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Abstract

This paper deals with the numerical treatment of two additional terms in the Lmnc-system derived
and studied in previous publications and modelling the coolant in a nuclear reactor core. On the one
hand, we investigate the influence of the thermal conduction upon steady analytical solutions and upon
numerical strategies designed in dimensions 1 and 2. On the other hand, we consider a time-varying
thermodynamic pressure that enables to simulate a larger variety of physical situations. Taking into
account the resulting terms in the equations lead us to adapt numerical methods to ensure accuracy.

1 Introduction

For the purpose of studying thermodynamic and kinematic properties of the coolant fluid in the primary
circuit of a pressurised water reactor (PWR), the low Mach nuclear core model (Lmnc) was introduced in [4].
As the Navier-Stokes equations modelling the behaviour of a compressible fluid raise several theoretical and
numerical issues, a simplification process was applied. The incompressible model was not under consideration
since it does not account for high thermal/pressure variations. That is why an intermediate system was
derived by means of an asymptotic expansion with respect to the Mach number [11, 12, 14] whose order of
magnitude is reportedly small in the situations of interest.

Due to the decoupling of the pressure field into thermodynamic/dynamic pressure variables, the mathe-
matical structure of the resulting Lmnc model is easier to deal with whether it be concerning the analysis
(derivation of analytical solutions in dimension 1) or the numerical simulations (coupling of robust numer-
ical methods). The major advantage of this approach is that the thermodynamic pressure involved in the
equation of state (EOS) does not depend on space variables. In this setting, it is prescribed by boundary
conditions. In other cases, it can be seen as the solution of an ODE [8].

In previous works, the data was chosen so that the thermodynamic pressure is constant. In dimension 1,
the authors computed transient analytical solutions without [2] and with [3] phase transition. A numerical
scheme based on the method of characteristics was proposed [3]. The extension to dimension 2 was carried
out in [2, 5] by means of the finite element software FreeFem++ [10] still coupled to the method of
characteristics [17]. All these results were obtained modelling the thermodynamic properties of water with
the Stiffened Gas EOS whose parameters are tuned separately for the liquid phase and the vapour phase.
To improve the physical accuracy of the results in the range of pressures and temperatures at stake, the
analytical EOS was replaced in [6] by fitting polynomials using experimental values extracted from [13].

The present work consists in enriching the model by taking into account two additional phenomena. On
the one hand, we investigate the case of a time-varying thermodynamic pressure which enables to deal with
more general situations like depressurisation processes for safety evaluations. This induces new terms in the
equations but it does not raise additional issues in the design of the numerical scheme. The very point is
that the tabulated EOS consists of polynomials whose coefficients depend on the variable thermodynamic
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pressure. Hence these coefficients must be recalculated at each time step which implies extra computational
time. On the other hand, we aim at pointing out the low influence of thermal diffusion effects on the overall
behaviour of the fluid. The resulting additional terms in the formulation change the mathematical structure
of the equation and requires substantial modifications of the numerical schemes.

More precisely, the Lmnc model reads
∇·u = − p′0(t)

ρ
(
h, p0(t)

)
c2
(
h, p0(t)

) +
β
(
h, p0(t)

)
p0(t)

[
∇·
(
λ
(
h, p0(t)

)
∇T
(
h, p0(t)

))
+ Φ

]
, (1a)

ρ
(
h, p0(t)

)
×
[
∂th+ u · ∇h

]
= ∇·

[
λ
(
h, p0(t)

)
∇T
(
h, p0(t)

)]
+ Φ + p′0(t), (1b)

ρ
(
h, p0(t)

)
×
[
∂tu+ (u · ∇)u

]
−∇·σ(u) +∇p̄ = ρ

(
h, p0(t)

)
g, (1c)

for (t,x) ∈ R+ × Ωd.1

The unknowns are the enthalpy h, the velocity field u and the dynamic pressure p̄. Data are the thermo-
dynamic pressure t 7→ p0(t), the power density of the core (t,x) 7→ Φ(t,x) and the gravity field g. The
Cauchy stress tensor σ is classically expressed involving the Lamé viscosity coefficients. Other variables
such as density ρ, speed of sound c, compressibility coefficient β def=− p

ρ2
∂ρ
∂h , thermal conductivity λ or tem-

perature T are computed by means of the EOS or constitutive laws as functions of h and p0 with separate
expressions depending on the phases (liquid, mixture, gas). The reader is referred to [6] for more details
about the modelling of the mixture phase and the computation of variables at saturation. Our modelling is
enthalpy-oriented: the values of the enthalpy determine the related phase and all thermodynamic variables
are deduced from h. Denoting by p 7→ hsl (p) and p 7→ hsg(p) the enthalpies at saturation in the liquid and
in the vapour, we have

ζ(h, p) =


ζl(h, p), if h ≤ hsl (p),
ζm(h, p), if hsl (p) < h < hsg(p),

ζg(h, p), if h ≥ hsg(p),

for ζ ∈ {ρ, β, λ, T, c}. ζl and ζg are expressions of EOS or constitutive laws in the liquid and vapour phases.
ζm comes from modelling choices (see [6]).

