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Abstract. Reconstructions of past climate behavior often de-

scribe prominent anomalous periods that are not necessarily

captured in climate simulations. Here, we illustrate the con-

trast between an interdecadal strong positive phase of the

winter Pacific/North American pattern (PNA) in the early

19th century that is described by a PNA reconstruction based

on tree rings from northwestern North America, and a slight

tendency towards negative winter PNA anomalies during the

same period in an ensemble of state-of-the-art coupled cli-

mate simulations. Additionally, a pseudo-proxy investigation

with the same simulation ensemble allows for assessing the

robustness of PNA reconstructions using solely geophysi-

cal predictors from northwestern North America for the last

millennium. The reconstructed early 19th-century positive

PNA anomaly emerges as a potentially reliable feature, al-

though the pseudo-reconstructions are subject to a number

of sources of uncertainty and deficiencies highlighted espe-

cially at multidecadal and centennial timescales. The pseudo-

reconstructions demonstrate that the early 19th-century dis-

crepancy between reconstructed and simulated PNA does not

stem from the reconstruction process. Instead, reconstructed

and simulated features of the early 19th-century PNA can be

reconciled by interpreting the reconstructed evolution dur-

ing this time as an expression of internal climate variability,

which is unlikely to be reproduced in its exact temporal oc-

currence by a small ensemble of climate simulations. How-

ever, firm attribution of the reconstructed PNA anomaly is

hampered by known limitations and deficiencies of coupled

climate models and uncertainties in the early 19th-century

external forcing and background climate state.

1 Introduction

The Pacific/North American pattern (PNA) is one of the

dominant modes of interannual winter atmospheric variabil-

ity of the northern extratropics (e.g., Barnston and Livezey,

1987; Wallace and Gutzler, 1981). It strongly affects the

weather and the hydroclimate of the North American con-

tinent, and contributes to the atmospheric bridge linking Pa-

cific and Atlantic climate variability (e.g., Raible et al., 2001;

Pinto et al., 2011; Baxter and Nigam, 2013). The behavior of

this large-scale atmospheric circulation pattern before the ob-

servational period and its sensitivity to natural external forc-

ing are less understood compared to other dominant climate

modes, partly due to the limited number and temporal cover-

age of available PNA reconstructions. In fact, only one major

winter PNA reconstruction, based on tree rings from north-

western North America, is available and only goes back to

AD 1725 (Trouet and Taylor, 2010, hereafter TT2010) (see
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Sect. 2.1 for details). Here, we investigate the PNA features

described by a multi-model ensemble of state-of-the-art cli-

mate simulations of the last millennium and use pseudo-

proxy experiments (e.g., Lehner et al., 2012; Smerdon, 2012)

applied to the same ensemble to improve our understanding

of the PNA’s behavior during the pre-industrial period, espe-

cially during the early 19th century, and to investigate com-

patibility between climate simulations and reconstructions.

The PNA pattern consists of a wave train spanning from

the subtropical northeastern Pacific to the Gulf of Alaska,

northwestern North America and the southeastern United

States through centers of action of alternating sign (Fig. 1).

Accordingly, a classical definition of the PNA index is the

sum of the differences between its positive and negative cen-

ters of action (Wallace and Gutzler, 1981). The PNA can be

interpreted as an amplification and dampening of the clima-

tological stationary wave characterizing the pattern of the po-

lar jet across North America (e.g., Notaro et al., 2006), which

explains its reduced importance during boreal summer. The

positive phase of the PNA includes an anomalously deep

Aleutian low and an enhanced ridge-trough pattern across

North America. It produces above-average temperatures over

northwestern North America due to the stronger ridge over

the North American Rockies with associated northward di-

version of the westerly flow, and below-average temperatures

and drier conditions across the south-central and southeast-

ern United States due to increased southward penetration of

cold Arctic air masses. The signature is reversed for the neg-

ative phase of the PNA.

On sub-monthly timescales, the PNA variability and pre-

dictability are largely determined by internal dynamics of

the mid-latitude atmosphere, while on longer timescales they

are most prominently controlled by forcing from sea-surface

temperature (SST) signals from the tropical Pacific (Younas

and Tang, 2013). Horel and Wallace (1981) were the first to

identify a connection between the PNA and the equatorial

El Niño–Southern Oscillation (ENSO). Since then, observa-

tional and modeling studies have revealed that boundary con-

ditions relevant for the PNA also include low-frequency SST

signals in the extratropical North Pacific (Yu and Zwiers,

2007; Yu et al., 2007), remote forcing from the North At-

lantic (Baxter and Nigam, 2013) and upstream conditions de-

termined by the East Asian jet (e.g., Gong et al., 2007).

Climate simulations of the last millennium indicate in-

creased likelihood of a significantly weaker Aleutian low

after strong tropical volcanic eruptions, suggesting that

the PNA can dynamically respond to volcanic forcing on

interannual-to-decadal timescales (Zanchettin et al., 2012;

Wang et al., 2012). A connection between PNA variability

and natural forcing is also suggested by the TT2010 recon-

struction, which shows a prolonged strong positive phase

of the PNA during the early 19th century. Indeed, this pe-

riod was characterized by a close succession of strong vol-

canic eruptions concomitant with a phase of weak solar ac-

tivity, both contributing to exceptionally cold climate condi-

tions (Cole-Dai et al., 2009). However, TT2010 attributed the

early 19th-century anomalous PNA phase to the decreased

solar irradiance during the Dalton Minimum of solar activity

(ca. 1790–1830), without discussing possible implications

from the concomitant volcanic cluster.

The selection of proxy locations is crucial for the robust-

ness and reliability of reconstructions of large-scale circu-

lation modes (Lehner et al., 2012). Decadal-scale shifts in

the centers of action of atmospheric modes like the North

Atlantic Oscillation (NAO) or the PNA are associated with

non-stationarities in the imprint of such teleconnection pat-

terns on local precipitation and temperature (Raible et al.,

2006, 2014; Coats et al., 2013; Moore et al., 2013). Ac-

cordingly, the ring-width response to atmospheric modes like

the PNA and the NAO is spatially heterogeneous due to the

complex causal chain linking climate modes, local environ-

ment and seasonal tree growth (St. George, 2014). Reflecting

such heterogeneity, the prolonged positive PNA phase in the

early 19th century becomes less prominent if proxies from

other PNA-sensitive regions are considered, such as river

catchments in west-central British Columbia (Starheim et al.,

2013) or lakes from the northeastern United States (Hubeny

et al., 2010).

Twentieth Century Reanalysis Project data suggest that the

PNA centers of action are less variable in space than, e.g.,

the NAO (Raible et al., 2014). However, the risk of insuf-

ficient coverage and representation of its different centers

of action – and hence a poor reconstruction – is consider-

able for the PNA due to the complexity of its pattern and the

strong interdependencies with surrounding or even superpos-

ing modes of variability. For instance, over the last 6 decades

and especially in winter the PNA has been practically indis-

tinguishable from the inverted North Pacific Index (NPI) de-

scribing the sea-level pressure (SLP) variability in the Aleu-

tian low region. However, there is no indication as of yet

about whether the NPI and the PNA (and their signatures on

regional temperature and precipitation) can become distin-

guishable over periods of decades or longer. Similarly, late-

winter temperature reconstructions in western North Amer-

ica, i.e., a region where the PNA climatic imprint is strong,

have been recently used to test whether strong tropical vol-

canic eruptions induce a preferred phasing of ENSO (Wahl

et al., 2014). However, the simulated teleconnection between

ENSO and the North American climate is nonstationary on

multidecadal timescales (Coats et al., 2013). The possible su-

perposition of regional climate signatures of different large-

scale modes (like ENSO, PNA and NPI) and their possible

nonstationarity poses a challenge for any reconstruction at-

tempt using climate proxies from affected regions, particu-

larly for producing robust and unambiguous reconstructions.

