0 or FI fibrosis; and finally, subgroup C, subjects with severe
(FIII) fibrosis. Statistical analysis of the frequencies of the various
polymorphisms in subgroup A showed that these polymorphisms
were in Hardy-Weinberg equilibrium (�2 � 5.99). The frequency
for IFN-� polymorphisms in subgroups A and C is indicated in
Table II.

IFN-� �2109 A/G and �3810 G/A polymorphisms are
associated with severe fibrosis

No statistically significant difference in genotype distribution, be-
tween the two clinical groups A and C, was observed for IFN-�

�183, �155, and �5134 polymorphisms. Fisher’s exact test, con-
ducted with SPSS software, gave the following p values: 0.32
(IFN-� �183), 0.27 (IFN-� �155), and 1 (IFN-� �5134)
polymorphisms.

However, significant associations were detected among IFN-�
�2109 A ( p � 0.035), IFN-� �3810 G ( p � 0.035), and FIII
(Table II). These two polymorphisms are not in linkage disequi-
librium ( p � 0.246). The frequency of IFN-� �2109 A/A geno-
type was higher (78.9 vs 58.6%) in subgroup A than in subjects
with severe fibrosis (FIII; subgroup C). The IFN-� �2109 G allele
was associated with a higher risk of PPF (odd ratio (OR) � 2.6)
(confidence interval (CI): 0.15–0.95). Thus, subjects carrying the
IFN-� �2109 A/G genotype have a risk of severe fibrosis that is
on average 2.6 times higher than subjects with the IFN-� �2109
G/G genotype. The frequency of the IFN-� �3810 G/G genotype
was lower (82.2 vs 100%) in subgroup A than in subjects with
severe fibrosis (FIII; subgroup C). The IFN-� �3810 A allele was
associated with a reduced risk of PPF. The number of subjects
exhibiting this allele was too small to estimate an OR.

As some FII subjects may progress to FIII, the analysis was
repeated comparing FIII (subgroup C) with F0 � FI subjects (sub-
group B). The result of this analysis supported the association of
these IFN-� polymorphisms with severe fibrosis (IFN-� �2109,
p � 0.05, OR � 0.39, CI � 0.15–1.03; IFN-� �3810, p � 0.09).

Mutations IFN-� �2109 and IFN-� �3810 create new NF/DNA
complexes

Polymorphisms are located in the third intron of the IFN-� gene,
a region that has been shown to be involved in transcriptional
regulation (29). The transcription factor database, TRANSFAC
(30), was used to analyze these polymorphic loci in the context of
their adjacent nucleotides for potential differences in sequences
similarity to known transcription factor-binding sites. Although
computer analysis comparing wild-type and variant sequences in
intron 3 (�2109 A/G) did not identify known/consensus protein-
binding sites, the IFN-� �3810 locus is similar to the human con-
sensus CD28 RE/NF-�B binding site. EMSA, using nuclear ex-
tracts from PHA-blasted or unblasted human peripheral T cells,
was performed to determine whether DNA-protein interactions
were altered by the polymorphisms at either site. The �2109 G

Table I. Frequency of IFN-� polymorphisms in the population of Taweela Umzukra and in the various fibrosis grade groupsa

Polymorphisms Genotypes
Whole

Population

Clinical Groups

F0 FI FII FIII

IFN-� �183 G/G 99/104b (95.2)c 31/32 (96.9) 23/24 (95.8) 17/20 (85) 28/28 (100)
G/T 5/104 (4.8) 1/32 (3.1) 1/24 (4.2) 3/20 (15) 0/28 (0)
T/T 0/104 (0) 3/32 (0) 0/24 (0) 0/20 (0) 0/28 (0)

IFN-� �155 A/A 103/104 (99) 32/32 (100) 24/24 (100) 20/20 (100) 27/28 (96.4)
A/G 1/104 (1) 0/32 (0) 0/24 (0) 0/20 (0) 1/28 (3.6)
G/G 0/104 (0) 0/32 (0) 0/24 (0) 0/20 (0) 0/28 (0)