For practical reasons, we do not use the EOS to express T in System (1) but we rather apply thermodynamic
principles that state

λ(h, p)∇T (h, p) = Λ(h, p)∇h, with Λ(h, p) =



Λl(h, p)
def=
λl(h, p)

cpl(h, p)
, if h ≤ hsl (p),

Λm(h, p) ≡ 0, if hsl (p) < h < hsg(p),

Λg(h, p)
def=
λg(h, p)

cpg(h, p)
, if h ≥ hsg(p),

(2)

where cp is the heat capacity at constant pressure. The value in the mixture is set to 0 as the temperature
is constant within the saturation dome.

As our goal is here to derive relevant numerical methods and to assess them, the sequel is restricted to the
Stiffened Gas law for the sake of clarity. Indeed, it is then possible to exhibit analytical steady solutions
(Prop. 1) which will be compared to numerical solutions. It can be then applied to tabulated laws without
restriction.

1Ω1 = [0, Ly] and Ω2 = [0, Lx] × [0, Ly].
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The Stiffened Gas law [3] reads

β(h, p) q(h, p) T (h, p) Λ(h, p)

h ≤ hsl (p)
γl − 1

γl

p

p+ πl
ql

h− ql
cpl

λl
cpl

hsl (p) < h < hsg(p) p ·
1
ρsg
− 1

ρsl

hsg − hsl
(p)

ρsgh
s
g − ρsl hsl
ρsg − ρsl

(p) T s(p) 0

h ≥ hsg(p)
γg − 1

γg

p

p+ πg
qg

h− qg
cpg

λg
cpg

The density is given by

ρ(h, p) =
p/β(h, p)

h− q(h, p)
. (3)

Values of parameters γκ, πκ, qκ and cpκ, κ ∈ {l, g}, for p0 = 155 bar are given in [3, Table 1]. The expression
of the speed of sound can be found in [3, Appendix B].

When no thermal diffusion is involved, the problem is hyperbolic with respect to h. The diffusion term
turns the problem parabolic and requires additional boundary conditions. We then impose

Location Enthalpy Velocity/pressure

Bottom
h = he ρ(he, p0)u = (0, De)(y = 0)

Lateral
Λ(h, p0)∇h · n = 0

u · n = 0
(x ∈ {0, Lx}) σ(u)n · τ = 0

Top
Λ(h, p0)∇h · n = 0 σ(u)n− p̄n = 0(y = Ly)

Notice that when Λ vanishes, no condition is then imposed upon h and the model is compatible with the
degeneracy of the thermal conductivity.

As for initial conditions, we impose h(0,x) = h0(x), u(0,x) = u0(x) and p̄(0,x) = 0.

We finally assume:

• The input rate De is non-negative;

• The thermodynamic pressure p0 remains non-negative;

• he is such that ρe computed thanks to (3) exists and is positive; moreover, he corresponds to a liquid
phase;

• Initial data (h0,u0, p0) are well prepared, i.e. they satisfy Equation (1a).

2 Study of the 1-dimensional case

In dimension 1, the system has a particular structure as the momentum equation (1c) decouples from the
others. Hence in this section we only focus on the subsystem

∂yv = − p′0(t)

ρ
(
h, p0(t)

)
c2
(
h, p0(t)

) +
β
(
h, p0(t)

)
p0(t)

[
∂y
(
Λ
(
h, p0(t)

)
∂yh
)

+ Φ
]
, (4a)

ρ
(
h, p0(t)

)
×
[
∂th+ v · ∂yh

]
= ∂y

[
Λ
(
h, p0(t)

)
∂yh
]

+ Φ + p′0(t). (4b)
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The dynamic pressure p̄ is then recovered by a direct integration of (1c). When Λ ≡ 0, using the Stiffened
Gas law implies that β is piecewise constant and (4a) decouples from (4b): This no longer holds as soon as
one uses another EOS or when Λ 6= 0.