There is therefore a need to assess the robustness of proxy-

based PNA reconstructions: if the TT2010 reconstruction is

found to accurately capture the past PNA behavior, the re-

constructed prolonged strong positive PNA phase during the

early 19th century would represent an important feature for
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Figure 1. Observed and simulated correlation maps between the winter PNA index and winter Z500 time series for the period 1950–2005.

Dots mark grid points where the correlation is not significant at 95 % confidence accounting for autocorrelation. The green boxes mark the

areas used for the calculation of the PNA index. In panels (b–i), the numbers reported in the respective titles are the spatial correlations

between observed and simulated patterns calculated for the domain north of 20◦ N (to this end, NCAR data were regridded to the model

grid).

addressing in coupled climate simulations. Its robust repro-

duction by climate simulations would be strong evidence for

its externally driven nature, while the opposite would sug-

gest two possibilities: either an episodic excitation consistent

with internal variability or limited realism of climate models

due to common deficiencies.

Thus, this study aims at answering the following ques-

tions: is the prolonged strong positive PNA phase in the

TT2010 reconstruction during the early 19th century reli-

able? What can we learn from available climate simulations

of the last millennium about its attribution? To answer these

questions we compare simulated and observed/reconstructed

PNA features, and perform a series of pseudo-proxy ex-

periments on a multi-model ensemble. We also extend our

pseudo-proxy investigation to determine whether there is

margin to substantially improve the PNA reconstruction.

2 Data and methods

2.1 The TT2010 PNA reconstruction

The TT2010 reconstruction of the winter PNA covers the pe-

riod 1725–1999. It is based on a multiple regression model

using three winter climate sensitive tree ring records from

the western United States as predictors (TT2010). The pre-

dictors were sampled from three regions, whose locations

are marked by the green boxes in Fig. 2 and that are here-

after referred to as “Alaska” (northern box, here defined

as 60–70◦ N, 120–160◦W), “Montana” (middle box, 50–

60◦ N, 115–135◦W) and “Wyoming” (southern box, 35–

www.clim-past.net/11/939/2015/ Clim. Past, 11, 939–958, 2015
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e) GISS−E2−R24, 0.926

 1
80

o W
 

 1
50

o W
 

 1
20

o W
 

  9
0o W

 

  6
0o W

 

  12oN 

  24oN 

  36oN 

  48oN 

  60oN 

  72oN 
f) GISS−E2−R25, 0.855
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Figure 2. Observed and simulated correlation maps between the winter PNA index and winter surface air temperature time series for the

period 1950–2005. Dots mark grid points where the correlation is not significant at 95 % confidence accounting for autocorrelation. The

green boxes mark the areas used for the TT2010 reconstruction. In panels (b–i), the numbers reported in the respective titles are the spatial

correlations between observed and simulated patterns calculated for the shown land-only domain north of 12◦ N (to this end, NCAR data

were regridded to the model grid).

50◦ N, 107.5–125◦W), respectively (see Table 1 in TT2010).

The Alaskan predictor is most sensitive to winter tempera-

ture; the predictor from Montana captures winter precipita-

tion at a relatively high-elevation site, whereas the predic-

tor from Wyoming captures both autumn/winter precipitation

and summer temperature at a relatively low-elevation, semi-

arid site (TT2010). The latter two predictors show the op-

posite sensitivity to precipitation despite their close location,

highlighting the role of regional topographical features in de-

termining the relationship between the biological sensor and

the local environmental conditions. The combination of the

selected three tree ring series explains 49 % of the variance of

the winter PNA index for the calibration period 1949–1999

(TT2010).

The TT2010 PNA reconstruction shows a prolonged pe-

riod of positive PNA, with a peak in 1800–1820. The early

19th-century positive PNA phase was interpreted as a re-

sponse to the decreased solar irradiance since it coincides

with the period of weak solar activity known as Dalton Min-

imum and since subsequent periods of weak solar activity

similarly correspond to positive PNA anomalies (TT2010).

Radiatively forced warming of eastern tropical Pacific SST

associated with cold SST anomalies in the Aleutian Low re-

gion – corresponding to in-phase interactions between pos-

itive anomalies of both ENSO and the Pacific Decadal Os-

cillation – was reported as a possible dynamic explanation

for the connection between decreased solar irradiance and

positive PNA phase. TT2010 did not discuss the possible im-

plications of the strong volcanic eruptions during the early

19th century. Possible mechanisms underlying volcanically

forced PNA variability include both tropical–extratropical

coupling via volcanically forced changes of ENSO (e.g., Li

et al., 2013) and extratropical processes via, e.g., sea-ice re-

sponses in the Gulf of Alaska and the Bering Strait region

(e.g., Zanchettin et al., 2014).

2.2 Observational and simulated data

We use monthly mean data obtained from the NCEP reanal-

ysis (Kalnay et al., 1996; Kistler et al., 2001) for the period

1948–2013 as reference data for the observational period.

The data were provided by NOAA/OAR/ESRL PSD, Boul-

Clim. Past, 11, 939–958, 2015 www.clim-past.net/11/939/2015/
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der, Colorado, USA. The NCEP reanalysis data set suits our

needs since it encompasses the calibration period used in the

TT2010 reconstruction. The Twentieth Century Reanalysis

Project (Compo et al., 2011) extends further back in time, but

the ensemble teleconnection patterns over the Pacific from

this data set are poorly constrained during the first half of the

20th century (e.g., Raible et al., 2014).

We include outputs from “past1000” and follow-up his-

torical climate simulations from seven coupled general cir-

culation and Earth system models contributing to the third

phase of the Paleoclimate Modelling Intercomparison Project

(PMIP3, Braconnot et al., 2012). All simulations are full

forcing simulations, i.e., they describe the combined effects

of all major natural and anthropogenic external forcing fac-

tors acting during the last millennium (Schmidt et al., 2014).

Two simulations are considered for the Goddard Institute for

Space Studies E2-R model (hereafter referred to as GISS-

E2-R24 and GISS-E2-R25), which differ in the considered

external forcing inputs. Table 1 provides a summary of the

main characteristics of the models and simulations consid-

ered.

Bothe et al. (2013) provide an assessment of the prob-

abilistic and climatological consistency of the PMIP3-

past1000 simulations relative to proxy-based reconstructions

under the paradigm of a statistically indistinguishable ensem-

ble. They diagnose distributional inconsistencies between

ensemble-simulated surface air temperatures and the global

temperature field reconstruction of Mann et al. (2009) over

large areas of the globe, including PNA-sensitive regions

over North America (see their Fig. 1). These full period in-

consistencies originate mainly from differences in multicen-

tennial to millennial trends (Bothe et al., 2013). By con-

trast, the ensemble was found to be probabilistically consis-

tent with the reconstructed annual temperatures for the North

American southwest beginning in the year 1500 (Wahl and

Smerdon, 2012).

2.3 Indices and definitions

The following indices and definitions are considered based

on monthly mean data:

– the PNA is calculated using the modified point-wise

method currently adopted by the NOAA-CPC and

applied to 500 hPa geopotential height (Z500) data.

