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Abstract.

Every finite simple group P can be generated by two of its elements. Pairs of

generators for P are available in the Atlas of finite group representations as (not

neccessarily minimal) permutation representations P . It is unusual but significant

to recognize that a P is a Grothendieck’s dessin d’enfant D and that most standard

graphs and finite geometries G - such as near polygons and their generalizations -

are stabilized by a D. In our paper, tripods P − D − G of rank larger than two,

corresponding to simple groups, are organized into classes, e.g. symplectic, unitary,

sporadic, etc (as in the Atlas). An exhaustive search and characterization of non-trivial

point-line configurations defined from small index representations of simple groups is

performed, with the goal to recognize their quantum physical significance. All the

defined geometries G′s have a contextuality parameter close to its maximal value 1.

Mathematics Subject Classification: 81P45, 20D05, 81P13, 11G32, 51E12,

51E30, 20B40

1. Introduction

Over the last years, it has been recognized that the detailed investigation of

commutation between the elements of generalized Pauli groups -the qudits and arbitrary

collections of them [1]- is useful for a better understanding of concepts of quantum

information such as error correction [2, 3], entanglement [4, 5] and contextuality [6, 7],

that are cornerstones of quantum algorithms and quantum computation. Only recently

the first author observed that much of the information needed is encapsulated in

permutation representations, of rank larger than two, available in the Atlas of finite

group representations [8]. The coset enumeration methodology of the Atlas was used

by us for deriving many finite geometries underlying quantum commutation and the

related contextuality [9]-[11]. As a bonus, the two-generator permutation groups and

their underlying geometries may luckily be considered as dessins d’enfants [13], although

this topological and algebraic aspect of the finite simple (or not simple) groups is barely
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mentioned in the literature. Ultimately, it may be that the Monster group and its

structure fits our quantum world, as in Dyson’s words [11]. More cautiously, in Sec. 2

of the present paper, we briefly account for the group concepts involved in our approach

by defining a tripod P − D − G. One leg P is a desired two-generator permutation

representation of a finite group P [8]. Another leg D signs the coset structure of the

used subgroup H of the two-generator free group G (or of a subgroup G′ of G with

relations), whose finite index [G,H ] = n is the number edges of D, and at the same

time the size of the set on which P acts, as in [10]. Finally, G is the geometry with n

vertices that is defined/stabilized by D [9]. Then, in Sec. 3, we organize the relevant

P−D−G tripods taken from the classes of the Atlas and find that many of them reflect

quantum commutation, specifically the symplectic, unitary and orthogonal classes. The

geometries of other (classical and sporadic) classes are investigated similarly with the

goal to recognize their possible physical significance. A physically oriented survey of

simple groups is [12].

2. Group concepts for the P −D − G puzzle

2.1. Groups, dessins and finite geometries

Following the impetus given by Grothendieck [14], it is now known that there are

various ways to dress a group P generated by two permutations, (i) as a connected graph

drawn on a compact oriented two-dimensional surface -a bicolored map (or hypermap)

with n edges, B black points, W white points, F faces, genus g and Euler characteristic

2− 2g = B +W + F − n [15], (ii) as a Riemann surface X of the same genus equipped

with a meromorphic function f from X to the Riemann sphere C̄ unramified outside the

critical set {0, 1,∞} -the pair (X, f) called a Belyi pair and, in this context, hypermaps

are called dessins d’enfants [13, 14], (iii) as a subgroup H of the free group G = 〈a, b〉

where P encodes the action of (right) cosets of H on the two generators a and b -the

Coxeter-Todd algorithm does the job [10] and finally (iv), when P is of rank at least

three, that is of point stabilizer with at least three orbits, as a non-trivial finite geometry

[9]-[11]. Finite simple groups are generated by two of their elements [16] so that it is

useful to characterize them as members of the categories just described.

There are many mathematical papers featuring the correspondence between items

(i) and (ii) in view of a better understanding of the action of the absolute Galois

group Gal(Q̄/Q) -the automorphism group of the field Q̄ of algebraic numbers- on

the hypermaps [14, 15, 17]. Coset enumeration featured in item (iii) is at work in

the permutation representations of finite groups found in the Atlas [8]. Item (i) in

conjunction to (iii) and (iv) allowed us to arrive at the concept of geometric contextuality

as a lack of commutativity of cosets on the lines of the finite geometry stabilized by P

[10].

Item (iv) may be further clarified thanks to the concept of rank of a permutation

group P . First it is expected that P acts faithfully and transitively on the set
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Ω = {1, 2, · · · , n} as a subgroup of the symmetric group Sn. The action of P on a pair

of distinct elements of Ω is defined as (α, β)p = (αp, βp), p ∈ P , α 6= β. The orbits of P

on Ω×Ω are called orbitals and the number of orbits is called the rank r of P on Ω. The

rank of P is at least two and the 2-transitive groups identify to the rank 2 permutation

groups. Second the orbitals for P are in one to one correspondence with the orbits of

the stabilizer subgroup Pα = {p ∈ P |αp = α} of a point α of Ω. It means that r is also

defined as the number of orbits of Pα. The orbits of Pα on Ω are called the suborbits of

P and their lengths are the subdegrees of P . A complete classification of permutation

groups of rank at most 5 is in the book [18]. Next, selecting a pair (α, β) ∈ Ω×Ω, α 6= β,

one introduces the two-point stabilizer subgroup P(α,β) = {p ∈ P |(α, β)p = (α, β)}.