2.1 Steady solutions

Transient 1D solutions can be found in [3, 9] for constant p0 and λ = 0, and in [16] for perfect gas, time-
varying p0 and λ = 0. When such solutions cannot be achieved, one tries to obtain steady solutions in order
to have explicit elements to assess numerical methods. In the steady case, it comes down to focusing on the
influence of thermal conduction as p0 is necessarily a constant.

For the sake of simplicity, we assume that the power density is constant to Φ0 > 0 and we set

H(z) = hsl − he −
Φ0

De
z +

Φ0κl
De

(
1− e−z/κl

)
, where κl

def=
Λl

De
.

H is monotone-decreasing and by assumption, H(0) > 0.

It is possible to provide a continuous steady solution of the problem as long as no vapour appears:

Proposition 1.

(a) If H(Ly) > 0, there exists a unique steady solution corresponding to a pure liquid configuration and
given by

h∞(y) = he +
Φ0

De
y − Φ0κl

De
e−Ly/κl

(
ey/κl − 1

)
.

(b) Let us assume that H(Ly) ≤ 0 and that H(Ly) > Φ0κl
De

(
e−y

s
l /κl − e−Ly/κl

)
− (hsg − hsl ) where ysl is

the unique solution in [0, Ly] of H(ysl ) = 0. Then there exists a unique continuous steady solution
corresponding to a liquid-mixture configuration and given by

h∞(y) =


he +

Φ0

De
y − Φ0κl

De
e−y

s
l /κl

(
ey/κl − 1

)
, if y ∈ (0, ysl ),

hsl +
Φ0

De
(y − ysl ), if y ∈ (ysl , Ly).

Proof. Let us first remark that combining the steady counterparts of (4a-4b) leads to ∂y(ρv) = 0.2 Hence
ρv = De.

(a) Assume that only liquid is present in the steady state. Then Equation (4b) reads

∂2
yyh−

1

κl
∂yh = − Φ0

Deκl
. (5)

Solving this 1st-order ODE for ∂yh and applying the boundary condition on the top yields

∂yh(y) =
Φ0

De

(
1− e(y−Ly)/κl

)
.

We deduce that h is monotone-increasing as well as the expression given in Prop. 1(a). The preliminary
assumption (reactor filled with liquid) is valid as long as h(Ly) < hsl which is equivalent to H(Ly) > 0.

(b) If H(Ly) ≤ 0, there cannot only be liquid in the core. We are thus looking for a weak solution of the
steady Lmnc model which corresponds to a liquid phase over (0, ysl ) (for some ysl to be determined) and to
a mixture phase over (ysl , Ly). The conservative steady version of Equation (4b) is

∂y
(
ρ(h, p0)hv

)
= ∂y

[
Λ(h, p0)∂yh

]
+ Φ. (6)

2We recall that β def= − p
ρ2

∂ρ
∂h

.
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The weak formulation associated to the previous equality is

∀ ϕ ∈ D
(
(0, Ly)

)
,

∫ Ly

0
[ρ(h, p0)hv∂yϕ+ ϕΦ− Λ(h, p0)∂yh∂yϕ] dy = 0.

If we take some ϕ ∈ D
(
(y−, y+)

)
with 0 < y− < ysl < y+ < Ly, as the solutions on both sides of ysl are

smooth, we can split the integral in two parts over (y−, y
s
l ) and (ysl , y+) and integrate by parts:

0 =
[
ρ(h, p0)hvϕ

]ysl
y−

+
[
ρ(h, p0)hvϕ

]y+
ysl
−
[
Λ(h, p0)ϕ∂yh

]ysl
y−

−
∫ ysl

y−

ϕ
[
∂y
(
ρ(h, p0)hv

)
− ϕΦ− ϕ∂y

(
Λ(h, p0)∂yh

)]︸ ︷︷ ︸
=0 by (6)

dy −
∫ y+

ysl

ϕ
[
∂y
(
ρ(h, p0)hv

)
− ϕΦ

]︸ ︷︷ ︸
=0 by (6), Λm = 0

dy.

We deduce that
(Λ(h, p0)∂yh)ysl

− +De [[h]]ysl
= 0.

To obtain a continuous solution ([[h]]ysl
= 0), we thus take

(Λ(h, p0)∂yh)ysl
− = 0. (7)

Notice that the continuity of h at y = ysl implies the continuity of ρ(h, p0) and then the continuity of
v = De/ρ(h, p0).

