Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Journal of Organometallic Chemistry Année : 2013

Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells

Résumé

With the aim of improving the cytotoxic and vascular disrupting activities of flavonoids, several classes of ferrocenyl-modified flavonoids were prepared and tested on cancer and endothelial cells. Three tenmember series of ferrocenyl flavonoids: chalcones ((E)-1-(R-2'-hydroxypheny1)-3-ferrocenylprop-2-en-1-ones), aurones ((Z)-R-2-(ferrocenylidene)benzofuran-3-ones) and flavones (R-2-ferrocenyl-chromen-4-ones) were synthesized by recently reported methods. Three ferrocenyl flavonols (R-3-hydroxy2-ferrocenyl-chromen-4-ones) and four ferrocenyl flavanones (3-ferrocenylmethylidenyl-R-2-phenyl-chroman-4-ones) were also obtained. All compounds were evaluated for their cytotoxic effects on a cancer cell line (B16 murine melanoma) and for their morphological effects on endothelial cells (EAhy 926). Some interesting structure-activity relationships were disclosed: of all the compounds, the halogen-substituted aurones showed the best cytotoxic activity, with IC50 values ranging between 12 and 18 mu M. Ferrocenyl flavonols and ferrocenyl flavanones with substitution in the 3-position (-OH and =C-Fc respectively) were not active against cancer or endothelial cells. Some of the ferrocenyl flavones caused the endothelial cells to adopt a round shape (''rounding up'') at submicromolar concentrations, which can be predictive of vascular disrupting activity. The most morphologically active flavones showed only moderate cytotoxicity against cancer cells, indicating that they may primarily act as antivascular agents. (C) 2013 Elsevier B.V. All rights reserved.
Fichier principal
Vignette du fichier
Ferrocenyl flavonoid.pdf (384.81 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01230380 , version 1 (29-03-2021)

Identifiants

Citer

Jean-Philippe Monserrat, Keshri Nath Tiwari, Lionel Quentin, Pascal Pigeon, Gérard Jaouen, et al.. Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells. Journal of Organometallic Chemistry, 2013, 734 (SI), pp.78-85. ⟨10.1016/j.jorganchem.2012.12.031⟩. ⟨hal-01230380⟩
226 Consultations
133 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More