There exist 1 < m ≤ r such non isomorphic (two-point stabilizer) subgroups Sm of

P . Selecting the largest one with α 6= β, one defines a point/line incidence geometry

G whose points are the elements of Ω and whose lines are defined by the subsets of Ω

sharing the same two-point stabilizer subgroup. Thus, two lines of G are distinguished

by their (isomorphic) stabilizers acting on distinct subsets of Ω. A non-trivial geometry

arises from P as soon as the rank of the representation P of P is r > 2 and simultaneously

the number of non isomorphic two-point stabilizers of P is m > 2.

2.2. Geometric contextuality

Let G′ be a subgroup of the free group G = 〈a, b〉 endowed with a set of relations

and H a subgroup of G of index n. As shown in Sec. 2.1, the permutation representation

P associated to the pair (G′, H) is a dessin d’enfant D whose edges are encoded by the

representative of cosets of H in G′. A graph/geometry G may be defined by taking the

n vertices of G as the edges of D and the edges of G as the distinct (but isomorphic)

two-point stabilizer subgroups of P.

Further, G is said to be contextual if at least one of its lines/edges corresponds to a

set/pair of vertices encoded by non-commuting cosets [10]. A straightforward measure

of contextuality is the ratio κ = Ec/E between the number Ec of lines/edges of G

with non-commuting cosets and the whole number E of lines/edges of G. Of course,

lines/edges passing through the identity coset e have commuting vertices so that one

always as κ < 1.

In Sec. 3 below, the contextuality parameter κ corresponding to the collinear

graph of the relevant geometry G is displayed in the right column of the tables. In order

to compute κ, one needs the finite presentation of the corresponding subgroup H in G′

leading to the permutation representation P but this information is not always available

in the Atlas.

2.3. A few significant geometries

There exist layers in the organization of finite geometries, see [20] for an

introduction. A partial linear space is an incidence structure Γ(P, L) of points P and

lines L satisfying axioms (i) any line is at least with two points and (ii) any pair of
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distinct points is incident with at most one line. In our context, the geometry G that is

defined by a two-generator permutation group P, alias its dessin d’enfant D, has order

(s, t) meaning that every line has s + 1 points and every point is on t + 1 lines. Thus

G is the geometric configuration [ps+1, lt+1](r), with p and l the number of points and

lines. The extra index r denotes the rank of P from which D arises.

We introduce a first layer of organization that is less restrictive that of a near

polygon to be defined below and that of a symplectic polar space encountered in Sec.

3.3. We denote by Gu = G(s, t; u) a connected partial linear space with the property

that, given a line L and a point x not on L, there exist a constant number u of points

of L nearest to x. A near polygon (or near 2d-gon) is a partial linear space such that

the maximum distance between two points (the so-called diameter) is d and, given a

line L and a point x not on L, there exists ‘a unique point’ on L that is nearest to x. A

graph (whose lines are edges) is of course of type G1. A near polygon is, by definition,

of type G1. Symplectic polar spaces are of the form Gu, possibly with u > 1, but not

all Gu with u > 1 are polar spaces. A generalized polygon (or generalized N -gon) is a

near polygon whose incidence graph has diameter d (the distance between its furthest

points) and girth 2d (the length of a shortest path from a vertex to itself). According to

Feit-Higman theorem [21], finite generalized N -gons with s > 1 and t > 1 may exist only

for N ∈ {2, 3, 4, 6, 8}. They consist of projective planes with N = 3, and generalized

quadrangles GQ(s, t), generalized hexagons GH(s, t) and generalized octagons GO(s, t)

when N = 4, 6, 8, respectively.

Many G ′s have a collinearity graph that is a strongly regular graph (denoted srg).

These graphs are partial geometries pg(s, t;α) of order (s, t) and (constant) connection

number α. By definition, α is the number of points of a line L joined to a selected point

P by a line. The partial geometries pg listed in our tables are those associated to srg

graphs found in [19].

2.4. A few small examples

Let us illustrate our concepts by selecting a rank 3 (or higher) representation for

the group of the smallest cardinality in each class of simple groups. The notation for

the simple groups and their representations are taken from the Atlas [8].

Alternating

The smallest non-cyclic simple group is the alternating group A5 whose finite

representation is H = 〈a, b|a2 = b3 = (ab)5 = 1〉.

The permutation representations of A5 are obtained by taking the subgroups of

finite index of the free group G = 〈a, b〉 whose representation is H .

Table 1 list the rank r and the number m of two-point stabilizer sub-

groups for the permutation representations P up to rank 15. The only non

trivial permutation group has index 10, rank 3, subdegrees 1, 3, 6 with P =

〈10|(2, 3, 4)(5, 7, 8)(6, 9, 10), (1, 2)(3, 5)(4, 6)(7, 10)〉.
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A5 index 5 6 10 12 15

r 2 2 3 4 5

m 2 2 3 1 1

Table 1. Parameter r and s for small index representations of A5.

The dessin d’enfant D corresponding to P is pictured in our previous papers, see

[9, Fig. 10], [10, Fig. 3j], [11, Fig. 4]. The geometries that are stabilized are the

Petersen graph PG, or Mermin’s pentagram MP, depending on the choice of the two-

point stabilizer subgroup. Thus A5 features three-qubit ‘3QB’ contextuality.

Symplectic

The smallest (simple) symplectic group is S ′

4(2) = A6 whose finite representation

is H = 〈a, b|a2 = b4 = (ab)5 = (ab2)5 = 1〉. Table 2 list the rank r and the number m of

two-point stabilizer subgroups for the permutation representations P up to rank 30.