We integrate ODE (5) over (0, ysl ) taking boundary condition (7) into account. This leads to

h(y) = he +
Φ0

De

(
y − κle−y

s
l /κl(ey/κl − 1)

)
.

ysl is determined by solving the equation h(ysl ) = hsl which is equivalent to H(ysl ) = 0, whose root is
unique. As for the domain (ysl , Ly), we trivially obtain the expression for h as Λm = 0. This holds as
long as hsg is not reached. If so, it is necessary at the boundary y = Ly first. The restriction thus reads
h(Ly) = hsl + Φ0

De
(Ly − ysl ) < hsg which can be turned into the equivalent inequality in terms of H given in

the statement of Prop. 1(b).

Remark. Appearance of vapour raises many issues as discontinuities apparently occur. This will be inves-
tigated in future works.

2.2 Numerical scheme

The numerical strategy implemented in the present work consists in adapting the numerical method of
characteristics (MOC) designed in [3, 15] to decouple the two equations in (4). As the MOC scheme is
unconditionally stable, the point is here to take into account the diffusion term in Equation (4b) with-
out imposing a restrictive (parabolic) stability condition. That is why an implicit version is considered.
Equation (4a) is directly integrated in a second step.

We consider a homogeneous cartesian grid (yi = i∆y)0≤i≤Ny where ∆y =
Ly
Ny

for some integer Ny ≥ 1 and
a uniform time discretisation (tn = n∆t)n≥0 for some time step ∆t > 0.

More precisely, to solve Equation (4b), we introduce the characteristic field τ 7→ χ(τ ; tn+1, yi) as the solution
of the ODE 

d

dτ
χ(τ ; tn+1, yi) = v

(
τ, χ(τ ; tn+1, yi)

)
, τ ≤ tn+1,

χ(tn+1; tn+1, yi) = yi,
(8)

so that Equation (4b) reads

d

dτ
h
(
τ, χ(τ ; tn+1, yi)

)
=

p′0(τ) + Φ
(
τ, χ(τ ; tn+1, yi)

)
ρ
(
h
(
τ, χ(τ ; tn+1, yi)

)
, p0(τ)

) +

[
∂y
(
Λ(h, p0)∂yh

)
ρ(h, p0)

] (
τ, χ(τ ; tn+1, yi)

)
. (9)
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Given the numerical solution (hni , v
n
i ) at time tn, Equation (8) can be solved numerically at 1st or 2nd

order [15] so as to compute the numerical foot of the characteristic curve defined by

ξni ≈ χ(tn; tn+1, yi). (10)

As ξni may not be located at a mesh node, an interpolation process is required to approximate h(tn, ξni ). A
procedure ensuring the maximum principle at order 3 is described in [3]. Denoting by ĥni this interpolated
value, the left hand side in (9) is approximated by a finite difference so that a discrete formulation of
Equation (4b) is

hn+1
i − ĥni

∆t
=
p′0(tn) + Φ(tn, ξni ) +

[
∂y
(
Λ
(
hn, p0(tn)

)
∂yh

n+1
)]
yi

ρ
(
ĥni , p0(tn)

) ,

The diffusion term is implicited but the conductivity is linearised as set to time tn. It is discretised by
means of a 3-point finite difference

[
∂y
(
Λ
(
hn, p0(tn)

)
∂yh

n+1
)]
yi

=
Λ
(
hni+1/2, p0(tn)

)
(∂yh

n+1)i+1/2 − Λ
(
hni−1/2, p0(tn)

)
(∂yh

n+1)i−1/2

∆y

=
Λ
(
hni+1/2, p0(tn)

) (
hn+1
i+1 − h

n+1
i

)
∆y2

−
Λ
(
hni−1/2, p0(tn)

) (
hn+1
i − hn+1

i−1

)
∆y2

.

The intermediate conductivity Λ
(
hni+1/2, p0(tn)

)
is computed as the harmonic mean of Λ

(
hni , p0(tn)

)
and

Λ
(
hni+1, p0(tn)

)
.

Close to the boundary, a special treatment must be done as the characteristic curve arising from (tn+1, yi)
may cross the boundary between tn and tn+1 (see [15] for more details).

The resulting implicit numerical scheme yields a tridiagonal linear system which can be solved without
matrix inversion by means of the Thomas algorithm [1].

A restriction upon the time step must be imposed to ensure a good level of accuracy (and not for stability
issues), either by a standard CFL condition ∆t ≤ ∆y/maxi |vni | or by a threshold.