The index is defined as Z∗
[15–25◦ N; 180–220◦ E]

−

Z∗
[40–50◦ N; 180–220◦ E]

+Z∗
[45–60◦ N; 235–255◦ E]

−

Z∗
[25–35◦ N; 270–290◦ E]

, where Z∗ denotes monthly

Z500 anomalies from the respective climatological

value, and the suffix [x] indicates spatial averaging over

the domain x. We briefly discuss a different definition

of the PNA index in Sect. 4;

– the NAO index is calculated based on the latitude–

longitude two-box method from Stephenson et

al. (2006) applied on Z500 data, i.e., as the pressure

difference between spatial averages over 20–55◦ N;

90◦W–60◦ E and 55–90◦ N; 90◦W–60◦ E;

– the NPI is calculated using the definition from Trenberth

and Hurrell (1994) applied to SLP data. The index is

computed as the spatial SLP averaged over 30–65◦ N;

160–220◦ E, so that positive phases of the index indi-

cate a weaker-than-normal Aleutian low and the oppo-

site holds for the negative phases;

– the Southern Oscillation Index (SOI) is calculated based

on a modified version of the Tahiti–Darwin index. It

is defined as the difference between the average SLP

over the domains 20–15◦ S; 147–152◦W and 15–10◦ S;

128.5–133.5◦ E. The SOI is here preferred to SST-based

ENSO indices since we focus on the atmospheric com-

ponent of ENSO.

Indices are not standardized by default in order to high-

light inter-model differences in the climatology and in the

amplitude of fluctuations associated with the indices.

2.4 Pseudo-proxy experiments

Pseudo-proxy experiments are conducted to test the ro-

bustness and potential skills of PNA reconstructions using

solely geophysical predictors from northern North America.

Millennium-scale transient simulations from climate models

provide a long and physically consistent framework where

paleoclimate reconstruction methods can be altered and eval-

uated systematically in absence of the spatial and tempo-

ral discontinuities of the real-world climate proxy networks

(Smerdon, 2012). In particular, they may allow one to deter-

mine an upper limit to the accuracy of the reconstruction of

large-scale modes under limited spatial sampling.

Our pseudo-proxy experimental approach is meant as a

generalization of the method used in TT2010. Specifically,

the reconstruction is based on a multi-linear least-square re-

gression model of the general form yt
=6i=1:N ai×

t
i+y0+

εt , where yt is the reconstructed value at time step t , N is the

number of predictors, ai is the regression coefficient of the

ith predictor xi , y0 is the intercept and εt is the residual at

time step t . All data are normalized based on the full period

before the pseudo-proxy experiments are conducted.

Pseudo-reconstructions are performed as follows: first, the

pool of candidate predictors including temperature and pre-

cipitation data is determined by defining three regions over

North America. Then, an ensemble of predictor sets is built

by iteratively (up to 1000 times) and randomly sampling

data from one grid point from each region. Finally, an en-

semble of PNA pseudo-reconstructions is obtained by using

the built sets in a multi-linear regression. Thus, the robust-

ness of PNA pseudo-reconstructions with a TT2010-like de-

sign is tested using predictor sets that mimic the quality of

the TT2010 reconstruction. Accordingly, we consider only

www.clim-past.net/11/939/2015/ Clim. Past, 11, 939–958, 2015
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Table 1. Simulations considered in this study. Columns, from left: model and, in parentheses, simulation name; atmospheric and oceanic

components (with resolution in parentheses); applied solar (S) and volcanic (V) external forcings; considered periods of the past1000 (P) and

historical (H) integrations; references/sources of information. Names of models and simulations follow the acronyms adopted in the Coupled

Model Intercomparison Project (CMIP) 5 repository. Full references for the applied solar and volcanic forcing are Vieira et al. (2011), Gao

et al. (2008), Crowley (2000), Jones and Mann (2004) and Crowley et al. (2008).

Model/simulation Components and resolutions Natural forcing Time intervals References

BCC-CSM1-1 (r1i1p1) – S: Vieira, V: Gao P (850–1850) –

H (1851–2012)

CCSM4 (r1i1p1) CAM4 (1.25◦× 0.9◦ L26)/ S: Vieira, V: Gao P (850–1850) Landrum et al. (2011)

Parallel Ocean Model 2 (1◦L60) H (1851–2005)

FGOALS-gl (r1i1p1) – S/V: Crowley (2000), P (1000–1999) Zhou et al. (2011)

Jones and Mann (2004)

GISS-E2-R (r1i1p124) ModelE (2◦× 2.5◦ L40)/ S: Vieira, V: Crowley (2008) P (850–1850) –

Russell (1◦× 1.25◦ L32) H (1851–2005)

GISS-E2-R (r1i1p125) ModelE (2◦× 2.5◦ L40)/ S: Vieira, V: Gao P (850–1850) http://data.giss.nasa.gov/modelE/ar5/

Russell (1◦× 1.25◦ L32) H (1851–2005)

IPSL-CM5A-LR (r1i1p1) LMDZ5A (1.875◦× 3.75◦ L39)/ S: Vieira, V: Ammann et al. (2007) P (850–1850) Dufresne et al. (2013)

NEMO (2◦, with refinement at H (1851–2005)

the equator of 0.5◦, L31)

MIROC-ESM (r1i1p1) – – P (850-1850) –

H (1851–2005)

MPI-ESM-P (r1i1p1) ECHAM6 (T63L47)/MPIOM(GR15L40) S: Vieira, V: Crowley (2008) P (850–1850) Jungclaus et al. (2014)

H (1851–2005)

pseudo-reconstructions with R2 skill metric in the range be-

tween 0.45 and 0.55 for the calibration period (R2
c ); i.e., the

selection is based on calibration skills instead of on a prelim-

inary screening of climate proxies.

We follow a perfect model approach with noise-free pre-

dictors, and the considered range of R2
c is meant to account

for the possible effects of noise in the actual climate prox-

ies. The inclusion of noise in the predictors and its influ-

ence on the results are briefly investigated with a series of

pseudo-proxy experiments where predictors are artificially

perturbed by different types and levels of noise (Sect. 4).

Skill metrics calculated for such noise-free predictor sets and

regression models, but using other climate indices as valida-

tion target instead of the PNA, clarify whether these pseudo-

reconstructions distinguish the PNA from other modes influ-

encing North American regional climates. Additionally, the

PNA pseudo-reconstructions pertaining to the upper quartile

of R2
c for each simulation provide a crude estimate of the

quality of PNA reconstructions obtainable with a TT2010-

like method for the given set of sampling regions. An exem-

plary different set of regions is also considered in the same

reconstruction approach to assess whether regions not in-

cluded in the TT2010 design may allow for a notable im-

provement in the accuracy and robustness of PNA recon-

structions.

Skill metrics include R2 and coefficient of error (CE)

(Cook et al., 1994). CE is defined as 1−6t=1:M (xt −

yt )
2/6t=1:M (xt − xmv)2, where xt and yt are the observed

and the predicted index in year t , respectively. xmv is the ob-

served mean index over the validation period and M is the

number of years in the validation period. R2 values are also

calculated for successive 30-year periods to highlight the ro-

bustness of the pseudo-reconstructions over different inter-

decadal periods.

Unlike in TT2010, the predictors sampled herein from

the “Montana” (middle) and “Wyoming” (southern) boxes

are winter temperature and precipitation, respectively. This

choice guarantees that our pseudo-reconstructions encom-

pass the desired R2
c range in all models, which is hardly

achieved for pseudo-proxies from these regions following the

original definition. In particular, reconstruction skills con-

siderably degrade if the predictor for “Wyoming” is defined

as summer temperature instead of winter temperature (see

Sect. 2.1). This does not affect the generality of our con-

clusions, since we aim at testing PNA reconstructions based

solely on local geophysical predictors from northwestern

North America, not at replicating the linkage between bi-

ological sensors and the local environmental forcing at the

basis of the TT2010 reconstruction.