The smallest non trivial permutation group P has index 15, rank 3 and subdegrees

1, 6, 8 as shown in Table 2.

A6 index 6 10 15 20 30

r 2 2 3 4 7

m 2 2 3 2 3

Table 2. Parameter r and s for the small index representations of A6.

The geometry that is stabilized by P is the (self-dual) generalized quadrangle

GQ(2, 2), alias the graph L̂(K6) (the complement of line graph of the complete graph

K6). It is known that GQ(2, 2) is a model of two-qubit ‘2QB’ commutation, see [10, Fig.

12]. The permutation representation of index 30 of S ′

4(2) stabilizes the configuration

[3016, 1603] of rank 7 that turns to be a geometry of type G2.

As for two-qutrit commutation, one uses the S4(3) permutation representation P

of rank 3 and index 40b found in the Atlas. The dessin d’enfant picturing P is found on

Fig. 1. The dessin has signature (B,W, F, g) = (8, 28, 6, 0).

Unitary

The smallest (simple) unitary group is U3(3). Representations of U3(3) of index

28 (rank 2), 36 (rank 4), 63 (rank 4) and 63 (rank 5) may be found in the Atlas

(denoted 63a and 63b, respectively). The most interesting ones are the 63a, of subdegrees

1, 6, 24, 32 and the 63b, of subdegrees 1, 6, 162, 24. These representations stabilize the

split Cayley hexagon GH(2, 2) (with 63b) and its dual (with 63a). The hexagon GH(2, 2)

is a configuration of type [633] with 63 points on three lines and 63 lines with three points.

It may be used as a model of 3QB contextuality, see [10, Fig. 5 and 6] for details and

plots of the corresponding dessins d’enfants.
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Figure 1. The dessin d’enfant stabilizing the generalized quadrangle GQ(3, 3) (a

model of two-qutrit ‘2QT’ commutation). The dessin corresponds to the Sp(4, 3)

permutation representation of index 40b found in the Atlas. Only black points are

shown: white points are implicit at the mid-edges or at the ends of half-edges.

Orthogonal

The smallest (simple) orthogonal group is O7(3). The Atlas lists four

representations of rank 3 and index 351, 364, 378 and 1080. We could

recognize that the first representation is associated to the strongly regular graph

srg(351, 126, 45, 45) and the geometry NO−(7, 3), the second representation is associated

with srg(364, 120, 38, 40) and the geometry of the symplectic polar space W5(3),

the third representation is associated with srg(378, 117, 36, 36) and presumably the

partial geometry pg(13, 18, 4), and the fourth representation is associated with

srg(1080, 351, 126, 108) and the geometry NO+(8, 3), see [19] for details about the

undefined acronyms. The second representation corresponds to the commutation of the

364 three-qutrit ‘3QT’ observables [1]. It is found to be of type G4. The representation

of index 1120 and rank 4 of O7(3) found in the Atlas is associated to the dual of W5(3)

that is the dense near hexagon DQ(6, 3). See table 9 for further details.

Exceptional and twisted

The smallest (simple) twisted exceptional group is Sz(8). The representation of

index 520 listed in the Atlas leads to an unconnected graph. The representation of

index 560 of rank 17 and subdegrees 1, 133, 266, 527 leads to a configuration of type

[56013, 18204] (i.e. every point is on 13 lines and there are 1820 lines of size 4). The

Atlas also provides a representation of index 1456 and rank 79 that leads to another

geometry, of order (3, 4), with again 1820 lines of size 4 (see also the relevant item in

table 10). The physical meaning of both representations, if any, has not been discovered.
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type group m r G physics κ

alternating A5 10 3 PG = L̂(K5) MP in 3QB 0.767

linear L2(5) = A5 . . . . ;

symplectic S ′

4(2) 15 3 GQ(2, 2) = L̂(K6) 2QB .

. S4(3) 40 3 GQ(3, 3) 2QT 0.800

unitary U3(3) 63 4 GH(2, 2) 3QB 0.704

orthogonal O7(3) 364 3 W5(3), G4 3QT 0.846

except. untwist. G2(2)
′ = U3(3) . . . . .

except. twist. Sz(8) 560 17 [56013, 18204](17) ? 0.971

sporadic M11 55 3 T (11) = L(K11) ?

Table 3. A few characteristics of a index m and rank r = 3 (or higher) representation

of the simple group of smallest cardinality in each class. The characteristics of the

Sp(4, 3) representation for two qutrits is added to this list. The question marks point

out that a physical interpretation is lacking.

Sporadic

The smallest sporadic group is M11. The Atlas provides representations of rank 3

and index 55, rank 4 and index 66, and rank 8 and index 165. The first representation

leads to the triangular graph T (11) = L(K11). The second one leads two a non strongly

regular graph with 495 edges, of girth 4 and diameter 2. The third representation leads

to a partial linear space of order (2, 3) with 220 lines/triangles.

Brief summary

The results of this subsection are summarized in Table 3. Observe that the smallest

simple linear group is equivalent to A5 and that the smallest untwisted group G2(2)
′

is similar to U3(3). Except for M11 and Sz(8) all these ‘small’ groups occur in the

commutation of quantum observables. Further relations between the geometry of simple

groups and the commutation of multiple qudits are given at the next section.

3. Atlas classes and the related geometries

3.1. Alternating

The non trivial configurations that are stabilized by (low rank) small simple

alternating groups are listed in Table 4. The alternating group A7 is missing because no

non-trivial geometry has been recognized. Permutation groups for alternating groups

An, n > 8 are those listed in the Atlas.