IFN-� �2109 A/A 77/105 (73.3) 24/32 (75) 20/24 (83.3) 16/20 (80) 17/29 (58.6)
A/G 28/105 (26.7) 8/32 (25) 4/24 (16.7) 4/20 (20) 12/29 (41.4)
G/G 0/105 (0) 0/32 (0) 0/24 (0) 0/20 (0) 0/29 (0)

IFN-� �3810 G/G 85/98 (86.8) 25/30 (83.3) 22/24 (91.7) 13/19 (68.4) 25/25 (100)
G/A 12/98 (12.2) 4/30 (23.3) 2/24 (8.3) 6/19 (31.6) 0/25 (0)
A/A 1/98 (1) 1/30 (3.4) 0/24 (0) 0/19 (0) 0/25 (0)

IFN-� �5134 G/G 94/98 (95.9) 29/32 (90.6) 24/24 (100) 19/19 (100) 22/23 (95.7)
G/A 4/98 (4.1) 3/32 (9.4) 0/24 (0) 0/19 (0) 1/23 (4.3)
A/A 0/100 (0) 0/32 (0) 0/24 (0) 0/19 (0) 0/23 (0)

a The study group is described in Materials and Methods. The genotype was determined as described (see Refs. 15, 16).
b Number of subjects with the indicated genotype/number of subjects genotyped.
c Percentage of subjects with the indicated genotype.

5598 IFN-� POLYMORPHISMS IN PPF CAUSED BY S. mansoni

 by guest on O
ctober 5, 2015

http://w
w

w
.jim

m
unol.org/

D
ow

nloaded from
 

http://www.jimmunol.org/


allele formed two DNA-protein complexes (complexes 1 and 2)
(Fig. 1A). Complex 1 is common to both �2109 A and �2109 G
alleles (Fig. 1A), whereas complex 2 was only formed by the
�2109 G allele (Fig. 1A). Analysis of the �3810 G/A polymor-
phism revealed that the A-bearing allele formed a specific complex
(complex 3; Fig. 1B) that is not shared with the �3810 G allele.

Discussion
In regions endemic for S. mansoni, 5–10% of infected subjects
develop a severe hepatic disease characterized by PPF and portal
hypertension. Previous studies in humans have suggested that dif-
ference in IFN-� production could account, at least in part, for the
different rate of fibrosis progression in populations in endemic ar-
eas (13). This led us to investigate whether any SNPs in the IFN-�
gene could be associated with severe fibrosis. We have shown in
this work that two polymorphisms (IFN-� �2109 A/G and IFN-�
�3810 A/G) are associated with severe PPF: the �2109 G allele

was associated with a higher risk of PPF, whereas the �3810 A
allele was associated with protection against PPF.

Putative sequence changes in noncoding regions of a gene may
influence gene expression due to the creation or alteration of DNA-
binding sites for transcription factors. Several reports have sug-
gested that specific regulatory elements located in the first, second,
and third intron of the IFN-� gene bind nuclear proteins that may
have a role in the control of IFN-� transcription (29, 31, 32).
EMSA comparing wild-type (�2109 A and �3810 G) and variant
sequences (�2109 G and �3810 A) in the third intron has detected
differences in DNA-protein interaction at both sites using nuclear
extracts from PHA-blasted human peripheral T cells (Fig. 1). Two
protein complexes (complexes 1 and 2) were detected that bind to
DNA containing the �2109 G allele, whereas DNA containing the
�2109 A formed only one complex (complex 1). This finding
suggests that this mutation might affect the gene transcription. Ad-
ditional experiments, presently in progress, are being performed to

FIGURE 1. EMSA analysis of the �2109 A/G
and �3810 G/A polymorphisms. This analysis com-
pared DNA-nuclear protein interactions with oligo-
nucleotides from either the common IFN-� intron 3
(�2109 A and �3810 G) or the variants (�2109 G
and �3810 A). Both variants formed specific com-
plexes with nuclear extracts from stimulated
(PMA/I) or unstimulated (NS) human peripheral T
cells.