All the following analyses are performed using winter-

average (DJF) data and using 1950–1999 as the calibration

period, unless specified otherwise. Furthermore, unless spec-

ified otherwise, the validation period is defined as the period

spanning from the beginning of the simulation to the last year

before the calibration period. The use of unsmoothed data

limits the effect of high autocorrelation leading to spurious

high skill metrics (Macias-Fauria et al., 2012).

3 Results

3.1 Simulated PNA during the observational period

First, we assess whether the employed models/simulations

represent the observed/reanalyzed dominant large-scale cir-

culation and associated surface air temperature and precipi-
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tation patterns with sufficient accuracy for the observational

period. This comparison guarantees that they are suitable for

the subsequent analyses.

The four centers of the observed PNA wave pattern are

generally well captured by the simulations (Fig. 1). A num-

ber of simulations, and most noticeably GISS-R24/-R25

(Fig. 1e, f), display a weaker tropical center in the Pacific

suggesting a weaker connection between tropics and extrat-

ropics. Higher model resolution does not systematically im-

prove the overall quality of the hemispheric pattern. For

instance, the PNA imprint over the Arctic as well as the

Pacific–Atlantic teleconnection are too strong in the highly

resolved CCSM4 (Fig. 1c). The PNA pattern of the lowest-

resolution model (FGOALS-gl) has an overall weaker hemi-

spheric imprint and the negative center over Florida is dis-

placed westward over Mexico (Fig. 1d), possibly reflecting

an inadequate representation of the Rocky Mountains.

A similar behavior is found for the simulated spatial pat-

terns of NPI (see Supplement Fig. S1). Most noticeably,

the NPI pattern in FGOALS-gl includes strong negative

correlations over central North America, again pointing to

low-resolution topographic issues. All simulations show a

good representation of the NAO pattern over the North At-

lantic/Europe and China, but often overestimate its signature

over the North Pacific (Fig. S2). The simulation of the SOI

pattern is a challenge for most of the models, especially con-

cerning its signature over the extratropical North Pacific and

North America (Fig. S3).

Our pseudo-reconstruction approach also requires that

simulations produce reliable imprints of the PNA – as well

as of NPI, SOI and NAO – on North American winter sur-

face air temperature and precipitation (Figs. 2 and 3). The

observed correlation pattern between PNA and continental

temperature is characterized by an approximately meridional

stretch of positive correlations along the western coast of

North America, which extends eastward into continental re-

gions at mid- to polar latitudes, and by a center of negative

correlation over the Sargasso Sea/Florida (Fig. 2a). Simula-

tions capture both features with varying quality (Fig. 2b–i).

For instance, the Sargasso Sea/Florida center is displaced

in BCC-CSM1-1 and FGOALS-gl, while it is underrepre-

sented in GISS-E2-R25, IPSL-CM5A-LR and slightly so in

MIROC-ESM. Overall, FGOALS-gl presents the worst rep-

resentation of this correlation pattern possibly due to the de-

ficiencies noticed above in the 500 hPa PNA pattern. Similar

conclusions can be drawn about the NPI signature of North

American winter temperatures (Fig. S4). Simulations and re-

analyses consistently point to a limited imprint of NAO and

SOI on North American winter temperatures (Figs. S5 and

S6), which for both modes partly superposes PNA signals.

Similar considerations could be derived for winter pre-

cipitation, but correlation patterns between large-scale cir-

culation modes and precipitation over land are patchier than

for temperature. Overall, the quality of simulated precipita-

tion patterns compared to reanalyses is clearly poorer than

for temperature. Both reanalyses and simulations indicate lo-

cally significant negative correlations between PNA and pre-

cipitation in the mid-latitude United States (i.e., wetter con-

ditions under negative PNA, and vice versa), but with sub-

stantial differences in the details of the pattern (Fig. 3). An

important robust feature is that all simulations except GISS-

E2-R25 indicate weak negative correlations over the central

Rocky Mountains (Fig. 3b–i), a region where precipitation-

sensitive proxies were screened for the TT2010 reconstruc-

tion.

In summary, the correlation patterns reveal a marked het-

erogeneity between simulations in the quality of their repre-

sentation of dominant large-scale circulation modes and as-

sociated imprint on the North American climate. Of course,

the spatial patterns are derived from the chosen 50-year pe-

riod within single transient simulations, and are therefore

not necessarily representative of the quality of the differ-

ent models. Still, some general features are recognizable: a

coarsely resolved North American topography and a poor

representation of tropical and extratropical Pacific interac-

tions are likely two major challenges limiting the quality of

the simulated PNA imprints. The most apparent issues con-

cern FGOALS-gl, potentially due to its coarser resolution

compared to the other models.

3.2 Simulated PNA features during the last millennium

The evolution of the winter PNA index throughout the last

millennium shares little resemblance between the different

simulations (Fig. 4a), which is indicative of a limited effect

of the external forcing since the latter is very similar across

the ensemble. Decadal and interdecadal phases of strong pos-

itive or, similarly, strong negative PNA appear at different

periods in different simulations, suggesting that, in general,

the PNA is mostly determined by internal variability at these

timescales. No simulation displays a prolonged strong posi-

tive PNA phase during the early 19th century as featured by

the TT2010 reconstruction, but decadal-scale positive PNA

anomalies of similar relative amplitude emerge sporadically

in the ensemble during different periods (see dots in Fig. 4a).

Such prolonged positive-PNA events are, however, rare. Un-

like in the reconstruction, the early 19th century is character-

ized by predominant negative PNA trends in the simulations

(the period of discrepancy is highlighted by a horizontal red

bar in Fig. 4b).

Running-window correlations between the PNA index and

the other indices provide a simple assessment of the vari-

able strength of PNA teleconnections in the different simu-

lations. Reanalysis data indicate that winter PNA and NPI

are practically indistinguishable: the two indices are robustly

highly anti-correlated (thick black line in Fig. 5a). Simula-

tions consistently feature significant negative PNA–NPI cor-

relations through the last millennium, although with consid-

erable differences within the ensemble concerning strength

and stationarity of the statistics (Fig. 5a). CCSM4 produces
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d) FGOALS−gl, 0.374
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e) GISS−E2−R24, 0.596
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f) GISS−E2−R25, 0.371

 1
80

o W
 

 1
50

o W
 

 1
20

o W
 

  9
0o W

 

  6
0o W

 

  12oN 

  24oN 

  36oN 

  48oN 

  60oN 

  72oN 
g) IPSL−CM5A−LR, 0.502

 1
80

o W
 

 1
50

o W
 

 1
20

o W
 

  9
0o W

 

  6
0o W

 
  12oN 

  24oN 

  36oN 

  48oN 

  60oN 

  72oN 
h) MPI−ESM−P, 0.659
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Figure 3. Observed and simulated correlation maps between the winter PNA index and winter precipitation time series for the period 1950–

2005. Dots mark grid points where the correlation is not significant at 95 % confidence accounting for autocorrelation. The green boxes mark

the areas used for the TT2010 reconstruction. In panels (b–i), the numbers reported in the respective titles are the spatial correlations between

observed and simulated patterns calculated for the shown land-only domain north of 12◦ N (to this end, NCAR data were regridded to the

model grid).

the strongest and most robust correlations, which overlap

with values from reanalyses, whereas FGOALS-gl produces

the weakest and most time-varying correlations. The simu-

lated winter PNA–NAO correlations are generally weak and

negative during the last millennium, in agreement with the

non-significant and strongly varying statistics from reanal-

ysis data (Fig. 5b). Some simulations feature multidecadal

periods when the negative correlation becomes statistically

significant, suggestive of a temporarily strong atmospheric

connection between the North Pacific and North Atlantic

sectors. This is especially the case for CCSM4 (compare

also superposing patterns in Figs. 1c and S2c). The nega-

tive PNA–NAO correlations represent periods when the at-

mospheric bridge linking Pacific and Atlantic climate vari-

ability is active (for a dynamical description see, e.g., Raible

et al., 2001; Pinto et al., 2011; Baxter and Nigam, 2013).