The A8 configuration on 35 points
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An geometries
(rank) G(r) κ

A5 MP, T̂ (5)(3) 0.767, 0.666

A6 GQ(2, 2), T̂ (6)(3) 0.800

A8 T (8)(3), ([356, 307](3): srg, G3, S(2, 3, 15), lines in PG(3, 2), O+(6, 2)) 0.684, 0.737

A9 T (9)(3), [1265, 3152](5), [2803, 8410](5), [8404, 11203](12)
A10 T (10)(3), [12610, 2106](4): srg), [21015, 15752](5), [94510, 31503](7)
A11 T (11)(3), [1658, 3304](4), [4626, 13862](6)
A12 T (12)(3), [2209, 4954](4), [46212, 7927](4)
A13 T (13)(3)
A14 T (14)(3), [36411, 10014](4)
A15 T (15)(3), [136511, 30035](5)

Table 4. The non trivial configurations stabilized by small simple alternating groups

and their rank r given as an index. The notation T (n) = L(Kn) means the triangular

graph and S(2, k, v) means a Steiner system, that is, a 2 − (v, k, 1) design [19]. The

symbol srg is for a strongly regular graph. A description of the A8 configuration on 35

points is given in the text.

It has been shown at the previous section that A5 and A6 are associated to three-

qubit contextuality (via Mermin’s pentagram) and two-qubit commutation (via the

generalized quadrangle of order two GQ(2, 2)), respectively. Since A8 encodes the 35

lines in PG(3, 2), the corresponding configuration may be seen as a model of four-qubit

contextuality, see [10, Sec. 4] for the recognition of PG(3, 2) as a model of a 4QB

maximum commuting set and [22] for an explicit reference to the O+(6, 2) polarity.
As the permutation representation is not in the Atlas, we provide a few details

below. The permutation representation on 35 points of A8 is

P =< 35|(3, 4, 6, 12, 10, 5)(7, 13, 19, 23, 15, 9)(8, 14, 21, 24, 16, 11)(17, 25, 26)

(18, 27, 28)(20, 22, 30)(29, 33, 35, 34, 32, 31), (1, 2, 3)(4, 7, 8)(5, 9, 11)(12, 17, 18)

(13, 20, 14)(15, 22, 16)(19, 29, 21)(23, 31, 24)(25, 32, 27)(26, 33, 28) > .

The representation is of rank 3, with suborbit lengths (1, 16, 18), and corresponds to

a dessin D of signature (B,W, F,G) = (9, 15, 5, 4)), that is, of genus 4, and cycles

[643312, 31015, 75]. The two-point stabilizer subgroups are of order 32 and 36. The group

of order 36 is isomorphic to the symmetry group Z2
3 ×Z2

2 of the Mermin square (a 3× 3

grid), see [9, Sec. 4.4]. The edges of the collinearity graph of the putative geometry

G are defined as sharing the same stabilizer subgroup of order 36, up to isomorphism,

but acting on different subsets. The graph is srg of spectrum [161, 220,−414] and can

be found in [19]. The lines of G are defined as the maximum cliques of the collinearity

graph. In the present case, the lines do not all share the same stabilizer subgroup. One

gets G = [358, 565](3), a finite geometry of type G2. The collinearity graph associated to

the stabilizer subgroup of order 32 is the complement of the collinearity graph of G and

the corresponding geometry is Ḡ = [356, 307](3), a configuration of type G3, and a model
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of the O+(6, 2) polarity.

3.2. Linear

The non trivial configurations that are stabilized by (low rank) small simple linear

groups are listed in Table 5.

As for a relation to physics, we already know that the linear group L2(4) = L2(5) =

A5 is associated to a 3QB pentagram and that L2(9) = A6 is associated to 2QB

commutation. Then the group L5(2) is associated to 5QB contextuality through lines

in PG(4, 2). The other configurations in table 5 lack a physical meaning.

group Ln(m) geometries
(rank) G(r) κ

L2(4) = L2(5) = A5 MP, T̂ (5)(3) 0.767, 0.666

L2(7) ( [212, 143](6): GH(2,1)), [283, 214](7) 0.857, 0.893

L2(8) [367, 634](5): srg

L2(9) = A6 GQ(2, 2), (T̂ (6))(3) 0.800

L2(11) [553](9)
L2(19) [376, 1712](4), [1715, 2853](15), [190108, 51304](16)
L2(32) T̂ (33)(17): srg 0.968

L3(2) = L2(7) . .

L3(3) [14478, 23084](8)
L3(4) [5610, 2802](3): srg, Sims-Gewirtz graph 0.911

L5(2) [1557](3): srg, S(2, 3, 31), lines in PG(4, 2)

Table 5. The non trivial configurations stabilized by small simple linear groups

and their rank. The configuration [212, 143](6) configuration corresponds to the thin

generalized hexagon GO(2, 1) (see Fig. 6 of [23]).

3.3. Symplectic

The symplectic class of simple groups is a very useful one for modeling quantum

commutation of multiple qudits. At the previous section, we already met groups S ′

4(2)

and S4(3) associated to two-qubits and two-qutrits, respectively.

The group S4(3).

Let us go back to the group S4(3) whose finite representation is H =

〈a, b|a2 = b5 = (ab)9 = [a, b]3 = [a, bab]2 = 1〉. Apart from GQ(3, 3) associated to two-

qutrits other geometries exist for this group as shown in Table 6.