As for the integration of the divergence constraint (4a) to recover the velocity field, a particular attention
must be paid to avoid instabilities due to the discontinuity of β and c2. In cells (yi−1, yi) where phase
transition occurs, i.e. when (hsl − h

n+1
i−1 )(hn+1

i − hsl ) > 0 or (hsg − hn+1
i−1 )(hn+1

i − hsg) > 0,3 the integral must
be split into two parts: one over (yi−1, y

n+1
∗ ) using liquid parameters and one over (yn+1

∗ , yi) using mixture
parameters, where (yn+1

∗ , hsl ) is a linear approximation of the function passing through (yi−1, h
n+1
i−1 ) and

(yi, h
n+1
i ).

In the sequel, the adapted MOC scheme is called “MOC-d” scheme.

2.3 Simulations

Unless specified, the data are set as follows in the numerical simulations:

he is computed by inverting the EOS (3), namely

he = ql +
γl − 1

γl

ρe
p0 + πl

≈ 1.191 726× 106 J ·K−1.

We recall that parameters of the Stiffened Gas law for this value of p0 can be found in [3, Appendix B], as
well as enthalpies at saturation (hsl = 1.627× 106 J ·K−1 and hsg = 3.004× 106 J ·K−1).

The following simulations are not related to physical configurations (except § 2.3.3 and § 2.3.5-β) and are
run in order to assess the modified algorithm and the model itself. Comparisons to the steady state from

3We do not present cases where vapour appears as we lack theoretical information. The algorithm is however implemented
to handle all phases.
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Ly Length of the core 4.2 m

Ny Number of spatial nodes 100

∆t Time step 0.01 s

(a) Discretisation parameters

p0 Thermodynamic pressure 155× 105 Pa (constant)

Φ Power density 170× 106 W ·m−3 (constant)

ρe Input density 750 kg ·m−3 (constant)

ve Input velocity 1 m · s−1 (constant)

h0 Initial enthalpy he (constant)

v0 Initial velocity ve + β(h0,p0)
p0

Φy

(b) Physical parameters

Table 1: Parameters for 1D simulations

Prop. 1, compatibility with the non-diffusive case and assessment of the robustness of the algorithm are
made. Cases 2.3.1 to 2.3.4 are set with p0 constant in order to focus on the conductivity. The reader is
reminded of the fact that only the Stiffened Gas EOS is used in the present paper as the extension to
tabulated laws does not raise difficulties.

2.3.1 Convergence for λ→ 0

Let us first investigate the case of a constant conductivity λl = λg = λ → 0. The purpose is to determine
whether the model for non-zero small conductivities is close to the non-diffusive model studied in previous
articles. We thus compare the numerical results obtained by means of the MOC-d scheme to simulations of
the Lmnc-model for λ = 0 by means of the INTMOC scheme designed in [3] and proven to be convergent.
The L2-norm pictured on Fig. 1 shows that both solutions converge to the same limit as λ goes to 0.

Figure 1: Case 2.3.1: Convergence for the enthalpy to the non-diffusive case in L2-norm

2.3.2 Influence of high conductivities

Keeping a constant conductivity in both liquid and gas, we increase the corresponding value (λl = λg = 106)
in order to highlight the discrepancy between non-diffusive and diffusive cases. Unlike the following example
where both solutions match, we observe distinct numerical asymptotic solutions. In the mixture where
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Λ = 0, both solutions are parallel straight lines. It is in the liquid phase that they have different shapes
(Fig. 2(a)).

We recover the steady solution from Prop. 1 which is an exponential-like curve. Figure 2(b) shows that the
numerical solution converges to the steady solution. The L2-error is bounded from below by 10−2 which
corresponds to the discretisation error (∆y ≈ 10−2).

(a) Numerical solutions (enthalpy) at time 25 s (b) Convergence to the steady state of Prop. 1

Figure 2: Case 2.3.2: Comparison between numerical solutions with and without thermal diffusion for
unphysically high thermal conductivities when an asymptotic state is reached

2.3.3 Thermal conductivity in physical situations

We then run the algorithm to a configuration with physical orders of magnitude for the thermal conductivity
in liquid (λl = 0.5) and vapour (λg = 0.1). According to Fig. 1, the error with the non-diffusive case is of
order 10−6 which is confirmed by next figures.

Figures 3 show the results at time 25 s where a numerical asymptotic state is reached. We deduce from
Fig. 3(a) that this state is made of liquid and mixture. The pointwise error is of order 10−4 and is larger
in the mixture phase. This can be explained by the fact that Λ vanishes in the mixture and the MOC-d
scheme degenerates to the standard MOC scheme which turns out to be less accurate than the INTMOC
scheme (see [3, § 5.1]).