Decadal active phases of such a bridge in the form of persis-

tent negative PNA/positive NAO pattern have been attributed

to both internal variability (Pinto et al., 2011) and strong

volcanic forcing (Zanchettin et al., 2012). The winter PNA–

SOI correlation is significantly negative in the reanalyses,

though not very strong (Fig. 5c). CCSM4 produces PNA–

SOI correlations that remain robustly around this observed

value throughout the last millennium, while the other simu-

lations produce generally lower and more variable correla-

tions (Fig. 5c). In BCC-CSM1-1, MPI-ESM-P and MIROC

correlations between SOI and both PNA and NPI (the latter

not shown) are only sporadically significant, meaning that

these models feature a weak connection between the tropi-

cal and extratropical North Pacific. Note that these results do

not qualitatively change if running-window correlations are

calculated over longer periods.

Changes in the relative importance of large-scale modes

for North American winter climate variability during the last

millennium are assessed by comparing the fractional vari-

ances of North American surface air temperature and precip-

itation that are explained by the different indices over sliding

30-year periods paced at 1-decade intervals. The winter PNA

is the dominant mode of simulated North American winter

temperature variability among the considered indices (PNA,

NPI, ENSO), generally explaining around 20 % of the total

variance (Fig. 6). Only for FGOALS-gl are there several pe-
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Figure 6. Fractions of total variance of North American winter sur-

face air temperatures (land only grid points within the domain 20–

70◦ N, 190–300◦ E) explained by winter PNA, NPI, NAO and SOI

indices for individual models. Values are calculated over decadally

paced 30-year periods.

riods when the NPI becomes more dominant than the PNA.

The strength of all index signatures changes through time.

The fraction of North American winter precipitation variabil-

ity explained by the indices is generally below 10 %, and the

dominance of PNA over the other indices is less clear than

for temperature (Fig. S7).

In summary, internal variability is an important factor for

the simulated PNA during the pre-industrial millennium. The

ensemble markedly disagrees with the TT2010 reconstruc-

tion, whose strong positive phase in the early 19th century

was interpreted as resulting from a strong PNA response

to solar forcing (TT2010). Correlations between indices re-

veal substantial differences in the simulated representation

of teleconnections both within the ensemble and in compari-

son to reanalyses. Among the considered indices, PNA gen-

erally explains the largest fraction of North American winter

temperature variability. Only FGOALS-gl features prolonged

periods when PNA and NPI explain comparable fractions

of North American winter temperature variability. We are

therefore confident that through proper sampling of precip-

itation and especially temperature proxies over North Amer-

ica, pseudo-reconstructions are able to express robust PNA

signals rather than signals from other indices.

3.3 PNA pseudo-reconstructions

First, we validate the reconstruction approach in TT2010.

This is done in a perfect model framework by testing whether

a reconstruction design based solely on geophysical predic-

tors from northwestern North America can provide meaning-

ful pseudo-reconstructions of the PNA. We use only predic-

tor sets that provide a calibration skill comparable to that of

the actual TT2010 reconstruction (Fig. S8 summarizes the

full ensemble of pseudo-reconstruction calibration skills).

The so-obtained PNA pseudo-reconstructions are gener-

ally skillful according to both employed full validation met-

rics (R2
v and CE): only a few pseudo-reconstructions give CE

values below 0, meaning they have no predictive skill and

are hence unacceptable (Fig. 7a). R2
v values can exceed the

imposed R2
c range (see columns of numbers in Fig. 7a). In

some simulations, different performance between the valida-

tion and calibration periods can be related to the presence of

significant local trends in North American winter tempera-

tures during the latter period (Fig. S9) that are mostly due to

strong anthropogenic forcing imposed in the second half of

the 20th century. For some simulations and predictor sets, the

validation-period R2 values (R2
v) for the PNA overlap with

those from the NPI (Fig. S10), meaning that in these cases the

pseudo-reconstructions are hardly effective in distinguishing

PNA-related features from other signals.

The robustness of a reconstruction through time is a major

concern for its reliability. Figure 8 shows that for the same

set of predictors used for Fig. 7a, the R2 skill of the pseudo-

reconstructions changes remarkably through time: there are

periods when the pseudo-reconstructions from one simula-

tion are consistently poorer, other periods when they are

consistently better and there is generally a large spread in

the quality of the pseudo-reconstructions. The multidecadal

and centennial variations of R2 suggest that there is struc-

tural uncertainty on these timescales. Note that since met-

rics are calculated based on deviations from the 30-year av-

erage, the so-defined R2 describes the reconstruction skills

mostly regarding interannual-to-decadal variability. The CE

metric, which accounts for the 30-year mean state, is charac-

terized by non-stationarity and inter-model spread similar to

R2 (not shown). Running-window statistics further indicate

that the models substantially differ concerning the compar-

ative skills of reconstructed indices (top panel of Fig. 8): in

some models, and most noticeably in GISS-E2-R, the skills

for the PNA are often not better than for NPI; in other mod-

els, like MPI-ESM-P and BCC-CSM1-1, the skills for the

PNA are better than for all other indices. We conclude that

the approach is effective in distinguishing the reconstructed
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Figure 7. Skill metrics (coefficient of determination (R2
v) and coefficient of error (CE)) of the ensemble PNA pseudo-reconstructions for

the full validation period. Different panels illustrate results from different reconstruction designs, summarized in the titles of each panel:

(a) reconstructions based on geophysical predictors from northwestern North America, with R2
c comparable to that of the actual TT2010

reconstruction (see methods); (b) same as panel (a), but for best R2
c values; (c) best R2

c values from an idealized design including a tempera-

ture predictor over Florida. The numbers inside each panel indicate the minimum and maximum R2
v values obtained for each model. Insets

in each panel map the three boxes from where gridded data are sampled to be included as predictors, with the name reported in each box (tas:

surface air temperature, pr: precipitation).

PNA from other indices only for models such as MPI-ESM-P

and BCC-CSM1-1.

Another of our main objectives is to assess the robustness

of the interdecadal strong positive PNA phase identified by

the TT2010 reconstruction in the early 19th century. Figure 8

shows particularly large inter-model spread in the R2 met-

ric during the late 18th and early 19th centuries, with some

simulations performing very well (IPSL-CM5A-LR, GISS-

E2-R25 and MPI-ESM-P), while others, for those time peri-

ods, show some of the poorest skills in the entire millennium

(e.g., BCC-CSM1-1 and GISS-E2-R25). It should be noted

that the PNA pseudo-reconstructions are generally biased to-

wards negative PNA values (black vertical lines in Fig. 9).