A few remarks are in order. Stricto sensu, only the generalized quadrangles GQ(2, 4)

and GQ(3, 3) are ‘stabilized’ by the corresponding permutation representations P (and

dessins d’enfants D -their signature is given at the second column). The lines of each

of the two geometries are defined as having two-stabilizer subgroups acting on the same
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S4(3) index D-signature spectrum geometry κ

27 (7, 15, 3, 2) [101, 120,−56] [275, 453](3): GQ(2,4) 0.785

36 (8, 24, 4, 1) [151, 315,−320] [3615, 1354](3): OA(6,3) 0.833

40b (8, 28, 6, 0) [121, 224,−415] [404](3): GQ(3,3) 0.704

40a (8, 24, 8, 1) [121, 224,−415] [404](3): GQ(3,3) dual 0.825

45 (9, 29, 7, 1) [121, 320,−324] [453, 275](4): GQ(4,2) 0.855

Table 6. Characteristics of small index representations of S4(3) and their geometry.

The bold notation correspond to geometries that are ‘stabilized’ by the corresponding

permutation representation P . The other geometries that are only ‘defined’ from the

collinearity graph associated to P .

subsets of points. In a weaker sense, the permutation representation for index 36, 40a
and 45 ‘define’ the geometries OA(6, 3), the dual of GQ(3, 3) and GQ(4, 2) from the

collinearity graph, its srg spectrum (shown at the third column) and the structure of

its maximum cliques. In these last cases, not all lines of the geometry have their pair

of points corresponding to the same two-stabilizer subgroup. Observe that case 40a and

case 40b are isospectral but with a distinct D-signature.

The group S6(2).

Another group of rich structure is the symplectic group S6(2) whose finite

representation is H = 〈a, b|a2 = b7 = (ab)9 = [ab2]12 = [a, b]3, [a, b2]2 = 1〉. The smallest

non-trivial permutation representation P of S6(2) stabilizes the symplectic polar space

W5(3) associated to three-qubits [1]. The small permutation representations of S6(2) are

shown on Table 7. The one of index 135 is associated to the near quadrangle DQ(6, 2)

[24, chap. 6].

S6(2) D-signature spectrum geometry κ

63 (9, 47, 7, 1) [301, 335,−527] [6315, 1357](3): G3, W5(2) 0.787

120 (16, 60, 14, 15) [561, 835,−484] [12028, 11203](3) 0.847

126 (18, 64, 14, 16) [641, 827, 063,−833] [12664, 26883](5) 0.766

135 (21, 75, 15, 13) [141, 535,−184,−715] [1357, 3153](5): DQ(6,2) 0.794

240 (36, 120, 28, 29) [1261, 684, 0120,−1835] [24017280, 5184008](5) 0.894

315 (45, 195, 37, 20) [181, 935, 384,−3195] [3157, 1353](5) 0.909

336 (48, 216, 40, 17) [201, 835, 2168,−4105,−827] [33610, 11203](5) 0.918

960 (138, 480, 114, 115) [561, 8385,−4504,−1670] [96028, 89603](6) 0.961

Table 7. Characteristics of small index representations of S6(2) and their geometry.

The meaning of bold notation is as in Table 6.

The geometry of multiple qudits.
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We define the multiple qudit Pauli group Pq(q = pn) as the n-fold tensor product

between single p-dit Pauli operators with ω = exp(2iπ
p
) and p a prime number.

Observables of Pq/Center(Pq) are seen as the elements of the 2n-dimensional vector

space V (2n, p) defined over the field Fp. The commutator [., .] : V (2n, p)× V (2n, p) →

P ′

q induces a non-singular alternating bilinear form on V (2n, p), and simultaneously a

symplectic form on the projective space PG(2n− 1, p) over Fp.

The |V (2n, q)| = p2n observables of Pq/Center(Pq) are mapped to the points of

the symplectic polar space W2n−1(p) of cardinality |W2n−1(p)| = p2n−1
p−1

≡ σ(p2n−1),

(where σ(.) is the sum of divisor function of the argument) and two elements of

[Pq/Center(Pq),×] commute if and only if the corresponding points of the polar space

W2n−1(p) are collinear [1].

A subspace of V (2n, p) is called totally isotropic if the symplectic form vanishes

identically on it. The number of such totally isotropic subspaces/generators ge (of

dimension pn − 1) is Σ(n) =
∏n

i=1(1 + pi). A spread sp of a vector space a set of

generators partitioning its points. One has |sp| = pn+1 and |V (2n, p)|−1 = |sp|×|ge| =

(pn + 1) × (pn − 1) = p2n − 1. A generator ge corresponds to a maximal commuting

set and a spread sp corresponds to a maximum (and complete) set of disjoint maximal

commuting sets. Two generators in a spread are mutually disjoint and the corresponding

maximal commuting sets are mutually unbiased.

The symplectic polar spaces W2n−1(p) at work, alias the commutation structure of

n p-dits may be constructed by taking the permutation representation of index σ(p2n−1)

of the symplectic (rank 3) group S2n(p) available in the Atlas. The special case of two-

qubits [with S ′

4(2)], two-qutrits [with S4(3)], three qubits [with S6(2)]. For the group

S6(3), one finds two permutation representations of index 364 and 1120 that are similar

to the ones of the same index found for the group O7(3) (see Sec. 2, item ‘Orthogonal’

and Table 9). The representation of index 364 corresponds to the commutation structure

of three qutrits and the one of index 1120 is the dual geometry encoding the non-

intersection of the 1120 maximum commuting sets of size 26 built with the three-qutrit

observables.

