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ABSTRACT

Single pixel imaging opened the door to a cheaper camera ar-
chitecture able to operate in a wide spectral range. Such an
optical setup has been used with compressed sensing to recon-
struct an image via `1-minimization ruling out real time ap-
plications. In order to have a direct restoration of the image,
we consider an adaptive approach for which we propose a
new acquisition strategy. Our method progressively acquires
an image in the wavelet domain by predicting the significant
coefficients. For this, we base our technique on the non-linear
approximation of the wavelet transform taking advantage of
the transformation’s sparsity. This new strategy is shown to
offer high performance on simulated and real data that we
compare to compressive sensing acquisitions. One possible
application of the single pixel camera can be foreseen in flu-
orescence images of biological structures.

Index Terms— Single-pixel camera, compressed sens-
ing, wavelet transform, image processing

1. INTRODUCTION

Building small, cheap and efficient sensors becomes possi-
ble when considering the single pixel camera (SPC) archi-
tecture [1]. Several advantages can be noted compared to
CCD or CMOS cameras. First, building a unique sensor for
infrared or hyperspectral imaging considerably reduces the
costs with regard to a conventional camera operating at these
wavelengths. Second, the single detector can have a very
good quantum efficiency and few storage memory is needed.
Finally, SPC is also well suited to create a low-cost time-
resolved imaging device by using a single TCSPC (Time-
Correlated Single Photon Counting) board.

Our goal in this paper is to provide a new acquisition
strategy for SPC acquisitions. The single pixel camera can
find many applications in the biomedical field. For instance,
infrared imaging can be considered to study collagen lipid

interaction, hyperspectral imaging for tissue oxygenation or
time-resolved imaging for fluorescence lifetime imaging [2].

2. PROBLEM AND RELATED WORK

We address the problem of recovering the image of an object
acquired by a SPC, which was originally formulated in [1, 3].
The optical setup can be implemented with a digital micromir-
ror device (DMD) and a single detector element. A lens is
added to focus light on the single detector. A DMD has thou-
sands of mirrors that can be independently tilted in two states.
The ON state reflects the light toward the detector whereas the
OFF state reflects the light in the opposite direction. Hence, a
DMD can act as a tunable spatial filtering device.

A SPC acquisition can be formalized as the sequential
measurements of the dot product of the image and some DMD
patterns. Let F ∈RN×N be the N×N image and f ∈RP×1 de-
note its vectorized form with P = N2. Let {pi ∈ RP×1, i =
1..I}, a sequence of I DMD patterns. The measurements
{mi, i = 1..I} can be expressed as

mi = 〈f,pi〉 (1)

Then, the problem consists in retrieving f from {mi}, knowing
the patterns {pi}.

Two main approaches exist: nonadaptive and adaptive.
For the first type, the authors in [1, 3] used compressed sens-
ing [4]. Random patterns are considered and f is restored via
`1-minimization. For the second approach, the patterns are
progressively determined during the acquisition [5, 6, 7].

In this paper, we consider an adaptive scheme since it im-
proves the image restoration without the computational over-
head of `1-minimization. Real time applications can thus be
considered. In this paper, we obtain {mi} from wavelet pat-
terns {pi} using a non-linear acquisition strategy. In order
to compare our method with the state-of-the-art compressive
sensing (CS), we briefly introduce CS for SPC acquisitions



in 3.1 before detailing our method in 3.3 that we refer to as
Adaptive Basis Scan (ABS).

3. METHODS

3.1. Compressive sensing for SPC

Let s ∈ RP×1 represents the signal f in the Ψ domain where
Ψ ∈ RP×P is an orthonormal transform operator such that

f = Ψs (2)

Ψ can be chosen as a wavelet basis, Fourier basis, DCT basis,
etc. We search a representation of f that is K-sparse i.e. only
K entries of s are non-zeros values.

Instead of acquiring P measurements, the compressive
sensing [4] aim to only retain M << P measurements as
y j = 〈f,φ j〉 = φ>j f with M ≈ K. {φ j}M

j=1 are referred to as
measurement vectors and their transposed version can be ar-
ranged as rows of the sensing matrix Φ ∈ RM×P. Putting the
measurement in the vector y and using (2), we can write

y = Φf = ΦΨs = Ωs (3)

Ω is an M×P matrix and is completely independent from the
image F.