Table II. IFN-� genotype distribution and genotype frequencies in clinical groupsa

Polymorphisms Genotypes

Clinical Groups

p Value
F0, FI, and FII
(subgroup A)

FIII
(subgroup C)

IFN-� �183 G/G 71/76b (93.4)c 28/28 (100) 0.320
Hardy-Weinberg test (�2) G/T or T/T 5/76 (6.6) 0/28 (0)

0.15
IFN-� �155 A/A 76/76 (100) 27/28 (96.4) 0.269
Hardy-Weinberg test (�2) A/G or G/G 0/76 (0) 1/28 (3.6)

0
IFN-� �2109 A/A 60/76 (78.9) 17/29 (58.6) 0.035
Hardy-Weinberg test (�2) A/G or G/G 16/76 (21.1) 12/29 (41.4)

1.19
IFN-� �3810 G/G 60/73 (82.2) 25/25 (100) 0.035
Hardy-Weinberg test (�2) G/A or A/A 13/73 (17.8) 0/25 (0)

0.20
IFN-� �5134 G/G 72/75 (96) 22/23 (95.7) 1
Hardy-Weinberg test (�2) G/A or A/A 3/75 (4) 1/23 (4.3)

0.031

a The genotype distributions in the F0-I-II clinical group (subgroup A) of the five polymorphisms did not deviate from the Hardy-Weinberg equilibrium. Fisher’s exact tests
were carried out with SPSS software, to compare the two study groups (subgroup A vs subgroup C).

b Number of subjects with the indicated genotype/number of subjects genotyped.
c Percentage of subjects with the indicated genotype.
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check this question. Nevertheless, the possibility that another poly-
morphism, undetected in this study, is in linkage disequilibrium
with the present polymorphism cannot be totally excluded.

The �3810 A allele (AGAAAAGA) has sequence homology
with the CD28-RE (AAAGAAATTCC) that binds NF-AT (bind-
ing site GGAAAA) and NF-�B proteins (binding site GGGAN-
TYYCC) (29, 33); the bold underlined A is the mutated base (poly-
morphism). The cooperation between NF-AT and NF-�B proteins
induces maximal transcription of the IFN-� gene, resulting from a
synergistic activity between the gene promoter and intronic en-
hancers (26). Therefore, the allelic variant (�3810 A) may result
in more robust transcription of the IFN-� gene than seen with the
�3810 G allele.

This report of an association between genetic polymorphisms
and severe PPF is consistent with the results of previous studies.
These studies showed that PPF development is associated with a
region located on chromosome 6q22-q23, closely linked to the
gene encoding the �-chain of the IFN-� receptor (12, 20). More-
over, low IFN-� producers have been shown to have an increased
risk of severe PPF (13). Studies in mice have also shown that
inflammation and collagen deposition in the experimental hepatic
granuloma are down-regulated by IFN-� (34, 35). IFN-� also has
been reported to inhibit fibrogenesis and to increase fibrolysis (35,
36) by regulating TMP and TIMP (14–18).

Altogether, these observations support the view that IFN-� plays
a critical role in the control of PPF in human schistosome infec-
tion. A few studies have associated alterations of the IFN-� path-
way with diabetes type 1 (37, 38), arthritis (39), lupus (40, 41),
multiple sclerosis (40, 41), hepatitis B infection (42), malaria (43),
and bacterial infection (44). Otherwise, susceptibility to nontuber-
culous mycobacteria or to bacillus Calmette Guérin vaccine has
been associated with mutations in the IFN-� receptor ligand-bind-
ing chain (IFNGR1), IFN-� receptor signaling chain (IFNGR2),
STAT1, IL-12 p40 subunit (NKSF2), and IL-12R �1 chain (IL-
12RB1) genes (see Ref. 45 for review). Thus, genetic alterations in
the IFN-� gene or the IFN-� signal transduction pathway may
result in an altered clinical course of disease progression.
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