The collinearity graph of the polar space W2n−1(p) is a srg(a, pb, b − 2, b), with

a = a(n) = σ(p2n−1) and b = b(n) = σ(p2n−3). The corresponding geometric

configuration is of the form [a(n)Σ(n−1),Σ(n)(pn−1)/(p−1)].

3.4. Unitary

The unitary class of simple groups is a very rich one. It defines many generalized

quadrangles, the hexagons GH(2, 2) associated to 3-qubit contextuality (as shown in

Sec. 2, table 3), and two near hexagons including the largest of ‘slim dense’ near

hexagons on 891 points, as shown in Table 8 [24]. Whether such configurations have a

physical relevance is unknown at the present time. Since unitary groups play a role as

normalizers of Pauli groups, it may be expected that some of these geometries occur in

the context of quantum error correction and Clifford groups [3].
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group D-signature geometry κ

U3(3) (8, 24, 6, 0) [3628, 3363](4)
(13, 35, 9, 2) [633](4): GH(2,2) 0.846

(15, 35, 9, 3) [633](5): GH(2,2) dual 0.820

U3(4) (70, 112, 16, 6) [2086, 4163](5): conf. over F16 [25] 0.970

U3(5) (10, 20, 8, 7) [507, 1752](3): Hoffmann-Singleton

U3(7) (703, 1075, 49, 141) [210721, 147493](8) 0.991

U4(2) S4(3) in table 6 table 6: GQ(2,4), GQ(3,3), etc .

U4(3) 24, 64, 16, 5) [11210, 2804](3): srg, GQ(3, 32)

30, 90, 24, 10) [162280, 151203](3): srg

101, 303, 81, 42) [56715, 28353](5): NH(2, 14; (2, 4))†

U4(4) [87, 165, 17, 29] [32517, 11055](3): srg, GQ(4, 42)

U4(5) [204, 396, 84, 37] [75626, 32766](3): srg, GQ(5, 52)

U5(2) [33, 101, 15, 9] [1659, 2975](3): srg, GQ(4, 8) 0.950

[36, 112, 16, 7] [17640, 14085](3): srg 0.923

[61, 153, 27, 29] [2975, 1659](3): srg, GQ(8, 4) 0.953

U6(2) [96, 416, 62, 50] [6721408, 1576966](3): srg, pg(11, 15, 3)?

[99, 437, 63, 48] [69327, 89121](3): srg, pg(20, 8, 5)?

[129, 459, 81, 112] [89121, 62373](4): NH(2, 20; 4)†

Table 8. The non trivial configuration ‘stabilized’ (bold) or ‘defined’ by unitary groups

with their corresponding D signature. (†) Groups U4(3) and U6(2) define two large

near hexagons of order (2, 14) ans (2, 20), respectively: see [24] for details about the

notation.

Let us feature the U3(4) configuration. One defines the 3-dimensional unitary space

U over the field F16, the projective space P(U) and a nondegenerate Hermitean form (., .)

on U . The space P(U) consists of 65 isotropic points x satisfying (x, x) = 0, x 6= (0, 0, 0),

and 208 non-isotropic points satisfying (x, x) 6= 0. There exist 416 orthogonal bases,

that is, triples of mutually orthogonal non-isotropic points. The resulting configuration

[2086, 4163](5) has been shown to be related to a 3− (66, 16, 21) design used to construct

the Suzuki sporadic group Suz [25] (see also table 12).

In passing, it is noticeable to feature the hyperplane structure of the U3(4)

configuration. A basic hyperplane is defined from points of the collinearity graph that

are either at minimum or maximal distance from a selected vertex. There are 208 such

hyperplanes. The other hyperplanes may be easily built from Velkamp sums H ⊕ H ′

of the basic hyperplanes H and H ′, where the set theoretical operation ⊕ means the

complement of the symmetric difference (H ∪H ′) \ (H ∩H ′) (as in [26]). One finds 10

distinct classes of hyperplanes totalizing 216 hyperplanes.
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3.5. Orthogonal

The geometries carried by orthogonal simple groups of small index are listed in

Table 9. It is noticeable that some representations are associated to the non-intersection

of maximum commuting sets for three qubits [from O+
8 (2) : 2)] and three qutrits [from

O7(3) or O
+
8 (3)]. These geometries are introduced in [1, Table 2]. The srg’s are identified

in [19].

Figure 2. A schematic of the hyperbolic polygon on 765 tiles corresponding to the

permutation group of O−

8 (2). The picture is split into two horizontal parts.

Several of the configurations arising from simple orthogonal groups are of type Gi,

for some i ≥ 1. This includes the configurations attached to polar (strongly regular)

graphs of O−

8 (2) (on 119 points), O−

8 (3) (on 1066 points) and O−

10(2) (on 495 points).

The near hexagon O−

8 (2)

There exists a near polygon (thus of type G1) built from O−

8 (2) (on 765 points) that

seems to have been unnoticed. The configuration is of the type [7657, 10715](4) with

collinearity graph of spectrum [281, 1184, 1476,−7204] and diameter 3 corresponding to a

near hexagon of order (4, 6). Since the permutation representation is a subgroup of the

modular group Γ = PSL(2,Z), it is possible to see the dessin D as an hyperbolic polygon

DH . As in [10, 11], the genus g of D equals that of the hyperbolic polygon DH , a face of
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group D-signature geometry κ

O7(3) (51, 239, 27, 18) [351567, 284317](3), srg, NO−(7, 3)

(28, 58, 24, 238) [36440, 112013](3), srg, G4, W5(3), 3QT

(54, 252, 30, 22) [3783159, 1990176](3), srg, pg(13, 8, 4)?