Hence the thermal conductivity does not play a major role for physical values which tends to legitimate not
to take it into account in future works.

2.3.4 Robustness

We then consider a variable power density

Φ(t, y) =


600× 106 W ·m−3, if 0 ≤ y ≤ 1.6,

0 W ·m−3, if 1.6 < y < 1.8,

−400× 106 W ·m−3, if 1.6 ≤ y ≤ L.

to assess the robustness of the diffusive algorithm. Conductivities are set as in § 2.3.3. A positive power
density makes the enthalpy increase (some mixture appears) while a negative one cools the flow. This is
what the algorithm yields as seen on Figures 4. It manages to handle phase transition liquid to mixture (as
previously) as well as mixture to liquid.
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(a) Numerical solutions (enthalpy) at time 25 s (b) Pointwise relative error (enthalpy) at time
25 s

Figure 3: Case 2.3.3: Comparison between numerical solutions with and without thermal diffusion in
standard conditions when an asymptotic state is reached

(a) Numerical enthalpy at time 25 s (b) Numerical mass fraction at time 25 s

Figure 4: Case 2.3.4: Profile of the numerical solution for a piecewise constant power density

2.3.5 Depressurisation processes

As simulations tend to prove the low influence of the conductivity, we take λl = λg = 0 and we focus on
the effects of variable pressures. Two cases are considered: α concerns a toy-case (linear depressurisation to
40% to the initial pressure, Fig. 5(a)) to validate the algorithm whereas β corresponds to physical data of
a failure of the pressuriser (Fig. 5(b)).

In case α, the depressurisation occurs once the asymptotic state is reached in initial conditions. Figures
shows that the lower the thermodynamic pressure p0, the lower the temperature at saturation T s which
can be noticed as the plateau goes down as time goes on (Fig. 5(c)). Simultaneously, the rate of mixture
increases (Fig. 5(e)) which can be accounted for by the fact that the enthalpy at saturation in the liquid
phase hsl decreases as p0 does. The profile of the temperature in the liquid is the same as the steady state
for λ ≡ 0 does not depend on data at saturation nor on the EOS (see [3, Rem. 4.5] and [6, Prop. 5.1]).

In case β, the depressurisation occurs at time 1 s while the asymptotic state is not yet reached (no mixture
has appeared – Fig. 5(f)). That is why we observe the plateau going up then down (Fig. 5(d)). After some
seconds, an asymptotic state is reached where most of the core is under mixture phase.

As for the computational time, the variations of thermodynamic pressure require to compute data at sat-
uration (T s, hsl , h

s
g) at each time step. When using the Stiffened Gas law, it has no impact compared

to the constant case. However, with tabulated EOS, each fitting polynomial of thermodynamic variables
(density, temperature, compressibility coefficient, . . . ) must be recalculated at each time step. This would
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have a significant computational time but much less important than for classical compressible models where
polynomials are also different at each space node.

p0

t

1.55× 107

6.2× 106

5 10

(a) Case α: profile of the depressurisation
(linear decrease)

(b) Case β: profile of the depressurisation (real
case)

(c) Case α: Temperature at different times (d) Case β: Temperature at different times

(e) Case α: Mass fraction at different times (f) Case β: Mass fraction at different times

Figure 5: Case 2.3.5: Simulations of two depressurisation processes

3 Numerical approach in dimension 2

3.1 Weak formulation

We now turn to the adaptation of the numerical scheme designed in [5] for 2D flows when taking into account
thermal diffusion and depressurisation processes. The original algorithm is a 1st order Lagrange finite
element (FE) scheme coupled to the method of characteristics integrated in the FE software FreeFem++.
Due to the discontinuities of some variables involved in the model (Λ, β, c2, . . . ), we decided to apply the
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Discontinuous Galerkin method also implemented in FreeFem++. Well-suited to this kind of solutions,
the fact still remains it induces a significant rise of the computational time as unknowns are located on
vertices and edges.

We mention that the Cauchy stress tensor is given by

σ(u) = µ0

[(
∇u+ (∇u)T

)
− 2

3
(∇ · u)I

]
where µ0 is a constant dynamic viscosity.

The domain is Ω2 = [0, Lx] × [0, Ly] which is tesselated with triangles (Tk)1≤k≤K . The set of all edges is
denoted by EK .