This is mainly due to the fact that most simulations have

strong local trends in 20th century temperatures (Fig. S9),

which result in PNA pseudo-reconstructions roughly follow-

ing a hockey-stick shape over the last millennium. As a

consequence of this bias, our pseudo-reconstructions tend

to underestimate interdecadal phases of very strong posi-

tive PNA that are detected throughout the simulations (see

the negatively centered histogram in Fig. 9a). By contrast,

interdecadal phases of strong positive PNA in the pseudo-

reconstructions seem to describe the actual PNA conditions

more accurately, as shown by the rather symmetric, almost

zero-centered probability distribution of ensemble residuals

for these events (Fig. 9b). Thus, whereas actually simulated

prolonged strong positive PNA phases may not be correctly

captured by pseudo-reconstructions, prolonged strong posi-

tive phases emerging in the pseudo-reconstructions are gen-

erally “true”.

There are further concerns about the capability of pseudo-

reconstructions to accurately capture the PNA low-frequency

variability. We find that pseudo-reconstructions tend to over-

estimate the amplitude of multidecadal-to-centennial fluctu-

ations (Fig. 10). In some simulations, like BCC-CSM1-1,

CCSM4, FGOALS-gl and MPI-ESM-P, the spectra of the

pseudo-reconstructions entail large-amplitude peaks in this

frequency band that do not appear in the spectrum of the

actual index. GISS-E2-R and MIROC, by contrast, produce

pseudo-reconstructions whose spectra agree fairly well with

that of the simulated PNA. The different agreement between

pseudo-reconstruction spectra and the actual PNA spectrum

implies that the models disagree about whether (i) the low-

frequency temperature and precipitation excursions captured

by the pseudo-proxies are related to the PNA and/or whether

(ii) the PNA reacts to the same low-frequency forcing as the

temperature and precipitation pseudo-proxies do. Combin-

ing evidence from Figs. 8, 9 and 10, we conclude that the

errors in the pseudo-reconstructed prolonged positive PNA

phases and, more generally, the variable skills of pseudo-

reconstructions on multidecadal and centennial timescales

reflect misrepresentation of low-frequency PNA variability

by the pseudo-reconstructions. This casts doubt on the relia-

bility of the early 19th-century PNA event identified by the

TT2010 reconstruction.

Considering PNA pseudo-reconstructions instead of the

actually simulated PNA indices does not solve the discrep-

ancy between simulations and the TT2010 reconstruction

during the early 19th century (Fig. 4c). In fact, none of the

simulations display significant positive winter temperature

anomalies over northwestern North America during the pe-
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Figure 8. Skill metric (R2) for an ensemble of PNA reconstructions based on geophysical predictors from northwestern North America for

subsequent 30-year periods (paced at 3-decade intervals). To be comparable with TT2010, only the subset of reconstructions with R2 for

the 1950–1999 calibration period in the range of 0.45–0.55 are shown, as for Fig. 7a. For each 30-year period, dots are minimum, mean and

maximum of R2 values, vertical lines indicate the inter-quartile interval of R2 values. The top symbols indicate 30-year periods when the R2

value for NPI (square), SOI (triangle) or NAO (circle) is, for at least one predictor set, better than the worst PNA value.
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Figure 9. Pseudo-reconstructions’ accuracy in describing interdecadal positive PNA phases. Histograms are ensemble (all simulations)

empirical probability distributions of residuals (predicted value minus true value) from the winter PNA pseudo-reconstructions obtained

following an approach similar to TT2010 and illustrated in Figs. 7a and 8 for (a) target 21-year smoothed PNA values above the 90th

percentile and (b) pseudo-reconstructed 21-year smoothed PNA values above the 90th percentile. The black vertical lines indicate the full

period average residuals from individual simulations. Ninetieth percentiles are calculated over the full simulation and therefore reflect also

full period biases in the pseudo-reconstructions. The smoothing is meant to mimic the approximately 20-year duration of the early 19th-

century positive PNA phase in the TT2010 reconstruction. The considered positive PNA phases are sampled throughout the simulations,

regardless of their timing.

riod 1800–1820 (Fig. S11), which would be consistent with

a positive phase in the PNA pseudo-reconstructions follow-

ing the current definition. Instead, the anomalous patterns are

characterized by a marked heterogeneity, suggesting lack of

a robust response to external forcing across the models, with

no pattern resembling the typical PNA structure. Accepting

the reconstructed PNA behavior during the early 19th cen-

tury as accurate and the simulated climates as realistic, the

apparent discrepancy can only be solved by interpreting the

first as a particular event of internal climate variability, hence

unlikely captured (in its temporal occurrence) in a small-size

ensemble as the one at hand. Indeed, a similar discrepancy

is found in the late 1940s for a reconstructed decadal-scale

negative PNA phase (Fig. 4c), a period not characterized by

prominent (inter)decadal forcing events.

3.4 Designing new PNA reconstructions

A natural question at this point is whether there is margin to

improve reconstructions of the PNA. Potential for improve-

ment may come, for instance, from the inclusion of new

and/or better predictors over northwestern North America.

Simulations disagree about whether the skills of the actual

TT2010 PNA reconstruction and of its synthetic analogs rep-

resent the limit of this reconstruction approach: some simu-

lations (e.g., BCC-CSM1-1, FGOALS-gl) indicate that the
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calibration skill of the TT2010 reconstructions is close to

the expectation for the method (Fig. S8). In other simula-

tions, including CCSM4 and IPSL-CM5A-LR, geophysical

predictor sets from northwestern North America tend to pro-

duce R2
c values above the 0.45–0.55 range, while this range

is in the upper tail of the R2
c distribution in MPI-ESM-P

(Fig. S8). The subsets of predictors yielding the highest R2
c

values among the considered random sets delineate the up-

per bound of this reconstruction method with the inclusion

of improved predictors. Accordingly, analogously to Fig. 7a,

Fig. 7b summarizes the skill metrics for the subset of pseudo-

reconstructions with R2
c values in the upper quartile of the

R2
c distribution. BCC-CSM1-1 and CCSM4, and to a lesser

extent, GISS-R24 and IPSL-CM5A-LR, indicate the upper

potential for the TT2010 approach, especially in terms of R2
v

(compare panels (a) and (b) in Fig. 7). This is not the case

for FGOALS-gl, GISS-E2-R25 and MPI-ESM-P, whose best

skill scores indicate that pseudo-reconstructions from north-

western North American predictors are unlikely to be capa-

ble of explaining substantially larger variance than obtained

in the actual TT2010 reconstruction. The simulations also

disagree about whether an improved selection of predictors

would lead to more distinguishable reconstruction skills be-

tween PNA and NPI (not shown).

The correlation patterns between the residuals of the PNA

pseudo-reconstructions illustrated in Figs. 7a and 8 and

North American winter temperatures (Fig. 11) indicate that,

consistently among the simulations, an approach only us-

ing predictors from northwestern North America lacks im-

portant information from the southwestern and southeastern

United States. Both regions correspond to characteristic re-

gions for the PNA signature of North American winter tem-

peratures (Fig. 2). The residual correlation patterns and their

robustness reflect structural deficiencies, and suggest possi-

ble changes in the reconstruction design to improve PNA

reconstructions. Inclusion of temperature information from

the southeastern United States would, for instance, reduce

the risk of erroneously interpreting periods of spatially uni-

form continental warming/cooling or moistening/drying over

North America as positive/negative PNA phases.