(156, 540, 84, 151) [108028431, 38381858](3), srg, NO+(8, 3)

(160, 560, 88, 157) [112013, 36404](4), srg, DQ(6, 3), 3QT∗

O+
8 (2) : 2 (12, 92, 12, 3) [12028, 11203](3), srg, NO+(8, 2), pg(7, 8, 4) 0.817

(15, 99, 11, 6) [13564, 9609](3), srg, G4, pg(8, 7, 4), 3QB∗ 0.770

(96, 624, 72, 85) [96036, 43208](4) 0.923

O−

8 (2) (41, 63, 7, 5) [11945, 7657](3), O
−

8 (2) polar srg, G3, pg(6, 8, 3)?

(46, 72, 8, 6) [136135, 22958](3), srg, NO
−(8, 2)

(267, 389, 45, 33) [7657, 10715](4), G1: NH(4, 6)

(552, 832, 96, 77) [1632280, 1523203](5)
O+

8 (3) (216, 604, 84, 89) as for O7(3), index 1080

(224, 616, 88, 97) as for O7(3), index 1120

O−

8 (3) (274, 598, 26, 85) [1066280, 2296013](3), O
−

8 (3) polar srg, G4, pg(12, 27, 4)?

O+
10(2) (38, 376, 16, 34) index 496, srg, NO+(10, 2), pg(15, 16, 8) 0.836

(45, 391, 15, 39) index 527, srg, pg(16, 15, 8) 0.759

(135, 1335, 117, 355) index 2295, rank 3, 4QB∗

O−

10(2) (99, 303, 15, 40) [495765, 2524515](3), O
−

10(2) polar srg , G7, pg(14, 16, 7)

(108, 336, 16, 35) [5282295, 7573516](3), srg, G8, NO
−(10, 2)

Table 9. The non trivial configuration ‘defined’ by orthogonal groups with their

corresponding D signature. The notation 3QB∗ (resp. 3QT∗ ) means that we

are dealing with the geometry associated to the non-intersection of the maximum

commuting sets built with the three-qubit (resp. three-qutrit) observables. Several

configurations are of type Gi. The near hexagon O−

8 (2) on 765 points is described in

the text.

D corresponds to a cusp of DH , the number of black points (resp. of white points) of D

is B = f+ν3−1 (resp. W = n+2−2g−B−c), where f is the number of fractions, c is

the number of cusps, ν2 and ν3 are the number of elliptic points of order two and three of

DH , respectively. In the present case, the polygon DH is associated to a non-congruence

subgroup of level 17 of Γ and (n, g, ν2, ν3, c, f) = (765, 33, 13, 18, 45, 250). A schematic

of DH is shown in Fig. 2.

3.6. Exceptional

A few exceptional groups of low index and low rank are defining well known

generalized polygons GH(2, 2) and its dual, GH(4, 4) and its dual, GH(2, 8), the Ree-

Tits octagon GO(2, 4), as well as two extra G1 geometries [coming from Sz(8)]. This is

summarized in Table 10.
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group D-signature geometry κ

G2(2)
′ U3(3) in table 8 srg, [633]; GH(2, 2), GH(2, 2) dual 0.846, 0.820

G2(4) (88, 224, 32, 37) [4168400, 6988305](3): srg, part of Suz graph

(273, 725, 105, 132) [13655](4): GH(4, 4)

(277, 693, 105, 146) [13655](4): GH(4, 4) dual
2F4(2)

′ (585, 923, 135, 57) [17555, 29253](5): GO(2, 4) (Ree-Tits) 0.988

Sz(8) (146,288,112,8]) [56013, 18204](17) 0.971

(370,736,292,30) [14565, 18204](79) 0.980

3D4(2) (95,419,63,122) [8199, 24573](4): GH(2, 8)

Table 10. Small non-trivial configurations ‘defined’ by exceptional groups of Lie

type. The most remarkable configurations are generalized hexagons, their duals and

generalized octagon GO(2, 4).

3.7. Sporadic

Finally, small index representations of small sporadic groups lead to geometries of

various types. The results are split into three tables: configurations arising fromMathieu

groups in table 11, from Leech lattice groups in table 12 and the remaining ones -small

sections of the Monster group and pariahs- in table 13. Niticeable geometries arising

from sporadic groups are the M24 near hexagon NH(2, 14) on 759 points, the J2 near

octagon NO(2, 4) on 315 points and Tits generalized octagon GO(2, 4) on 1755 points.

Another remarkable geometry is the one built from the McL graph on 275 points, which

is found to be of type G2, see also https://www.win.tue.nl/∼aeb/graphs/McL.html for

details about the McL graph.

This closes our investigation between simple groups and finite geometries. The

contextuality parameter κ, when it is known, is the highest (exceeding 0.97) for graphs

associated to standard representations of L2(32), U3(4), U3(7), exceptional groups 2F
′

4(2)

and Sz(8), and sporadic groups such M23, M24, Co2, McL, He, Fi22, T , etc.