The weak formulation reads: “Find (h,u, p̄) ∈ (he+H)×(ue+U)×L2 such that for all (h̃, ũ, p̃) ∈ H×U×L2

∫∫
Ω2

(∇ · u)p̃ dx =

∫∫
Ω2

(
β
(
hn, p0(tn)

)
Φ

p0(tn)
− p′0(tn)

ρ
(
hn, p0(tn)

)
c2
(
hn, p0(tn)

)) p̃ dx

−
∫∫

Ω2

β
(
hn, p0(tn)

)
Λ
(
hn, p0(tn)

)
p0(tn)

∇hn+1 · ∇p̃ dx

+

∫
EK

[[
β
(
hn, p0(tn)

)
Λ
(
hn, p0(tn)

)
p0(tn)

(∇hn+1 · nK)p̃

]]
dς, (11a)

∫∫
Ω2

ρ
(
hn, p0(tn)

)hn+1 − hn(ξn)

∆t
h̃ dx =∫∫

Ω2

(
Φ + p′0(tn)

)
h̃ dx−

∫∫
Ω2

Λ
(
hn, p0(tn)

)
∇hn+1 · ∇h̃ dx

+

∫
EK

[[
Λ
(
hn, p0(tn)

)
(∇hn+1 · nK)h̃

]]
dς, (11b)

∫∫
Ω2

ρ
(
hn, p0(tn)

)un+1 − un(ξn)

∆t
· ũ dx =

− µ0

2

∫∫
Ω2

(
∇u+ (∇u)T

)
::
(
∇ũ+ (∇ũ)T

)
dx+ η0

∫∫
Ω2

(∇ · u)(∇ · ũ) dx

+

∫∫
Ω2

(∇ · ũ)p̄n+1 dx+

∫∫
Ω2

ρ
(
hn, p0(tn)

)
g · ũ dx,′′ (11c)

where

H = {h ∈ H1(Ω2), h(x, 0) = 0} and U = {u ∈ H1(Ω2)2, u(x, 0) = 0, u(0, y) = u(Lx, y) = 0}.

Similarly to the 1D section, ξn denotes the foot of the characteristic curve, i.e. ξn(x) = χ(tn; tn+1,x) where
χ is the solution to the 2D counterpart of ODE (8).

Jumps involved in (11) enable to account for eventual discontinuities. Within pure phases solutions are
expected to be smooth as shown in dimension 1 but jumps may occur with phase transition.

To improve the accuracy of the results, we refine the mesh (using the isoline package in FreeFem++)
in the mixture and vapour phases where corresponding domains can be small (bubbles).
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p0 Thermodynamic pressure 155× 105 Pa (constant)

µ0 Dynamic viscosity 8.4× 10−5 kg ·m−1 · s−1 (constant)

Φ Power density 800Φ0 exp
(
−1

r2−|x|2

)
1{|x|≤r}

ρe Input density 750 kg ·m−3 (constant)

ue Input velocity (0, ve) with ve = 1.3 m · s−1 (constant)

h0 Initial enthalpy he (constant)

u0 Initial velocity (0, ve) (constant)

Table 2: Parameters for 2D simulations

Figure 6: Temperature at time t = 0.59 s. From left to right: reference test case with a fine mesh (100×300);
25 × 75 with 4-time refinement in the vapor phase; 25 × 75 with 2-time refinement in the mixture phase
and 4-time refinement in the vapor phase; 25× 75 with 3-time refinement in the mixture phase and 6-time
refinement in the vapor phase. White lines correspond to the level sets of h between phases.

3.2 Numerical results

We take Lx = 1 m and Ly = 3 m. Φ0 is the value reported in Table 1(b). We consider here an overestimated
power density to make vapour appear. It is compactly supported with a disk of radius r = 0.5.

Due to strong variations of the velocity field when passing from one phase to another, a classical hyperbolic
CFL condition for the time step is necessary rather than an arbitrary threshold. As stated before, to
capture accurately the surfaces where phase change occurs, a refinement procedure is run in mixture and
vapour phases. The results are analysed from two points of view: we focus first on the accuracy and the
computational efficiency and then on the influence of the thermal conductivity to confirm preliminary results
in 1D.