Accordingly, Fig. 7c outlines the potential of the recon-

struction method through an improved selection of proxy

locations and extended calibration period. In this case, the

predictor sets include temperature sampled from a box lo-

cated over Florida instead of precipitation sampled from the

southern box over the western United States, so that the

model can capture information from the easternmost neg-

ative PNA center (Figs. 1 and 2). The potential quality of

the PNA pseudo-reconstructions obtained with this design

is greatly improved according to both considered skill met-

rics (compare panels (b) and (c) in Fig. 7). The quality of

the pseudo-reconstructions still varies substantially through

the last millennium (not shown), but the risk of periods of

unskillful reconstructions (CE < 0) is much lower than for a

design limited to northwestern North America. The pseudo-

reconstructions further display improvement in the nega-

tive bias and a substantially better representation of low-

frequency PNA variability (Fig. S12). However, the models

disagree about which factor (i.e., extended calibration period

or inclusion of a temperature predictor for the southeastern

United States) more strongly contributes to the improved re-

sults.

In summary, pseudo-proxy experiments appear to be in-

strumental in both the designing and the assessment of future

PNA reconstructions. Of course, the exemplary design pro-

posed here represents an ideal setting, and future applications

of this tool for real-world reconstructions would require the

pseudo-proxy experiments to be designed based on the qual-

ity and type of actually available proxies.

4 Discussion

In order to understand the implications of our results for

real-world proxy reconstructions and for the interpretation

of last-millennium climate simulations, our discussion con-

centrates on three aspects: limitations of the reconstruction

methods and of our pseudo-reconstruction design in particu-

lar; weaknesses in the simulated representation of the PNA,

and of its teleconnections and variability; and issues related

to (regional) climate attribution before the observational pe-

riod and uncertainties affecting the simulation of the early

19th-century climate.

Our pseudo-proxy investigation reveals the inherent lim-

itations of a PNA reconstruction method solely relying on

local geophysical predictors from northwestern North Amer-

ica. Assumptions of linearity and stationarity between local

hydroclimate variability and the large-scale atmospheric cir-

culation described by the PNA are further weaknesses of the

approach. In our linear definition, the PNA robustly dom-

inates North American winter climate variability (Fig. 6),

which is an encouraging premise for reconstruction attempts.

Nonetheless, the so-defined PNA index may not capture

shifts in the location of the mode’s centers of action and

in the associated teleconnections (Raible et al., 2014). Fur-

thermore, our pseudo-reconstructions can be affected by the

non-stationarity of other climate variability modes’ telecon-

nection pattern to North America (such as ENSO; Coats et

al., 2013). Pseudo-reconstructions suggest that margins ex-

ist to substantially improve the quality of the reconstructed

PNA based on a TT2010-like multi-linear regression method,

for instance if the multiple PNA-sensitive regions over North

America are more exhaustively represented in the predictors’

set and if the calibration period is extended. However, includ-

ing temperature-sensitive predictors from southeastern North

America and extending the calibration period to the full 20th

century, as in our pseudo-proxy experiment (Fig. 7c), may

be difficult due to the nature of real-world climate proxies

and limitation of observational data suitable for model cal-

ibration. First, as noted above, the ensemble teleconnection
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Figure 10. Power spectral density of the winter PNA index (blue line) for individual simulations with associated 95 % confidence level (blue

dashed line) and agreement between the spectra of the pseudo-reconstructions (shading) obtained following an approach similar to TT2010

and illustrated in Figs. 7a and 8. Agreement is defined, for a given frequency, as the fraction of total pseudo-reconstructions having power

within 0.1 units2 yr−1 intervals. All indices are standardized according to the 1950–1999 climatology.
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Figure 11. Correlation maps between the ensemble-average residuals (predicted value minus true value) from the winter (DJF) PNA pseudo-

reconstructions obtained following the TT2010 approach and illustrated in Figs. 7a and 8 and winter surface air temperature time series

for the pre-industrial period up to 1849. Dots mark grid points where the correlation is not significant at 95 % confidence accounting for

autocorrelation. The green boxes mark the areas used for the TT2010 reconstruction.
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patterns in Twentieth Century Reanalysis Project data – the

longest reanalysis product now available – are poorly con-

strained during the first half of the 20th century over the Pa-

cific (Raible et al., 2014). Then, the Northern Hemisphere’s

ring-width network shows that the proxy responses to at-

mospheric modes like the PNA are determined by a com-

plex causal chain linking large-scale circulation, local cli-

mate and seasonal tree growth (St. George, 2014). Accord-

ingly, relatively few chronologies, mostly from the Pacific

Northwest and northern Rockies, significantly respond to the

winter PNA (St. George, 2014). More generally, real climate

proxies can be critically affected by noise (von Storch et al.,

2009), and may suffer from non-stationary climate proxy re-

lationships that are neglected in our perfect model frame-

work (e.g., Evans et al., 2013; D’Arrigo et al., 2008). There

exist, however, long winter precipitation-sensitive and pos-

sibly also temperature-sensitive proxies across the southern

United States (e.g., Stahle and Cleaveland, 1994; St. George,

2014; St. George and Ault, 2014), upon which future designs

of PNA pseudo-reconstruction exercises could be based. As

shown in Supplement Fig. S13, the skills of an ensemble of

TT2010-like PNA pseudo-reconstructions progressively de-

teriorate for increasing levels of noise artificially introduced

in the predictors. Skills depend more on the level of noise

rather than on the type of noise, at least for low amounts

of noise, in accordance with von Storch et al. (2009). For

a signal-to-noise ratio of 1 (Fig. S13c, f) explained variances

for the validation period never reach 0.5, and red noise gen-

erally produces unskillful reconstructions. Thus, our pseudo-

proxy investigation is only meant as an idealized example

demonstrating the potential margins of improvement offered

by the reconstruction method. Its application to a real-world

PNA reconstruction requires the scrutiny of available data,

which we defer to a dedicated follow-up study.

Poor modeling of the PNA-related dynamics is a straight-

forward explanation of the early 19th-century discrepancy

between the reconstruction and the simulations. Further-

more, the realism of our PNA pseudo-reconstructions relies

on the realism of simulated patterns, variability and telecon-

nections of the PNA as well as of other hemispheric modes

acting upon on the North American climate. Accurate repre-

sentation of observed dominant modes of climate variability

and of their teleconnections still represents a challenge for

coupled climate simulations (e.g., on ENSO see Guilyardi

et al., 2012; Zou et al., 2014). Unrealistic simulated repre-

sentation of large-scale atmospheric circulation modes can

arise due to biased ocean–atmosphere coupling over remote

regions: coupled climate models are still affected by consid-

erable biases in regional SSTs and sea ice – especially in

the North Atlantic Ocean – that are associated, in the North-

ern Hemisphere, with cold biases resembling the Northern

Hemisphere’s annular mode (Wang et al., 2014). This sug-

gests that good model performance in simulating regional

processes may be overridden by the effect of remote biases.

Our definition of the PNA index does not account for pos-

sible displacements of its centers of actions in simulated pat-

terns compared to reanalyses. An alternative definition based

on empirical orthogonal functions (EOF) results in PNA in-

dices that share between half (MIROC-ESM) and almost

the whole (CCSM4) total variance with the point-wise-based

PNA indices over the observational period (see Supplement

Table S1). Spatial differences between simulated EOF-based

and point-wise-based patterns also vary considerably across

the ensemble (Table S1). It is not yet clear whether and how

these uncertainties related to the index definition affect the

details of the pseudo-reconstructions. The validity of our

general conclusions clearly stands for the sub-ensemble in-

cluding only models with the most consistent PNA indices

across the two definitions (CCSM4, IPSL-CM5A-LR, MPI-

ESM-P).