4. Conclusion

We explored two-generator permutation representations of simple groups, as listed

in the Atlas [8], with the viewpoint of Grothendieck’s dessins d’enfants and the finite

geometries associated to them, as started in our earlier work. A strong motivation for

this work is the understanding of commutation structures in quantum information and

their contextuality [9]-[11], [22, 23]. A wealth of known and new point-line configurations

G, and as much as possible their contextuality parameter κ, are defined from permutation

representations P and their corresponding dessin D, using the methodology described

in Sec. 2. It is intriguing that the concept of a near polygon, defined in Sec. 2.3, may

be usefully expanded to that of a geometry of type Gi (i > 1) to qualify some of the new

configurations we found. Looking at unitary groups of table 8, one observes that most
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group D-signature geometry κ

M11 (17, 31, 5, 2) [559, 1653](3): srg, T (11)

(20, 38, 6, 2) [6615, 4952](4)
(45, 89, 15, 9) [1654, 2203](8)

M12 (22, 38, 6, 1) srg, [6610, 2203](3): T (12)

M22 (25, 45, 7, 1) srg, [7716, 6162](3): srg, S(3, 6, 22) 0.891

(48, 96, 16, 9) [176210, 93204](3): srg, S(4, 7, 23) \ S(3, 6, 22) 0.953

(65, 127, 21, 10) [23110, 3307](4): srg, M22 graph [19] 0.955

(92, 178, 30, 16) [33077, 11552](5) 0.961

(162, 320, 56, 40) [6162, 7716](5) 0.973

M23 (73, 141, 11, 15) [25321, 17713](3): srg, T (23) 0.971

(140, 274, 22, 36) [50615, 37952](4) 0.984

(338, 672, 56, 112) [1288165, 1062602](4) 0.993

(469, 931, 77, 148) [177120, 177102](8) 0.992

M24 (102, 144, 12, 10) [27622, 20243](3): srg, T (24) 0.972

(267, 387, 33, 37) [75915, 37953](4): NH(2, 14; 2) 0.990

(436, 668, 56, 65) index 1288: srg, pg(22, 35, 14)? 0.994

Table 11. Small non-trivial configurations ‘defined’ by Mathieu groups. A noticeable

geometry is the M24 near hexagon on 759 points.

group D-signature geometry κ

HS (20, 60, 10, 6) [10022, 11002](3): srg 0.903

(220, 580, 100, 101) [11002, 1022](5)
J2 (36, 50, 16, 0) [100336, 84004](3): srg, Hall-Janko graph 0.930

(196, 146, 40, 0) [28012, 8404](4): srg

(105, 165, 45, 1) [3155, 5253](6): NO(2, 4) [28]

(179, 265, 75, 4) [5253, 3155](6)
(286, 428, 120, 4) [8405, 10504](7)
(336, 522, 144, 4) [10086, 20163](11)
(604, 910, 258, 15) [180070, 420003](18)

Co2 (460, 1292, 96, 227) srg(2300, 891, 378, 324)[29] 0.992

McL (55, 155, 25, 21) [275280, 154005](3): srg, G2 [30] 0.974

(405, 1065, 185, 186) [20251155, 7796253](4)
Suz (594, 912, 138, 70) [17821365, 4054056](3): srg [25, 31]

Table 12. Small non-trivial configurations ‘defined’ by Leech lattice groups.

Noticeable geometries are the J2 near octagon on 315 points and the Co2 geometry

that is locally the U6(2) near hexagon. Another remarkable configuration of type G2

is attached to the permutation representation on 275 points of the McL group.
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group D-signature geometry κ

He (294, 1106, 122, 269) [20584896, 33586563](5) 0.984

Fi22 (270, 2102, 320, 410) [3510891, 14215522](3): srg 0.997

Fi23 (10575, 16183, 1163, 1876) srg, index 31671

Fi′24 (102312, 155224, 10584, 19409) srg, index 306936

J1 (92, 138, 38, 0) [26611, 14632](5): Livingstone graph

(355, 525, 151, 8) [10458, 41802](11)
(491, 747, 209, 9) [14636, 29263](22)
(780, 520, 220, 11) [154019, 146302](21)
(532, 804, 228, 17) [159611, 87782](19)

Ru (1054, 2030, 316, 331) srg, index 4060

T=2F4(2)
′ (585, 923, 135, 57) [17555, 29253](5): GO(2, 4) [21] 0.988

(774, 1152, 180, 100) [230426, 149764](7) 0.988

Table 13. Non-trivial configurations ‘defined’ by small sections of the Monster group,

the Pariah groups J1 and Ru, and Tits group T .

configurations we obtained are of the near polygon type (that is of type G1) or have a

strongly regular collinearity graph. But we do not know how to unify both aspects. To

some extent, orthogonal simple groups, as well as exceptional groups of Lie type, have

this common feature (as shown in Tables 9 and 10, respectively).

It is much more involved to recognize the regularities of geometries defined from

(small) sporadic groups (see tables 11 to 13). Many sporadic groups (including

the Monster) are subgroups of the modular group, or even of the Hurwitz group

G = 〈a, b|a2 = b3 = (ab)7〉 [32]. It is a challenging question to relate the symmetric

genus of such structures to the (much smaller) genus of the corresponding dessin d’enfant

(and modular polygon) [11]. Our down-to-earth approach of understanding quantum

commutation and contextuality from representations of some simple groups is of course

far from the concept of a VOA (vertex operator algebra) which is related to string theory

and generalized moonshine [33]. As final note, let us mention F. J. Dyson again. So far

as we know, the physical universe would look and function just as it does whether or not

the sporadic groups existed. But we should not be too sure that there is no connection · · ·

We have strong evidence that the creator of the universe loves symmetry, and if he loves

symmetry, what lovelier symmetry could he find than the symmetry of the Monster?

[34].
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