A common choice for the entries of the matrix Φ are in-
dependent realizations of ±1 Bernoulli random variables [1]
with probability 1/2. This sensing matrix is well suited for
the DMD’s ON/OFF states.

`1-minimization is then employed to resolve the following
problem:

ŝ = argmin‖s‖1 such that Ωs = y (4)

Finally, one can recover the reconstructed signal by f̂ = Ψŝ
that can be reshaped into a N×N matrix to obtain the restored
image F̂.

3.2. Wavelet decomposition

The discrete wavelet decomposition of an image with the
standard dyadic separable wavelets transforms the image into
approximation and detail coefficients (horizontal, vertical and
diagonal). A low-pass filtering is applied to obtain the ap-
proximation image whereas the detail coefficients result from
a high-pass filtering [8]. Let j = 1...J be the scale at which
the image f is observed, J being the decomposition level with
1≤ J ≤ log2(N) = R. Let k = (k1,k2)∈Z2 specify a location,
we note β e

j,k the coefficients, e = 0, 1, 2 or 3 representing the
approximation, horizontal, vertical and diagonal coefficients,
respectively. These elements can be obtained by

β
e
j,k = 〈f,γe

j,k〉 (5)

with γe
j,k chosen as the scaling function (e = 0) or wavelet

function (e = 1, 2 or 3). Equations (1) and (5) show that the
wavelet coefficients can be computed by the SPC.

3.3. Adaptive basis scan for SPC

The wavelet decomposition leads to sparse signals allowing
one to discard many coefficients at the restoration step [8].
Given this sparsity, acquiring each coefficient is not neces-
sary. A sampling scheme can be chosen to mainly acquire sig-
nificant coefficients. Deutsch et al. [5] based their approach
on a father-son relationship hinged on the tree structure of the
wavelet decomposition [8]. This stands that a coefficient at
the scale j has 4 sons at the finer scale j− 1. A threshold-
ing strategy was then employed to predict the relevant coef-
ficients. Similarly, Dai et al. [6] used a more refined thresh-
olding strategy that outperforms Deutsch’s method. To over-
come the limits of an image-dependant thresholding strategy,
we considered in [7] to use a non-linear approximation. To
avoid the father-son relationship, we propose to couple this
previous strategy with an interpolation scheme.

We base our method on the non-linear approximation of
the wavelet transform that retains a number M << P of the
largest coefficients. This approximation was shown to give
excellent image recovery [8]. In the case of the SPC, the
whole wavelet transform of the object to be imaged is not
known. Therefore, we perform several non-linear approxima-
tion throughout the different decomposition levels. More pre-
cisely, our strategy consists in the following steps. First, the
approximation image at scale J is fully acquired, this provides
nA = 22L coefficients with L=R−J. This image is considered
as a low resolution image from which we create an high reso-
lution image by increasing its size by two via bi-cubic interpo-
lation. This high resolution image is used for significant co-
efficients prediction by taking its one-level wavelet transform
from which a percentage pJ of its largest detail coefficients
are retained. The location of those elements are then chosen
for acquisition with the SPC, leading to nJ = 3× 22L × pJ
acquired detail coefficients at J. For the other decomposi-
tion levels of the wavelet transform, we proceed similarly by
restoring each time the approximation image at j with the in-
verse wavelet transform. This approximation image is then
used as the low resolution image employed for prediction.
Therefore, at each step, we keep

n j = 3×22l × p j (6)

coefficients with l = R− j. We thus can control the total num-
ber of coefficients n acquired for each decomposition level by
modulating the set of percentages P = {p1, p2, ..., pJ}. Us-
ing (6), it can be shown that

n = 22L

[
1+3

J

∑
j=1

4J− j p j

]
(7)

We define the sampling rate (SR) as n over the total number of
pixels P. One can finally recover an image from the n samples
using the inverse wavelet transform.



Fig. 1. Jaszczak target. 128×128 ground truth image used for
simulation (left) and experimental CCD image of the printed
target on a paper (right).

Fig. 2. Simulation of CS and ABS on the Jaszczak target. Top
row: CS simulation for a SR of 20% (left) and 10% (right).
Bottom row: AS simulation for a SR of 20% and 10%. Ta-
ble 1 presents the PSNRs associated with these results.