The marked inter-model differences in the PNA–

precipitation correlation patterns over North America and

their general disagreement with the observed pattern (Fig. 3)

highlight the large uncertainties in the connection between

large-scale circulation and local hydroclimates that still af-

fect state-of-the-art coupled climate simulations. In this re-

gard, topography largely determines the wave-like structure

of the PNA and its surface signature. Its dominant role was

already highlighted by TT2010 in describing the characteris-

tics of their two precipitation-sensitive tree ring series from

Montana and Wyoming. Poor model topography likely leads

to biases in representing the PNA pattern and more visibly

its climate fingerprints. This was exemplified here by the

stark contrast between the low-resolution model FGOALS-gl

and the high-resolution model CCSM4 (compare panels (c)

and (d) in Figs. 1–3). With few exceptions, topography in the

employed models misses critical plateau elevations that are

crucial for the onset and sustenance of snow/ice-related feed-

backs (Berdahl and Robock, 2013). These could be relevant

for the reinforcement/dampening of the Canadian High dur-

ing the development phase of a positive/negative PNA (Ge

and Gong, 2009). Accordingly, these latter model deficien-

cies can partly explain why inclusion of precipitation over

the Rockies as a predictor degrades the skills of our pseudo-

reconstructions and yields much weaker skills than the actual

TT2010 reconstruction (as discussed in Sect. 2.4).

A possible solution to the discrepancy between the recon-

struction and the simulations is to attribute the reconstructed

early 19th-century positive PNA phase to internal variabil-

ity. Supporting this hypothesis, interdecadal persistent pos-

itive PNA phases emerge in all simulations throughout the

last millennium without consistent timing (Fig. 4a). How-

ever, simulated events are generally weaker than the recon-

structed event and the number of those longer than 20 years

is exiguous (see Supplement Fig. S14). Therefore, notwith-

standing the caveats described above about the realism of

simulated PNA dynamics and variability, the reconstructed

early 19th-century positive PNA phase is compatible with

an exceptional event of internal climate variability. A simi-
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lar interpretation has been recently proposed, with the sup-

port of climate simulations, for reconstructed multidecadal

droughts in southwestern North America during the last mil-

lennium (Coats et al., 2015). Further supporting this hypoth-

esis, the simulations ensemble does not point to coherent

positive PNA anomalies during other periods of the last mil-

lennium with concomitant strong volcanic forcing and weak

solar forcing, e.g., the mid-15th and the late 17th centuries

(Fig. 4a).

Under the alternative hypothesis that the reconstructed

early 19th-century positive PNA phase is externally driven,

the discrepancy between the reconstruction and the simu-

lations can be explained by common model deficiencies in

the simulated dynamical response to natural forcing and/or

by uncertainty in the (reconstructed) imposed external forc-

ing. Supporting this hypothesis, state-of-the-art coupled cli-

mate models still suffer from a deficient representation of

stratospheric and coupled stratosphere–troposphere dynam-

ics (Kodera et al., 1996; Woollings et al., 2010), which af-

fect the simulated response to volcanic (Driscoll et al., 2012;

Charlton-Perez et al., 2013; Muthers et al., 2014) and so-

lar (Gray et al., 2010; Anet et al., 2014) forcing. Further-

more, inter-model disagreement about post-eruption oceanic

evolutions (e.g., Ding et al., 2014) shows that large uncer-

tainties still exist about decadal-scale climate variability dur-

ing periods of strong volcanic forcing and the role of the

ocean in determining the surface air temperature response

(Canty et al., 2013). Sensitivity simulations performed with

a chemistry–climate model demonstrate the importance of

the Dalton Minimum of solar activity for the persistence

of the hemispheric cold temperature anomalies of the early

19th century (Anet et al., 2014). However, the cold winter

temperature anomalies depicted by these simulations over

Alaska during the period 1805–1825 do not match with the

imprint of a positive PNA. Single-model ensemble climate

simulations have shown that the 1815 Tambora eruption pro-

duces robust large-scale atmospheric circulation anomalies,

roughly corresponding to a positive PNA phase, only in the

absence of additional external disturbances, whereas under

full forcing conditions such positive PNA-like features be-

come hardly distinguishable (Zanchettin et al., 2013a). The

same simulation ensembles have further demonstrated that

internal climate variability can be a source of uncertainty for

the simulated early 19th-century decadal climate evolution as

important as the (reconstructed) imposed forcing (Zanchettin

et al., 2013a). Moreover, although climate simulations depict

an interannual-to-decadal PNA/NPI response to strong trop-

ical volcanic eruptions (Zanchettin et al., 2012; Wang et al.,

2012), responses on longer timescales may be damped by

the resilience of the interdecadal component of the Pacific

Decadal Oscillation to natural external forcing (Zanchettin

et al., 2013b).

Uncertainty in the external forcing factors acting on the

early 19th-century climate further complicates the attribution

of reconstructed and simulated variability. For instance, re-

constructed variations in total solar irradiance are affected

by considerable uncertainties (e.g., Schmidt et al., 2011;

Shapiro et al., 2011) as well as deficiencies in accounting

for the spectrum variations for solar forcing and ozone re-

sponse (Gray et al., 2010). There is ongoing debate about

how changes in total solar irradiance affect the tropical

oceans, with different observations and different simulations

disagreeing about whether warming or cooling of the up-

per tropical Pacific is expected under enhanced solar activity

(Misios and Schmidt, 2012). Moreover, the radiative impact

of tropical volcanic eruptions is sensitive to the season of the

eruption (Toohey et al., 2011; Froelicher et al., 2013), and

the season of the 1809 tropical eruption is still insufficiently

constrained (Cole-Dai et al., 2009).

5 Conclusions

Our results depict a discrepancy between reconstructed and

simulated PNA behavior during the early 19th century, an

exceptionally cold period in the Northern Hemisphere char-

acterized by concomitant weak solar and strong volcanic

forcing. According to our pseudo-proxy investigation, recon-

structions based on northwestern North American geophys-

ical predictors are potentially skillful in terms of two differ-

ent metrics (coefficient of determination and coefficient of

error). Such an approach following Trouet and Taylor (2010)

is also likely capable of capturing strong interdecadal pos-

itive PNA phases, like the one reconstructed for the early

19th century. However, a number of sources of uncertainty

and potential deficiencies are still present especially at mul-

tidecadal and centennial timescales. Furthermore, pseudo-

reconstructions based solely on predictors from northwestern

North America often cannot distinguish between the PNA

and the North Pacific Index describing the strength of the

Aleutian Low.

The PMIP3-past1000 and historical simulations provide

an overall satisfactory representation of the observed PNA

spatial pattern and of its imprint on the North American cli-

mate. Simulated pre-industrial PNA evolutions show a pre-

dominance of internal variability over forced signals, which

could be used as an argument to explain why simulations do

not robustly exhibit the reconstructed positive PNA phase in

the early 19th century. Shifting focus to the attribution of the

reconstructed anomaly requires confidence that simulations

do not suffer from common deficiencies in the response to

natural forcing, in the applied reconstructed forcing and/or

in the internally generated climate variability. We need there-

fore to better understand the relative role of externally forced

and internal climate variability during the pre-industrial pe-

riod.
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A refined topography associated with high horizontal

model resolution appears to be important for models to re-

alistically capture the connection between the large-scale

circulation and the local climatic/environmental conditions

upon which a reliable PNA reconstruction depends. How-

ever, our pseudo-reconstructions also indicate that there is

margin to substantially improve the available PNA recon-

struction, in particular through a more exhaustive representa-

tion of the multiple PNA-sensitive regions over North Amer-

ica in the predictors’ set. These results call for strength-

ened cooperation between the climate proxy and climate

modeling communities in order to improve our knowledge

about the early 19th-century PNA and to solve the related

reconstruction–simulation discrepancy.

The Supplement related to this article is available online

at doi:10.5194/cp-11-939-2015-supplement.
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