3.2.1 Accuracy issues

Due to the specifications of FreeFem++, mesh definitions are parametrised by the number of nodes on
each boundary. For the accuracy investigation, we consider:

• A fine mesh corresponding to 100 nodes on horizontal boundaries (top and bottom) and 300 nodes on
vertical boundaries (lateral walls);
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Figure 7: Mass fraction at time t = 0.59 s. From left to right: reference test case with a fine mesh (100×300);
25 × 75 with 4-time refinement in the vapor phase; 25 × 75 with 2-time refinement in the mixture phase
and 4-time refinement in the vapor phase; 25× 75 with 3-time refinement in the mixture phase and 6-time
refinement in the vapor phase. White lines correspond to the level sets of h between phases.

• Coarser meshes based on a 25 horizontal / 75 vertical nodes with different rates of refinement in
mixture and vapour phases (see legends of Figures 6-7).

We can observe on the temperature representations (Fig. 6) the level sets h = hsl and h = hsg depicted with
white lines separating phases. At the selected time (0.59 s) the three phases are present and we recover a
constant temperature (equal to T s) in the whole mixture domain. We also remark that the finer the mesh,
the wider the vapour domain. The figure on the far right (finest refinement) seems even more accurate than
the one on the far left (finest mesh) while it comprises fewer nodes. From a computational point of view, it
runs 5-time faster than the fine case. Hence the refinement strategy turns out to be relevant in the balance
accuracy/efficiency.

Figure 7 represents the mass fraction on the different meshes. We can observe the Rayleigh-Taylor instability
due to the gravity field: the water is flowing upwards while the gravity is pointing downwards. The density
decreases as the enthalpy increases which makes the mixture lighter than the liquid. The lighter phase is
then sped up through the heavier phase above which induces the instability. The shapes are the same no
matter what the mesh and the front evolves at the same velocity. The very difference lies in the domain
occupied by vapour which is wider in the right case.

3.2.2 Influence of the thermal conductivity

We investigate here the influence of the taking into account of the thermal conduction terms. We run
the non-diffusive algorithm designed in [5] and the diffusive version described above (§ 3.1) over the same
fine mesh with 100 horizontal / 300 vertical nodes. The computational times are almost the same. The
conductivity is set to standard physical values (λl = 0.6 and λg = 0.08).

We see on Figure 8 that it is hard to distinguish the numerical solutions (enthalpy variable) for Λ = 0 and
Λ 6= 0. The cross-section in the middle of the core (on the right) shows that the only noticeable discrepancy
occurs in the mixture phase. Hence these 2D results lead to the same conclusion as previous 1D results: in
conditions close to those in a PWR core – nominal or accidental, the thermal conductivity does not imply
major changes in the solution of the Lmnc-model. This legitimates not to take it into account in future
works.

We finally mention two facts: on the one hand, results do not exhibit jumps for the variables of interest
while the study in 1D raises issues when vapour appears. On the other hand, while a DG method was
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Figure 8: Enthalpy at time t = 0.59 s on a fine mesh (100 × 300). Left: Lmnc-model with λ = 0. Right:
Lmnc-model with λl = 0.6 and λg = 0.08. The graph represents the values of the enthalpy on the vertical
line (x = Lx/2, 0 ≤ y ≤ Ly): in red for the non-diffusive solution and in blue for the diffusive one.

applied to the standard formulation of the Lmnc-model, another strategy was carried out in [6], namely
an equivalent reformulation of the equations: the term between brackets in the right hand side of (1a) is
replaced using Equation (1b) so that a standard Lagrange FE method can be applied. However, we do not
state that any of these methods is proven to be more efficient.

4 Conclusion

The present work consisted in taking into account additional physical phenomena in the modelling of fluid
flows in nuclear reactor cores by means of the Lmnc-model. On the one hand, thermal conduction effects
induce a change in the mathematical structure of the equations and significant adaptations of the numerical
schemes. But we managed to handle it in the 1D MOC scheme by solving directy the implicit version of the
diffusive scheme and in the 2D scheme using features of the FreeFem++ software. We even improved the
accuracy of the 2D algorithm by means of a refinement strategy. On the other hand, considering a (given)
time-varying thermodynamic pressure raises no particular issues from the computational point of view but
may increase the computational time when fitting tabulated values for the equation of state.

The conclusion of the numerous simulations run in this paper is that the resulting numerical methods are
robust to these modifications. They showed that the thermal conductivity does not play a major role in
nominal or accidental conditions of a PWR core which enables to leave it apart in future works. The new
algorithms are now able to deal with more complex configurations like depressurisation processes for safety
evaluations. The Lmnc tools are improved step by step to provide reliable results for nuclear engineering.
Next perspectives will concern extensions to a 3D robust code and the coupling with neutronics to better
model the power density [7]. Applications to other types of reactors may also be contemplated.
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