4. RESULTS

For CS simulation, instead of the `1-minimization in (4), we
directly reconstructed the image f from the measurements
y using Total Variation (TV) minimization via TVAL3 [9].
This is close to performing `1-minimization in the wavelet
domain [10] and allow for much faster image restoration.
Anisotropic TV with positivity gave the best results for the
images presented here. For our method ABS, Haar patterns
were considered since they are well suited for the DMD’s
ON/OFF technology.

In Fig. 1, we present the ground truth Jaszczak target com-
monly used as a phantom in CT as well as the experimental
image acquired by means of a 16 bit CCD camera.

Figure 2 presents simulated results on the target for our
method and CS. In the case of ABS, P = {0.011,0.69,1,1}
and P = {0.01,0.22,0.76,1} where used to obtain SRs of
20% and 10%. Table 1 gives the quantitative results in terms

Method SR (%) Time (s) PSNR (dB)

CS 20 15.934 24.16
10 10.614 22.90

ABS 20 0.008 26.85
10 0.006 25.05

Table 1. Time and PSNRs associated with the results of
Fig. 2. Time takes into account the image restoration for TV
and prediction+restoration for ABS. PSNRs are given with
respect to the ground truth image in Fig. 1.

Fig. 3. Acquisition of the Jaszczak target using the SPC and
images restored with CS or ABS. Top row: CS restoration for
a SR of 20% (left) and 10% (right) with a PSNR of 19.70 dB
and 19.18 dB. Bottom row: ABS restoration for a SR of 20%
(left) and 10% (right) with a PSNR of 20.90 dB and 20.60
dB. PSNRs are given with respect to the CCD image in Fig. 1
after registration.

of peak signal to noise ratio (PSNR) and computing time for
both SRs.

In Fig. 3, we present the same results as the simulated
ones but for real acquisitions using the SPC with 128× 128
pixels patterns. The experimental setup was composed of a
laser source operating at 650 nm wavelength for uniform il-
lumination of the target. A 1024× 768 DMD was exploited
to spatially modulate the image. The light reflected from the
DMD is focused by means of a lens on a single pixel photo-
multiplier detector. The target was printed on a paper with a
diameter of 22 mm.

Fluorescence imaging being a target application, we
tested our acquisition strategy on an image of a mouse in-
jected with a fluorescence dye. Results are shown in Fig. 4
for a SR of 10% and using Le Gall’s wavelet (CDF 5/3).



Fig. 4. Simulation of our acquisition strategy on a 128×128
image of a mouse injected with a fluorescence dye (left). Im-
age restored for a SR of 10% using our strategy with Le Gall’s
wavelet (right). A PSNR of 41.75 dB was reached.

5. DISCUSSION

As can be seen in Fig. 2, visually, both the CS and ABS
methods show very efficient image restoration on the phan-
tom. For both methods, most of the errors are concentrated
on the edges. By looking at the associated PSNRs given in ta-
ble 1, we can see that our technique performs better. An other
advantage of our method is that the restoration of the image
is straightforward leading to almost negligible computation
time. The many parameters of the TV algorithm are also crit-
ical to the quality of the restored image. In our technique,
only the wavelet and the set of percentages have to be cho-
sen. Those latter can be tuned according to the type of object
to image. For instance, a high frequency image will need a
high p1 value (numerous details) whereas for a low frequency
image, it can be set to 0.

Similar observations can be made for the real acquisitions
of Fig. 3. In our optical setup configuration, we can image an
array of about 27×27 mm2 and obtained a pixel pitch of 210
µm using 128× 128 pixels patterns. This pixel pitch can be
easily improved by increasing the size of the patterns and/or
changing the focal distance of the objective lens.

Looking at the results of Fig. 4, we can see that our
method shows great flexibility in the sense that the same set
of percentages works well for this image and the Jaszczak
target despite their clear difference. Moreover, today’s DMD
offer the possibility to load grey levels patterns, allowing one
to chose the wavelet in our technique according to the object.
For example, Le Gall biorthogonal wavelet has been success-
fully used in acquisition although quantization of the patterns
is needed. This wavelet offers higher compression rate than
Haar’s wavelet.

6. CONCLUSION

We presented in this paper a new strategy to acquire images
with a SPC. Compared to the CS technique, we obtain similar
results in a shorter time by avoiding the `1-minimization. We

also have a small number of parameters to set with straight-
forward image restoration. Simulations and real acquisitions
with the proposed methodology show both good visual and
numerical results. In future work, we plan to use this optical
setup for fluorescence lifetime imaging of biological tissues.
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